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Sphericity Tests and Repeated Measures Data

introduction

Behavioral scientists often use one or another variation of

the repeated measures research design to make decisions

concernins behavioral and psychological data (Edgington, 1974;

Jennings and Wood, 1976; Lana and Lubin, 1963; and Robey, 1985).

In an exploratory investigation where specific a priori contrasts

cannot be reasonably formulated, a researcher must depend upon an

omnibus F statistic for decisions on the presence or absence of

treatment effects. One of the analysis alternatives in this

situation is the mixed model analysis of variance (Scheffec

1959). This particular analysis assumes, among other things, a

mathematical property known as sphericity (Huynh and Fe Idt,

1970). Several preliminary tests to detect departures from the

sphericity assumption have been proposed (e.g., Mauch ly, 1940),

and advocated (e.g., Huyhn and Mandeville, 1979). The logic of

the preliminary testing procedure is to conduct the mixed model

analysis of variance if the preliminary test suggests that the

sphericity assumption is tenable, or alternatively, to conduct

another analysis of variance, (e.g., a multivariate analysis o(

variance) which does not assume sphericity (Huynh and Mandeville,

1979; Hertzog and Rovine, 1985; Thomas, 1983).

In this paper, we examine the value of basing the analysis

strategy upon the outcome of a preliminary test on the sphericity

assumption. Our examination proceeds in four parts. In the
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first section, we review sphericity and its relationship to the

mixed model analysis. The second section contains a review of

five sphericity tests and a description of the appearance of

these tests in three popular statistical packages. The third

section reports the performances of these tests in a Monte Carlo

Type I error study. In the fourth section, an example data set

is used to emphasize the danger of depending upon a preliminary

test to make analysis decisions.

The Sphericity Assumption

The following discussion of sphericity proceeds in two

sections. The first section relates .to univariate sphericity,

where one observation is collected on each unit at each occasion,

while the second section addresses multivariate sphericity, where

multiple measures are collected on each unit at each occasion.

Univariate Sphericity

Huynh and Fe Idt (1970) and Rouanet and Lepine (1970) showed

that sphericity is necessary and sufficient for the ratio of

mixed model variances to be distributed as F. Huynh and Fe Idt

(1970) referred to this condition as sphericity while Rouanet and

Le/pine (1970) used the term circularity.

In the single group design, sphericity is held if, and only

if,: CIC = a21 where C is a k-1 x k orthonormal contrast

matrix, M is the population variance-covariance matrix, and I is

an identity matrix of order k-1. The element a2 is a

scalar > 0 which represents the common population variance on
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each of the orthonormal contrasts in C (Boik, 1981). It should

be noted that the value of a 2 is the common value of the

k-1 eigenvalues of CEC'.

For the split-plot design, the assumption is written as

C C' = 621, where 2 is the pooled

variance-covariance matrix for :ill g groups. Pooling is

indicated only when all g E matrices are equivalent (1-luynh and

Feldt, 1970).

Box (1954) and Imhof (1962) showed that when the positive

non-zero eigenvalues of CEC' are all equal, the single group

mixed model test is distributed exactly as bF[h,h(n-1)]. Here, b

is a measure of sample size heterogeneity which equals unity in

the single group repeated measures design with no missing data.

The quantity, h, is a ratio of CEC' eigenvalues ( X) written as

h
)

k -1 ,2
A

(1)

When all the k-1 eigenvalues are equal, h = k-1, and the

distribution of F on k-1 and (k-1)(n-1) degrees of freedom

follows.

Under a departure from sphericity (i.e., when the eigenvalues

of CEC' do not share a common value), a multiplicative
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correction factor for the usual k-1 and (k-1)(n-1) degrees of

freedom to obtain an approximate distribution of F on h and

h(n-1) degrees of freedom follows as

k-1

,

(k-1) A,2i

(2)

5

Box (1954) showed that the mixed model F is approximately

distributed as F[(k-1) , (k-1) (n-1) e 1. Note that if all the
eigenvalues are equal, c equals 1, and is otherwise a fraction.

Geisser and Greenhouse (1958) showed the lower bound of c to be
1/(k-1). However, Imhof (1962) recoonized that with cEc' being

positive definite, e only approaches 1/(k-1). Huynh (1978)

showed that the mixed model test is not robust with respect to

even slight departures from sphericity.

Multiva riate Sphericity.

The multivariate mixed model analysis assumes not only

sphericity of the variance-covariance matrix associated with each

of the dependent variables, but that the variance-covariance

structure among the dependent variables, across occasions, is the

same (Timm, 1980). That is,

V1 = V2 = V3 = V. = V,
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where V. 0 = 1,2,...k) is the variance-covariance matrix for
.the dependent variables at the I
th

occasion, and where V is

the common variance-covariance matrix of the dependent variables

for all k occasions.

Testing the Sphericity Assumption

In the following paragraphs we review several tests on the

sphericity assumption. A discussion of the univariate tests

precedes a discussion of the multivariate test.

Univariate Tests

Mauchly's Test

Mauch ly (1940) derived a test that can help a researcher

determine if a sample of variates were selected from a population

where the variances are all equal, and the covariances are all

zero (i.e., a 211. It follows that Mauchly's likelihood

ratio criterion is applied to the CSC' matrix, where S is the

sample estimate of 2 . Mauchly's test is defined by Huynh and

Fe Idt (1970) as

w = ICSC't / [tr(CSC') / (k-1)]k-1.

With the values

and

(3)

d = 1 (2(k-1)2 1- (k-1) + 2) / [6(k-1)(n-1)] (4)

v = [(k-1)k/2] -1 , (5)
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an asymptotic test is given by -(n-1)In(w)d which is

approximately distributed as Chi-square on v degrees of freedom.

Rejection of the null hypothesis indicates that the mixed model

test is not valid (Rogan, tIman, and Mendoza, 1979), and as a

result, the data require an C. Iternate test statistic, e.g., the

niultivariate model F or an adjusted mixed model F. Anderson

(1958) described the exact distribution of w when k = 3. In

1967, Consul presented tabled critical values of w for k at 4, 5,
and 7. Nargarsenker and Pillai (1973) presented tabled critical

values for k-1 = 4(1)10 at the .05 and .01 alpha levels. Mathai

and Rathie (1970), and Pillai and Nargarsenker (1971) among

others, have described the exact distribution of the criterion w
for any k. The non-null distribution of w was derived by

Nargarsenker (1976).

Rogan, Keselman and Mendoza (1979) and Keselman, Rogan,

Mendoza and Breen (1980) examined Mauchly's test and found it to

be very sensitive to departures from normality, and to even

slight departures from its null hypothesis. They concluded that

rejection of the null hypothesis is so likely that one would

almost always conclude that the sphericity assumption was not

reasonable to maintain. Muirhead and Waternaux (1980) also found

the sphericity criterion to be sensitive to departures from

normality. It should be noted that Muirhead and Waternaux (1980)

examined a similar criterion, V, which equals wn/2. The

value of V was evaluated as -2In(V) which is approximately
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distibuted as Chi-square on [(k-1)k/2] -1 degrees of freedom.

Huyhn and Mandeville (1979) examined Mauchly's test and,

among other things, their results indicated that the test

performed acceptably under departures from normality in the

direction of light tailed distributions. Huynh and Mandeville

argued that this is the likely form of non-normality to be

encountered in practice.

The criterion w is reported by PROC GLM of SAS (SAS

Institute, Inc., 1985) when the PRINTE option of the REPEATED

command is specified. Although the probability for w is not

reported, GLM does report the Chi-square approximate with its

degrees of freedom and a p value. The 2V program in BMDP (Dixon,

1983) reports a similar, but different, Chi-square approximate

when the SYMMETRY option appears in the DESIGN paragraph. In a

personal communication (BMDP Statistical Software; August 28,

1986), BMDP indicated that the 2V test is given in Equation 22 of

Anderson (1958, p. 263). However, examination of that equation

does not suggest a distinction from -(n-1)In(w)d.
Bock's Tests

Bock (1975) described an alternate two-stage method for

testing the null hypothesis that cEc' = a2l. In the first
stage, Bock recommended using a test proposed by Bartlett (1950)

which tests the null hypothesis that CMG' is a diagonal matrix.

The test is given by

9
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-[(n-1) (2k+5)/6]InIIII (6)

which is approximately distributed as Chi-square on k(k-1)/2

degrees of freedom under the null hypothesis. The test is

applied to the sample correlation matrix derived from CSC'.

The second stage of the procedure described by Bock (1975)

uses a test for homogeneity of variance proposed by H. 0. Hartley

and described by Winer (1971, p. 206). The test statistic,

Fmax, is a ratio of the largest of a set of variances, over

the smallest of the same set of variances. Since the test is

applied to the CSC' matrix, the null hypothesis concerns

equivalence among the variances of the k-1 orthonormally

transformed variates. Under the null hypothesis, the test is

approximately distributed as F with k-1 and n-1 degrees of

freedom. If both the Bartlett (1950) test, and the Hartley

(Winer, 1971, p. 206) test are not rejected, Bock suggested that

sphericity can be assumed.

Norusis (1985) recognized that Bock's first test statistic

varies as the composition of the orthonormal coefficients in the

matrix C vary. The reason for this ambiguity is explained by the

fact that as the coefficients in C vary, the structure of CSC'

varies. The mixed model F is invariant to this type of

variation, but the Chi-square approximate in Equation 6 is not.

The program described by Norusis (1985) uses a single contrast

matrix to calculate w and F. As a result, w varies when the

10
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orthonormal coefficients are redefined in subsequent runs. To

eliminate this ambiguity, it seems reasonable to select the

orthonormal coefficients in C parsimoniously such that CSC' is

diagonal. This is accomplished by post multiplying C by the

matrix of eigenvectors for CSC'. The result is to reduce the

structure of CSC' to its canonical form with eigenvalues along

the diagonal and zeros elsewhere. This step not only reduces the

ambiguity of the results of Bock's first test, it precludes the

application of the test all together by insuring that the null
hypothesis is true. When CSC' is diagonal, the Fmax test

becomes a ratio of the largest eigenvalue of CSC' over the

smallest eigenvalue of CSC'.

The tests used in Bock's two step procedure can be obtained
in the MANOVA program of SPSS-X (SPSS Inc, 1986) by specifying

ERROR(COR) in the PRINT command.

The John-Sugiura-Nagao Test

John (1971), Sugiura (1972), and Nagao (1973) each derived a

test for sphericity based upon the quantity U which equals 1/h,

where h is obtained by substituting the eigenvalues of CSC' into
Equation 1. The value U is evaluated using the statistic T which
equals [(k-1)U - 1] / (k-1). Tables of critical values for T are

found in John (1976).

Grieve (1984) compared the w statistic to the

John-Sugiura-Nagao sphericity test using a Monte Carlo power

analysis. Grieve found that the eigenvalue structure of M can
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favor one or the other test. However, Grieye's results suqgested

that the T statistic does not suffer as badly as does Mauchly's

test under unfavorable conditions.

Neither BMDP, SAS nor SPSS-X report the T test.
Grieve's Test

Grieve (1984) also presented a sphericity test based upon

the relationship of h and E (i.e., e = h/(k-1)). Grieve defined

a test on the sphericity assumption where the value of e is used

as the criterion which is compared to a critical value. Further,

Grieve presented tables of critical values for e . As Grieve

contends, this test is the most intuitively appealing of all of
the tests on the sphericity assumption since it uses the familiar
index of sphericity as the test criterion.

Neither BMDP, SAS nor SPSS-X report the Grieve epsilon test.

Testing Multivariate Sphericity

Thomas (1983) extended Mauchly's test of sphericity for
p = 1 to the any p case. Thomas derived the test as follows.

Let D = (1/p)E, where E is the error sums of squares and cross

products matrix for the multivariate mixed model. Further, let
t. be the natural log of the ith eigenvalue of the doubly1

multivariate error sums of squares and cross products matrix for

the doubly multivariate model, and let ui be the natural log

of the ith eigenvalue of D. Then Thomas's extension of

Mauchly's test is given by
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p(k-)
ng[(k-1) E u. t.] ,1., (7)

where g is the number of groups. This value is evaluated as

Chi-square on

p(k-2) [P(k-1) p + 11
(8)

2

degrees of freedom.

In a Monte Carlo robustness study, Robey (1985) evaluated

the Type I error rate of the approximate Chi-square. He found

that the test was unacceptably liberal at all levels for sample

sizes likely to be encountered in the behavioral sciences.

Further study by Robey (1985) revealed that the test required

several hundred observations for the actual alpha level to

approximate the nominal level.

A Monte Carlo Type I Error Analysis of the Univariate Tests

Although Huynh and Mandeville (1979) and Keselman et al.

(1980) have examined the Type I error rate of the w criterion, to

date, the remaining univariate sphericity tests have not been

similarily investigated. To address this problem, a Monte Carlo

robustness study was conducted on five univariate sphericity

tests using multivariate normal data where e = 1 (i.e., the

assumptions were maintained and the null hypothesis was true).

The w criterion was observed in a partial replication of the

above two studies. The Chi-square approximxte for w was also
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observed since that form of the test is more likely to be

reported by practitioners. In addition, the Type I error rates

of the eigenvalue F
max the T test and the epsilon test were

examined. The Bock Chi-square was not analyzed since it is

irrelevant when considering eigenvalues.

The Monte Carlo analysis reported here was fashioned after

Robey (1985) and Robey and Barcikowski (1986). The number of

oc,:asions in the design was varied at 3, 5; 7 and 10. The number

of observations in the design was varied at (k-1) + 3,

(k-1) + 10, (k-1) + 20, and (k-1) + 30. These sample sizes were

selected to agree with those described by Davidson (1972).

The Monte Carlo dependent variable was the proportion of

6000 calculated test statistics which exceeded the critical value

of a particular test. This proportion, actual alpha, was

calculated for each combination of the independent variables

(i.e., k and n). Decisions regarding the comparison of nominal

and actual alpha levels were accomplished using the hypothesis

testing approach described below. This manner of decision making

satisfies the recent call for increased rigor in the design of

Monte Carlo studies (Hauck and Anderson, 1984).

Data Generation and Analysis

A FORTRAN subroutine, GGNSM, from the International

Mathematical and Statistical Libraries, Inc. (IMSL, 1982) was

used to generate multivariate normal data for each of the

variance-covariance matrices. GGNSM first generates multivariate

14
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normal vectors of random numbers, N(0,I). Then using Cholesky

decomposition, the input variance-covariance matrix is decomposed

to an upper triangular matrix, U, such that UU' = M. The N(0,I)

vectors of data in some matrix, say Z, are then transformed to

N(0,M ) through ZU'. The initial seeds for GGNSM were selected

from a table of random numbers.

The analysis program was a double precision G level FORTRAN

program executed on an IBM 4381 mainframe computer.

Statistical Hypotheses

The general form of the null and alternate hypotheses were

Ho: P = a and Ha: P a

where P represents a population proportion, and a equalled .01

and .05. Meaningful discrepancies between the nominal alpha

levels and actual alpha levels were defined as departures of

4. .005 from the nominal alpha of .01, and as departures of

+ .025 from the nominal alpha of .05. The magnitude of these

values were obtained using Bradley's (1978) robustness criterion

of a a .5. A two-tailed test for proportions described by

Cohen (1977, P. 213) was used to analyze the results of th.t.i Monte

Carlo problems. The a priori alpha level for all applications of

the proportions test was set at .01. The desired minimal

statistical power for all applications of the proportions test

was set at .80. Following the method for establishing sample

size described by Cohen (1977), it was determined that 5711
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observations were needed for Ho: P = .01, and that 1085

observations were needed for Ho: P = .05. As a matter of

convenience, 6000 observations were collected for each Monte

Carlo problem. As a result, statistical power exceeded .80 in

all of the analyses.

Results

The actual alpha levels for each of the sphericity tests are

reported in Table 1 through Table 5. In Table 1, it can be seen

that the criterion w demonstrated appropriate Type I error rates

at each level of n for k = 3, 5 and 7. These results agree with

the comme' ite results of Huynh and Mandeville (1979) and of

Keselman et al. (1980). Unfortunately, critical values for k = 3

were not available to the authors.

The actual alpha levels found in Table 2 for the Chi-square

approximation of w show an interesting pattern which is

restricted to the smallest sample size (i.e., k-1+3). That is,
for k at 7 and 10, the actual alpha levels become increasingly

liberal. With sample sizes of k-1+10 and larger, the test

demonstrated good Type I error control.

Notice that the actual alpha levels for k = 5 in the

smallest sample size show a significant departure from nominal

alpha at .05. This is due to the fact that the actual alpha

levels are based upon 6000 observations. Since this actual alpha

level (i.e., .066) is well within the critical interval

of a + a .5 which was established a priori, this rejection, and

t 6
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others like it, will be ignored.

Table 3 contains the actual alpha levels for the Fmax

test. Recall that here Fmax is the ratio of the Lrgest

eigenvalue of CSC' over the smallest eigenvalue of CSC'. It can

be seen that the test becomes increasingly liberal as k

increases. Further, the test becomes increasingly conservative

as n increases. As a result, for larger n's and smaller k's, the

test is excessively conservative, while for smaller n's and

larger k's, the test is excessively liberal.

The results for the T test found in Table 4 are less clear.

For the largest sample size (i.e., k-1+30), the actual alpha

levels are all conservative and decrease as k increases. The

same general trend can be seen in the results for n = k-1+20;

however, at k = 3 and k = 5, the test is not conservative.

Although the results for n = k-1+10 show acceptable Type I error

rates for k = 3 and k = 5, the rates for k = 7 and k = 10 are

both too high. In contrast, the results for n = k-1+3 are all

unacceptably liberal.

The Type I error rates for the Grieve epsilon test found in

Table 5 vary with sample size. In general, the test performed

liberally under all levels of k in the smallest sample size. The

results for n = k-1+10 represent a transitl.mi from the

liberalness found at n = k-1+3 to what are generally adequate

Type I error levels across all levels of k for the two largest

sample sizes.

1.7
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Discussion

These results suggest that the w criterion offers acceptable

Type I error control which remains stable as the structure of the

basic design varies. The Chi-square approximation of w also

demonstrated acceptable and stable Type I error rates except

where a small sample size (i.e., n exceeded k by a few) combined

with larger k's (i.e., k > 7). The results for the Grieve

epsilon test suggest that it provides reliable Type I error

control only when n exceeds k by 20 or more.

Unfortunately, these results indicate that the Bock two-step

procedure cannot be recommended under any circumstances. As

shown earlier, the first step is not necessary when the CSC' is

reduced to its canonical form, and is uninterpretable otherwise.

For the second step, these Type I error results indicate that the

interaction between k and n is sufficiently severe to make the

Fmax test useless as a decision making tool in an already

difficult situation (i.e., to assume, or not to assume

sphericity).

It should be kept in mind that these results were obtained

using normally distributed variates. These results do not

comment on the impact of non-normality upon the various

sphericity tests.

The Problem with Sphericity Tests is

In this section we will demonstrate the potential problem

with the practice of depending upon the multivariate repeated

1.8
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measures F when a preliminary test of the sphericity indicates

that the assumption for the mixed model is not a tenable one.

Consider the fiticious data set found in Table 6. The data set

was constructed to represent an experimental s!tuation where,

following a no treatment observation prior to kl, some

intervention is introduced to a clinical sample prior to k2

and is maintained through kit. The last two measurement

occasions are taken in a no treatment period in order to measure

carry-over or F7xtinction effects.

The means (i.e., 46.03, 45.85, 52.78, 54.0, 52.68 znd :)2.64)

show a sustained elevation of scores which begins at k3. The

variances (i.e., 156.71, 250.78, 12.81, 10.08, 5.77 and 13.88)

reflect an initial increase in the heterogeneity of the scores at
k

2 with the onset of treatment. The remainder of the

observations in the treatment period show a marked increase in

homogeneity of the scores which is maintained through the final

no treatment period. The eigenvalues of the CSC' matrix (i.e.,
242.99, 108.10, 15.26, 8.25 and 7.43) yield an e value of .4106.

The various sphericity tests, as well as the mixed model F

corrected for "land the multivariate repeated measures F, are

reported in Table 7. Each of the sphericity tests correctly

indicates that the sphericity assumption is not reasonable to

ntain. If it were decided to conduct only the multivariate

dysis on the basis of one or more of these tests, the obvious

effect would be missed (F = 2.25; df = 5,15;

1.9
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p = .1025). However, the corrected mixed model analysis does

detect the treatment effect at the .05 level (F = 3.57;

df = 2.05,39.01; p = .0365). The explanation for this power

differential can be found in Davidson (1972), Imhof (1962),

Barcikowski and Robey (1984a) and in Robey (1985).

When deciding how best to analyze any given set of repeated

mep ata, a researcher must contend with the absence of

cruuidi mformation since the structure of CEC' cannot be

estimated a priori. Without this information, the following two

questions cannot be answered: 1.) Given a likely departure from

sphericity, how severe is that departure? and 2.) Given a likely

departure from sphericity, which analysis of variance will best

be able to detect the treatment effects? This dilemma precludes

an a priori selection of the preferred analysis procedure.

Barcikowski and Robey (1984a, 1984b) advocated a solution to

this problem based upon the fact that a departure from sphericity

is very likely, and upon the fact that even slight departures

from sphericity can bias the mixed model test. Their analysis

strategy can be summarized in the following four points.

1. Following the procedure described by Robey and
Barcikowski (1984), calculate the n neseccary to
detect the smallest meaningful treatment effect with
satisfactory Type I and Type II error rates.

2. Forego testing sphericity altogether, and concentrate
on the value of '?as a descriptive statistic which
comments on the severity of the departure from
sphericity.

20
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3. Conduct the multivariate F and the mixed model F
simultaneously.

a. Routinely correct the mixed model degrees of
freedom using one of the sample estimate
correction factors (e.g., Greenhouse and Geisser,
1959; Huynh, 1978).

b. Split the alpha level equally between the two
analyses of variance.

This procedure leads to the most reasonable decision on the

presence of treatment effects vis-a-vis Type I and Type II
errors.

For the purpose of this paper, the most important step is

#2. That is, since CEC' = a21 is not very likely, and

since the available sphericity tests are not completely

trustworthy considering the effects of non-normal data or

considering fundamentally questionable Type I error control,

non-sphericity might just as well be presumed and estimated using

CSC'. That estimate can then be used to correct the mixed model

degrees of freedom in step #3a. Conducting both tests in #3

remains important, contrary to the conclusions of O'Brien and

Kaiser (1985), since one or the other analysis of variance can be

more or less blind to certain patterns of treatment effects as

they relate to the structure of CSC'.

Using an example data set, Robey and Barcikowski (1986)

demonstrated the multivariate analog of this analysis problem.

They showed that the structure of CSC' and the pattern of mean

differences among the repeated measures can cause a power

21
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differential between the multivariate mixed model F and the

doubly multivariate F, just as it does in univariate data. Their

data set A contained an obvious treatment effect in the presence

of a departure from multivariate sphericity. The treatment

effect could only be detected by the multivariate mixed model F.

Given this difference in the abilities of the two F's to detect

certain patterns of treatment effects which directly relate to

the structure of CSC', and given an unacceptable Type I error

rate for the only available test of multivariate sphericity, it

seems reasonable to conclude that routine preliminary testing for

multivariate sphericity is a questionable practice.

Unfortunately, multivariate analogs of the sample based

correction factors for the mixed model degrees of freedom have

not yet been derived. As a result, it is impossible to use the

multivariate mixed model with confidence when it is most needed.

Robey and Barcikowski (1986) defined a conservative correction to

the multivariate mixed model degrees of freedom which improves

the data analyst's postion somewhat. However, much research

remains to be done in this area. Although we cannot recommend

the practice of preliminary testing on the multivariate

sphericity assumption, we feel the issues surrounding

multivariate sphericity are critical and warrant intense study.
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TABLE 1

Actual Alpha Values of the w Criterion

k = 3 k = 5 k = 7 k = 10

k-1+3 A .004* .010 .012
NA .046 .054 .051

k-1+10 NA .010 .009 .009
NA .046 .043 .050

k-1+20 NA .008 .009 .010
NA .047 .048 .047

k-1+30 'NA .010 .009 .010
NA .049 .051 .046

Note. The double entries for each Monte Carlo problem
represent nominal alpha at .01 (top), and at .05 (bottom). An
asterisk indicates a significant (p < .01) departure from nominal
alpha. NA indicates that critical values were not available.
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TABLE 2

Actual Alpha Values of the w Chi-Square Approximate

n k = 3 k = 5 k = 7 k = 10

k-1+3 .010 .016* .029* .049*
.050 .066* .097* .155*

k-1+10 .012 .012 .011 .014*
.051 .048 .051 .067*

k-1+20 .010 .008 .010 .012
.053 .048 .050 .052

k-1+30 .008
.049

.010

.049

.009

.054
.010

.048

Note. The double entries for each Monte Carlo problem
represent nominal alpha at .01 (top), and at .05 (bottom). An
asterisk indicates a significant (p < .01) departure from nominal
alpha.
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TABLE 3

Actual Alpha Values of the Bock Fmax Test

n k = 3 k = 5 k = 7 k = 10

k-14.3 .092* .795* .998* 1.000*
.294* .973* 1.000* 1.000*

k-14-10 .017* .510* .981* 1.000*
.110* .894* 1.000* 1.000*

k-14.20 .000* .201* .886* 1.000*
.030* .702* 997* 1.000*

k-14.30 .000* .065* .694* 1.000*
.004* .492* .987* 1.000*

Note. The double entries for each Monte Carlo problem
represent nominal alpha at .01 (top), and at .05 (bottom). An
asterisk indicates a significant (p < .01) departure from nominal
alpha.
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TABLE 4

AlPha Values of the John T .test

Sphericity Tests

k 3
k =

.099*

.064*

.065*

.009*

k 7

.096*

.077*

.0/6*

.003*

k-14.3

k-14.10

k-120

k-14-30

106*

058*

054

. 023*

Actual alpha

Provide critical values

a significant
(p

k 10

.108*

.183*

.010*

.000*

;(431= .(!g1°11141. A
j°h11 (1976) does not

n
eparture from nominal

asterisk indicates
alpha.
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TABLE 5

Actual Alpha Values of the Grieve Epsilon Test

k = 3 k = 5 k = 7 k = 10

k-1+3 .028* .024* .021* .027*
.109* .099* .099* .111*

k-1+10 .018* .012 .029* .017*
.068* .066* .075* .082*

k-1+20 .011 .004* .014*
.059* .061* .066* .065*

k-1+30 '.010 .022* .014* .014*
.052 .059* .063 .062*

Note. The double entries for each Monte Carlo problem
represent nominal alpha at .01 (top), and at .05 (bottom). An
asterisk indicates a significant (p < .01) departure from nominal
alpha.
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TABLE 6

Example Data Set

Tima 1 Time 2 Time 3 Time 4 Time 5 Time 6

19.28 46.13 48.62 56.46 '.43 48.33
45.87 52.51 49.22 53.33 5,,-.92 48.95
30.04 53.80 57.78 52.66 54.07 51.33
52.67 57.08 56.16 49.37 54.94 49.93
64.72 35.06 55.64 55.87 48.58 54.24
40.16 34.92 47.96 52.52 51.80 51.92
65.18 50.34 55.69 57.81 48.83 53.50
65.55 44.98 48.16 55.83 52.64 48.82
29.07 4.6.57 49.21 53.78 57.56 59.45
44.18 29.78 51.89 56.40 53.69 56.90
59.71 16.85 53.54 55.10 53.08 55.53
49.63 60.16 55.87 56.62 52.95 58.62
48.59 18.00 54.49 55.26 52.38 44.31
42.94 68.58 51.48 47.06 52.14 52.88
41.22 81.40 59.65 58.96 49.60 49.62
57.78 53.30 55.29 47.50 54.32 56.34
40.65 50.30 52.49 52.65 54.67 53.83
39.42 30.02 52.50 54.99 52.40 53.68
47.26 49.86 46.97 52.38 52.53 52.71
36.65 37.38 53.09 55.52 48.16 51.88
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TABLE 7

Statistics for the Example Data Set

Test Statistic df

w 0.0094 5 <.01

Chi-squarew 79.74 14 <.0001

F
max 32.68 5,19 <.0001

T 0.3588 5 <.05

Epsilon 0.4106 5 <.01

Mixed Model F 3.57 2.05,39.01 .0365

Multivariate F 2.25 5,15 .1025

Note. The degrees of freedom for the mixed model F were

corrected for


