DOCUMENT RESUME

ED 281 684 RC 016 179

AUTHOR Knop, Ed; Knop, Sheila

TITLE Patterns of Poverty in Colorado: Implications for

Analysis and Action. Population Dynamics for Colorado

Educators.

INSTITUTION Colorado Commission on Higher Education, Denver.
SPONS AGENCY Colorado State Univ. Ft. Collins. Agricultural

Colorado State Univ., Ft. Collins. Agricultural Experiment Station.; Fund for the Improvement of

Postsecondary Education (ED), Washington, DC.

PUB DATE Jan 86

NOTE 29p.

PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS Census Figures; Economic Change; Economic Status;

Educational Attainment; Employment Level; Industrial

Personnel; Influences; *Opportunities; *Policy

Formation; Poverty; *Predictor Variables; *Regional Characteristics; Rural Population; Rural Urban

Differences; Social Change; *State Norms; Statewide

Planning; Traditionalism

IDENTIFIERS Census 1980; *Colorado; *Culture of Poverty

ABSTRACT

Data from a 1% sample of households in the 1980 United States Census of Population and Housing were used to identify personal and social characteristics associated with being poor or marginally poor in Colorado. The general hypothesis examined was that the more limited an individual's access is to participation in the nontraditional aspects of the economic and social opportunity structure of the state and society, the more likely he/she is to be impoverished. Disproportional poverty is thus expected in remote, traditional areas and among people with traditional social identities that limit access to economic opportunities. The following variables were considered: area of the state, age, gender, minority status, English language skill, education completed, present school enrollment, disability status, marital status, responsibility for dependent children, rural and farm residence, recent migration history, whether employed, occupation type, and industry category according to traditionality or recency in Colorado. With some qualifications, the data supported the research hypothesis. Of the variables examined, location, marital, minority, and employment status made the greatest difference statewide. Education level was important in traditional rural areas, and current school enrollment was important in Colorado suburban, small SMSA (Standard Metropolitan Statistical Area), and nontraditional rural areas. Implications for programs and policies are discussed. (JHZ)

Patterns of Poverty in Colorado:

Implications for Analysis and Action

Ed Knop and Sheila Knop

Colorado State University and the Colorado Commission on Higher Education

D.S. DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has been reproduced as feceived from the person or organization briginating it.

Minor changes have been made to improve

Minor changes have been made to improve reproduction quality

 Points of view or opinions stated in this document do not necessarily represent official OERI position or policy "PERMISSION TO REPRODUCE THIS MATERIAL HAS BEEN GRANTED BY

ED Knop

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC)."

January 1986

Population Dynamics for Colorado Educators

This research is in support of the
Population Dynamics Project,
Colorado Commission on Higher Education
with the Fund for Improvement of Postsecondary Education,
U. S. Department of Education,
and the San Luis Valley Project,
Colorado Experiment Station.

A Project of the Colorado Commission on Higher Education
Financed by the Fund for the Improvement of Postsecondary Education

Abstract:

personal and social characteristics associated with being in poverty or being marginally poor are examined by Colorado regions using a one percent sample of households from the 1980 U. S. Census. The analysis considers the theme that changes in the state's economic opportunity structure disadvantage those persons with least access to new opportunities, whether by virtue of proximity or inhibiting social identities, leaving them disproportionately poor. The Colorado data generally support this hypothesis with some qualifications and additional considerations being important for understanding the state's patterns of poverty. Implications for programs and policies focus on countering regional and identity inequities, especially in support of the self-help tendencies shown by the majority of those in or near poverty due personal and social circumstances.

Abstract:

personal and social characteristics associated with being in poverty or being marginally poor are examined by Colorado regions using a one percent sample of households from the 1980 U. S. Census. The analysis considers the theme that changes in the state's economic opportunity structure disadvantage those persons with least access to new opportunities, whether by virtue of proximity or inhibiting social identities, leaving them disproportionately poor. The Colorado data generally support this hypothesis with some qualifications and additional considerations being important for understanding the state's patterns of poverty. Implications for programs and policies focus on countering regional and identity inequities, especially in support of the self-help tendencies shown by the majority of those in or near poverty due personal and social circumstances.

according to a combination of considerations like family size, sex of family head, number of minor children, and farm-nonfarm residence. A rough rule of thumb is that poverty is set below a total income of about three times the family's basic food requirements, with certain other modifications. (See U.S. Census/Fendler, 1984: 179 ff.) Further, data enabled us to consider those who fell somewhat above the poverty line; we chose those within 50 percent above the poverty line as marginally-poor.

All variables relevant to consider were also intercorrelated to clarify patterns of second-order interdependences useful for interpretation of poverty status findings. As well, multiple correlation/regression (stepwise entry by highest remaining coefficient) was done for each region to examine the relative and combined explanatory power of major variables. The correlation and multiple regression analyses were done only for the adult sample to avoid substantial problems of missing and irrelevant data among the youth.

Region Characteristics

The rationale for the choice of state regions for comparative analysis and interpretation needs comment. As a given, PUMS data are grouped into sixteen Colorado areas representing an approximate minimum of 100,000 persons in a region to preserve citizen privacy. Analysis of smaller units cannot be done. Fortunately, these sixteen areas were perceptively constructed to give relatively homogeneous socio-cultural and geographic natural areas that enabled their further grouping into fewer regions in terms of their proximity to new economic opportunity and their socio-economic similarity. We originally combined them into categories of: (A) Metropolitan: (1) Denver SMSA; (2) Other SMSAs; and (B) Non-metropolitan: (1) West; (2) East; and (3) South (each progressively more-traditional in socio-cultural and demographic characteristics. Preliminary analysis and literature review (e.g., Smith, 1976) convinced us this was a mistake in one important regard: like many major central cities, Denver, while at the core of a primate SMSA, is, in fact, not the location of much new economic activity that is easily accessible in several practical and socio-cultural regards for very many central city residents. On the other hand, the surrounding suburban SMSA is the location of most new development, followed by the other SMSAs and the western mountain non-metropolitan area. Thus the Denver central city was separated from the rest of the SMSA, giving us three metropolitan regions and three nonmetropolitan ones as listed above. Figures 1, 2 and 3 map the boundaries of the sixteen PUMS areas, our six regions, and the metropolitan-nonmetropolitan boundaries.

Our interest is with exploring differences in poverty patterns not only between metropolitan and non-metropolitan areas, but also regarding variations within them--particularly among the three non-metropolitan regions, where socio-cultural and economic characteristics vary considerably. Given our conceptual emphasis on the effects of remoteness and traditionality amidst change, we have been able to maintain conceptual criteria, non-metropolitan case numbers needed for analysis and have a selection of natural areas that approximate the range typical in the U.S.: (1) a large, old regional primate city; (2) its rapidly-developing clean-industry, commerce and science oriented suburbs; (3) adjacent smail SMSAs with their adolescent-like transitional growth-adjustment challenges; (4) non-traditional non-metropolitan region (the western, north- and central mountains) which is

according to a combination of considerations like family size, sex of family head, number of minor children, and farm-nonfarm residence. A rough rule of thumb is that poverty is set below a total income of about three times the family's basic food requirements, with certain other modifications. (See U.S. Census/Fendler, 1984: 179 ff.) Further, data enabled us to consider those who fell somewhat above the poverty line; we chose those within 50 percent above the poverty line as marginally-poor.

All variables relevant to consider were also intercorrelated to clarify patterns of second-order interdependences useful for interpretation of poverty status findings. As well, multiple correlation/regression (stepwise entry by highest remaining coefficient) was done for each region to examine the relative and combined explanatory power of major variables. The correlation and multiple regression analyses were done only for the adult sample to avoid substantial problems of missing and irrelevant data among the youth.

Region Characteristics

The rationale for the choice of state regions for comparative analysis and interpretation needs comment. As a given, PUMS data are grouped into sixteen Colorado areas representing an approximate minimum of 100,000 persons in a region to preserve citizen privacy. Analysis of smaller units cannot be done. Fortunately, these sixteen areas were perceptively constructed to give relatively homogeneous socio-cultural and geographic natural areas that enabled their further grouping into fewer regions in terms of their proximity to new economic opportunity and their socio-economic similarity. We originally combined them into categories of: (A) Metropolitan: (1) Denver SMSA; (2) Other SMSAs; and (B) Non-metropolitan: (1) West; (2) East; and (3) South (each progressively more-traditional in socio-cultural and demographic characteristics. Preliminary analysis and literature review (e.g., Smith, 1976) convinced us this was a mistake in one important regard: like many major central cities, Denver, while at the core of a primate SMSA, is, in fact, not the location of much new economic activity that is easily accessible in several practical and socio-cultural regards for very many central city residents. On the other hand, the surrounding suburban SMSA is the location of most new development, followed by the other SMSAs and the western mountain non-metropolitan area. Thus the Denver central city was separated from the rest of the SMSA, giving us three metropolitan regions and three nonmetropolitan ones as listed above. Figures 1, 2 and 3 map the boundaries of the sixteen PUMS areas, our six regions, and the metropolitan-nonmetropolitan boundaries.

Our interest is with exploring differences in poverty patterns not only between metropolitan and non-metropolitan areas, but also regarding variations within them--particularly among the three non-metropolitan regions, where socio-cultural and economic characteristics vary considerably. Given our conceptual emphasis on the effects of remoteness and traditionality amidst change, we have been able to maintain conceptual criteria, non-metropolitan case numbers needed for analysis and have a selection of natural areas that approximate the range typical in the U.S.: (1) a large, old regional primate city; (2) its rapidly-developing clean-industry, commerce and science oriented suburbs; (3) adjacent smail SMSAs with their adolescent-like transitional growth-adjustment challenges; (4) non-traditional non-metropolitan region (the western, north- and central mountains) which is

Figure 2: Six Colorado Regions Used in This Analysis:

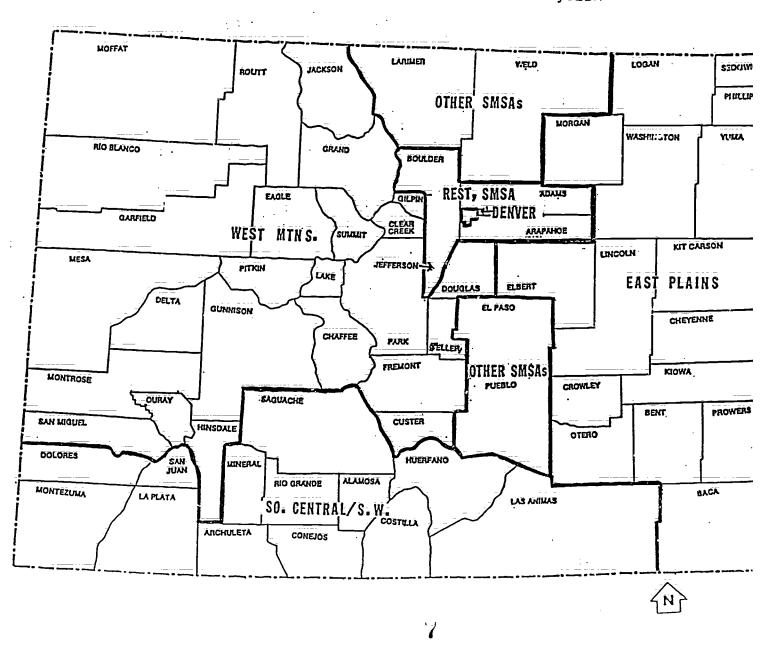
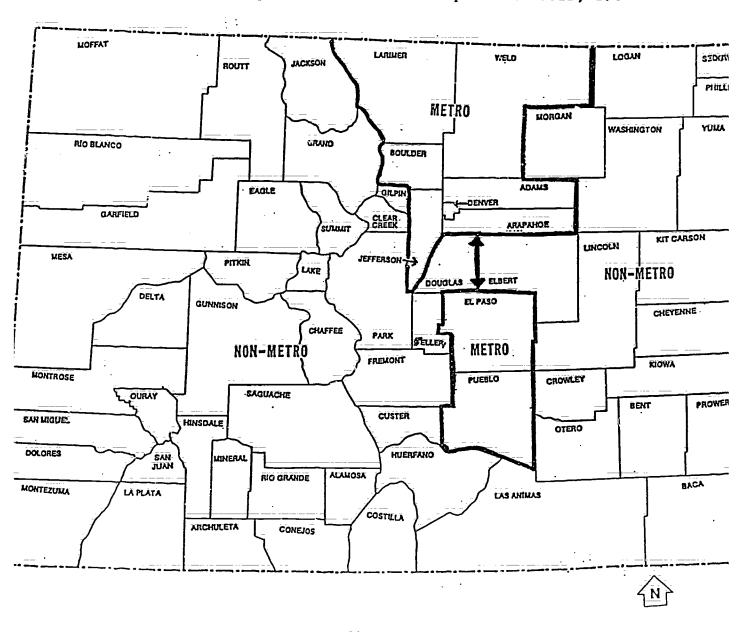



Figure 3: Colorado Metropolitan and Non-Metropolitan Areas, 1980

characterized by energy and natural resource development, exurban residence, year-round recreation, tourism and related construction activities, strong remnants of the 1960-70s counterculture, a relatively young, highly educated population that is almost entirely non-minority, etc.; (5) a rural region of Great Plains type contemporary agriculture, produce processing and limited light manufacturing; and (6) a remote rural area mixing marginal large- and small-scale farming and grazing, regional commerce, seasonal "through tourism", a large hispanic population and strong residual Spanish traditions in general, several Indian reservations, etc.

Findings

U.S. Census data show a national average of 13 percent in poverty. Some regional variation occurs, with the South having the highest percentage of poor (approaching 17 percent), and other regions being near the national In all U.S. regions, persons with the following characteristics are over-represented in poverty: minorities (often 30 - 40+ percent), those with minimal education (30 - 40+ percent), female householders (roughly 35 percent), unemployed persons (20+ percent), children and adolescents (20+ percent), and residents of central cities, non-metropolitan areas and farms (commonly 20+ percent). (Data from Census/Fenler, 1984, passim.) In U.S. areas where non-traditional economic activities are emerging, such as new natural resource development, poverty rates often decline substantially, but remain relatively high for persons in high-risk categories just noted (Elo and Beale, 1984?: passim).

· Colorado sample data summarized in Table 1A - C show the state's 1980 average to be about 10 percent in poverty, with the adult average about 9 percent and the youth average between 11 and 12 percent. Variations in poverty among regions of the state are considerable, with: (1) the Denver SMSA, excluding the central city, being about 6 percent for adults and 8 percent for youth; (2) other SMSAs averaging 10 percent for adults and 11 percent for youth; (3) the least-traditional non-metropolitan area (West mountains) being slightly under 10 percent for adults and youth; (4) the Eastern agricultural region averaging about 12 percent for adults and almost 20 percent for youth; and (5) the remote Southern area averaging almost 18% for adults and 19% for youth. (6) Denver Central City shows adult rates of 10%, which are more typical of the outlying SMSAs and Western Mountain Region, and youth rates of 19%, which are most like those of the traditional rural regions. Kean total, wage, public assistance and Social Security incomes are noted for poverty categories and regions in Appendix 1A - D. Significance tests show the regions being focused on here (underlined in the stub of Table 1 - B) show differences beyond the .0001 level, as does the metropolitannonmetropolitan comparison which shows greater non-metropolitan poverty. Compared with the Denver auburban area, adults and children in remote, traditional areas of the state are two to three times as likely to be in poverty, other characteristics left unconsidered. Overall, these findings support our expectations that poverty increases as geographical access to nontraditional economic activity decreases, except that the incidence of poverty in Denver central city more resembles that of outlying areas than of its SKSA.

The Denver central city situation illustrates that differential access to economic opportunities is only partly a matter of geographical proximity, and

characterized by energy and natural resource development, exurban residence, year-round recreation, tourism and related construction activities, strong remnants of the 1960-70s counterculture, a relatively young, highly educated population that is almost entirely non-minority, etc.; (5) a rural region of Great Plains type contemporary agriculture, produce processing and limited light manufacturing; and (6) a remote rural area mixing marginal large- and small-scale farming and grazing, regional commerce, seasonal "through tourism", a large hispanic population and strong residual Spanish traditions in general, several Indian reservations, etc.

Findings

U.S. Census data show a national average of 13 percent in poverty. Some regional variation occurs, with the South having the highest percentage of poor (approaching 17 percent), and other regions being near the national In all U.S. regions, persons with the following characteristics are over-represented in poverty: minorities (often 30 - 40+ percent), those with minimal education (30 - 40+ percent), female householders (roughly 35 percent), unemployed persons (20+ percent), children and adolescents (20+ percent), and residents of central cities, non-metropolitan areas and farms (commonly 20+ percent). (Data from Census/Fenler, 1984, passim.) In U.S. areas where non-traditional economic activities are emerging, such as new natural resource development, poverty rates often decline substantially, but remain relatively high for persons in high-risk categories just noted (Elo and Beale, 1984?: passim).

· Colorado sample data summarized in Table 1A - C show the state's 1980 average to be about 10 percent in poverty, with the adult average about 9 percent and the youth average between 11 and 12 percent. Variations in poverty among regions of the state are considerable, with: (1) the Denver SMSA, excluding the central city, being about 6 percent for adults and 8 percent for youth; (2) other SMSAs averaging 10 percent for adults and 11 percent for youth; (3) the least-traditional non-metropolitan area (West mountains) being slightly under 10 percent for adults and youth; (4) the Eastern agricultural region averaging about 12 percent for adults and almost 20 percent for youth; and (5) the remote Southern area averaging almost 18% for adults and 19% for youth. (6) Denver Central City shows adult rates of 10%, which are more typical of the outlying SMSAs and Western Mountain Region, and youth rates of 19%, which are most like those of the traditional rural regions. Kean total, wage, public assistance and Social Security incomes are noted for poverty categories and regions in Appendix 1A - D. Significance tests show the regions being focused on here (underlined in the stub of Table 1 - B) show differences beyond the .0001 level, as does the metropolitannonmetropolitan comparison which shows greater non-metropolitan poverty. Compared with the Denver auburban area, adults and children in remote, traditional areas of the state are two to three times as likely to be in poverty, other characteristics left unconsidered. Overall, these findings support our expectations that poverty increases as geographical access to nontraditional economic activity decreases, except that the incidence of poverty in Denver central city more resembles that of outlying areas than of its SKSA.

The Denver central city situation illustrates that differential access to economic opportunities is only partly a matter of geographical proximity, and

Summary Tables 2 A - L

Poverty and Marginally Poor Status Pergons in Colorado Metropolitan and Non-metropolitan Natural Areas by Sex, Minority Status, English Language Ability, Rural and Parm Residence, Marital and Dependent Children Status, Disability Status, Education Level Attained and Present School Enrollment, Employment Status, Occupational Type and Industry Type for Adults and Youth (as relevant) in Percents.

	Colorado Totals	Metropolitan	Colorado Areas		Non-metropoli	ltan Colorado A	reas
Personal/ Family Charac- teriatic	· .	Denver- Central City	Rest Denver SMSA	Other State SISA	West & North; Central Mountains	Restern Plains	South Central & Southwest
	In X Total Pov Mar Oth Tot. (Nx100)	In Subtot. Pov Mar (Nx100)	In Subtot. Pov Mar (No.100)	In Subtot. Pov Mar (No:100)	In Subtot. Pov Mar (No.100)	In Subtot. Pov Mar (Nx100)	In Subtot. Pov Mar (Nx100)
A. AGE 18 & less 19 - 35 36 - 55 56 plus Totals (a) Ad. (19+) Tot.	12 10 78 100 (8619) 11 9 81 100 (9505) 5 5 90 100 (6053) ² 11 12 78 100 (4464) 10 9 82 103 (28641) 9 8 83 100 (20022)	19 13 (1251) 12 10 (1707) -8 5 (999) ² 11 11 (1063) 13 10 (5020) 10 9 (3769)	8 6 (3506) 8 6 (3789) 3 3 (2459) ² 7 7 (1289) 7 5 (110/3) 6 5 (7537)	11 13 (2078) 12 11 (2292) 5 6 (1451) ² 10 13 (1069) 10 11 (6840) 10 10 (4762)	9 10 (863) 12 9 (1025) 5 5 (660) ² 12 15 (489) 9 9 (2017) 10 9 (2154)	20 14 (502) 12 13 (380) 10 8 (257) ² 16 19 (277) 15 14 (1425) 12 13 (924)	19 20 (419) 15 14 (332) 15 14 (267) ² 24 19 (277) 18 17 (1295) 18 16 (876)
B. SEX Adults: (b) Mala Female Youth: Male Female	7 7 86 100 (9699) 10 9 81 100 (10323) ² 12 10 79 100 (4452) 11 10 78 100 (4167) ^{ns}	8 8 (1771) 13 9 (1998) ² 19 13 (633) 19 13 (618) ⁿ⁹	5 4 (3685) 7 6 (3852) ² 8 6 (1852)	8 9 (2250) 11 11 (2472) ²	8 7 (1087) 11 11 (1067) ²	11 12 (447) _x 14 15 (477) ^x 18 16 (267)	14 16 (419) 21 16 (457) ^x
C. MINTRITY (c) Adults: Not Minority Minority Youth:	.8 .7 .85 100 (17050) 17 13 /0 100 (2962) ²	7 7 (2678) 18 13 (1091) ²	6 5 (6819) 17 8 (718) ²	9 10 (4058) 14 13 (704) ²	9 10 (709) ^{ns} 9 9 (20%6) 10 16 (108) ²	21 12 (235) ^{ns} 11 13 (829) 28 20 (95) ²	21 20 (217)— 16 20 (202) ^{ns} 14 12 (630)— 27 24 (245) ²
Not itinomity Minomity	8 8 84 100 (6575) 23 16 61 100 (2044) ²	_7 _7 (525) 28 17 (726) ²	6 5 (2985) 15 10 (521) ²	8 12 (1627) 21 14 (451) ²	9 9 (791)	15 13 (415) 44 18 (87) ²	13 14 (232) 25 28 (187) ²
D. LANGUAGE (d) Adults: Engl. Only Engl. + Och. Little Engl. Youth: Engl. Only	8 7 85 100 (17728) 16 14 70 100 (2029)z 29 72 49 100 (265) 11 10 80 100 (7993)	-9 -8 (3166) 17 14 (521)z 36 21 (83)	6 5 (6852) 11 7 (609)z 22 18 (76) 7 5 (308)	9 9 (4234) 14 16 (475)z 25 28 (53)	9 8 (2029) 12 20 (113) ₂ 25 8 (12)	11 13 (814) 24 18 (95)z 36 29 (14)	13 12 (633) 28 24 (216)z 30 26 (27)
Engl. + Oth. Little Engl.	17 21 62 100 (539)z 47 5 48 100 (87)	19 15 (115)z	12 17 (162)z	11 13 (1964) 16 16 (106)x 38 13 (8)	9 46 (35)z	40 17 (35)y	18 17 (329) 22 33 (86)y 25 50 (4)
E. REAL-FARM (e) Adults: Non-rural Ru. Non-fm. Ru. Farm Youth: Non-rural	9 8 83 100 (18026) 9 8 84 100 (1578)ns 11 8 81 100 (418) 11 10 78 100 (7524)	10 9 (3769) 11- 11- 19 13 (1251)	5 1 (372)y 4 0 (24)	10 10 (4326) 3 6 (320)z 12 10 (116)	9 8 (503)ns	13 13 (123)ns	19 15 (546) 17 17 (260)ns 10 14 (70)
Ru. Non-fm. Ru. Farm Fl. MARITAL (f)	12 8 81 100 (883)x 13 13 74 100 (212)	19 13 (1251) nr- 	9 0 (236)y	11 14 (1844) -5 -5 (178)z 18 14 (56)		18 10 (77)x :	18 17 (262) 20 24 (125)ns 19 31 (32)
Adults: Single Married	17 12 71 100 (6859) 5 6 88 100 (13163) ²	17 11 (1765) 1 5 6 (2004) ²	3 9 (2399) 3 3 (5138) ²	20 13 (1495) 5 9 (3267) ²			30 20 (257) 13 14 (619) ²
F2. MARCHILD (g) Adults: Sing., No Ch. Mar., No Ch. Mar., Dep. Ch. Sing., Dep. Ch.		3 5 (1189) -7 9 (815) ²	2 3 (2199) 3 4 (2939) ²	6 11 (332) 4 -7 (1548) 6 10 (1719) ² 3 14 (1163)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 10 (313) 1 0 13 (387) 1	15 11 (64) 11 -9 (281) 14 19 (338) ²
G. DISABILITY (h) Adults: Not Disabled Disab., Workg. ", Can't We.		= = 1.1.1 .	6 4 (6899) 3 -9 (351)z 1	9 9 (4222) 2 9 (234)z		2 11 (793) 1 1 13 (45)z 2	35 22 (193) 4 14 (741)
Adults: LT H.S. Gred H.S. Gred Some Coll. Coll. Gred +	17 15 69 100 (4044) 7 8 85 100 (6618) 9 7 84 100 (5228) ² 5 4 91 100 (4132)	21 14 (926) 12 9 7 (1135) 5 7 7 (912) 8 6 6 (718) 3	6 (2496)	10 (1644) ¹ 9 (1269) ²	13 16 (413) 22 9 8 (710) 11 10 7 (591) ² 5 7 7 (440) 6	11 (363) 16 11 (177) ² 12	8 23 (304) 6 12 (270) 2 13 (195) ²

Summary Tables 2 A - L, Continued

	Co	10	rado	Tot	als	М	etr	opolitan	Co1	ora	do Areas	<u> </u>	_		No	11-W	etropoli	tan	Col	orado A	reas	-	
Personal/ Family Charac- teristic	_						nvez ntra ty		Res Den SHS	ver		Oti Sta	te		Nor Cen	t & th, tral	•		stern dins			ith trail th-ca	
	În	, M	- OF	. Z	Total , (Nx100)	In		Subtot.	In	••	Subtot.	Ĭη		Subtot.	In		Subtot.	Īn		Subtot.	In		Subtot.
HZ. SOL. ENROLM					- Tuxton	TA	<u> </u>	r (N×100)	rov	m	(Nx100)	1100	mr	(N×100)	Pov	Mar	(H×100)	Pov	<u>Mur</u>	(N×100)	Pov	Hyr	(HxIM)
Adults: Not Enrolled Enrolled	-8 20	8 11				10 13	10		5 19	5	(6902) (635) ²	8 26	10 13	(4288) (474) ²	.9 25	.9 15	(2046) (108) ²	13		(897) (27) ^{n.s}	18 16		(839) (37) ^{ns}
I. MICRATION (j)	i																			•			
Non-migrant Migr., 75-80	8 11	9				10 12			5 8	5	(4261) (3276) ^z	13	.8 13	(3073) (1689) ²	.9 11	9 8	(1227) (927) ^{ns}	13 10		(712) (212) ^{ns}	17 21	16 14	(654) (222) ^{ns}
J. EMPLOYMENT (k Mults:)																						•
Not in L.F. Unemployed Employed	16 14 6	13 13 6		100 100 100	(6132) (676)z (13214)	19 14 6	13 11 7	(1233) (118)z (2418)	12 11 4	8 9 4	(1914) (210)z (5413)	16 17 6	14 16 8	(1611) (200)z (2951)	15 11 7	14 14	(678) (91)z (1385)	18 17	20 13	(354) (24)z (546)	28 18 10	22 27 11	(342) (33)z (501)
K. COUPATION (1)							••			(,	Ī	Ī	(2001)	•	٠	(144)	•	,	(340)	10	**	(101)
Adults: Laborer Crafts,Farm Services Mgr., Prof. Totals	10 8 8 4	9 8 8 4	81 85 84 92	100 100 100 100	(2189) (2575) (7603) ² (4132) (16499)	13 8 8 5	9 8 9 5	(415) (3/6) (1472) ² (766) (2999)	7 6 6 3	7 4 5 2	(782) (872) (3007) ² (1842) (6503)	9 8 10 4	11 9 10 5	(565) (625) (1814) ² (835) (3839)	9 8 10 4	1 <u>1</u> 8 7 7	(224) (374) (770) ² (430) (1798)	16 14 7 3	9 10 13 9	(96) (209) (269) ² (136)	17 12 16 5	19 15 11 6	(107) (149) (271) ² (123)
L. INJUSTRY CAT.	(m)							(/			(00)			(303)			(1790)			(710)			(650)
Adults: Traditional Intermed. Recent Totals	12 8 6	8	80 85 89	100 100 100	(1771) (8943)z (5834) (16548)	15 8 6	12 8 5	(234) (1627)z (1142) (3003)	9 6 4	6 5 4	(475) (3255)z (2788) (6518)	12 9 7	9 9 7	(387) (2254)z (1221) (3862)	9 8 7	6 9 6	(363) (1001)ns (436) (1800)	16 7 11	11 11 10	(169) (425)x (117) (711)	18 12 12	11 14 12	(143) (391)ns (130) (654)

- From a 1 % sample of households (group quarters excluded) in the 1980 US Census of Colorado as provided on PUS Series A tapes. Cri Square Coodness of Fit tests show the sample representative of the population on reported 100 % count variables for all FUYS state regions at or beyond the .01 level. Foverty status is by official definition; marginal status is within 50 % above the poverty line.
- a. Totals for columns remain constant throughout the table except as noted for subtables K and L; thus percent totals are not repeated to simplify presentation and interpretation. Likewise, once "others" are presented in the state total tables, they, and indication of 100 % totals, are contited from the presentation. Regional column data presented should be interpreted exactly as with comparable columns in the state totals. Approximate numbers and percentages omitted can be reconstructed from the implied 100 % and total row numbers, which include the unpresented "other" category. Percents are rounded to the nearest whole number to facilitate comparative visual interpretation. The letter codes us, x, y and z indicate the level of significance of the subtable as noted below
- b. Adults are those 19 +. Youth data are presented only when the explanatory variable is meaningful for them and/or their presentation facilitates fuller interpretation of adult patterns (e.g., the adult gender bias).
- c. Minorities include all non-white persons and persons of hispanic origin.
- d. English only implies English as the principal language of regular domestic usage or the non-applicability of the item for children under 3 years; English plus other language implies another principal language, but with English speaking skill classified by Census as "well" or "very well"; little English indicates another principal language with poor or no verbal English ability.
- e. The RMS A tapes do not include a rural-urban residence variable, but do provide an agricultural sales variable with a not-applicable code for "urban, city or subtrian lot or place of less than 1 acre," a rural monfarm category where 1979 agricultural sales were less than \$1000, and a farm category where agricultural sales were \$1000 or more. A note with the rural nonfarm category cautions "not all rural nonfarm is included," but does not indicate what is excluded; the vast majority of Colorado rural nonfarm households are included.
- f. Single includes widowed, divorced, separated and single; married means both spouses presently reside together.
- g. The married child variable is a composite of two Census variables: (1) whether individual household residents are married or not, and (2) whether their household contains dependent children (but not necessarily those of each resident). Thus, single children present but compying a household with dependent children are classified as "single [in household] with dependent child." The majority of people so classified, however, are single parents.
- h. No disability; a disability not preventing ability to work; a disability which reevents the person from working.
- 1. Enrolled means the individual was enrolled in some type of public, private or church educational program, not necessarily full-time, during February to April, 1930, Note that persons living in group quarters such as college dormatories, military barracks, rooming houses, prisons, nursing homes, etc. are not included in this sample, probably under-stating enrollment patterns in relation to poverty status.
- j. Migrants are those who lived in a different state or Colorado county in 1975 than in 1980; children born since 1975 are considered non-migrants.
- k. Not in labor force includes those not employed and not seeking work or unable to work; unemployed are those without jobs but able to work and seeking employment; employed include those with civilian or military jobs, whether or not they were working at the time of enumeration.
- 1. Occupation categories combine Census' specific 1980 occupational codes as follows: laborer, 703 899; crafts/farm, 473 699; and military personnel from the employment status variable; managerial/professional, 003 - 199. Excludes those not in the labor force.
- m. Industry codes were combined to produce categories of work in terms of their recency of prominence in the state's economic activity opportunity attractive, as elaborated in the text: (1) traditional: very prominent in Colorado economic activity by 1900 (a.g., farming, mining, smelting, logging and milling, etc.); (2) intermediate: industries which emerged to established prominence by 1945 (e.g., construction, commercial food processing, mechanized transportation, wholesals and mass-marketing retail trade, military activities, general medical, educational and personal services, routine construction. government services, etc.); (3) recent: economic activities assuming prominence educe 1945 (e.g., chemical and petroleum industries, precision instruments and electronics, arts and entertainment, specialized finance, investment and insurance, advertising, leisure and tourism, specialized professional services like psychiatry, consulting engineering and social work, etc.) Excludes those not in the labor force.
- nr: not relevant; ns: not significant; x: significant between .10 and .015; y: significant between .01 and .015; z: significant at or beyond .001

is largely, as well, a matter of differential social proximity or accessibility. When social preference patterns of errloyers and others are combined with differential demographic composition of socio-economic units, we should expect unequal access to opportunities and clear patterns of differential socio-economic wellbeing along the lines of social identity categories like age, sex and minority status. The data in Table 2A - L show a variety of such patterns, including:

Age. In general, the 35 - 55 age category is the least likely to be in or near poverty. In understanding this finding, recall that this is a relatively small population cohort, minimizing internal employment competition, and that it came into economic activity during the rapid commercial and industrial expansion of the post-World War II period (Kennedy, 1986). All they have had to do to preserve their early advantage is remain active. The data further show that the age differentials in incidence of poverty is generally less in the suburban, small SMSA and non-traditional non-metropolitan areas; that youth are particularly over-represented in poverty in older, larger, more-industrial central cities (reference Denver and Pueblo in Table 1B); and that the young and old are disproportionately poor in the traditional non-metropolitan areas of the state (which was a clear national pattern until a substantial decline occured in elderly poverty in recent years--Census, 1984).

Sex. Among youth, no gender differential occurs, but, by adulthood, females are somewhat over-represented among those in or near poverty in all state regions. Some of this is due responsibilities for dependent children and other considerations to be noted later, but, beyond these, some sex bias in access to employment seems to exist in Colorado, which, overall, is perhaps less traditional in defining women's roles than much of the rest of the nation.

Minority Status. Across Colorado, non-white and Hispanic adults are approximately twice as likely as majority persons to be in poverty, and, in most areas, minority youth are nearly three times as likely as their majority counterparts. Statewide, this means about 30 percent of minority adults and 40 percent of minority youth are in or near poverty. In traditional non-metropolitan areas, roughly half of all minority persons are officially or marginally poor. This clearly demonstrates the social preference patterns which limit access to economic opportunity for minority persons, even in a state that has a strong affirmative action emphasis and prides itself in fair treatment of everyone.

English Language Skills. Spoken English is even more strongly associated with poverty than is the related matter of ethnicity. This suggests conceptions of personal value are tied to popular notions of how prepared persons are to fit into the cultural and market mainstreams of the state more than on the basis of ethnicity per se. In general, Colorado adults with limited English skills are from three to four times as likely to be impoverished, and about twice as likely even when they have good English skills in addition to another language. The pattern among youth is even more pronounced, although the number speaking other languages is low. Expressed in absolute proportions, more than half of those with limited English are in or near poverty statewide, and, in traditional non-metropolitan and Denver central city areas, at least two-thirds of limited English adults and youth

. Y.

are in or near poverty.

Rural and Farm Residence. Although metropolitan residents are somewhat less likely to be in poverty than non-metropolitan residents, as noted above, rural nonfarm and farm residence does not seem to make much of a difference for adult poverty in Colorado. Presumably, the greater difference in regional opportunity structure reflected in the metropolitan-nonmetropolitan differences, coupled with the relative ease of local travel and the small number of rural Coloradans, makes this a relatively unimportant consideration for understanding state adult poverty patterns. Among the youth, the statistically significant differences that occur do not show a consistent pattern.

Marital Status and Dependent Children. For us, one of the surprises of this analysis was finding a strong relationship between being single and being impoverished. Statewide, single adults are between three and four times as likely as married persons to be in poverty, and about twice a likely to be near poverty. This means that, statewide, almost 30 percent of single adults are officially or marginally poor, a proportion that increases to about onehalf of single adults in traditional non-metropolitan areas. Noting this, we created a new variable that came as close as we could to factoring in responsibilities for dependent children (Table 2F2). Although a problematic variable among the "single in household with dependent children" (note table footnote g), it is probable that a large number of unmarried parents in the state accounts for a great deal of the poverty among those who are single. Specifically, Table 2F2 data show that about one-third of single adults in households with dependent children are in or near poverty statewide, a proportion that increases to over one-half in the most traditional and remote of non-metropolitan ereas. Table 3 data show women to more likely be the single parent with responsibility for dependent children, partly accounting for the higher percentage of women in poverty. As well, family or non-family group living arrangements contribute some single persons without their own dependent children to the high numbers in this household category (which probably more reflects than contributs to their poverty status). Beyond this, it seems likely that there is a social preference bias among some employers and others which characterize the single of either sex, particularly those in unorthodox living arrangements, as less reliable or responsible, and/or less fitted-in the socio-economic mainstream.

<u>Disabilities</u>. Not surprisingly, disabilities that prevent work made persons from two to three times as likely to be in poverty, and considerably more likely than the unimpaired, even when the disability does not prevent work. Statewide, more than 40 percent of those who cannot work due to disabilities are in or near poverty, and, in traditional non-metropolitan areas, the figure increases to over one-half. Those with disabilities permitting work still fall in the 25 to 35 percent range except for the suburban and small SMSA areas, where the percentages are a little lower.

Education and Current Enrollment. Again, as one would expect, there is a general relationship between being less-educated and being more likely in or near poverty. Specifically, those adults with less than high school completion are three to four times as likely to be impoverished as are those with college completion. This translates, statewide, to about 30 percent of those with less than high school graduation being in or near poverty; regional

differences range from just over 20 percent in suburban areas to about 50 percent in the most remote traditional non-metropolitan area. Between the extremes of the less-than-high school to college-graduate categories, the patterns are more complicated. For the entire state, there is not much difference in poverty status between high school graduates and college graduates, but those with only some college are the most likely of the three to be in poverty. When comparing differences among state regions for the some-college category, part of the reason for this becomes apparent. Those areas where the some-college people are most over-represented in poverty are the same Colorado regions where the larger colleges and universities are located. Many of those in poverty in these areas can be assumed to be suffering the financial burden of college plus highly competitive local job markets. As well, there is probably some effect of non-enrolled "campus-edge fellow travelers" (as suggested by the high Boulder overall poverty percentages in Table 1B).

Table 2H2 demonstrates a strong relationship between being enrolled in an educational program and being in poverty. State totals show those adults enrolled (many, part-time) in all types of school programs are from two to three times as likely in poverty as non-enrolled persons, and the differences are even greater in the areas where college and other types of post-secondary educational offerings are most common and accessible. In absolute proportions, about 30 percent of enrolled adults are in or near poverty statewide, and, in areas of concentrated educational offerings, the figure approaches 40 percent. The fact that poverty-enrollment patterns in Table 2H2 are considerably stronger than the some-college patterns of Table 2H1 suggest much of the enrollment differential is due those attending non-baccalaureate programs. This prompts an interesting question of cause and effect: does being an adult student make one impoverished, or does being in poverty prompt one to escape it through further education? Doubtless both occur. Duncan's (1984) findings on the temporary nature of much poverty (several years is common) and these enrollment data suggests non-baccalaureate and part-time schooling in general is seen as a poverty-escape strategy or temporary sacrifice among many adults who have access to educational programs. Those Colorado areas where routine and special adult education programs are the least developed are the same areas in which the poverty-enrollment patterns noted are weakest or reversed.

Migration. Several different themes occur in the literature on migrationincome relationships. Some scholars like Wardwell and Gilchrist (1984) show average increases in income of migrants, presumably because they are pulled toward better opportunities, taking skills where they are needed. Others (see Gardner's and other's papers in DeJong and Gardner, 1981) note the socioeconomic refugee patterns, where the most-disadvantaged are often pushed into human dumping-grounds for survival. Both certainly occur to some degree, having a cancelling-out effect on aggregate migration-income/poverty data. Both also follow a relative opportunity structure theme, although of somewhat different forms. Using the imperfect Census definition of migration status (residing in a different county or state in 1975 and 1980), the Colorado data show migrants in general are somewhat more likely to be in poverty than nonmigrants, lending support to the refugee proposition among the worst-off. Aithough the Colorado economic opportunity structure is generally considered a very open one, partly accounting for the heavy in-migration to the state throughout the 1970s and before, this opportunity structure doubtless gives

greater employment access to those who are more settled in the system. Table 3 data show the migrants, on average, to be younger adults with more education and a greater likelihood to be enrolled in school.

Employment. Across the state, the data show those who are not employed are from two to three times as likely to be in or near poverty as those who are employed. What is most impressive about Table 2J data is that those out of the labor force are consistently more likely in poverty than those who are unemployed. Overall, roughly one of three state residents who are either out of the labor force or unemployed are in or near poverty. Between regions the familiar pattern holds: the proportion of those in or near poverty in these categories tends to increase as we shift consideration from suburban areas through small SMSA, central city and non-traditional non-metropolitan areas to traditional non-metropolitan areas (where the most remote of these shows 50 percent of persons out of the labor force and 45 percent of those unemployed to be in or near poverty). Presumably many of those not in the labor force have given up looking for work, or are prevented from working by disabilities or circumstance like age, family responsibilities, etc. (as shown in Table 3). This doubtless partly accounts for the gender differential in poverty noted earlier.

Occupation and Industry. For those in the labor force, persons with the highest occupational status (managerial and professional) are from two to three times less likely in poverty than those with the lowest occupational status (laborers) in general. In most Colorado regions, those in the service occupations do not fare well, comparatively, despite these being touted as the post-industrial area of occupational opportunity.

To further explore types of employment activity in terms of their recentness, or non-traditionality, in the state opportunity structure, industries were categorized according to whether they were traditional by 1900, emergent to prominance between 1900 and 1945, or more recent. Table 2L data show that in metropolitan areas—those most benefitting from recent employment opportunities—persons in old-traditional industries are several times as likely in poverty than are those in recent industries. In non-netropolitan areas, the differences are not so great.

Table 3, a Pearson correlation matrix (including all variables considered to this point and some additional ones), is included for those who wish to further explore second-order relationships relevant to interpreting basic data patterns. As noted in comments to the tabular presentations, some variables like age do not show a clear linear relationship with poverty or other variables, reducing their explanatory utility in this correlation matrix. The reformulation of other variables, like employment status, to facilitate their linear interpretation tends to weaken their effects in statistical analysis. Never the less, additional insights on patterns noted above are available in these correlation data.

Taking this reasoning another step, multiple correlation/regression analysis of adult data was done for regions of the state as summarized in Table 4 (where the Denver SMSA, minus central city, and the other SMSAs were combined, given their highly-similar bivariate coefficients on regional tables like the state Table 3).

Overall, this analysis shows that roughly 40 percent of the total variance in poverty/marginal status is explained by the major variables (minus industry) used in the cross-tabulation summaries, assuming the appropriateness of linear interpretations, which is not always the case. In consideration of this modest level of explained variance, we should note that many relevant social-psychological variables like alienation from the marketplace and self-confidence were not available on the PUMS tapes even in the form of surrogate indicators. Similarly, many particularistic considerations like assertiveness, unique skill combinations, personal connections, or even numbers of children, were not available. Further, the relatively small percentage of the state's population in or near poverty makes this a variable where most cases fall into the residual "other" category, making it probable that the explanatory variable's variation also was concentrated in that single poverty category. Even so, some interpretations of these multiple correlation/regression summary results are informative.

In all cases, the marital status variable was among the most important ones considered in explaining poverty status, as was, in most regional cases, the employment status variable. In Denver central city and in the most-traditional non-metropolitan area, minority status also came high on the explanatory list, contributing from two to three percent of the remaining unexplained variance. In the state areas where most educational opportunities are concentrated (Tables 4 B and C), present enrollment also fell high on the list, but contributed little to the reduction of remaining unexplained variance. In the most-traditional non-metropolitan regions of the state (Tables 4 D and E), education completed showed relatively high bivariate correlation with poverty, and reasonable contributions to total variance explained, but, in areas with a higher proportion of minority persons, education level and minority status showed interactive overlap.

Some variables that showed clear patterns in the tabular presentations have minor overall effect in these regressions because they represent relatively few cases in the total Colorado population (e.g., disability status and English-other language). Other variables had relatively little overall effect, of course, because they produced low correlations (e.g., sex, rural-farm residence, age) and/or their effects were combined with those of other variables (e.g., language).

Summary and Concluding Comments

The persons more likely to be in or near poverty in Colorado in 1980 are: (1) residents of Denver central city or traditional non-metropolitan areas (in many regards, Denver city shows more similarities to these areas than the state's SMSAs); (2) young in Denver, and young and old in traditional rural non-metropolitan areas; (3) females; (4) minority persons; (5) those with limited English skills; and, among adults, (6) single, particularly in households with dependent children; (7) disabled; (8) less educated, and, in areas with extensive educational offerings, enrolled in school at least parttime; (9) migrants; (10) those out of the labor force and unemployed; (11) laborers, and, in smaller SMSAs and some non-metropolitan areas, service persons; and (12) those working in traditional (vs. recent) industries. Of these variables, location, marital, minority and employment status generally

Tables 3 and 4 Variable Abbreviations and Codes:

DISABI - Disability: 0 no disability, 1 disabil. permitting work,
2 disabil. preventing work

NARI - Current school enrollment: 0 not enrol... 1 enrolled, 1980

FARMI - Farm residence: 0 not farm, 1 farm (\$1000 ag, sales, 1979)

LANGI - Language: 0 Engl., only or n.a., 1 good Engl + other,
2 limited Engl. + other

MICRI - Migration: 0 same county 1975-80, 1 diff. county 1975-80

HIMICRI - Migration: 0 same county 1975-80, 1 diff. county 1975-80

HIMICRI - Migration: 0 same county 1975-80, 1 diff. county 1975-80

HIMICRI - Poverty status: 1 in pov., 2 marginal, 3 above marginal

CCI - Occupation categ: 0 not in LF, 1 labor, 2 crafts/farm,
3 service, 4 professional/managerial

CCI - Colo. region: 1 Denv. SSCA incl. cent. city, 2 other SSCA,
3 west, 4 east, 5 south

RIMI - Rural residence: 0 not rural, 1 rural (farm & nonfarm)

SCH3 - School completed: 1 LT HS, 2 HS grad., 3 some coll:.

VARI5 - Householder (old head of HH) status: 0 not head, 1 head

VARI6 - Sex: 0 male, 1 female

18

Table 3. State of Colorado Pearson Correlation Matrix of All Variables Considered in 1980
Poverty Analysis of Adults.
(Regions Combined: Variable Abbreviations and Codes Follow Table)

015781	<u>EHOZ</u>	ENPOL1	HIERI	XENPLST2	xoccz	X I NO 4	VĀR 4 Q	VAR 47	V1448	POVI
(_2G022) - • • • • • • • • • • • • • • • • • • •	0998 (_20022) P= .001	0492 (_20022)	0587 (20022) P = -001	0737 (20 <u>622</u>) P= .001	-:0821 (164991 P= :001.	1991 (1654e) P= .001	0F23 (-17832) P= .001	0356 (_ 26181 P= -034	(651) P= .482	1074 (206221 P - 001
(_20022) 	- 2303 (20022)	2020 (_20022) P= .C01	1196 (_20022) P= .001	20G22) P= •C01	0602 (16499) P = 001		.0718 (17832) P= .001	- 2158 (2614) P001	0557 (_ 651) P· .078	0027 1_20022:1 P= -350
(-20022)	0949 {-20022}- f= .001	(-20022) P= .001	0331 - (-20022) - P = 001	200221 P= .001	(16499) P • • • • • • • • • • • • • • • • • • •	(16548) (16548) (053	176321 001	2854 (_ 2618) P= .001	0368 (_ 6511 P174	0668 (_2GC22) P=-001
(-20022) 	2607 260223 P001	(-20022) Pa .341	0489 (_20022) P=001	6264 (_20G22) P G01		0336 (16546) P = -001	(-17832) P- :001	•= .001	.0947 (651) F= .008	-1366 -205221 F• •001
(-20022) 	- 1619 (20022)	0066 (-20022) P= 174	0185 (_20022)	20C221 P= .GO1	0896 (16499) P = -001	0406 (16548) P001	1-178321 P= .001	0618 (_ 2618) P= .001	0245 L 6511 P= .266	(_20022) P= .001
1-200221 1-200221	2 00221 P 247	0571 (-20022) P 001	(_20022) (_20022)	0163 (_20C22) P= -011	0250 (16499) F= -001	(16548) P- 001	170321	1 26161 P253	(_ 651) P• .243	6010 (_ 200221 443
0039 1-200221 P293	(-20022) 	0310 (-20022) P031	(_20022) (001	CO51 (_2CG221 P= .237		- 1446 165483 7- 001	(-17832) P= .090	0264 (_ 26181 P 088	0232 (651) P 277	1 20C221 P• 125
- 0444 (-20022) - 001	(-2002) P= .468	(-20022) P= .001	0631 (20022) P - 001	20C221 P= .134	(16499) P = .001	1-10137 1-105481 1-1039	1-17632) P= .001	0084 (2619) P334	6 - 430	(_2002; P= .001
0355 (_20022) 	0723 (-20022) P= .001	045R (_20022) P= .001	(_20022) P= -304	2320	- 0495 (16499) P = 0001	(-1654E)	(_17832) P= .001	26151 P001	(651) - 048	(20022) P= .001
1515° (-20022) }- 001		(_20022) P= .001	1 200221 P • • • • • • • • • • • • • • • • • • •	200221 P= 001	164991 164991	(-16548) (-16548)	1-17832) P= .001	0934 (2616) P= .001	1983 (6511 P001	(20C22) P001
0161 (_200221 }- 005	(_20322) P= .001	20022) (20022) (001	(_20022) (_20022)	(20022) (20022)	0102 (15499) 	0020 (-16548) - 357	1228 (-17832) P= .001	26161 P. 143	.0331 (6511 • .146	2671 (20C221 P = .CC1
1.0000	1 20221 1 20221	0526 (20022) P• .001	1 209221 P 001	3277 [200221 - 001	164991	1-10247 1-165481 P	1475 (-17832) P= .001	(26181 P= .036	0600 (6511 P - 063	(20 <u>0221</u>
200221 (_200221	1.0000	1.46 (_20022) P= .001	1765 [20022] P= 001	(20022) P- 001	£ 164991 P= .001	(-16546) P= :001	(-17832) P= .001	2615) P339	0259 6511 9= .255	(20022) P = -COI
0626 (_20022) }- 001	1866 (_20022) P=-001	1.0000	1003 (20022) P = .001	230221 - 036	P= .001	(-16548) P= 118	(-17432) P= .001	(2618) P= .001	6511 6511	(20022) P = .001
20022) - 20022)	1765 (_20022) P= .001	- 1983 (_20022) - 001	1.0000	(20022) P- 001	(-16499) 	- 165481 P- 064	(_17832) 001	(2618) P011	0118 (651) P382	200221 P. 001
1_20022} 001	(_20022) P= .001	0127 (_20022) P= -036	200221 200221	1.CC00	0531 164991 P= 001	(16548) P = .001	3068 (178321 P001	1048 (2618) P 001	-,0736 (6511 P= .030	£ 200229 F• .001
1-164991 	4064 (16499) P - 001	(16499) P= •901	(16499) P = • 001	0531 (16496) P= 001	1.0000	(- 16499) P = .061	1:669) (-1:669)	C205 (995) P259	.0233 ((16499) P• • • • • • • • • • • • • • • • • • •
0247 (_16548) 001	0984 (_16548) P= -001	0092 (_16568) P= -118	011¢ (_16546) • • 064	0578 (16546) P= .001	(16497) P= .001	1.0000 {C}	1-157001 P= -001	10031 P= .029	- 1223 (322) P = 014	(16546) 2
1475 (-17632) 	2733 (=17532) (=00)	0936 (_17832) P= .001	0269 (_17532) P- •001	1 176321 P= •001	155691	(-15700) P• .001	1.0000	2343 (2618) P= .001	.2026 6511 P= .001	(176321 F- 001
- 0752 - 26141 - 036	0081 25181 P= 339	0719 (2616) P= -201		1048 1 20161 P001	0205 (9951 P259	0599 10031 P- 029	(- 25181 P= +001	1.0000	1074 1001 P= .064	1960 (26161 P031
0600 (651) 2063	.2259 (651) P= .255	.0193 (651) ?311	0118 (- 6511 382	0736 (6511 P030	0233 (3251 P= 339	(322) P- 014	.2026 6511 P= .001	1074 (166) P= .084	1.0000	1162 (\$211 P• .CS1
-1543 (20022) 2 • 001	.1593 (2022) P= .001	1166 (20022) P701	0513 (20022) • 0C1		.0890 164993 P001	(16546) P= .001	3755 (17632) P= .001	1940 26181 P- •001	•1162 •5511 •••001	1.000
								:		

Table 3. State of Colorado Pearson Correlation Matrix of All Variables
Considered in 1980 Poverty Analysis of Adults
(Regions Combined: Variable Abbreviations and Codes Follow Table)

٠.

	R EGI	XAGE 1	V (2 1 6	HINI	EANG1	RU1	FARFI	XHÀT I	VAR 15	XOEPCHI I	XFAR3
REGI	1.0000 (0)	0619 (20022) P 001	200221 200221	0105 (20022) PC70	200221 200221	(200223 P • • • • • • • • • • • • • • • • • • •	1957 (20022) P 001	20 C22) P• •001	200221 - 200221	200221	200
XAGEL	0619 (20022) P 001	1.0000	(20022) P = .001	C663 (2CC22) P• •CO1	1 200221 1 200021	(20022) P 001	(20022) P • 001	1295 (20022) • • • • • • • • • • • • • • • • • • •	1424 200221 001	(20C22) Pe .001	200; P
VAR 16	200221 200221	(-20022) (-20022)	1.0000	6060 (20022) P= .498	(_20022) 	20022) P= 026	0073 (20022) 169	20022) P= .001	200221 P# .001	0151 (20022) P016	200
MINT .	20022) 070	1 -20 C221 P	200221 - 200221	1.0000	200221 0001	0748 (20022) P001	2 CO221 P = 001	20022) 	£ 20022) P• •001		200
FIACL	0425 20022)	0321 200221 001	(-20022) P004	(_20022) P= .001	1.0000	0387 {_20022} P=001	20022) P•••002	1 200221 P = 164	20022) P= .001	20022) col	200
RUI	1 200221 P 001	0340 200221 P• •001	0137 (200221 P• .026	0748 (_20G22) P= .001	0357 (20022)	1.0000 (0) P=*****	(20022) P = .001	1057 (20022) P= .001	£ 200221	20622) P= .001	200
FARKI	1957 200221 P• •001	0479 (-20022) P• •001	0073 (200221 P* .149	0353 (_20C22) F001	0202 (_20022) 002	(_200221 P= .001	1.0000	(20022) P• •001	£ 200221 P 022	200227 200227 2002	200
XMAR1	4-20022) 	1-20 CZZ) 1-20 CZZ)	200221 P • • • • • • • • • • • • • • • • • • •	20022) P- 001	(_200221 	1057 1 2GC221 P = 001	(2G022} P = 001	I.0000	{ 20022} } • • • • • • • • • • • • • • • • • •	20C22) - 001	2002
VÄR15	(_20022) P• .380	1-20 CZZ) 1-20 CZZ) 1-001	(_20022) (_20022) (_001	(_20022) PCO1	0267 { 20022} P = .031	£ 200251 055	200221 P• • • 022	200221 P= .001	1.0000	P001	2062
X OF PCHI	0193 (_23022) P004	2976 (_20022) P• .001	1_200221 1_200221 P= _016	1055 (-20022) P• .001	(20022) P• 001	200221 P = 001	20207 { 20022} P• .002	20C221 P • • • • • • • • • • • • • • • • • • •	(2.0022) 001		£ 2002
XFAH3	20022) - 20022)	- 1099 (_Z0C22) P• .001	1 20022) 1 20022)	0146 (_20027) P 019	120031 (25002)	20G2Z1 P• 0C1	0533 (20022)	£ 20022) P• .001	200221	2001 (20022)	1:00
IEAZIO	(-2022) (-001	(_20022) P= .001	(_200Z2) 	20072 (_20022) P= .156	(_20022) P- 001	0062 { 20022} P • .169	2 CO221	200221	2001 001	PCO1	2002 P- 002
\$CH3	0998 (-20022) P001	2303 (_20022) - 001	0949 (_20022) P = 001	2007 (20022) P= .001	(20022) (20022)	0048 	200223 P= 003	E 200221 P= 468	200221 0001	200221 P= .001	Z 002
ENPOLI	(20022) (-20022)	- 20022) (_20022) P= .001	(_20022) P= .001	0029 (_20022) P341	(20022) P • 174	(-20022) (-001	20022) - 001	-, 1712 (20022) P• 001	0458 {-20022} 001	P• :001	2002
MIGRI	1 20022) 1 - 001	200Z2) (200Z2)	0331 (_20022) P001	(20022) P• •001	(20022) - 004	20022) P = 001	0665 { 20022} 	200223 P. 200223	1 20036 2 00221		- 2002 P
XEMPLST2	1_2COZZ) P001	3077 (-20022) P- •001	2797 (_20022) P • 001	5264 (_20622) P 001	0803 (20022) P• -001	200221 011	-,0051 (20022) P• 237	20 CZZI P= 134	(-20022) P • .001	P= .COI	2002
XOCCZ	1580- (-16499) 100-	C602 C-164991	1 1 6 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(_1659%) P= .001	(16499) P= .001	16499 16499 P= .001	0673 (16499) P•001	(16400) P	0495 164991 P	0154 164591 P. C24	1649
KINDA	1991 (-16548) P•001	0121 (-165481 P• •060	0126 (-16548) P• - 053	(_16548) (_16548) (_001	0406 (_16548) P001	165481 P= •001	-1445 (16548) P• •001	165481 - 039	(16548) (16548)	- G018 (16546) P- 407	1654 1654
VĀR 49	0523 (-17632) P001	.0718 (-17832) P001	3892 (-17832) P• .001	1 17 5 3 2) 1 17 5 3 2)	0799 (_17032) P• .001	0439 (17832) P= .001	0100 (17832) - 090	1797 (17832) P= .001	3602 171321 1001		1763
VĀR 47	0356 (- 2616) P034	(- 2616) P001	- 2854 (_ 2618) P= .001	0923 (_2618) P• .001	0618 (_2613) P001	(261E) P• 253	0264 (2618) P088	0084 (2614) P= .334	1 261 51 1 261 51 1 2001	P= 1001	261 165
VAR GA	.0014 (6514 P482	C557 { 651} P078	0368 (651) P174		.0245 1_ 6511 P= .266	0274 (_ 651) P= •243	.0232 (651) P .277	C069 (651) P (30	(651) • .046	1983 (£\$1) P001	65
POVI	- 1074 { 20022} P - 001	0027 200221 P. 350	20066	(- 20CZ2) P001	(20022) 	(20022) P - (43	0061 (200221 P• .125	(20022) P= .001	0598 (20022) P061	(20C22) (2002

Tables 4 A - E. Multiple Regression Summary of Major Variables on Poverty/Marginal Status of Adults by Colorado Regions, 1980

SUMM	ARY TABLE	TA Domin	Control C	tů	,		
	VARIABLE	E/R	F MULT-R	R-SO CHANGE		OVERALL F	S I G .
1234567 A 9 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	XMAR1 XFMPL STZ MIN1- LANG1 XDEPCH1 SCH3 MIGR1 DICC1 VAR16 ENROL1 XAGE1	CONT. 54 CONT.	2233 233684 2210 232684 33684 33684 33684 33684 34117 3417 34	051 104 136 136 146 169 169 169 175 175 176	222848725338670 	204 - 012 2196 - 605 196 - 605 196 - 605 197 - 605 198 - 766 178 - 805 198 - 815 198 - 8	000000000000000000000000000000000000000
SUHH	ARY TABLE	4B. Rema	inder Denver	SMSA Plus Oth	er State	SMSAS	
	VÄRTÄRLE	Ë/R	Ë HILLT-D	R-SO CHANGE			5 I G .
1234567990123	MARISTA MARPLS TA MARPLS TA MARPES T	741 741 741 741 741 741 741 741 741 741	2303112 230311	7 051528 051528 001120 0000 112317 11456 11456 11466 11466 11466 11466 11466 11466	2493 4493 17249 2 1135 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7650377937354 450907937354 45090707937354 4509070707937670 4775282007670 4775282007670	000000000000000000000000000000000000000
ริบหิห	AŘÝ'ŤÄBLE	4 C. West	ern/Mountain	Non-Metropoli	tan Ārea		
STEP	VADTAGI.E	C70	E MOLTER	DECK CHANCE			SIG.
12345678901123	XHARDEST2 DISABLI HINDS	17321 301754 NO1	260 32424 32424 3257 33454 1557 33651 5567 33661 9773 3773 9775 37745	0675 0000 00100 00100 0000 11176 0000 11336 0000 11336 0000 11336 0000 11336 0000 11340 0000 11400	269754098201-0077-00108201-0077	3191316530488 50011011616245 5257457 2841796	000000000000000000000000000000000000000
ŠÜĀĀ	ARY TABLE	4 D. Easte	ern Plains No	on-Metropolitar	ı Area		
STEP	VARIABLE	FIP		R-SQ CHANGE		OVERALL F	SIG
1234567990123	SCHER L CHERT L CHE		2488442235 2488442235 2488442235 2488442235 2488442235 2488424235 2488423 248842 248842 2		223669 110057665 1110057665 1110073093	116332379 1772	000000000000000000000000000000000000000
SUMMA	ARY TABLE	4 E. South	-central and	Southwest Non-	-Metropo	litan Area	
STER	VARIABLE	F/R	F MULT-R	R-SQ CHANGE		OVERALL F	SIG.
1234567890123	XEMPLST2 XMAPI STH31- HIGERT-	2619823941 8441111 Buddenderoude	296456247599011 6696647599011 6697650179 6697650179 66976566444 67450179 67	111 1111	9227632244346672 9227632244327559	8607.349.683.691 8607.349.683.691 8607.49.683.691 8607.49.683.7471	

make the greatest difference state-wide. Education level is also important in traditional rural areas, and current enrollment is also important in Colorado suburan, small SMSA and non-traditional rural areas, where offerings are concentrated.

Although in most regards the metropolitan and non-metropolitan patterns of Colorado poverty show similarities among themselves and with national data, there are some differences which have largely to do with: (A) proximity to new economic opportunities concentrated in suburban SMSAs and (B) the effect of social identities which carry traditional access-inhibiting implications. Overall, we find social stereotypes playing a strong role in Denver central city (where physical proximity is no major problem, but the costs and time of travel to work may be), and a combination of geographical inaccessibility and imposed social barriers having a compound effect in more traditional, remote non-metropolitan areas. In most regards, patterns among adults, when relevant to youth, are even stronger among the youngsters, presumably because of a higher birth rate of lower-SES people as well as the costs of child-rearing.

These findings prompt several general observations regarding Coloradans in or near poverty. First, there is support for the general hypothesis that relative access to non-traditional opportunities in the economic system of the state explains much of the poverty differential. This assumes that access is considered in two contexts: (1) the geographical, relative to where people live and new opportunities are concentrated; and (2) socio-cultural, wherein prevailing social preference patterns disadvantage the access to opportunity of many within geographical range due common images of their being less able to reliably and productively serve in the marketplace. The latter involves a combination of (a) presumed preparation to "fit in" by virtue of education, culture or subculture of socialization (including ethnicity, origin of migrants, and, probably to some extent, gender), as well as skill type and level, etc. and (b) the practical circumstances of a person which influence impressions of their ability to reliably serve over time, including their disability status, responsibility for dependent children, school enrollment, age, and, probably to some extent, simply being single or migratory. In either case, these social preference patterns seem to very many-perhaps most--Coloradans as understandable and acceptable reasons for why many state citizens are in or near poverty, even if temporarily. As such, these identity-holders are subject to traditional role expectations under circumstances where economic activities are shifting increasingly toward the non-traditional. This social and economic system disjuncture leaves many poor persons in a bind where they are not in a position to easily manage an escape from poverty, but they also cannot afford to worsen identity problems by long permitting a stigma of impoverishment (commonly implying character flaws) on top of other identity liabilities.

Presumably, the greater the combined number of geographic and social identity disadvantages persons are subject to (short of some possible "charity threshold"), the greater is the likelihood they will become and stay impoverished, often leaving the labor force in resignation. When, however, social identity liabilities can be made to appear temporary (as with students, mothers whose childrens' ages will soon permit work, those with work skills likely to soon be in demand, etc.), the stigma of being in or near poverty is lessened because others assume the individual will overcome the conditions of their hardship. Further, in social identity assignment processes, it

probabably does make a difference whether the individual is somehow thought at fault in their hardship or not: unearned disabilities, having responsibilities for children, being a student, becoming old, the closing of a dominant industry doubtless does not burden people with the stigma of poverty that dropping out of school, not learning a demanded trade or having trouble understanding normal ways and values do. In the cases of "innocents", however, individuals cannot do a great deal on their own to shake poverty; that calls for collective action.

As with most matters of the marketplace, the cultural doctrine of individual responsibility to capitalize on available opportunity runs strong in Colorado, as elsewhere; there is not a very developed conception of differentials in the opportunity structure and thus not much pressure to change it or the traditional role definitions that keep it operative to the impoverishment of many. As a result, some persons get trapped in poverty, and, if blame can be assessed, imprisoned there through social labeling processes (Ryan's "blaming the victim"). Others are helped out of the trap when their "attitude" seems right and/or they were victimized by undeserved personal or social circumstances. The "social construction/reconstruction of reality" processes work clearly in these cases, although most citizens who make them happen cling to conceptions of individual fault, initiative and/or responsibility for most cases of poverty. After all, most citizens are unwilling to accept the blame, thus much of the problem due common prejudice and discrimination, poor public planning and intervention and the like is attributed to vulnerable individuals, especially the powerless poor. Until a auch higher level of public awareness and understanding occur, there is not much hope for sociocultural system revision to compensate for changes in business and industry.

These thoughts are over-generalized, of course, but they characterize the plight perhaps of the majority who are trapped in poverty—who are not in a position to liberate themselves, and so they mu. depend on the system for hope while in large part realistically sensing it is basically hopeless to do so. (Note, not only do we impose the self-fulfilling prophecy on them, but they also succomb to its self-exercise.) There are others in poverty, however, whose situation is somewhat different. To conclude this comparison of patterns of Colorado poverty, we have reflected on both the foregoing data and impressions that have emerged in case-context analysis with an eye to generalizing about both its causes and remedies. That has led us to several distinctions introduced above.

- I. Some poverty is, in fact, at least partly attributable to personal actions that can potentially be remedied by those individual's effort. Such cases fall into several categories:
- (A) Semi-voluntary, minimally stigmatic impoverishment that is probably temporary, largely rational and usually even honorable (as with school enrollment, migration, devoting oneself to the needs of young children, struggling to establish oneself as artist or author, experimenting with "naturalistic" and altruistic alternative lifestyles, etc.). Probably most of these persons can and will depart poverty without extraordinary or sustained effort when they choose to do so. Since there is a rational and honorable dimension to their situation, they deserve kind consideration from the rest of us when in and choosing to leave poverty.

- (E) Poverty resulting from significant but unintended stigmatizing actions, implying personal fault or flaw in the average citizen's view (like dropping out of high school, earning a police record, being an unwed mother, having an alcohol or drug problem, etc.). Although our data say almost nothing about this category of person, they certainly contribute to the poverty pool. Their escape from poverty implies sustained personal effort (legitimate or illegitimate). The safer legitimate route requires of them sufficient compensating achievements along with evidence of "relora" and a "good attitude" so that others "destigmatize" their identities. Individuals weakened or soured by impoverishing stigma cannot often manage this course alone, and so require sustained professional and peer support plus patience and forgiveness by others. Although the special programs for such people are not often associated with poverty alleviation, it would be rational to do so, considering the direct and indirect costs of poverty and the causal contribution poverty in turn makes to these other problems.
- II. Most poverty seems to result from the workings of differential opportunity structure of socio-economic units, requiring collective actions leading to structural systems reform if poverty is to be reduced. This has been the focus of our research concern here, which has suggested two dimensions:
- Imposed circumstantial disadvantage which carries minimal personal stigma but involves limited realistic opportunity for personal avoidance or resolution (like costs of industrial obsolescence, changed preferences for goods and services, limited rural employment options, intense population cohort competition, etc.). It is probably not realistic to envision total socio-economic system restructuring to correct these problems (even massive socialist restructuring seems to have had little effect on overall poverty levels where this has been tried in recent times). On the other hand, more piecemeal implementation of programs and policies targeted at poor areas or subpopulations have become our most common collective approach and have focused on this type of poverty: job retraining, expanding or developing new economic opportunities, increasing the flexibility of working conditions, taxation policy to encourage and direct investments, etc. are typical, require large public investments and take time to work but help make poverty a temporary experience for many (note Bould, 1977). Some criticize, however, that such efforts commonly miss the hard-core poor who suffer another kind of system problem (Bremner, 1964; Harrington, 1963).
- (B) Poverty due inherited categorical identity-particularly traditional role conceptions and stereotypes—that are commonly thought to imply employer and broader societal risk. Opening the opportunity structure to them in turn implies complicated industry and societal realignments: ideological conceptions basic to business should change; special, particularistic integration conditions and provisions would be called for; some persons would doubtless be cost their present advantage; consumer goods and services may snift in cost or quality; uncertainty and nuisance would accompany changes; etc. Such changes will likely be very slow in coming, and awkard to implement when tried. In the meantime, persons as minorities, women (especially with dependent children), the disabled and those with language and/or cultural limitations will remain severely disadvantaged by the social labeling processes of the economic as well as social opportunity structure. Broad, long-term efforts to promote social sensitivity and understanding, organized

political pressure; and revised governmental standards and incentives seem the paths to reducing this category of poverty. These matters of public responsibility imply public guilt. As long as conceptions of personal flaws and practical liability can be imposed on these victims of past circumstances, tradition will reinforce their poverty, making them more superfluous and obsolete, obviating socio-cultural change in the midst of popularly acknowledged and valued economic and technological system change. (Note Walineky, 1964; Owens, 1977; Grinstead and Scholtz, 1976; Hamelian and Karl, 1976.) Such seems particularly problematic in more traditional areas like large central cities and remote rural areas.

The consequences of assigning individual responsibility and labeling by category are particularly intriguing when we consider the economic conditions preceding and during 1980. The nation had just undergone a major recession and was in the midst of recovery. The recession in Colorado was not as severe as elsewhere, and the recovery was even stronger than elsewhere. National media coverage of economic conditions put these considerations on the minds of most state citizens: comments about "modest unemployment but major underemployment" were becoming cliches. Even in the midst of these circumstances, the negative effect of imposing highly traditional role conceptions on persons in changing economic circumstances are apparent in the data considered here. The processes of systematic bias remain subtle, of course. Most of us would not acknowledge we harbor prejudices, but consider it our right, particularly in matters of the marketplace, to exercise personal preferences (often we say good, practical, common sense) in our daily dealings with other individuals. Thus the cycle of differential geographic and social access to economic opportunity is perpetuated at the expense of those who, for the most part, inherited traditional identities that make little sense in contemporary context and cost all of us both pride and practical benefits of confortable living.

In brief postscript, concerns prompted by 1980 Colorado data doubtless understate the state situation in 1985 in several regards. Farm markets for state produce were stronger in 1980 than now, and farm indebtedness problems have since become more severe. Doubtless a lack of significant farm-nonform differential in poverty in 1980 would not apply in rural areas now. Further, the state's rural Western region energy boom was strong then, but has since gone sour, producing substantial unemployment and business losses. Even much of the promise riding on new Front Range auburban electronic and other specialized-industry developments have proved false hope as a number of them closed their doors or substantially scaled-down operations. As well, much of the federal government's current emphasis on passing its accustomed social well-being responsibilities to states and localities has adversely impacted both poor and middle-class citizens of the state. Thus we would expect Colorado has paralleled the nation in enduring alarming increases in poverty percentages during recent years: U.S. data show increases in poverty from 5 to 10% yearly from 1979 to the mid-1980's, according to the the latest of available detailed data (Census/Fendier, 1984). As these trends have influenced state conditions of impoverishment, Denver central city and traditional rural residents have doubtless been affected the most, but, to a lesser extent, so has everyone who lives with the liability of traditionallyoriented identities and/or locations that limit access to economic opportunities. Such is the nacure of a traditional opportunity structure amidst non-traditional economic changes.

References

- Bould, S. 1977
 - Rural Poverty and Economic Development -- Lessons from the War on Poverty. Journal of Applied Behavioral Science 13(4):471-488.
- Bremner, R.
 - 1964 From the Depths: The Discovery of Poverty in the U.S. N.Y.: New York University Press.
- Brinker, P.A. and E.F. Crim
 - 1982 Resignation as a Response to Alienation in a Depressed Rural Area: A Case Study of Poverty and Lack of Opportunity in Four Counties of Eastern Oklahoma. American Journal of Economics and Sociology 41(2):101-110.
- Census/Fendler, C.
 - 1984 Characteristics of the Population Below the Poverty Level, 1982. Washington, D.C.: Government Printing Office for the Bureau of the Census, Current Population Reports, Series P-60, No. 144.
- Chamber, R.
 - 1980 Rural Poverty Unperceived: Problems and Remedies. Washington, D.C.: World Bank, Working Paper No. 400.
- Coppedge, R.O. and C.G. Davis
 - 1977 Rural Poverty and the Poverty Crisis. Ames, IA: Iowa State University Press.
- Duncan, G.J.
 - 1984 Years of Poverty, Years of Plenty. Ann Arbor, MI: Institute for Social Research, University of Michigan.
- Elo, I.T. and L. Beale
 - 1984? Natural Resources and Rural Poverty, An Overview. Washington, D.C.: Resources for the Future, Inc.
- Finchen, J.M.
 - 1981 Poverty in Rural America: A Case Study. Boulder, CO: Westview.
- Grinstead, M. J. and S. Scholtz
 - 1976 Poverty, Race and Culture in a Rural Arkansas Community. Human Organization 35(1):33-44.
- Hamalian, L. and F. Karl
 - 1976 The Fourth World. N.Y.: Deli (Laurel).
- Harrington, M.
 - 1963 The Other America. Baltimore: Penguine Books.
- Kennedy, R., Jr.
 - 1986 Life Choices. N.Y.: CBS Publishing.

- Mertz, P.E.
 - 1978 New Deal Policy and Southern Rural Poverty. Baton Rouge, LA: State University Press.
- Owens, E.
 - 1977 Correlates of Rural Black Poverty. Review of Black Politaical Economy 7(4):413-423.
- Redcliff, M.R.
 - 1984 Urban Bias and Rural Poverty, a Latin American Perspective. Journal of Development Studies 20(3):123-138.
- Rao, K.H. and B.S. Reddy
 - 1982 Rural Poverty, Incidence and Causes. Journal of Rural Development 1(1):114-124.
- Smith, L.H. and B. Rungeling
 1976 Rural White Poverty. Growth and Change 7(4):8-12.
- Smith, T.L.
 - 1973 Studies of the Great Rural Tap Roots of Urban Poverty in the U.S.
- Welinsky, A.
 - 1964 Keeping the Poor in Their Place, in Arthur Shostak and William Gomberg, New Perspectives on Poverty. Englewood Cliff, NJ: Prentice-Hall, pp.159-168.

Appendix 1 A - D. Mean Incomes of Adults in Poverty and Marginally Poor by Colorado Regions

VARIABLE	VAR 49 A. INCO	ME FROM ALL SOURCE	S IN 1979	
FACTOR XREG3	CODE	HEAN	STD. DEV.	(x 100)
POVI POVI POVI	DEN CENT IN MARGINAL ABOVE	2466.391 4537.117 13184.393	1560 - 991 2496 - 194	345 - 326 2973
XREG3 POV1 POV1 POV1	remain den siasa In Marginal	2374.464	11982:432	
REGI- POVI	ABOVE SMSA	4692.137 14635.766	12882,995	419 372 6461
POVI REGI POVI	MÄRGINAL ABOVE East In	2295.233 4854.678 12342.969	1912.330 3026.957 11110.420	366 435 3642
POVI	MARGINAL ABOVE	2442.551 4522.702 11851.535	2949.980: 2822.639 10093.048	-98 111 635
REG1- POV1 PBV1 POV1	WEST IN- Marginal Above	2329.262 4466.542 13664.834	1447.919	1 ë 3 - 1 8 ë
REGI POVI POVI POVI	SOUTH IN STNAC ABOVE	2328.576 4709.285 11983.815	12872.522 1694.910 31278.761	1691 130 126 536
FOR ENTIRE SA	WHOFE	11983.815	11517.284 11823.000	536 19057

19057 CASES ACCEPTED.

O CASES REJECTED BECAUSE OF OUT-OF-RANGE FACTOR VALUES.

9672 CASES REJECTED BECAUSE OF MISSING DATA.

VARIARLE .	. VAR45	B. WAGE	IR SALAR': INCOME	IN 1979	
FACTO	R CODE		MEAN	ŠTD. DEV.	. N
XREG3 POV1	DEN CENT				(x 100)
POVI POVI	MARGINAL ABOVE		2073.531 4669.709 12962.711	1565.808 2718.197 11243.335	177 206 2388
XREG3 POV1	REMAIN				2300
POVI POVI POVI	MARGINAL ABOVE		2269.778 -4441.638 14162.784	1732.927 2770.043 11713.066	293 265 5571
REGI- POVI	4 OTHER				
PÖVÎ POVÎ	ÎN MARGÎNAL ABDVE		2348.512 5142.358 11758.165	2127.707 3315.851 9982.643	242 265
REGI POV1	ĒĀŠŤ IN				2906
PÖVI PÖVI PÖVI	MÄR GINAL ABOVE		3265.625 4756.818 10597.633	2741.795 3616.136 8317.552	48 . 55 467
REGI- POV1	WEST			3311.332	467
POVÍ POVÍ	MARGINAL ABOVE		2258.302 -4291.504 12678.581	1491.041 2595.668 11328.500	109 123
REG1. POVI	SOUTH		_ :		1378
POVÍ POVÍ	ĤÄRGINAL Above		2143.529 46D8.150 11244.795	1749:974 3544:168 9159:743	68 73
FOR ENTIRE	SAMPLE		11820.607	10882.523	415 15049
			=		

13049 CASES ACCEPTED.

13049 CASES REJECTED BECAUSE OF OUT-DE-RANGE FACTOR VALUES.

13680 CASES REJECTED BECAUSE OF HISSING DATA.

	V AR 48 C	PUBLIC A	SSISTANCE INC	OHE IN 1979	
FACTOR	CODE		HEAN	STD. DEV.	<u></u> Ñ
XREG3 POV1 POV1 POV1	DEN CENT IN Marginal Above		2293.737 1792.857 2502.681	1609.001 1278.478 2097.565	(x 100) 95 28 69
XREG3 POV1 POV1 POV1	RĒMĀĪN IN Mārgīnāl Abovē		1695.370 1605.417 1923.202	1154.115 1139.632 1670.209	5 5 2 8 8
REGI POVI POVI POVI	4 DTHER IN HARGINAL ABOVE		1620 - 892 1829 - 074 2636 - 562	1285.237 1354.250 2238.374	56 27 64
REG1 POV1 POV1 POV1	FAST IN- HARGINAL ABOVE		2103.823 1480.000 2530.000	1664 128 -914 294 2295 684	17 17 14
REG1 PDV1 PDV1 POV1	WEST IN Marginal Above		1636.461 1166.578 2878.000	1033.380 1269.918 2059.482	27 19 30
REG1- POV1 POV1 POV1	SOUTH IN Marginal Above		2047.666 1773.888 2753.750	1510.889 1632.016 1131.893	3 C 1 B 8
FOR ENTIRE S	ămpl E		2073.667	1681.533	683
:			`		

683 CASES ACCEPTED.

CASES REJECTED BECAUSE OF DUT-DE-RANGE FACTOR VALUES.

28046 CASES REJECTED BECAUSE OF MISSING DATA.

VARIABLE	V A R 47	D. SOCIAL	SECURITY INCOM	E IN 1979	
FACTOR	CODE		MEAN	STD. DEV.	N N
XREG3	DEN CENT				(x 100)
POVI POVI POVI	DEN CENT IN MARGINAL ABOVE		2234.518 2963.100 3247.729	978.456 1216.577 1624.057	. 83 100 469
XREG3 PDV1	REMAIN IN				
PÖVÍ POVÍ	MARGINAL ABOVÉ		2269.118 2970.882 3127.491	-836-882 1299-010 1655-905	68 . 85 538
XREG3 POV1	OTHER IN				
PÖVÍ POVÍ	ÎN MARGÎNAL ABDVÊ		2143.415 2848.654 3135.860	963.023 1108.521 1568.070	82 114 523
XR FG3	WEST IN				
POVÍ POVÍ POVÍ	HARGINAL ABOVÉ		2001-389 3135-000 3022-647	- 937 - 584 1421 - 164 1600 - 256	36 62 204
XREG3	EAST				264
POVI POVI POVI	MARGINAL ABOVE		2446.923 2953.864 3285.833	888 - 032 1264 - 781 1721 - 827	26 44 84
XREGS POV1	SOUTH IN-			1/21.82/	
POVÍ POVÍ	IN- MARGINAL ABOVE		2157.647 2859.792 3076.375	- 928.506 1560.259 1620.401	3 4 4 8 8 0
DR ENTIRE S	MPLE		3001.675	1527.335	2660

2680 CASES ACCEPTED.

O CASES REJECTED BECAUSE DE DUT-DE-RANGE FACTOR VALUES.
26049 CASES REJECTED BECAUSE DE MISSING DATA.

