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This essay summarizes the theory and practice of

computer simulation, assesses the state of the art of simulation with
respect to pedagogically relevant processes like learning, and
speculates about the impact of such simulations on pedagogical
research and practice. Arguing that the use of computer simulation as
a technique for building formal models of mental processes forces the
cognitive psychologist to consider the content of strategic or
heuristic knowledge, the paper begins by discussing such
philosophical concepts as the formalization of theories, the
distinction between theories and models, and the notion of a research
program. The rationale and workmode of simulation research are then
summarized, and a review of the literature illustrates the range of
phenomena with educational relevance to which the simulation
technique has been applied. The new connectionist approach to
simulation is described, and concern is expressed about the way in
which knowledge appears in connectionist theories. The most direct
interaction of computer simulation with education in the future is
predicted to be through such computerized teaching tools as
intelligent tutoring systems and systems for automatic cognitive
diagnosis. It is concluded that a traditional science-to-practice
knowledge transfer will occur to the extent that simulation models
contribute to the improvement of psychological theories with
pedagogical relevance, and that computerized teaching devices will
have a dramatic effect on cognitive research methodology by providing
access to information on the behavior of students in real learning
situations. A list of 170 references is provided. (MES)
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2 Computer Simulation

Abstract

The use of computer simulation as a technique for bullding forma! models of mental processes
forces the cognltive psychologlst to consider the content of knowledge, In particular strategic or
heuristic knowledge. The ratlonale and workmode of simulation research are summarized. A
short review illustrates the range of phenomena with educational relevance to which the
simulation technigue has been applied. Computer simulation and education are predicted to
interact in several ways in the future, most directly through computerized teaching tools like

intelligent tutoring systems and systems for automatic cognitive diagnosis.



3 Computer Simulation

In the practical business of giving explanations—a fier all—-acientists
often enough rely not on the presentation of deductive

arguments, but on such alternative activitics as the drawing of graphs
or ray-diagrames, the construction of intellectual models, or the
programming of computers.... [The] primary thing to be learned, tested,
put to work, criticized, and changed fis] the repertory of

intellectual techniques, procedures, skills, and methods o f
representation, which are employed in ‘giving explanations’ o f events
and phenomena within the scope of the science concerned.

Stephen Toulmin, Human Urnderstanding, pp. 157-159.

Teachers, I am sure, strive to teach according to how learners learn. Their ambition is
hampered, however, by our lack of knowledge about the psychology of learnicg. In the past,
pedagogical applications have becn derived from such disparate ideas as the behaviorist concept
of reinforcement (Glaser, 1978) and the plagetian notiou of stages of intellectual growth (Groen,
1978), but they have been largely unsuccessfull. The art of teaching has been unable to turn

itself into the engineering of instruction, for lack of a viable science of learning.

In the fast three decades, the information processing perspective has become the dominant
point of view in the study of thinking, reasoning, problem solving, memory, learning, attention,
perception, and other knowiedge-related mental processes and functions (see, e.g., Anderson, 1980;
Gardner, 1985). The central notion of this new psychology of cognition !s that knowledge resides
in symbol structures in the head, and that mental processes cbnslst of using, editing, or creating
those symbol structure:;». The raain goals of this essay are to summarize the theory and practice
of computer simulation, to assess the state of the art of simulation with respect to pedagogically
relevant processes like learning, and to speculate about the impact of such simulations on

pedagogical research and practice.

Even though the psychology of mental symbol manipulations is a young creature, it now has

lSee Good & Brophy (1088) for an up to date introduction to sducational psychology.
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4 Computer Simuiation

offspring. One group of cognitive psychoiogists is aiready changing the way we think about
computer simulation by basing simuiations on what we know about how the brain works, as well
as on anzlyses of knowiedge. This research orientation - often labeied "connectionism®™ - uses the
research 100l of computer simulation within a new theoretical framework, producing simuiations
of a novel sort (McCleilland, Rumeihart, & the PDP research group, in press a,b). This is an
interesting snd important deveiopment. The focus of this essay Is nevertheiess on what we now
must call traditional computer simuiations, whiie connectionist simuiations will be discussed only
briefly. The main reason for this bias Is that the application of connectionist research to
education is, by and iarge, yet to come, whiie computer simuiationists fn general have payed

considerabie attention to classroom tasks in recent years.

The purpose of the first section beiow is to remind the reader of some well-known but useful
philosophical concepts, such as the idea of formaiization of theories, the distinction between
theories and models, and the notion of a research programme. The second and main section
explains, reviews, and critiques the computer simujation programme, conciuding that there are
difficuities with it, some - but only some - of which couid be overcome If researchers took the
programme seriously. In a short section on the new programme of connectionism I describe iis
methodoiogical advantages and express my concern about the way in which knowiedge appears
(or, rather, does not appear) within connectionist theories. I then turn to the question of what the
pedagogical consequences of the computer simuiation technique might be, reaching the conclusion
that aithough simuiation lends itseif to pedagogicai purposes, the impact of simuilation research
on educational practice will be slight. Instead, computer simuiation makes it possibie for
educational practice to set the agenda for cognitive research.

On Theories and Theorising
Theorizing is a complex actlvity, and theories have many aspects; iet us illustrate them with

a handful of metaphors. A scientific theory represents an effort at understanding. Its purpose Is to
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enabie ciear, coherent, and successful thinking about some part or aspect of the world. A theory
Is thus ilke a weave of ideas, its strength a function of how tight the strands are woven together.
Penetrating behind tae observable surface of the worid, a theory postuiates - creates, invents -
objects, processes, interactions, etc., such that if they were real, the surface characieristics of the
worid wouid have .to be just the way we observe them to be. A theory is thus like a fantasy or a
dayc cam, aibeit a very discipiined and purposeful one. If the worid was described In a lohg and
detailied text, a theory would be a statement of the main ideas, the themes which underly the text
as a whole. A theory is thus iike an abstract. Once proposed, a successful theory Is typically
appiied again and again to one phenomenon after another. If it continues to bring clarity and
understanding, more and more phenomena wiil be seen as beionging to its domain. A theory is
thus iike a pollplcally ambitious emperor, reaching out to conquer a larger and larger territory.
The effort to extend a theory ieads to the clarification of concepts, the sharpening of distinctions,
and the expioration of aiternative formulations and formalizations. A theory is thus like a ¢rystal,

steadily growing into its perfect form.

Since theories deal with entiiies which cannot be observed directly, theoreticians have a
unique probiem in communicating with each other: They must dispense with what philosophers
call “ostensive definitions®, I. e., they cannot point to instances of what they are talking about;
they cannot expiain what they mean by showing exampies. Since the sensory content of scientific
terms is thus minimized, the ruies by which those terms are combined becomes so much more
important. Sclentific discourse takes on the character of a language game, the central terms

becoming mere tokens fitted into standardized patterns of expression.

It is not only hard to communicate about unobservabies, it Is also hard to think about
them. Ordinarily, we think within the context of the common sense knowledge about our world
that we have coilected by being participants in it. But none of us have gamboled with electrons

and quarks as children, conversed at length with double helixes, or spent Sunday afternoons
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6 Computer Simulation

observing patterns of activations spread acrose semantic networks. Reasoning about such entities

has to proceed without the safety net of common sense.

Poth of these factors - the absence of concrete instances of theoretical terms and the
consequent Jack of common sense knowledge about them - creates a strong tendency to formalsze
the scientilic language game, to express the statemests of a theory in a mathematicai or logical
caiculus, so that the user of the theory need not reiy on his intuitive understanding of its terms
(Tarskl. 1965). The rules of the calculus determine how the terms are to be used within the
theory. Theoreticlans can then focus their attention on the rules. The rules can, of course, be
written down and so form concrete targets for agreements and disagreements. They can be
discussed and constructively analyzed and investigated without universai agreement about exactly
what intuitive content should be assigned to the terms they govern. Formalization also faciiitates
thinking. Mathematics, for instance, can be seen as a huge set of abstract inference-patterns
which have been thoroughly investigated and found to be valid. Expressing a scientific theory in
mathematical symbols allows the scientist Lo draw upon and apply those inference patterns while
reason about his subject matter. A forma! calculus supports thinking where common sense is
powerless. In short, aithough formalization makes a subject matter incomprehenslble to anyone
who has no mastery of the particular formalism used, It nevertheless facilitates communication

and collaborative thinking among the scientists who work with the theory.

Scientific theorles, like ice-cream, come in different flavours. Throughout the diverse fields
of scientific activity, different modes of knowing are employed, as they best fit the subject matter
at hand (Toulmin, 1972). In some fields, it IS common to build a model of the system being
studied. If we are studying a system S, then a model of S Is some other system M which is like S
in some way. The question of exactly how M should be "like™ S to be a good model Is a question
of some complexity (Hesse, 1970; Shanin, 1872). A model M is not merely "similar® to the system

S. If this were the case, it would be unclear how the model could be useful in Invectigating

2 3



7 Computer Simulation

S. What could we discover by studying M other than the very simllarity between M and S which
made us select M as a model of S In the first place? The answer Is that a good model has to be a
generative system, i. e., a system which produces behavior, results, products, etc., of some sort.
By investigating hiw the model M works - what results It generates under different
circumstances, how its parts and propertles interact - and by hypothesizing that the system S

works in the same way, we can Improve our understanding of S.

The term "theory" is used in both a narrow and a wide sense. In the narrow sense, a theory
consists of a collection of "laws" - principles, statements, assertions - and, possibly, proofs ¢’
theorems, ali of which have logical relationships to each other. A theory in this sense Is basicaily a
description, a text, even when expressed in some esoteric symbolism. A theory in the narrow sense
contrasts with a model. A model is more like a replica; it represents the system of interest by
duplicating its essential structure. It cons!sts of components which have functional relationships to
each other. A model is basically a picture, even when drawn in some non-visual medium like a

programming language.

In the wider sense, a theory consists of both a set of principles and a model. The traditional
astronomical theory of the solar system is an example. On the one hand, there Is a system of
equations which describes how the heavenly bodies act on each other and from which one can
derive descriptions of how they move. This is a theory in the narrow sense. On the other hand,
there is a geometric model of the solar systzm, consisting of spheres travelling along ellipses. The
set of lJaws and the model together make up the astronomical theory In the wide sense. I will rely

on context to make clear whether the term “theory™ is used in the narrow or in the wide sense.

Only rarely does a scientific theory spring fully developed from its creator’s head. More
typically, a core idea Is born, judged promlsing, and then worked out In an example. If the

example is convincing, various developments follow. As the idea - fledging theory, as it were - Is

10



8 Computer Simulation

applied to new situations, other, auxiilary ideas are zombined with it, already established theories
are compared to it, aiternative formulations of ¢ appear, efforts are undertaken to generalize it,

etc.

In popular accounts of science, the creation of new theories is often portrayed as the main
activity in research. In philosophical discussions, empirical testing of theories tends to occupy
center stage. But the bulk of a scientist’s time Is spent neither in inventing theories nor in testing
them, but in applying them. A theory is a compiicated, abstrzzi description. It is often far from
self-evident how it shouild be used in order to conmstruct an explanation for a particuiar fact or
event. For instance, it took physicists more than two centuries to work out the many applications

of Newton's theory of gravitation.

The activity of developing and applying a theory is very complex, both inteliectualiy and
sociologically (Toulmin, 1972). It is reguiated by a paradigm (Kuhn, 1970) or a research
programme (Lakatos, 1978), an “ideology® or point of view, loosely defined, which is more or less
shared among those who work with the theory. A research programme consists of beliefs about a
theory - a rationale for why the theory is interesting - and canons and conventions for working
with that theory. It answers questions iike the following: What is the core idea In the theory and
which are the auxiliary ideas? What kinds of Phenomena, and what kinds of observations of those
Phenomena, does the theory address? What kind of explanation does the theory provide? What
counts as having explained something? When is an explanation successful? How can the theory be
extended or improved? What form does progress take? What is the ultimate goal of the
programme? What would count as "complete success®? Different programmes provide different
answers to such questions for a particular field of research. In this essay, I am treating computer

simulation as a research programme in the sense of Lakatos.

11



9 Computer Simulation

T"e Computer Simulation Programme
As noted in the introduction, computer simulation models are currently used by two
different, although related, research programmes within cognitive psychology. The older
programme conceptualizes cognitive processes as operations on symbol structures and builds
simulations based on what we know about knowledge, while the more recent connectionist
programme builds simulatlons based on what we know about the brain. The connectionist

programme is reviewed in a separaie section.

Psychologists sometimes use the “erm "simulation® to refer to computer programs which
are not intended as theoretical models. in some experimental studies, subjects are observed while
interacting with a simulation, e. g., a simulation of some complicsted piece of machinery. In this
case, the simulation is a model of the environment; it Is a stimulus, or a technique for presenting
a complicated stimulus. Also, some psychological theories are expressed In muthematical equations
which are so compiicated that they cannot be solved with the heip of algebraic manipuiations. In
such cases, a computer program can be used to crunch out numerleal solutions to those equations;
such a program is often called a simulation?. In this essay, I will not discuss either of these two

types of simulations.

The present section is divided into four parts: a statement of the rationale of the simulation
programme, g summary of the workmode implied by that rationale, a select - and educationally
blased - review of research inspired by it, and, finally, a critique.

The rationale

The core conception behind the use of computer programs as models of human cognitive

processes consists of three main jdeas. The first idea is that knowledge-relevant processes such as

perception, remembering, and thinking operate upon internal symbol structures, i. e., sense-

2See Loftus (1088) for critical comments on some uses of this kind of simulatio.
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10 Computer Simulstion

impressions, memoriss, concepts, thoughts, ldeas, images, etc., which symbolize or represent the
external world. This stance - 8o self-evident to common sense as to be almost invisible for lack of
contrasting alternatives - was rejected by behaviorist psychology, but was re-asserted throughout
psychology and reiated disciplines during the fifties and early sixties. The notion that internal
representations constitute the grist for the mental mill lies at the heart of modern cognitive

psychology.

The second Intellectual cornerstone of computer simulation Is more technical and its
historical origin more circumscribed. It is the insight \hat a computer has nc intrinsic relatioz to
numbers. The binary digits "1* and “0" which featured sc prominently in early popularizations
of computers can equally well be interpreted as standing for “true® and "false”, or even "up"
and "down", as for the numbers one and zero. Furthermore, groups of binary digits can be used
as a code for any other symbol one might care to use, such as, say, the word “table™, the
implication-sign of formal logic, or the chemical symbol for oxygen. The computer is a general
machine for operating upon symbols, any symbols. This conciusion appeared among a small
number of individuals during the fifties (John McCarthy, Marvin Minsky, Alien Neweli, Herbert
Simon, among others). Their names are well-known to us because their insight made research into

Artificial Intelligence (A. 1.) possible.

The third and final step in the path to computer simulation as a psychological technique
was taken by a team of three individuals and was first publiished in a joint paper entitied
"Elements of a theory of human probiem soiving* (Newell, Shaw, & Simon, 1958). The paper
combines the two previously described ideas: If human cognition operates on internal
representations, and if computers can manipulate arbitrary symboi-structures, then computer

programs are candidate modeis of thought procesa',es.8

a'l‘!:e reader might want to compare the brief account given here with the more extensive discussion in the historical
sddendum in Newell & Simon (1072, pp. 873-889), and with Gardner (1085).

. 13



11 Computer Simulation

We should notice and dismiss two common misconceptions. First, a computer model Is not a
modei of the draim, but a model of the mind (or the cognitive aspect of mind). Computer
simulation models are not Interpreted In physiological terms like "brain cells®, "electric
potentials®, etc.,, but Iin psychological terms like “knowledge®, “attention®, "mehxorles",
“thoughts®, “beliefs”, “concepts®, “intentions®, "inferences®, "insights®™, "skiils®, ctc.* Second,
the organization of a general-purpose digital computer is determined by very different
considerations than that of modeiling the human mind. Consequently, the model does not reside
in the physical machine, but in the program. In short, the claim of the simulation programme is
not that computers are iike brains, but that the process of executing a stored program shares

something essential with the process of thinking.

To clarify what that shared essence is, we must take a brief look at the nature of computer
programs. Programming languages are not assertive or descriptive but ezhortational languages.
They are designed to facilitate clear and unambiguous statement of procedures. A program ls
constructed by combining simple instructions into more compiex ones, according to the ruies of
the particular programming language. Each instruction exhorts the machine to manipulate some
symbol-structure in some way, e. g., moving it, changing it, deieting it, etc. Ccmplex instructions
are then combined Into even more compiex instructions, etc. A computer program is thus iike a
recipe, describing the procedure for, say, making apple Ple, or a repalr manual for an automobiie,
except that the objects being manipuiated are symbois rather than apples or engines. From the
psychological point of view, programs are iike cognitive strategies: problem solving strategies,
attentional strategies, rehearsal strategles, memorization strategies, retrieval strategies, etc., of
which modern cognitive psychology Is full. If we have a (sufficiently specific) hypothesis about
what strategy a person is applying to some cognitive task, we can specify that strategy in a

programming language. Since the computer can read and execute such a specification (as long as

‘One feature of the new connectionist programme is that its practitioners do try to discuss their models in physiological
terms.
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12 Computer Simulation

the conventions of the particuiar programming language have been foliowed precisely), loading
the program into the machine enables the machine to apply that strategy. Program execution and
thinking are simiiar in that both processes consist in the appiication of a strategy to a task

(Simon, 1981).

A number of consequences foilow from this basic conception. For instance, if a computer
and a person are appiying the same strategy to the same task, they shouid succeed and faii on the
same probiems. They shouid go through the same intermediate stages or produce the same partial
resuits. They shouid make simiiar errors under simiiar circumstances. They shouid find the same
probiems easy or difficuit, respectively. These expectations form the basis for the empirical

evaluation of simujation modeis, a topic which wiil be discussed further beiow.

The simulation idea generates in-principie or generic answers to the basic questions of
cognitive psychology. Every theoretical programme in psychoiogy, I ciaim, has to have in-
principie answers to the following four basic questions: Why iIs one task more or less difficuit than
azouher (for a given individual)? Why Is one and the same problem easy for one individual and
difficuit for another? What is the nature of cognitive change? What aspects of cognition are
invariant across tasks, across indlviduais, and over time? The generic answers provided by the

computer simuiation programme can be summerized as foliows:

1. Inter-item differences. The generic expianation for task difficuity provided by the
simujation programme is that one task requires more computations than the other.
The amount of computation needed Is, in turn, a function of a number of factors, such
as the structure of the mental representation of the task and the need to avold short-
term memory load (see, e. g., Kotovsky, Hayes, & Simon, 1985).

2. Inter-individual differences. According to the simuiationist’s view, if two individuals
perform differently on a task, then they are applying different methods to that task.
The method can be analyzed into the representation of the task, the cognitive
operations applied to it, and the strategy which controis the application of those
operations, any of which may be responsible for a particular difference (see, e.g., Just
& Carpenter, 1985; Newell & Simon, 1972; Ohlsson, 1984a).

3. Change. According to the simulation programme, cognitive change is the same as

15



13 Computer Simulation

revision of the knowiedge-base in the head. Improvement In skilis comes about
through processes, so-called learning mechanisms, which revise - re-program, as it were
- cognitive strategles (see Anderson, 1981a, and Klahr, Langley, & Neches, in press, for
collectlons of articles about the simulatlon of skill learning). Improvement in
declaratlve knowledge comes about through storage prccesses which extend the data-
base in long-term memory. Forgetting is conceptualized as elther decay of stored
information or as interfererce between several pieces of information at the time of
retrieval (see, e. g., Kolodner, 1984).

4. Generality. According to the computer simulatlon programme, it is the “mental
programming language®, or, more precisely, the structure of the Information
processing system in the head which remains invariant across individuals, across tasks,
and over time (Newell, 1972; 1873a; 1973b).

Current research in cognltive psychology consists, to a large extent, of attempts to work out the

detalls of these generic answers for particular experiments, situations, or phenomena.

The methodological advantages of the simulation technlque can be organized into two
groups, each group representing an Issue with several different facets. First, there is the issue of
completencss. If a simulation program solves a task correctly, then we know that the set of
mechanisms in it are safficient for the task. In the opinion of the simulationist, a psychological
explanation must pass this sufficlency test before it can be seriously considered, 1. e., before it is
meaningful to compare it to empirical observations. If a subject solves an experimental task
correctly, then the cognitive machinery in his head is thereby proven to be sufficient for the task,
and, consequently, any explanatory machinery which is not sufficient is known to be Incomplete,
even before it Is confronted with data. Sufficiency is a logical criterion for the adequacy of an
explanation, similar to the criterion of consistency with respect to theories In mathematical
physics. (An inconsistent set of equations is not an adequate physical theory.) Loglcal (as opposed
to empirical) criteria for the adequacy of theories have not played an important role in the
history of psychology, so it is not surprising that the sufflciency argument seldom is carrled out
or mentioned in actual simulation work, although it figured prominently In the argumentation of

the programme founders (Newell & Simon, 1965).

16



14 . Computer Simulation

In another facet of completeness, the simulation programme emphasizes that human beings
are complete agents. Strictly speaking, there are no "perceptual tasks®, “memory tasks",
"problem solving tasks®, etc. Perception, memory, and thinking are Invoived in every cognitive
performance. It foliows that there cannot be a theory of problem solving, or of memory, or of
perception, because such a theory could not be tested against data; only complete systems, which
have the entire range of capabilities (albeit, perhaps, in simplified form), and which shows
explicitly the interactions between them, only such theories, the simulationist claims, can be

meaningfuily compared to empirical data.

Next, there is the issue of application, which aiso has several different facets. One essentiai
use of a theory or a mode! is to derive predictions from it. In the case of a simulation model,
predictions can be derived by running the model on the computer. Thi< :* a convenient and inter-
subjectively valid way of deriving predictions to be tested in experiments. We can aiso apply the
model to situations which we have not observed (and perhaps couid not observe), and so predict
what the simulated person would have done in those situations. Other kinds of thought
experiments are also possible. For instance, Ohlsson (1980) deleted randomly selected portions of
the knowledge-base of a simulation program. Runs with the so mutilated program showed that
the smaller knowledge-base did not cause the program to have fewer correct answers on a
standard set of probiems, but that the program had to work more in order to reach those
answers. One can imagine running a simuiation model under varying assumptions of short-term
memory capacity, under assumption of perfect long-term memory recall, or under any number of

extreme conditions, in order to investigate the implications of the principles embodied in it.

In summary, the computer simulation programme starts with the idea that a human being
who is trying to cope with an intellectual task is appiying a strategy to that task. If the strategy
can be embedded in a computer program, then the process of executing that program on a

computer can serve as a model of the mental process of the human whiie solving that task. This

>
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15 Computer Simulation

research programme provides generic answers to tne problems of why there are performance
differences across problems, across individuals, and over time, as weli as a principled conception
of what remains invariant across those dimensions. The main methodological advantages of the
simulation technique are that the medium forces the theoretician to produce complete
explanations, and that the model, once constructed, can be applied to derive predictions and
perform thought experiments.
The simulationist’s workmode

Suppose that we have observed a particular person - a school child, a chess player, a doctor
- while struggling with some intellectual task - a subtraction problem, an end-game, a tricky
diagnosis - and that it is our goal to explain the observed performance. What shape does this

activity take?®

The simulationist will begin with task analysis, I. e., with an effort to acquire as thorough
an understanding of the task as possible. This might involve solving the task himself, perhaps
repeatedly, and reflect on his own solution to it. It might involve reading and studying the
knowledge domain to which the task belongs, perhaps even interviewing experts in the relevant
field. What knowledge is necessary in order to handle the task? What knowledge is useful? What
would be a useful organization of that knowledge? What different methods apply t» the task?
Eventually, the theoretician should be abie to write a computer program for the task, execute it,

and verify that it does, in fact, solve the task.

Two important aspects of simuiation research are already evident. First, the simuiationist
must concern himself with the specific content of knowledge. Vague notions of "amount® of
knowledge do not suffice for the writing of a program; the knowledge to be included in a program

must be specified precisely. Second, the simulationist is likely to attend to procedural knowledge.

5'l'he reader might want to compare the description given here with Kieras (1085) and Young (1085).
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16 Computer Simulation

The methods, strategies, heuristics, tricks, ruies of thumb, shortcute, tactics, recipes, routines,
and procedures of the relevant domain are of central interest because they constitute so many
ideas about how a program might operate. Again, vague notions of, say, "cognitive styie” do not
suffice; the methods to be included in a program must be fuily specified. In short, the writing of
programs forces the simuiationist to consider strategic knowliedge, to consider the content of that

knowiedge, and to consider it in almost insufferabie detaii.

Once a running program has been constructed, the next task Is to add psychological
considerations. How do humans typically soive the reievant task? What changes shouid be made
in the program to make it behave more iike a person? When a first approximation has been
achieved, it shouid be run on the same task as the human subject and a detailed trace of the

program’s behavior recorded.

Next, there follows the comparison of the trace of the simulation model with the behavirr of
the simulated person. The success of the model Is measured by how closely its trace reproduces
the observed performance. For instance, if a program is to be a good model of, say, a certain
chess-player’s skill, then it shouid certainly make the same chess-moves as that piayer when
Presented with the same chess-board configurations. Notice, in particular, that if the pliayer
makes mistakes, I. e., overiooks a strong move, then we would expect a good simulation model of
him to overiook that same move. The basic evaluation principle is that if the subject gives answer
A (correct or incorrect) to probiem P, then the simulation model should produce answer A to

probiem P.

Of course, one can write many different computer programs which produce z particular
answer to a particular problem. The construction of a simulation modei needs to be informed and
constrained by a wider data base than a singie response. One approach to constraining model

construction is to increase the temporal density of information about the particular performance
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to be simulated by using detailed recordings of human performance, such as think-aloud
protocols, recordings of eye-movements, and video-tapes of action sequences. The purpose is to
achieve such a rich description of the performance so that differences between the computer trace
and the human performance can easily be detected, and so that success on the part of the
simulation is unlikely to come about accidentally. The evajuation principle used here is that the
greater the amount of detail the simulation can reproduce or expiain, the better it is ('Newell &

Simon, 1972).

A second approach to constraining a simulation model is to simuiate performaace on a
range of reiated tasks. The purpose is, again, to achieve such a rich description of performance
that success in modeliing is unlikely unless the model captures the essence of the underiying
mental processes. The evaluation principle used here is that the wider the range of performances.
a simulation can explain (at a given level of detail), the better it is (Kosslyn, 1980). Once the
simulation modei is confronted with data and the Inevitable discrepancies noted, the simrulationist
enters into a sequence of successive revisions and re-comparisons. until the model has reached the

desired level of accuracy.

In summary, the shape of the research activity generated by the simulationist idea is as
follows: (a) Select a task to study. (b) Analyze aud study the task until it Is thoroughly
understood. Write a computer program which can solve the task. (c) Collect observations from
one or more human subjects solving the same task. (d) Revise the program in the way suggested
by the data. (¢) Run the program and compare its trace with the behavioral record. (f) Ponder
what the implications are of the mis-matches between the computer trace and the behaviora}
record, and try to revise the model so that it reproduces the behavioral record better. The
criteria for a successful explanation are that the trace of the program reproduces the human
performance in some detail. The longer and more complicated the performance and the closer the

detall in whilch it is reproduced, the better the simulation. Furthermore, if the model can
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reproduce an entire set of related performances, then the larger the set, the better the slraulation.
The issues involved in the empirlcal evaluation of simulatlon models have been discussed by
Kleras (1984, 1985), by Newell & Simon (1972), especlally in chapters 5 and 6, and by Tuggle &

Barron (1980), among others.

The activity of constructing an explanation within the simulation programme is a synthetic,
rather than analytlc, activity: an explanation is achieved by inventing and putting together a
system, a device, which produces the event to be explained. Explaining is akin to designing. A
model Is bullt by making cholces on a number of design issues (Moore & Newell, 1974), e. g., what
knowledge the subject had, what method the subject was using, what aspects of the task he
attended to, what Is the organlzation of the subject’s knowledge, how are procedures represented
ia the subject’s head, how is procedural knowledge used, what memory stores are there and what
capacity limlitations, if any, are they subject to, etc. Each s..aulation model represents a
particular combinatlon of choices on these and similar issues. A combination of cholces constitutes
a speclfication of the simulation program; computer implementation of that specification Is

analogous to the bullding ¢f a physical device from englneering specifications.

The functlon of emplrical observations in this research programimne js different from Its role
In traditional experimental psychology. In a traditional study, the purpose of observing a person’s
performance |s to ascertain the effect of some stimulus variatic nn his respoases. In the simuiation
programme, the function of empirical Investigations is, broadly speaking, to describe human

performance in as much detall as possible, In order to constraln model building.

As the cycle of choosing tasks, observing human subjects, programming and testing models,
continues, the simulation programme claims, we successively build up knowledge of what
processes are necessary to accurately mimic human performance. In this research programine,

knowledge takes the form of know-how. Advances in knowledge will show up in the form of
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increased abliity to construct successful simuiations. In the end, the simulationist claims, we wiii
know enough about human cognition so that given oniy minimal information about an individual,
we can quickly and easily put together a simulation modei for kis performance on some task, a
modei Whica wiil simulate that performance to some chosen degree of accuracy. Analogous to a
physicist who can predict the trajectory of a particle, given its mass, its speed, and the direction
in whick it is moving, a simuiationist will be abie to predict a “cognitive trajectory®, a solution
path, given certain Initizl parameters (e. g., the subject’s representation of the task, his previous
knowiedge, etc.).
Selected Review of Simulation Studies

The computer simuiation idea originated within the study of probiem soiving. Over the
three decades since the original Neweil, Shaw, and Simon (1958) paper, the range of probiem
solvizz tasks used in simuiation studies has grown continuousiy. Some of these tasks are puzzies
with littie or no pedagogical interest (e. g. Atwood, Masson, & Poison, 1980; Karat, 1082;
Ohisson, 1984b; Reed & Simon, 1976), but the iast decade has witnessed a strong and growing
trend to study class-room tasks, especially probiems taken from mathematics and natural science.

Detailed anaiyses of probiem soiving strategies is a halimark of this strand of simulation research.

A second strand of simulation research is Inspired less by ideas about thinking than about
memory and language. Human iong-term memory is a huge mass of diverse, irregular, vague, and
incomplete descriptive knowliedge which is typically extended, maintained, and used through acts
of verbal communication, such as reading text or answerlng questions, and which Is prone to
forgetting. The use of semantic networks of various types to describe this knowledge base and its
assoclated storage and retrieval strategies, and the wiliingness to implement large systems, are

halimarks of this second strand of simulation research.

In the foliowing, I wiil briefly review four groups of simulation studies, three of which

belorg to the first strand described above, while the fourth group beiongs to the second strand. In
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a fifth and final miscellaneous group, I will mention some studies which do not fit neatly into
either of the two main strands. The reader Is warned against treating tde present summary as a

comprehensive overview. It is focussed on simulations with pedagogical relevance.

Cognitive development. The computer simulation community turned Its attention to
cognitive development early on. Several studies carried out Ia the seventles simulated childrens’
behavior on classical Plagetian tasks, such as seriation of weight (Baylor and Gascone, 1974;
Baylor, Gascone, Lemoyne, & Pothlier, 1973) and of length (Young, 1976), classification and
sorting (Klahr & Wallace, 1970), class inclusion (Klahr and Wallace, 1972), conservation of
quantity (Klahr & Wallace, 1973), transitive inference (Klahr & Wallare, 1976), object constancy
(Prazdny, 1980), etc.. The choice of Plagetian tasks was natural, given the amount of interest in
Plaget’s work in the sixties and seventies. The approach of these studies was to make detailed
observations of childrens’ behavior at the various developmental stages, and then write a separate
simulation for each stage. The sequence of slmulation models as a whole constitutes a
representation, a slide-show, as it were, of the growth of mastery of the task. By comparing the
successive models in the sequenrz, one can describe the developmental advances in theoretical,
rather than behavioral, terms. One major conclusion from this mini-tradition is that the
differences in the detalls of cognitive strategies within so-called developmental stages are at least

as dramatic as the differences across such stages.

Although simulation studles of Piagetian tasks and phenomena are still carried out (see, e.
g., Nason, 1988), current simulations of cognitive development generally show less of a Plagetian
influence both in the choice of experimental tasks and in the theoretical questions asked. Issues
about problem solving strategles, task encoding, and working memory capacity are explored in
the context of tasks ranging from arithmetic to the Tower of Hanol puzzle, and to the debugging
of LOGO programs (Carver & Klahr, in press; Klahr, 1985; Klahr & Robinson, 1981; Slegler,

1986; Siegler & Shrager, 1984).

a
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Most simulations in the field of cognitive developmeant are not, strictly speaking, simulations
of development, but simulations of childrens’ (as opposed to adults’) performance. They simulate
performance at one or more stages of intellectual development, but they do not yet simulate the
passage from one stage to another. The exception to this rule is the work by Wallace, Klahr, and
Bluff (in pres3), which attempts to design an integrated system capable, In principle, of

reproducing human cognitive development.

Per formance models for educationally relevant problem solving tasks. Recently,
simulationists have turned their attention to tasks which appear in the curriculum. Mathematics
provides a store of well-defined tasks at many different levels of complexity. Arithmetic (Ashcraft,
1983; Briars & Larkin, 1984; Fletcher, 1985; Greeno, Riley, & Gelman, 1984; Hiebert & Wearne,
in press; Kiahr, 1973; Neches, 1981, 1982; Resnick & Neches, 1984; Riley & Greeno, 1980, Riley,
Greeno, & Heller, 1983; Siegler, 1986; Slegler & Shrager, 1984; VanLehn, 1983), algebra, (Greeno,
Magone, Rabinowitz, Ranney, Strauch, & Vitolo, 1985; Neves, 1978; Paige & Simon, 1965;
Sleeman, 1982, 1984) and geometry (Anderson, 1981b, 1982; Andersor, 1983a; Anderson, Greeno,
Kline & Neves, 1981; Greeno, 1976; Greeno, 1978a;) have all been targets for simulation efforts in
recent years. Since the notion of an “error™ comes naturally to the discussion of these domains,
the design of computer programs which do mathematics Incorrectly has become a major research
activity. Many studies try to account for errors by showing how they would arlse from the
execution of some mathematical procedure which deviates from the correct procedure in some
precisely specified (and sometimes minor) way. A major conclusion of this research is that errors
cannot be thought of as resulting from msssing knowledge only; Incorrect mathematical strategies
in students are not just incomplete, they also contain "mal-rules®, I. e., comporents which are not
part of the correct skili (Anderson, Boyle, & Yost, 1985; Brown & Burton, 1978; Burton, 1982;

Evertz, 1982; Ohlsson & Langley, in press; Sleeman, 1982, 1984; Young & O’Shea, 1981).

A second area of the curriculum which has been mined for simulation targets 's natural
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sclence, especlally physics problem solving (Bhaskar & Simon, 1977, Larkin, 1981; Larkin,
McDermott, Simon, & Simon, 1980a, 1980b; Larkin, Reif, Carbonell & Gugliotta, in press). One
approach used in this research Is to simulate both a (successful) novice and an expert problem
solver, and then characterize the differences between their solutions. One conclusion from such
research Is that expert problem solvers in physics empioy mental representations of problems
which are specifically physical, whiie novices at:end too much, or too soon, to the mathematics of

the problem.

Human performance on non-academic but educationally impertant tasks like typing,
electronic trouble shooting, and the operation of complicated machines of various kinds (including
computers) have also been investigated in simulation studies (Anzal, 1984; Card, Moran, &
Newell, 1983; Kieras & Polson, 1985; Rumelhart & Norman, 1982; White & Frederiksen, 1984).
Such studies are about to mature into a new kind of applied psychology with strong implications

for workplace design and personnel training.

The acquisition of cognitive skills. Giveu a sequence of models each of which simulates a
person’s performance at different developmental stages or at different points in time, the next
question to ask Is what mechanisms affect the transition from one to the other. In the computer
simulation approach, this question is, of course, approached by incorporating learning mechanisms
into simulation models. Computer learning is still a rather novel phenomenon even within the
field of Artificial Intelligence, and running simulation programs which simulate how humans learn
cognitive skills are few and far between. The volumes by Anderson (1981a) and by Klahr,

Langley, & Neches (in press) cover a significant portion of the relevant research® .

A small group of simulation studies have tried to model human learning in artificial task

domains. Anzai and Simon (1979) simulated one person’s successive mastery of the Tower of

%See Mitchell, Carbonell, & Michalski (1088) for an overview of relevant Artificial Intelligence research.
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Hanoi puzzle. Langley (1983a, IQAS) has applied a theory of discriminatlon learnlng to several
puzzle tasks. In a similar effort, Ablsson (Ip press-a) simulated the acquisition of strategies for
several puzzle tasks, as well as tpeltransrcr of training .from one ,roup of problems to another
within a very simple task domain, Felgenbaum and Simon (1984) have proposed a general theory
of learning to recognize patterns, SUth as nonsense syllables. Rosenbloom and Newell (1986) has
suggested a general scheme for Aulnap learning called "chunking® which has beeir used to
simulate performance on laboratoy) feaction-time tasks, wiih exceilent fit to human data. Ohlsson
(In press-b) has designed a learniyR Mechanism which simulates successive changes in the mental

representation of a simple verbal y/asoning task. gulded by general world knowledge.

However, there is also a hyddlyl of studies simulating the acquisition of cognitive skills
relevant to classrcom tasks. John Afldersop 3nd coworkers have slmulated lcarning to consiruct
proofs in elementary plane geomeyfy (Anderson, 1982; Anderson, 1983a; Anderson, Greeno, Kline,
& Neves, 1981) and to write simgle computer programs (Anderson, 1986; Anderson, Farrell, &
Sauers, 1984). Kurt VanLehn’s sipfuldtjon of the acquisition of the standard algorithm for multi-
column subtraction takes into acy ullt ap eptire lesson-sequence, taking a lesson to be a set of
solved examples and letting tbz t,)tnlllatlon program learn from them (VanLehr, 1983). Neches
(1981, 1982) has simulated the disy/Very of the so-called MIN-strategy for simple addition’. Neves

(1978) has simulated the learning f slgebra rules from solved examples.

Learning, retaining, and re Alling declarative knowledge. The simulations discussed so far
are ali concerned with procedural fuOwledge, l.c., knowledge about how to act in order to reach
certain goals. A second malin stryAd ot simulation research is mainly interested In declarative
knowiedge, l.e., knowledge about What is true of the world. The paradigmatic task in this

tradition is to read a text (perhap/ clly a single sentence), and then, after some period of time,

7I-Jm;)iric:nl research has established that Qyild'kn csd discover the MIN-strategy on their own (Groen & Resnick, 1077).
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answer one or more questions about It. A simulation model for this task has to contain
assumptions about how long-term memory is organized, about how new knowiedge is added to it,
and about how information Is retrieved from it. It Is desirable, aibeit difficuit and laborious, to
provide such a simuiation with a natural language front-end which models how peopie understand
language and which aliows the model to acquire its knowiedge by reading actual texts. This type
of simuiation model grew out of the Idea of semantic networks {Quiilian, 1968, 1969) and
flourished in the seventies (Anderson, 1976; Anderson & Bower, 1973; Coliins & Quiiiian, 1969;
Frijda, 1972; Kintsch, 1974; Miller, 1981; Norman, Rumeihart, & the LNR group, 1975;
Rumeihart, Lindsay, & Norman, 1972; Schank, 1972, 1975; Schank & Abelson, 1977; Schank &
Coiby, 1973). The reviews by Frijda (1972) and by Chaag (1986) provide further discussion about

this strand of simuiation research.

One of the main resuits of research with sirauiation modeis based on naturai ianguage
interfaces and semantic networks is that systematic and reasonabie strategies for storage and
retrieval of deciarative information can produce the kinds of confusions, transformations, and
retrieval failures which are typical of human performance (Kolodner, 1983a, b, 1984). Another
lesson from this type of research is that acquisition and utiiization of deciarative knowledge is
always context dependent. For instance, a question is answered differentily depending on when
and where it Is asked, by whom, etc. The complexity of deciarative knowledge acquisition may be
responsible for what seems to be a recent deciine in this strand of simuiation researck: current
simuiations of memory retrievai tend to shy away frcm impiementing the actual content of
human jong-term memory in favor of more abstract, and therefore more computationaily
tractabie, models (Hintzmann, 1984; Raajmaker & Shiffrin, 1981; Waiker & Kintsch, 1985;

Wilegerswa, 1982.).

Simulations of iong-term memory have, in principie, tremendous pedagogical reievance. In

school subjects like history, geography, and soclal studies, “"learning® is, to a large extent,
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"studylng®, I e., acquiring mostly descriptive knowledge through reading or listening. ‘The
simulation modeis mentioned here contaln explicit hypotheses about the acquisition, retalning,
forgetting, and recalling of declarative knowledge. Clearly, such hypotheses must have
implications for how declarative knowledge should be presented to facilitate learning. However, In
spite of their obvious pedagogical relevance, simulation models within this strand have so far not
figured frequen:ly In educational applications. One exception to this rule Is the work by Kolodner
(1983c) In which she applies considerations of long-term memory to the investigation of how

expertise In psychlatric diagnosis is acquired.

Miscellaneous. There are other simulstion studies which deserve mention as well, although
they do not fit neatly into any of the above categories. Of particular interest from a pedagogical
point of view are simulations of reading (Just & Carpenter, 1984; Just & Thibadeau, 1984; Kleras,
1982, 1983; Thibadeau, Just, & Carpenter, 1982). The efforts to simulate sklll acquisition has
spawned a handful of studles trying to simulate initial language acquisition (Anderson, 1983b,
chap. 7; Langley, 1982; Wolff, 1980). A particularly fascinating application of the natural
language/semantic network approach to computer simulation Is the effort by Colby (1973, 1975,
1981) to simulate neurotic and paranolac thought processes. Another type of model tries to
simulate human performance on various visualization tasks. This minj-tradition was initlated by
Baylor (1973), has been Intensively developed by Kosslyn (1980, 1985), and continues to generate
new Ideas about the mind’s eye (Just & Carpenter, 1985; Morgan, 1983). Finally, the reader might
be Interested to know that even such a difficult-to-grasp process as daydreaming Is now belng
Implemented on computers (Mueller & Dyer, 19852, b).

Critique of the Simulation Programme

Three decades worth of experience with ths simulation programme should be enmough to

form at least a tentative evaluation of it. A scholarly appralsal of the programme cannot be

attempted here. What follows Is the view of one participant and practitioner.
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It may at first giance seem as if the simuiation programme has been spectacularly successfui
in furthering our understanding of cognition. Today, the entire fieid of cognitive psychology
speaks the language of symboiic computation; the psychological journais are fuii of mentai
representations being encoded, stored, retrieved, and processed in ail manner of ways. However, a
critique of the simulation idea must distinguish between the information processing conception of
mentai processes, on the one hand, and the simulation idea proper, on the other. The vaiue of
seeing cognitive processes as symbolic computations is not in doubt; at least, it wiii rot be
questioned here.® The question Is whether the simulation technsigue, i. e., the expianatory
procedure which leads to implemented, runnable computer programs, provides additional

advantages over and above the advantages of adopting the information processing point o f view.

When the question Is posed in this way, the case for computer simulation Is weak indeed. It
Is difficuit to think of a singie exampie of a surprising, important, or interesting discovery which
has been made by running a simulation model. It is equally difficuit to think of an example of
some dramatic prediction which has been made by a simuiation program, a prediction which was
subsequently born out by data. Nor is it easy to state the principles presumably estabiished by,
say, the simuiation studies mentioned in the last subsection. As far as this author knows, no great
theoretical synthesis has been achieved by taking two simuiation programs and combining them
Into a new modei with more predictive power than either of the parts. Finally, there seems to be
little or no growth of consensus about what mechanisms one must postulate in order to have a

reasonable simuiation of a human thought process.

These discouraging observations demand an expianation. We need to scrutinize the
difficuities and disadvantages with the simulation programme, distinguishing as we do so between

the foliowing three questions:

1. Have the practitioners carried out the programme carefuliy?

‘Connectionilm does, to some extent, pose that question.
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If the practitloners have been careless or neglectful or slinply misunderstood the
simulation technique, the lack of results would not speak agzinst the programme itself.

2. To what extent have the practitioners been limited by their tools?
Computer simulation can only proceed where Artificlal Intelligence has cleared the
way. If current programming techniques are inadequate to capture some aspect of
human knowledge, the fallure to simulate that aspect cannot be chalked up as fallure
of the simulation programme. The limitatlons of the programme |tself hss to be
distinguished from the limitatlons of our current resources for carrying it out.®

3. What are the smherent weaknesses, inconsistencies, and difficulties with the simulation
programme?

Keeping these three questions in mind, we turn to a brief discussion of the problems
assoclated with, respectively, convenience code, disembodied processes, effort, brittleness,

empirical validation, restricted public access to modeis, ard informal statement of theorles.

Convenience code. Any simulation program will contain code which helps make the
program executable but which does not represent any psychological hypotheses. For instance, a
simulation of chess playing might contain a routine which finds all legal moves in a chess board
configuration. The psychologist may not have any hypotheses about how the simulated chess
player finds the legal moves; the theory might be all about choosing between moves, once found.
Thus, the psychologist writes any convenient piece of code which will accomplish the move
finding task, and lets his theoretically motivated code select a move by operating on the output

from the former.

The problem is that the motivated code and the convenience code interact in producing the
behavior of the program. We have no guarantee that the performance of the program depends in
essential ways on the theoretically motivated parts of the code. For instance, suppose the move

finding routine is faulty, so that it Ignores a certain class of weak but legal moves. The

%The situstion here is similar to that which holds in physics. Physicists are dependent upon mathematical results in order
to develop their theories - with the result that physicists sometimes make substantial contributions to mathematics.
Similarly, psychologists with computer simulstion on their agenda sometimes have to dig into front-line A. L research
problems in order to develop the tools they need.
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theoretically motivated move-choosing routine will never choose one of those weak moves, not
because it Is intelligent enough to avold them, but because it never gets to consider them. The
program "predicts™ that the chess player will never make that particular type of error. If this
“prediction®™ is born out by observations, it will be taken as support for the theory behind the
program, although it actually depends on the design of the convenience code. The definition of a
“legal move™ in chess Is sharp enough so that the particular accident described In this iilustrative
example Is uniikely to happen. But other, equally disastrous interactions between motivated code
and convenience code may be opaque enough to go unnoticed by the programmer. This problem

bas been discussed by Frijda (1967), Kieras (1985), and by Neches (1982).

The architecture-program distinction was proposed by Allen Newell (1972; 1973a; 1973b) as
a solution to this problem. He argues that simulationists should create psychologically motivated
programming languages in which to write their models. The very structure of such a language -
its architecture - should be based on psychological hypotheses, so that the programs written in It
need not contaln any convenlience code. All code in a simulation program should, in principle,

admit of psychological interpretation.

The two most ambitious efforts to date to create psychologically motivated programming
languages are the ACT architecture by John Anderson (1976, 1983b) and the Soar architecture by
Laird, Rosenbloom, & Newell (1986). Approaching the problem in a slightly different way, the
PRISM programming language Is an attempt to provide a flexible architecture, in which certain
aspects, e.g., the number of working memorles, can easily be changed to accommodate changes in
theoretical assumptions (Langley, 1983b). However, the call by Allen Newell to distinguish
between architecture and program and to write simulation programs in such a way that thelr
every feature admits of psychological interpretation, this call has, to a large extent, gone

unheeded.
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Disembodied processes. A human belng Is a complete agent, capable of perceptlon,
thinking, remembering, motor action, and learni-~ Clearly, all these capabliiities enter into the
solution to any cognitive task; observable behsavior is a resuit of the interaction between them.

Any explanation of behavlor must describe the role of each process in that interaction.

Psychologists, however, tend to be more interested in one of these capablilities than in the
others. When they turn to computer slmulation, they, naturally enough, want to simulate the
capabllity they are most interested in. The result Is often a simulation of what we might think of
as 3 disembodied process. For .astance, simulations of problem solving often ignore the question
of how the subject’s thinking interacts with his long-term memory; what is the problem solver
reminded of while t>inking about the problem? Simllarly, most slmulations of long-term memory
can answer questions through retrleval of informatlon, but not through problem soiving.
Simulations of either problem solving and question answering usually ignore issues of learning.
Yet another type of incompleteness which is virtually universal is to ignore the perceptuai-motor
interaction with the environment. Simulation programs regularly assume that the entire task
description is present and accessible in working memory, finessing the issues of attention

allocation and of physical manipulation of task materials.

Taking a purist stance, I conclude that such simulations are useless, because we already
know that the observable behavior of a person comes about through an Interaction between
perception, :nemory, thinking, motor action, and learning. The predictlons of a program which
represents one of these processes remain indetermlnate until its Interactions with the other
processes have been specified. Every simulatlon should have a complete set of mental processes, 1.
e., mechanisms for remembering, thinking, and learnlng, a (simulated) environment, and
capablilitles for perceptual as weil as a motor interaction with that environment. The simulation

programme calls for simulations of agents, not of disembodied processcs.
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Effort. Writing a serious simulation mode! is no small enterprise. Several months have to
be spent analyzing the task, many more in implementing a program which can solve it, and, quite
likely, many more still in revising it until i actually mimlcs a human subject. If the target task is

at all complex, considerable A. I. know-how might be needed to make a runnable program.

This fact has unfortunate consequences for how the simulation programme is carried out.
First, there Is, quite naturalily, a reluctance to explore alternative explanations o’ a phenomenon.
If getting one simulation mode! up and running is laborious, the idea of doing it twice is not
attractive. To the best of my knowledge, no researcher to date has implemented two radically
different simulation models for the same set of observations and then compared them.
(Comparisons between two different theories with respect to the same phenomenon is, of course,
standard procedure in other domains of science.) Second, there is a certain refuctance to make use
of other people’s modeis. I know of no example of a researcher constructing an explanation of his
own data by re-implementing somebody else’s simulation model from the published accounts of it,
and applying it to those data. (Again, using other researchers’ theories in constructing

explanations of new data is standard procedure in other domains of science.)

The problem of effort has no radical solution. We can only hope that more powerful
A. 1. programming tools and accumulation of know-how within the simulation community will
eventually shrink to reasonable proportions the amount of work that has to go into each new

simuiation model.

Brittlencss. One of the major difficuities with A. I. programs at the current time is that a
program which works well on one task often fails dramatically on conceptually similar tasks.
Since computer simuiation models are limited to what can be donme with current
A. L progresaming techniques, simulations are brittle as well. This has the unfortunate

consequence ci preventing thought experiments and empirical explorations of programs. Making
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changes in a program and then running It can be a frustrating experience, because it may turn
out that the changes render the prezram impossible to execute. Exploration of the generality of a
model can be discouraging, because there may be precious little in the model which transfers to a
new task domain. In short, applying the program to other problems than the ones it was designed

for may turn out to be impossible.

However, brittleness is not a methodological problem, but a theoretical ome; it Is a
consequence of our ignorance of the nature of intelligence. If we understood how human minds
avold being brittle, we would also understand how to write non-brittle simulations. Understanding
intelligence Is, of course, our goal. Bx'ttleness and its associated difflculties are rot properties of
the simulation methodology, but indications of our progress, or lack of progress, with respect to

our research agenda.

Empirical validation. Perhaps the most commonly noted problem with simulation models Is
that they are severely underdetermined by the dat- they are applied to. For any model, it seems,
one can think of an alternative model which accounts equally well for the data. The large number
of assumptions in a simulation model and the complexity of their interactions - so the argument
goes - make It very difficult, if not downright impossible, to test a model stringently against

emplrical observations.!®

The first thing to notice about thls argument is that the possibility of alternative
explanations for a phenomenon Is not a feature of the simulation programme, but an aspect of all
scientific research. Since other branches of science have coped successfully with this difficulty, the
argument does not have any force unless it can be shown that the problem of choosing between
rlval exp.anations is inherently more severe with slmulation models than with other kinds of

theories. No such demonstration has yet been provided.

loJohn Anderson has argued that this is necessarily so; see Anderson (1079).
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The second thing to notice Is that current practice with respect to empirical vaitidation of
simuiation modeis is unsatisfactory. The use of temporaily dense behavioral records iike think-
aloud protocois (Ericsson & Simon, 1684), eye-movement recordings (e.g., Just & Carpenter,
1985), and video-tapes of actions (e.g., Kiahr & Robinson, 1981) is stiil uncommon. Even worse,
when those methods are used, the sequentlal information they contain Is usually destroyed by
categorization cr aggregation procedures of varlous kinds. Since the main difference between two
different modeis for the same task is the sequence of intermediate resuits that they produce,
ignoring sequential information Is fatal. Furthermore, the metkodologicai insight that it is a more
chailenging task to simulate a single performance in detail than to simulate the globali
characteristics of average performance (Newell & Simon, 1972) has largely gone upuoticed.
Cognitive psychology has adopted the theoretseal tooi of computer simuiation, but it has, by 2nd
iarge, not adopted the associated empirical methodology of temporally dense recordings of singie

performances.

It appears, then, that simuiation modeis are more underconstrained by data than they need
to be. The empirical validation of simulation models is a problem, not because of difficuities
pecuiiar to the simuiation programme, but because of the nature of scientific research in general
and because of the reiuctance of psychologists to adopt the empirical methodology that was

invented for that very purpose.

Restricted public access to models. A computer program Is not easy to read, its code i-
usually too voluminous to publish, and it is sometimes difficalt to get a program deveioped on one
computer to run on another. Consequently, simuiation models are essentially private. They are
described In scientific publicatlons, but they are seldom used in a serious way by others than their
creators. To some critics, this feature of simulation contradicts the pubiic nature of scientific

knowledge (Frijda, 1967; Neches, 1982).
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This criticism Is correct in its statement of the facts and It indicates a sericus difficulty with
the simulation programme, but I think the critics have misinterpreted the nature of that
difficulty. To clarify the issue, we have to make use of the distinction between theories and
mcdels. A model does not, in and of itself, represent knowledge. A model is a particular, in
philosophical terminology; in fact, being itself a thing, it Is every bit as particular as the thing it
models. A simulation rnodel does not "say™ anything at all about human cognition; it does not
make pronouncements or assertions; iike all other objects, it just exists. The activities of
designing, implementing, and applying a model can help produce knowledge, but that knowledge
resides in the head of the modei-buiider, not in the model. It is certainly essential to make that

knowledge publicly accessible; it Is more doubtful if the same is true of the model itself.

Consider the double-helix constructed by Watson and Crick as a model of the DNA
molecule (Watson, 1968). In no sense was the model itself - the rickety construction of differently
colored pleces of metal - made public. They did not ship it to other laboratories, nor would such
a road show have served any purpose. Concrete, physical models used in scientific research are

usually private. The important thing is that the corresponding theory is given public expression.

In summary, the criticism that simulation programs are private tools is true, but it malkes
the wrong point. It treats programs as if they were theories rather than models. A model may
remaln privale, as iong as the theory it embodies does not. As we shall see below, the crux of the

matter Is exactly how to make the theory public.

Informal statement of theorics. A programming language is a formal notation in which
one can describe a concrete model of information processing. However, there is no corresponding
formal language for expressing the theory behind that model. Therefore, simulationists are forced

to use the only resource avallable, namely natural language. The psychological principles which
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guide the construction of the formal models are themselves Informally stated.!!

This has several consequences. First, it is unclear by what criterion a model s judged to
instantiate a particular theory. If two researchers disagree whether a certain model embodies
such-and-such a theory, how would one decide the issue in a disciplined way? (This difficulty
raises the same question as the problem of convenience code discussed above: how do we know
that the runs of a particular simulation program are relevant to the theory we are interested in?)
Second, since the theory behind a simulation model is stated informally, we canno* expect the
simulation technique to produce the advantages of formalized theory construction that were

mentioned in the introduction.

Thus, the simulaticn programme is radically incomplete. It provldes a methodology for the
construction of concrete models of information processing mechaniams, but, it does not provide a
tool for the statement and analytical treatment of information processing principles. What is
needed is a high-level, formal, so-called specification language in which psychological principles
can be stated and deductively analyzed and from which specific simulation models can be

generated in a systematic wa.y.lz

Hagert (1988) has proposed a solution to this problem, based on logic programming
techniques. In his method, a program specification (i. e., a theory) is stated in formal logic.
Procedures (. e., models) which satisly that specification can be generated by deduction. The
procedures are directly executable in the Prolog programming environment, so they can be run
and emplirically validated. The deductive derivation of a procedure (model) from a specification

(theory) ensures vhat (a) the procedure satisfies the specification, and (b) that ail the assumptions

u’!’he resder may want to co.firm this by, e. g., looking at Chapter 14 of Newell and Simon (1072), where they state their
theory of problem solving, or the statement by Anderson (1083b), pp. 17-36, of the ACT theory.

12 he new spproach of connectionism has such a two-layered theoretical methodology.
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behind the procedure have been stated explicltly. Hagert (1988) has applled this method to the
simulation of a simpie short-term memory tack. It remains to be seen whether the method is

useful in the construction of more complicated simulation models.

Summary. Although the simulation programme, as distinct from the Informatioz-processiog
point of view, has ad a dramatic effect on psychological research, It has not been a spectacularly
successful enterprise. This is due, in part, to the fact that Its practitioners have not carrled out
the program carefully, and, In part, to limitatlons on the available programming tools. However,
the main weakness is that the simulation pregramme Is radically Incomplete. It offers a technique
for bullding concrete models, but no methodology for stating in a precise form what we learn
from building those models. We can only express the theorles we arrive at In Informal language.
Consequently, research within the simulation programme does not benefit from the advantages of
formal theorizing.

Connectionism: The Return of Mathematics

Some cognitive psychologists are currently engaged In working out a research programme
which might supersede computer simulation as described on this essay. This new research
programme s commcaly known as connectionism (Feldman & Ballard, 1982). The reader Is
referred to Hinton and Anderson (1881) and McClelland and Rumelhart (In press a, b) for
representative works, as well as to the speclal issue of the journal Cognitive Science (Volume 9,

Issue 1, 1985).

The connectionist approach Is based on the Idea that we should use what we know about
the brain, as well as what we know about behavior, when we try to simulate the mind. Perhaps
the most basic observation one can make about brain activity Is that many parts of the brain are
active at any one time. This leads to a conception of distributed information processing, where
many processing units operate in parallel. According to this view, Informatlon processing In the

head is belng done by "small*® units, each of which performs a very simple processing task, llke
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computing the sum of the strengths of its inputs, and then transmits a signal to a certain set of
otber such units. There ave many units, each of which has a large number of connections to other
units. The units ail act locally, on their own inputs only, so th:y can operate in paraliel. The
network of units is characterized by ruies which regulate the connections between units, the type
of computation being performed by each unit, and the kind of signal sent from one unit to an
other. A iearning theory in thkis prog.rammé consists of a set of rule; for how the units should
change their characteristics, e¢. g., whick signal to send, as a resuit of their own activity. An
information processing system buiit aiong these lines Is rather different in character from the

symbol maaipuiation systems considered so far in this essay.

How would connectionism answer the four questions I used to introduce the traditional

simulation programme?

1. Inter-item differences. A connectionist theory is weli suited to describe task differences
which are due to Interference effects and confusion; indeed, explaining such
phenomena fs its paradigmatic application. When it comes to large differences in
performance, it Is less obvious how the connectionist type of theory applies. Why, for
instance, shouid one isomorph of the Tower of Hanol probiem take 16 times ionger
than another to solve (Kotovsky, Hayes, & Simon, 1985)! Why is the “envelope”
version of Wason's so-called seiection task so much easier to solve then the "card®
version (Evans, 1984)?

2. Inter-individual differences. There are no particular conceptual tools within the
connectionist scheme to expiain differences between individuals.

3. Change. Connectionism regards iearning, or change over time in general, as a central
characteristic of cognition. A connectionist iearning theory consists essentially of a rule
for how to change one or more of the characteristics of a processing unit, as a function
of the inputs it has received in the past.

4. Generality. The invariants of the mind in the connectionist programme are the
network of units, the function which maps the input signals onto an output signal, and
the ruie for how to change that function.

In short, the connectionist p.ogramme has principled answers to the qQuestions about change and

about invariants, but does not handle differences between items or between individuais weil.

Methodologically, the connectionist approach has two strong advantages over the
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"traditional® computer simulation approach. Firat, it combines formal model-building with
formal theorizing, In a way which computer simulation as described earlier does not do.

Connectionist models can be implemented on a computer and simulation runs, just like other

* simulation models. But due to the uniformity of the processing units and the simplicity of the

computations they perform, the behavior of an entire connectionis: neitwork can be described and
analyzed with mathematical tools. Thus, there Is a formal way of stating the general properties of

connectionist computer models.!®

The second methodological advantage of connectionism Is that it can use both behavioral
and neurophysiological data to constrain mmodel-building. As noted in a a previous section, one of
the problems with computer simulation models Is that they are obviously underdetermined by the
empirical data they are intended to explain. By letting their simulation models be models of brain
activity, the connectionists make it possible to apply what is known about the brain to constrain

those models.

The practitioners of the connectionist, programme characterize their object of study as the
"micro-structure of cognition®. The tasks they have studied are mostly perceptual-motor and
short-term memory tasks. This accords with a long tradition in psychology of studying tasks for
which one’s theoretical approach seems to have the highest face validity: perceptual-motor
processes obviously happen in parallel and in a distributed fashion. The educational implications
of a deeper understanding of human performance on these tasks are not obvlous, Application of
connectionist modelling techniques to tasks like proof finding in geometry and learning the history

of World War 11 is yet to come.

The most disturbing aspect of connectionism is the fact that it, once again, takes the

la'l'he technique of doing s mathematical description of s computer simulation programme has also been used in
connection with more traditional simulation programs which nse so-cslled spread of activation as one of its memory retrieval
Processes; see Anderson (1084) and Anderson & Pirolli (1084).
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knowledge out of the theory of cognition. The point of the connectionist approach - and its most
fascinating aspect - is that it describes a type of system iIn ﬁhlch knowledge has no location, in
which knowiedge is spread out among a large number of units, and In which knowledge onily
exists in so far as the entire set of units reacts as a whoie in particular ways to particuiar
situations. Consequently, connectionism does not provide any tools for the analysis of knowiedge.
We cannot, for instance, command a computer to print out a connectionist modei and expect to
find its knowiedge in the print-out; the only thing that can be printed is a very long list of
connections with their associated strengths, as incomprehensibie as the brain itseif. Thus,
connectionism takes an anti-representational stance. There are no mental representations in the
Lead, no symbois which refer to the externai worid, nor any cognitive strategies. To the extent
that the post-war advances in our understanding of cognition are due to thinking of mentai
processes in terms of operations on internal representations, under the guidance of heuristic
knowiedge to that extent those advances are iost again in the connectionist programme.
Impacf of Simulation on Educational Research and Practice

Three decades of research have produced some knowiedge about how to design simuiation
models of cognitive processes. What impact wiii this ability have on educational research and
practice?’! The question turns out to have several layers, a methodological layer, a theoretical
layer, and a technological iayer. Each layer wili be discussed below. The finai conclusion is that
the main consequence of bringing cognitive psychoiogy into contact with education is that

practice gets a chance to infiuence research, rather than the other way around.

The computer simuiation technique has two methodological consequences which contribute
to its educational reievancc. The first is that tasks used In psychoiogical experiments are now

chosen on the basis of inherent interest. Experimental tasks used to be chosen on practical

“‘X’he broeder question of whkat the implications are for education of modern cognitive psychology in general {ravher than
Just the simulation technique per se) has been considered by Gagne (1085), Frederiksen (1084) and Ohlsson (1083); see also
the collection of articles by Tums & Roofs (1080).
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grounds: They were convenient to administer, invoived cheap materials thut could be
systematically varied, demanded responses that could easily be registered, etc. Presumably, the
practitioners of traditional experimental psychology believed that since they were interested in
general laws of behavior, they did not have to pay attention to the particular properties of any
one task. A psychologist interested In computer simulation, however, must attend to the
particular content of the mental representations and processes Involved in solving the
experimental task. Consequently, selecting an interesting task has become a central step in the
posing of a cognitive research problem. Since educatior al relevance Is one ground for regarding a
task as interesting, a significant proportion of current cognitive research concerns tasks which
appear in the curriculum or in training programs of one form or another. Cognitive psychologists

now do their research on the very same tasks which teachers try to teach.

A second educationally interesting consequence of the simuiation technique Is the new
willingness of psychologists to study single subjects. The experimental psychology of, say,
1920-1960 dealt almost exclusively with averages over groups of subjects.!® But educators benefit
very little from knowing that people in general have such-and-such characteristics. Educational
practice depends upon the ability to react properly to particular individuals. The simulation
technique allows single individuals to be studied and modeiled, which makes it relevant for
questions like "What does this student know?!®, "Why did this student make that error?®,

“"What kind of instruction does this student need?”, etc.

Taking the relationship between physics and chemistry, on the one hand, and engineering
science, on the other, as our analogy, we would expect that better theorles about human cognition
in general and about human learning in particular would lead to changes in educational practice.

According to this view, the influence of the simulation technique on educatlon world be indirect:

lsBelon that time, analyses of single subjects were more common. Thus, in this respect, modern cognitive plychoiou is
returning to s earlier methodological stance; sce Dukes (1088).
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as a research tool, it will contribute to better theories of human cognition, and these, in turn, will

contribute to the improvement of instruction.

Examples of such influences at the theoretical layer are not hard to find. For instance,
consider the notion of an arithmetic error. Due to the research by Brown snd Burton (1978) and
Burton (1982), the vague idea of an arithmetic algorithm not being properly "fixed™ in memory
has given way to the notion of a "buggy procedure®. The jatter obviously derives from the
conception of cognitive skills as analogous to computer programs. Computer implementations of
buggy algorithms constitute concrete, detalled, and precise descriptions which can be used to
predict the behavior of a student who is the victim of a particular error. The jncreased
understanding of cognitive errors produced by such simulations facilitate a precise discussion of

how to diagnose errors and what remedial instruction to provide.

As a second example, consider the question why cognitive skilis are difficult to learn.
Anderson’s (1982, 1986) theory of knowledge compilation show and expect him to apply to it
immediately. rule, say, and expect him to apply it immediately. The translation of a verbally
stated plece of advice into an executable procedure which interacts correctly with previously
existing procedures is seen to be a complex process, once we try to spell it out in a computer
slmulation. Slmilarly, VanLehn's (1983) theory of procedure Induction expialns why a student
might arrive at the wrong algorithm as a result of studying correctly solved examples: The
induction of the correct procedure from the examples presupposes knowledge of what the relevant

properties of the examples are, knowledge which students do not always possess.

In short, the simulation technique does contribute to an improved understanding of the
cognition of ciassroom tasks, with implications for instruction. However, such knowledge transfer
is slow and uncertaln; teachers do not always pay attention to research results, and researchers do

not always communicate them weli. Aiso, sclentific breakthroughs do not occur every day. This

o 43



4] Computer Simulation

form of Interaction between research and pedagogy Is weak and the effects are likely to be smali,

at least in the short run.

However, science does not oniy - and perhaps not primarily - influence human activity
through the spread of new knowledge, but through the technologies supported by that knowledge.
The main impact of simulation on pedagogy, I suggest, will be mediated by the teaching devices
of various kinds which are soon to be appear in classrooms. Current know-how supports two
types of devices which have computer models as essential ingredients: systems for automatic
cognitive diagnosis (Anderson, Boyle, & Yost, 1885; Attisha & Yazdani, 1984; Burton, 1982;
Johnson, 1985; Johnson & Soloway, 1984; Marshall, 1980, 1881; Ohisson & Langley, in press;
Reiser, Anderson, & Farrell, 1985; Sleeman, 1082, 1984) and intelligent tutoring systems
(Anderson, Boyle, Corbett, & Lewis, 1986; Anderson, Boyle, & Relser, 1985; Beakley & Haden,
1985; Sleeman & Brown, 1982; Wenger, 1985). Such devices are beginning to appear in schools

and their presence there will grow more frequent over time.

Like any other type of tool, these tools will shape the activity in which they are used. To
clarify the nature of this effect, let us consider, as an iliustrative example of a socially influential
technology, that ever-present communication tool, the telephone. The effect of the telephone on
our communication habits is a result of the functionality of the device, not of its sclentific
underpinnings; the telephone does not infiuence people by making them think of electricity as
they dial, nor is w'de-spread understanding of, or even belief in, the theory of electricity a
Decessary conditlon for the telephone to have an impact. Similarly, the pew teaching devices will
shape instructlon in ways which depend primarily on the activities that the devices allow. For
instance, intelligent tutoring systems can monitor practice in a constructive way, freeing the
teacher from the task of correcting essays and worksheets: while systems for automatic cognitive
diagnosis enable a teacher to have a detailed picture of the knowledge state of each student in her

class. We do not yet know what effects such devices will have on teaching. The point argued here

»a
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is that the effects, whatever they turn out to be, wiil be caused by the functions of these tools - to
moiitor practice, to perform cognitive diagnosis - rather than by the content of the psychological
theories which motivate their design. Furthermore, the appreciation of those functions does not
presuppose a general understanding of the underlylng theories. Hence, the slowness of knowiedge
transfer between the research community and the practitioners does not limit the impact of such

devices on education.

The discussion so far has asked the question of how simuiation might infiuence education. I
now want to argue that the teaching devices made possibie by computer simuiation open up a
channel through which educational praciice might come to decide the fate of psychological
theories and set the agenda for psychological research. Consider the fact that tutoring systems,
once placed in the classroom, constitute the most efficient tool for coliecting precise and
ecoiogically valid observations about human cognition that has ever been devised. Unprecedented
amounts of empirical information can be coliected with very littie effort. We can foresee at least

the foliowing effects on research:

1. New learning phenomena wiil be dlscovered. It would be truly surprising if data
coliection on the.scale that is now becoming possible did not reveal previously
unnoticed reguiarities la_bumsan learning.

2. The probability that educational research wili be side-tracked by artifactual
experimental effects wili decrease. A proposed reguiarity or phenomena can be checked
against a vast, ¢.- - lcally valid data-base.

@

Int:rest in labora:  studies wiil deciine. What educational researcher - indeed, what
cog.lilve psychole.gist - does not prefer to coilect his data in the ciassroom? Why not
use ecologicaliy r<ievan! data if they are avaliiable?

4. The sheer amount of empirical material reported in each journal article Is iikely to
increase. In the loug run, the standards of journal reviewers and editors will be
affected.

5. The type of -tudies performed are likely to change. On the one hand, data coliection
in the ciassrcom favors descriptive studies, because many aspects of ciassroom activity

cannot be var'ed sysismatically for the szke of an investigation.

On ihe other hand, intelligent tutoriay;, systems can be programmed to teach with
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different teaching strateglies, and they are guaranteed to execute a particuiar teaching
strategy faithfuvily. This enables well-controlled experlmental evaluations of teaching
strategies, as well as experimental tests of theoretically derived predications about the
effects of different teaching strategles on the behavior of the jearner. Perhaps
"teaching strategy" wiil become the major independent variabie In future psychology
experiments.

6. If most psychological observations are collected in the classroom, the only way for a
theory to be impressive is to handie those observations. Classroom behavior, rather
than laboratory behavior, will become the main testing ground for theories of
cognition. (See Anderson, Boyle, Corbett, & Lewis, 1988, for a similar opinion.).

At the present time, these effects of computerized teaching devices on cognitive research are just

beginning to be noticeable.!®

In summary, the interactions between the simulation technique and educationa] research
and practice are compiex. The simulation technique forces researchers to consider the content of
their subjects’ knowledge and provides a format for theorizing about individual subjects. Both of
these features contribute to the pedagogical relevance of cognitive psychoiogy. We can expect a
traditional science-to-practice knowledge transfer to occur to the extent that simuiation models
contribute to the Improvement of psychological theories with pedagogical relevance. But
simulation know-how also faciiitates the construction of computerized teaching devices. Like ali
other tools, these devices wiii shape the activities in which they are being used through their
functionality, rather than through their sclentific rationale. Finally, these devices constitute a
channel through which the behavior of students in real learning situations become avaiiable to

researchers, with dramatic effects on how cognitive research is carried out.

“lntemtih(ly, O'Dell & Dickerson, (1084), make a similar srgument for the usefulness of systems for compnteriled
psychotherapy such ai the ELIZA program.
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