ED 281 565

AUTHOR

TITLE

INSTITUTION

SPONS AGENCY

REPORT_NO

PUB_DATE
CONTRACT

PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUGMENT RESUME
IR 051 917

Breazesal, Juliette Ow

Integrat:on of Heterogeneous Bibliographic
Information through Data Abstractions.
California Univ., Livermore. Lawrence Livermore
Lab.

Department of Energy, Washington, D.C.
UCRL-53710

Jan 86

W-7405-Eng-48

Davis. Appendices conta1n small type.
Dissertations/Theses - Master Theses (042) —- Reports
- Research/Technical (123)

MF01/PC03 Plus Postage.

*Citations (References); *Classification; Computer

Software; Databases; *Informat:on Process:ng,
Information Systems; Patterm Recognition;

*Programing; Vertical Organization

Bibliographic Data Bases; *Data Abstraction;
*Database Integration; Information Consistency

This study examines the integration of heterogeneous

Bxblxographxc information resources from geographically d1str1buted

locations in an automated, un:f:ed

through the Message~ﬁb3ect Model defined

in Smalltalk-80 software: The concept of achieving data cons:stency

by developing classes for each type of information in a bibliographic

citation;, such as "date"

is discussed as a method of

or "title,;"

simplifying the programmer's task; prevzous methods for processing

heterogeneous bzblzograpﬁzc information are summarized; and the

message-object model is defined. Finally, a detailed description is

provided of the development of prototype classes using the
Objective—-C compiler based on the Smalltalk-80 Message-ebject Model

and the use of the prototype classes to integrate the citations

retr1eved from six onl:ne databases. Twenty-one references are

d:agrams. Appendices include: (1) the h:e:archy of Objective-C
Classes; (2) the Objective-C base tree; (3) the prototype source
code; and (4) a copy of the merged file of heterogeneous
bibliographic citations from six database sources. (KM)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

s, oeunusu or!oucwno
of Educal aéarch and J

. Office mprovement
. EDUCATIONAC RESOURCES {NFORMATION
. = CENTER(ERI C)
'.n . ﬂfhls docurg,enl"n,u,”, ;xiu ed
- recearved_from th peuon o
O | UCRL-53710
1"\) ,
1 (] Po solw or opinions stated in this docu-
!'!. OER not necossanl @présent official

Integratmn of Heterogeneous
Bibliographic Information
Through Data Abstractions

Juliette Ow Breazeal
(ML.S. Thesis)

January 1986

'i BEST COPY AVAILARIF 2

O

ERIC

Aruitoxt provided by Eic:

DISCLAIMER

k sponsored by an agency of the United States Governmeni.
eir employees, makes any

trademark., manufacturer

trademark. manufacturer, or otherwise, does not necessarily constitut= or imply its endorsement. recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein da not necessirily stite or.reflect those of the United States Government or the University of
California, and shall not be used for advertising or product éndorsement purposés.

Wil:li Be;formed '{uiaéi,u}'e iuéﬁiéeé of the U.S. Deimitrﬁehl of Eneﬁg}' b) Lawrence Livermore National Laboratory
under Contract W-7405-Eng-48.

UCRL-53710
Distribution Category UC-32

Bibliographic Information
Through Data Abstractions

Juliette Ow Breazeal
(M.S. Thesis)

Manuscript date: January 1986

LAWRENCE LIVERMORE NATIONAL LABORATORY i

University of California « Livermore, California » 94550
Available from: National Technical Information Service » U.S. Department of Commerce
5285 Port Royal Road e Springfield, VA 22161 ¢ A03 e (Microfiche A01)

4

Through Data Abstractions

By

~_ JULIETTEOW BREAZEAL
A B. (University of California; Los Ang€les) 1960
THESIS
Submitted in partial satisfaction of the réquiréments for the degree of
MASTER OF SCIENCE
m
Computing Science

in the

GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA

DAVIS
Approved: Mém M . mv{

Committez in Charge

Deposited in the University Library

Date Librarian

i

Abstract

In this study, heterogeneous bibliographic information resources fror: geographically distributed
locations are ifitegrated in an automated; unified and controlied way by using abstract data types through
the Message-Object Model as defined in Smalltalk-80. A unit of modularity call a "class” is developed that
defiries operations to process the data structures encapsulated in the class. The classes focus on processing
bibliographic citations obtained from heterogeneous on-line bibliographic databases into a meta-form with
the goal of developing information consistency to simplify further informiatior analysis. Classes developed
for the bibliographiic citation application can speed program development because the data abstractions can
be used in processing generic information such as dates regardless of the bibliographic database source.
Prototype classes are developed to show the ease in encapsulating data siructures and beliaviors for the
bibliographic citation application. Daia abstractions provides a powerful integration technique that aliow
the designer to work with bibliographic citation objects without being encumbered with the details of

impiementation.

kéy»’v’ords:

information consistency, database consistency, database reformatting, database integration:

-ii-

Acknowledgements
I wish to gratefully acknowledge the enicouragement, dedication and guidance by Professor Meera

Lawrence Kou have my gratituds for their help in reviewing this study and providing excellent comments

and suggestions. My thanks are extended to the Technology Information System Group, the Computing

Laboratory for their support and their cooperation. Finally, I thank my husband; Norman and my chiidren,

William and Cynthia for their devotion and patience during this academic endeavor.

Contents

Chapter 1 Introduction :iiiiiiiiimiiiiiieiiinmni

Chapter 2: Previous Methods for Processing Heterogeneous

Bibliographic Information
2.1 Why use Heterogeneous Bibliographic Information Resources?

2.2 Description of Bibliographic Citations

2.3 Processing of Heterogeneous Bibliographic Information

Chapter 3: The Message-Object Model....

3.1 Abstraction Mechanisms in Modern Programming ...

3.1.1 Software Abs&écﬁdns Cieiniesiuseiiiissiisesiniens

3.1.2 Structured Programming Methodology

3.1.3 Abstract Data TYPES .viiiiiziziininiiniis

3.2 Object-Oriented Prograrimiing

324 Methodsccis iz

3:3 Benefits of Object-Oriented Software

Chapter 4: ﬁrbtot'ybé Development Environment e

4.1 Computer SySti.......... [

4.2 Software Development Tool ...c..cciivieneernsnreneessrnnns

4.2.1 OEjécﬁVé;C Compiler.............. : eereaessssresieseansains

4.2.2 Unix Tool: Lex.......

-iv-

N

(=,

14

13

. 15

16
16

17

. 18

18

19

. 19

21
21
21

22

Page

8.2.3 UX TOOL YACT wevenrereereresessrssss oo soesmeonsonns s e . 26

4.24 Unix Tool: Make i ititesesissssssesenasasssssane IR 27

43 Summary e .

Chaptér 5: Prototype Implementation e T e tessesssssessesssesess e eemm e eeenee e iineiiiie. 28

5.1 Sources of Data . e e . 29

5:2 Reformatting the Detail Information for Consistency R 29

53 iirogramf)és’ign Abstractions::::...i: . 30
54

4 The Prototype.... e o 3

54.1 Lex Specification File.....c.c R 3

542 Yacc §p’éeiﬁcaﬁon File RPtbe e steresaestsuesanesuereresosains 33
54:3 Date Class i 36

54.4 Main Module.....ccccciii e s e e 37

Chapter 6: Summary and Resairs

Chapter 7: Discussion and Future Diréctions s T et essessnesresanes 42

. 45

References: cerseeniisiiiiiiiissiesennartanansensssnsesarnnns

Appendix A: Hierarchy of Objective-C Classes Ceviisit s st 47

Appendix B: Objéctive-C Base Tree - methods............c <« 50

Appendix C: Prototype Source Code....... e serrremisieniens 36

Appendix D: Merged File of Hetérogeneous Bibliographic Citations:c...reeueerrvereeernsererssemssessensonn, 60
from Six Database Sources

-V~

Chapter 1:

Introduction

In recent years, the developriient of abstraction mechanisms in languages has focused on absiract
data types to "manage complexity by erphasizing what is significant to the user and suppressing what is
not"[Sha84]. This has lead to modem programming languages such as Smalitalk-86, Flavors, and Ada
specification, design, implementation, correctness, and reliability to reduce cost during the software
development and maintenanice phases. The use of abstractions o logicaily reduce the complexity of the
task is aided by modern language mechanisms in that they provide the language constricts to encapsulate a
logical data ty;%e and thie operations associated with it. The language constructs of "Classes” or "Flavors"
help in the abstraction process. This project is based the use of abstractions to obtain data consistency in
hetarogeneous databases. Our specific implementation was applied to bibliographic information. Similar
techniques may be applied to other types of databases, as described in Chapter 7.

Bibliographic citation databases from heterogeneous information resources are used widely in
research and development work. These databases are often accessed to do a subject search or to prepare a
Eiblidgiabﬁy; The citaticns contained in the bibliographic databases may be large in number and collected
over 4 long period of time. This process was done manuaily before computers became readily available,
and was tedious and error prone. Today computers are used widely for this task. Modemn computer
automated tools have been developed to assist in such bibliographic processing and are continually heing
enhanced[Gol85].

A research task may consist of accessing several bibliograpuic systems such as DIALOG, INSPEC,

NASA/RECON, DOE/RECON, or DOD/DROLS.

1=

The respective retrieved citation lists are down-loaded inio a user file for post-processing analysis. Each
database has its own form because of in"deperi'dent deVei'o’p'me'rit programs and a lack of generally accepted
standards. Hence post-processing analysis on a database citation file requires an individualized software
processing package for each citation database. Sometimes the user’s files are merged if software is
available to translate the files into a common format.

To analyze data from thé down-loaded and merged files requires data consistency: Hence a
prototype has been developed to provide the tool to make heterogeneous bibliographic citation databases
consistent. For example; the search for citations within a range of dates is encumbered by the problem that
dates may be represented in different formats in different databases. Searches on author names are also a
problem if different databases enter first, middle or last names in varying formats. The goal is to have one
tool process the h’et’er'ogeneous bibiiogra'phic citations into a standard form to 'providé the basis for
convenient data analysis.
abstractions in terms of Smalltalk classes. Since the information types in citations aré broadly similar,
classes can be developed for each type of information such as "date” or "title”. Careful specification of the
classes can simplify the programmers task since interfaces will be defined, and data and their behaviors
will te understood. Another improvement occurs when future enharicements are built on the classes
already developed and serve to reduce the amount of new software needed.

This study shows the ease in developing prototype classes for integrating heterogeneous
bibliographic citation databases and suggests the basis for the development of additional classes required
data structures and operations, and the use of dynamic binding reduce the task of the software designer and
developer. Hence the Object-Message abstraction narrows the gap besween the Concepts and analysis of the
problem and the notation used in the computer software to solve the problem.

Ir the following chapters, we discuss the background, mictivation, and development of abstract data
typas via Small:alk-80 classes to solve the problem of data consistency in heterogeneous bibliographic

3.

11

Chapter 2 discusses previous methods used. Chapter 3 gives the characteristics of the Message-Object
Model. Chapter 4 discusses the physical hardware and software methods used to create the Objective:C
classes for the prototype. Chapter 5 discusses the specifics of the prototypé implementation, Chapier 6

discussés the results of the prototype implementation, and the last chapter discusses future directions.

Ad |
0o

Previous Methods for Processing Heterogeneous

Bibliographic Information

This chapter gives some background information on bibliographic citation databases and discusses

previous methods for processing the information:

2.1 Why Use Heterogeneous Bibliographic Information Resources?
Hall and Brown provide a statistical study of the ou-line bibliographic databases that is the basis of

this section[Hal83). Onlifie databases have been available since the 1960s but have mostly been in-house.

Since 1972, there has been a rapid growth of publicly accessible databases:
Table I
Number of Bibliographic References Availahle Onlire

in millions

(1968 | 1972 | 1976 | 1980 | 1982]
74| 3| 20| 58] 77

The current rate of addition is 8.7 million references per year. With duplication accounted for; the
estimate is SO million singular references available for use and six million additions to the reference pool

made per year.

Parallél to the four-fold increase from 1976 to 1982, the growth in on-line use is estimated to be six

fold as seen in Table II.

Table II
Bibiiographic Searches on Public Systems in U.S.A. and Canada

in millions

1575 | 1977 | 1979] 1981
1 2] 6

There are four particularly predominant database services. They are listed in Table III. Each supplier
strives for uncommon databases in their service. Nearly 20 percent of the important databases are not

available from the four services.

Table HI

Unique and Common Databases available from major suppliers

— Supplier | BRS | DIALOG | IRS | ORBIT
Unique 8 39 5 24

Common 28 | 56 27 | 28 |
Total Number a5 52
Total Percent 21 55 18 30

The vast repertoire of information makes the access to heterogeneous bibliographic information an
important resource to a researcher. From Table III, we see that a password to DIALOG gives access to
fifty-five percent of the databases. An additional password to ORBIT gives a total access to seventy

percent of the databases.

Up to 1984, more than 2453 citation and numeric data files were available from 362 on-line
information vendors[Cua84]. Scientific disciplines are continually adding to the published set of abstracts
and citations. Most on-line bibliographic information is still obtained in printed form after an on-line
search. The vast amount of information needs a tool with a unified view to extract significant scientific

and technological intelligence.

2.2 Description of Bibliographic Citations
To understand the probléms involved in heterogeneous bibliographic citations a simple MEDLINE

citation is described as it is mounted on BRS. Only six fields were selectively down-loaded.
ganzple Eibiibg’raphic Citation

[AU] Bowry-T-R: Oywang-J. Lumba-M.
[IN] Department of Human Pathology, Faculty of Medicine, University of Nairobi, Kenya.

[TI] HBYV infection: prevalence of core antibody and other markers in urban based black school

children in Ken’ya.
[SO] Ann-Trop-Paediatr. 1983 Dec. 3(4). P 197-200.
[LG] EN.

HS] 0272-4939

-6-

The AU represents author, with hyphens separating initials: LG represents language and IS is the
accession number for the citation in the particular database. IN represents the institutional affiliation of the
source may be formatted in a completely different way. Inconsistency in the detail field hinders

information analysis(Gol8S].

follows a search, and is arranged in reversed chronological order. The need for computer based editing
tools is a natural consequence. Rather than obtaining the down-loaded information in stacks of printout,
the bibliographic citations are down-loaded to a disk file so a computer can be used for automated
processing of the information: We observe two problems that exist in local processing of the file. Thie file
must be translated into a common form to handle the different database formats for data tags and to handie
the inconsistencies in the detail information associated with each data tag.

Tools to develop data consistency are available in most modern database management systermis.
developed software and procedures. The database administrator can use software tools o constrain data
entry to mieet certain requirements. The user may be required to enter data strictly in integer format within
a certain range of values or character format within a certain string le; sth. Furtherriiore, the user may be
required to enter Strings that are pre-defined in a dictionary for that attribute, such as one of eight

acceptable colors: We can see at this point that information may be éntéréd correctly into a particular
database in formats that are singularly defined by the local database administrator. However, there may be
inconsistent formats among the heterogeneous bibliographic databases because of a lack of standards and
autonomous database development and administration. For example, dates can be constrained in a local

database to be either May i; 1985 orl May 1985 f:orm'at.

27-

16

There may be additional differenices in upper/lower cases, abbreviations, spaces; of punctuation: These
inconsistencies hinder the automated processing of bibliographic citations in the down-loaded disk file.
Hence we find in processing a search based on date ranges, software must be written to handle the date
discrepancies, or the search will be incomplete. Author names also introduce problems because R. L.
Smith, Richard L. Smith, and Richard Lee Smith are the names of the same author: If one desires a list of
articles written by Richard Lee Smith after a certain date, the tabulation would be inaccurate.

A recent study on popular ’front-end systems’ available on the market for processing biblicgraphic
citations shows that the user has a limited choice of features such as down-loading and filé creation.(i.e.,
SciMate, InSearch, CONIT)[Bol84]. Software is not available to address the problem of data consistency
among hetérogérieous databases.

Goldstein and Prettyman have developed softwire to process down-loaded citations with the goal of
incorporating a specified reference format into manuscripts: In their work they encounter the typical

proi)iems' of proces's’ing héterogenéous’ i)ii)iiographx;c cx; tau;on's.

17

They propose transforming each citation into the following canonical format.

Data Element Tag
TYPE . TY
DATABASE DE
TITLE TI
AUTHOR AU
SOURCE SO
INSTITUTION IN

o
IS

el
o
[N
3%

NO. & TYPE MTG NO
MEETING TITLE ™
v . VL

\O' 00! ~3 ION v i 3.0 i M|

10 ISSUE I
11 MONTH (JOUURNAL) MO
12 DAY (JOURNAL) DY
13 YEAR JOURNAL) YR
14 MONTH (MEETING) MM
15 DAY (MEETING) DM
16 YEAR (MEETING) M
17 PAGES PG
18 TOTAL PAGES TP
19 PUBLISHER PU
20 PUBL. CITY PT
21 PUBL.STATE PS
22 PUBL.COUNTRY PC
23 PUBLICATION YR PY
24 MTG.CITY MT
25 MTG.STATE MS
26 MTG.COUNTRY MC
27 REPORTNO. RN
28 RETRIEVAL NO. RG
29 ISSNNO. SN
30 PART NUMBER PN
31 CODEN cb
32 NOTES NT
33 EDITOR TYPE ED
34 AVAILABILITY AV
35 COPYRIGHT YEAR CY
36 PUBL.AUTHOR AA

The process is divided into three stages.
* Pré-Processing
* Parsing

* Post-Processing

Steps for pre-processing records down-loaded from heterogeneous databases into separate local files
are:
1. translate field labels in all files to a common set;
2. include fields for, and add database and retrieval systém names to all records;
3. merge all records into one file;

4. reorder the records into a format that is optimized for further processing;
5. determine arid add the type of publication;

6. standardize the format of the author’s name:

The parsing stage is to separate the complex source field into discrete information. Further details
are found in Chapter 3.

Post-procéssing i to further format the information for consistency in the end-product application
program. The end-product could be a statistical analysis based on certain keywords or a bibliography for a
publication.

The post-processing tasks are:

1. conversion for case consistency;
2. standardize journal ¥itles;
3: correct inconsistencies in format;
4. expand abbreviated tites;
5. add missing data;
6. make linkages between articles and proceedings; chapter and citations.
The Goldstein and Prettyman work involves knowing the database source and then writing specific
software for that bibliographic database source. Their proposal for a canonical form for bibliographic

:10-

19

citation databases is an attempt to develop standardization regardless of the bibliographic citation sources.

A significant amount of work has been done in the processing of heterogeneous bibliographic
citation databases by the Technology Information System(TiS) of the Lawrence Livermore National
Laboratory(LLNL). They have been working on technology transfer through computer networks located
nationally and abroad since 1975 and have developed the Integrated Information System (IIS) that manages
information and resources on the TIS system. IIS supports the down-loading and analysis of bibliographic
citations from heterogeneous database services. A major goal is to provide the capability to extract
scientific and technological intelligence from the information contained in these databases. To accomplish
this, software has been developed to process bibliographic citations from the federal information centers of
thé Department of Energy (DOE), the Department of Defense(DOD), and the National Aeronautics and
Space Administration(NASA) as well as thé thrée major U. S. commercial Services -~ Lockheed-
DIALOG, SDC-ORBIT; and BRS. [Boi84]

The Integrated Information System (IIS) software package is menu-driven and provides for the

following bibliographic database options:

[TRANSLATE] translates citations to a standard format

[MERGE] combines translated files from different sources into one file
[STAT] creates a statistical profile of citations

[ANALYZE] analyzes bibliographical text

[REVIEW] permits on-line evaluation of citations for relevancy.
[CONCORD] creates indexes by author; subject, descriptors; etc.
[PERMUTE] issues multi-term statistics of the text in selected data fields
[CROSS] cross-correlates the contents of data fields

[PLOT] shows the number of citations by year in a graph
[DISPLAY] displays the contents of any file on the CRT screen

-11-

- 20

TRANSLATE, MERGE, DISPLAY and REVIEW do the pre-processing steps 14 mentioned by
Goldstein and Pretiyman, ANALYZE, CONCORD; PERMUTE, CROSS, PLOT, and STAT aliow the
user to produce some trend analysis from the biblicgraphic citations that have goné through the
préprocessing steps.

Currently, the trend analysis is not entirely accurate since the detail information is not entirely

consistent. A closer examination of the pre-processed files shows dates in the following form:

1. 1May 1985
2. May1, 1985
3. 1985.

4. 5/1/1985

5. 1985

6. 5 i/S_S

7. May 1985

8. May, 1985

The job of prodiicing a file that is consictent is time-consuming and difficult; duplicate bibliographic
citations are not easily detected. A particular citation usually contains only a subset from the set of data
tags and different databases may enter certain detail information under different data tags. An example is
the the following:

<DATABASE SOURCE> DIALOG NTIS FILE 6

<TITLEs Online Directory of Databases for Material Properties

<DATABASE SOURCE> DOFE/recon

<TITLE(MONO)> Online directory of databases for material properties
-12- /

21

Thie purpose of this project is to further extend the consistency of the detail information found in a
merged file that is the result of dowa-loading heterogenous bibliographiic citation databases. It is through
standardized, regardless of source. The standardization of dates and autiors and titles include accounting

for spaces, punctuation, capitalization, and ordering.

Chapter 3:

The Message-Object Model

We first establish the foundation for using abstractions in software development. Next, we discuss
the motivation for using abstract data types via Smalltalk 80 classes to solve the data consistency problem

in heterogeneous bibliographic citation Jatabases.

3.0 Abstraction Mechanisins in Moderii Programming

Recent werk in programming methodology Hias led to the vecognition of three kinds of abstractions:
control, procedural and data. A large effort has been expended in developing a modern programming
quality of a program depends on the programming methodology used. The effective utilization of the
methodology is strongly depeident on the programming language selected for the software development.
Certain concepts in the methodology may be difficult to put into place if the language does not provide the
constricts that make the process automatic. The language does influence the way a programumer thinks and
formulates ideas. A good match of the methodology and the language enhances the likehood that the
methodology will be followed: An example would be to attempt to introduce the concept of block striictuie
using Fortran 66. A better choice would be Pascal because the language supports biock structured

unneécéssarily enlarged for the software implementer[Lis74][Lis77].

-14-

23

3.1.1 Software Absiractions

What do we mean by software abstractions? We miean that the abstraction isolates the use frori the
implementation. That is to say, that the abstraction cin be used without the knowledge of how the
implementation was carrizd out, and the implmentation can be done without the knowledge of how it is to
be usedfLis77]. In the early 2950s, we see the applicztion of abstractions ixi terms of assembly language
rather than machine language in terms of octal numbers. Three letter acronymis were used instead of an
octal number that represented the operator. Operands were designated by symbolic labéls rather than
absolute addresses in memiory. Eaily languages supported built-in data types like integer and reals, One
did not think in terms of binary bits in a computer word at a certain physical location in memory: Later
type checking aided in appropriate default conversions when a real number was added fo an integer.

Hence, the programmer was relieved of lew level detail. Procedural and control abstactions were
dominant. Sorting procedures and square root functions could be specified without requiring knowledge of
the implementation, and the implementation could be done without knowledge of how they were to be
used. Eater, control abstractions siich as do-loops were miade availablé so the concept of iteration was
abstracted by the language construct. Abstractions were treated as a program organization technique.
Programmers could define macros and define new data typeés required by a specific problem. We note that
data structures such as stacks and linked lists were first treated systematically in 1968. The idea of
studying and formalizing programming activity dates back to this time[Sha84]:

What was recognized in early 1970 was that programs were difficult to understand and maintain.
code” evolved and was a familiar occurrence among programmers. Locality was advocated in terms of if-
then-else or do-while control constructs. For a while, extensible languages were promoted because they
allowed the programimier to add new control constriicts and data types to the base {anguage in an attempt to

add clarity to the program and make the programimer’s tasks easier. This idea became unpopular since it

were grouped together, and to find a technique to describe the extensions accurately.

The feed for more accirste Specifications was recognized since programmers typicaily relied on
procedure headers and parameter lists with acconipanying text to define the procedural abstraction. This
specification technique depended on individual styles; and some were well written and accurate, while

3.1.2 Structures Programming Methodology

The struct:red programming methodology was developed in the 13705 to address these probliems: to
make programs reliabie, easy to understand, develop and mainiain. It detziled phases in software
development, specified tools needed to assist in the process, and established tests and criteria for program
correctriess. Program development was to evolve top-down using the idea of abstactions. First the
statement of the problem was presented and then successive refinerients were made until the problem was
finally solved. The idea is to start with a high level abstraction and then progress by problem
decomporition to recognizing subsidiary abstractions. This is ‘where we find modern programming
languages as CLU, Alphard, ADA, Concurrent Pascal, Euclid, Gypsy, Mesa and Modula being developed

to support thé structured programming methodology[Sha84].

3.1.3 Absiract Data Types
Proceduial and control abstractions were available but the idea of abstiact data types needed
promotion. Through abstract data types, th idea of locality would hence be further extcnded, making
programs easier to design, implement, and maintain. Specifications would be easier to write because of the
encapsulation of the data structures. Data behaviors could be defined only within the abstract data type:
The requirements of a language supporting data abstractions developed. Linguistic constricts were needed
that implemented data abstractions as a unit in terms of data representations and operations on the data.

The construct would provide a mechanism by which the langiiage would limit access to the representation

except by the operations defined. Smalltalk is such a language with abstract data types in te.ms of classes.

CLU has clusters; Ada has packages; Flav has flavors.

:16-

A basic concept is that the operations defined for a class must include all operations nieeded ifi handling the
data structure. Usually the operations include create, modify, and access operations. The desirability of
classes is that the language takes care of all the interfice specifications, the names for instantiations of the
classes, the assignment, argument passing and type correctness.

Essential to abstract data types is the primitive library that is provided with the compiler. Here
typical abstract data types as arrays, AVL trees, bags, and dictionaries are provided from which the
programmier can devéiop new abstract data types particular to the application; Inheritance i3 important in
that new abstract data types that are defined are based on the properties defined in a primitive abstrazt data
type. As a matter of fact the abstract data types are usually arranged in & hierarchical tree $o that an
abstract data type inherits all the properties definied batween it and the root of the tree.

Abstract data types are the means by which the human can transform problem-domain coricepts into
the computer-domain model. In other words, the separation of specification and impiementation is the
desired resuit. The goal is that program correctness at the abstrict level can be ascertained before the
implementation. The phrases "abstract data types" and "object-oriented programming have been used in
various contexts, from Simula and its derivatives such as Ada to powerful data description languages used

in knowledge representation: The meaning we apply is in the Smalltalk-80 context.[Cox84)

3.2 Object-Oriented Programiming

Object-Oriented Programming replaces the operator-operand coricepts that are used in the traditional
computer-domain model. The idea is to introduce a coordination tool that supports change; reusability; and
enhancements. The goal is to transfer work from the human to the machine and to enhance consistency
from the human viewpoint.
Encapsulation is an aid in using the system and isolates the objects from the environment except through a
carefully controlled interface. Inheritanice is a aid to building the systém. New classes are defined by first
intieriting the data and behaviors of older generic classes; then specifying only How thé new onés differs.
The idea is to define the data abstractions 5o the programming task is made minimal.

217-

: 26

Now we will define some terms used in a Message-Object programming language such as
Smalltalk-80. The terins object, message, class, instance; and method are all defined in terms of each other.

them by examples in Chapter 5.

3:2.1 Objects
Objects are virtual(computer-based) machines. They have some data (private part), a set of
operations(shared part), and a run-time mechanism for selecting operations on the data that are activated by

a message sent to the object. They exhibit one of their behaviors when they receive a message.

32.2 Messages

Messages are sent to objects and are réquests to obtain a desired result. The méssage contains a
predefined operation(method) to be done on the data structure and are serviced one at a time by the object.
Objects representing numbers have arithmetic operations; objects representing data structures as AVL trees
create an empty tree, add, delete, modify, or count elements. . |
3.2.3 Classes

A class represents a description of a group of siniilar objects. A class is the abstract data type and an
object is an instantiation of it. For example the class rectangle deals with the generic group of rectangles,
but an instarice of class rectangle will have specific dimensions for length and width. Binding is done at
run-time so there is no static type checking at corpile time. An éi;iﬁﬁié would be the class Array in
an operation as printOn defined in class Array will work on any of the three subclasses mentioned,
although the data representations differ in terms of byte, Id, or integer. Also a new subclass defined later
will also bé handled correctly, and class Array does not have to bé revised to make considerations for the
new subclass data type. This is how reusability in data abstractions becomes a major asset in software
development.)

-18-

27

3.2.4 Methods

A miethod is a description of how to do an operation and i$ Specific to the class in which it has been
defined. It resembles procedures and could use class variables as parameters. Methods are written in a
high level iérigdég’e like Smalltalk-80, Lisp', or C. Thé set of methods should include all the operations

3.3. Benefits of Object-Oriented Software

One basic caveat of object-oriented software is the concept of reliable reusable code. As a matter of
fact the classes are called IC’s from the engineering concept of intégratéd circuits. To start with, one uses
a set of basic classes that form the root of the inheritance tree that can be systematically augmented by
deﬁning new ciassés.

To further understand the problem we are addressing, let us look at the Goldstein and
Prettyman[Gol85] analysis of bibliographic sources from four different bibliographic citation databases:
MEDLINE, INSPEC, ISIC, and COMPENDEX.

[MEDLINE] Ann-Trop-Paediatr. 1983 Dec. 17-18: 3(4). P 197-200.

[INSPEC] LASER FOCUS (USA). VOL.19, NO.8. 61-6.
[si€] COMPUTER 9(3):11-12
[COMPENDEX]

a) Electronics v 56 n 7 Apr 7 1983 p 155-157.
b) IEEE Trans Magn v Mag-14 n 5 Sep 1978; INTERMAG (int Magn) Conf,
Fiorence, itaiy, May 9-12 1978 p 964-965

The parsing of the citation source is a major task in arriving at the information in the canonical form
words to the authority dictionaries, and new valid acronyms, entries and werds:
is-

Goldstein and Prettyman give an accompanying parsing structure for each of the above citation

sources.

[MébLINE] Etiﬂei.*Ey'earj*fm'ohdii.‘i‘iday(s)j.*fvoi]([issué]).*P*[pagés].

[INSPEC] [title]([country]).*VOL.[volume],*NO.[number] *[pages].
[ISIC] ftitle]*fvolume]([issuel):[pages]
[COMPENDEX]

a) [title]*v*[volume]*n*[issue]*[month] *[day(s)]*[year]*p*[pages]
[conf. name]; *{city],*[country],*[month]*[day(s)]*

" fvear]*p*[pages].

One observes there are classes that are common to the different sources. As a matter of fact, the
tasks involved in processing for data consistency of title, volume, and date, are similar regardless of the
database origin or the citation source. There may be variations in case, punctuation, abbreviations, and/or
format. We see date specified as Sep 1978 or May 9-12 1978 in the COMPENDEX sources: The goal of
this project is to develop somie prototype classes that augment the set of 'géneric classes to provide the
abstract data types needed to produce data consisteacy in citations from heterogeneous bibliographic

databases.

-20-

29

Chapter 4:

Prototype Development Environment

This chapter describes the physical hardware and software methods used to implement the prototype

classes to process hétérogénéous bibﬁographic citation databases into a consistent form.

4.1 Computer System

The work was started on the LLNL Engineéring Réséarch Division (ERD) VAX 11/780 using the

VMS operating system since it was the only installation with the Objective-C compiler at LLNL at the
time. The parser development using the Unix tools LEX and YACC was done on the Tektronix 6205
workstation. The parser modules were sent over the network to the VAX to be compiled by Objective-C

along with the prototype class modules to minimize use of the resources on the VAX. With limited system

resources on the ERD VAX, the work was later completed on the LLNL Technology Information System
(TIS), which meanwhile acquired the Objective-C compiler. Their VAX 11/780 uses the UNIX operating
system BSD 4.2; certain VMS program lines needed for compatibility with Objective-C were removed; In
general the environment was simpler for development work since the VMS port for the Objective-C was

still in progress whereas the port for Unix BSD 4.2 was complete.

4.2 Software Development Tools

The Objective-C compiler from Productivity Products International in conjunction with the C
compiler was used to implement the Object/Message model prototype for bibliographic citation databases.
The Unix tools Lex and Yacc were used to develop the parser generator, and the tool Make aided in

software deveiopment. [PPIéS]

21-

30

4.2.1 Objective-C Compiler

The Objective-C compiler is based on the Smalltalk-80 Message/Object Model. The syutax for
developing classes in Objective-C resembles the Smalltalk-80 language but differs significantly in that the
class methods aré defined using the C-language. The Objective-C compiler is a preprocessor that produces
C source that is then compiled. The preprocessor produces Class and Phylum files that are information
repositories and form the basis for inheritance and encapsulation for the classes:

Smalltalk-80 is the result of 14 years of research and development by the Software Concepts Group
at Xerox PARC. It is based on a software environment contained entirely within a workstation with special
hardware to imbroVé pérf:o”rinaht:é by orders of ma'gnitudé. The Smalltalk-80 environment soiély uses the
Smalltalk-80 language and provides the software person with a repertoire of basic classes. The
environment includes utilities usually provided by the computer operating system; such as the text editor,
compiler, and debugger. The énvironment makes extensive use of graphics windows, pull down menus,
and a pointing device so the user can work on several views of his work in progress. To change text under
softwaré development, the usér points at the line, edits it, issués the compile command, removes syntax
errors, tests the software, and then compiles and links the new software into the system. All this is done
without changing "modes" for editing, compiling, {iling or executing:

The Objective-C compiler is different in that it is one of the many tools the software developer can
add to the utilities offered by the operating system. I: is available ini the VAX VMS operating system
environment as well as computer systems with the Unix BSD 4:2 operating system: It is is a preprocessor
to the C compiler and adds the basic Smalltalk-80 concepts of classes, objects, messages, encapsulation and
inheritance. Objective-C is an object oriented programming langnage layered on top of C and allows one

to use it in addition to the existing software and hardware,

-292.

Diagram of Compﬁution Umts[PPlSS]

Objective-C

€ Preprocessor

C Compiler

32

Objecli ve-C Class Libraries

Included with the Objective-C compiler package are the Basic Class Library and the Foundation
Class library that establish the root of the hierarchy of reusable classes from which classes for the specific
application are developed. Classes developed for the application inherit properties of classes between the
root and itself. The hierarchy of classes provided with the Objective-C compiler are presented graphically
in a'ppencix;x A

The Basic Library contains the classes Nil, Object, Array, IdArray and String. The root of the
inheritance hierarchy is class Object that points to the Nil class. Every object inherits all the methods and
instance variable available in class Object. Class Array is detailed to give an idea of the methods this class
supports: Array is a superclass of several classes that support indexed instance variables: It has an
instance variable céipacity that records the units of elements of the array. Méthdds are defined for instance
creation with n-elements that may be initialized from an argument list or not. Methods are also defined for
copying, inquiring on capacity, printing to an /O device, comparing and hashing, and notifying on bounds
violations. ‘

The Foundation Library contains the classes Assoc, AVLDict, AVLTree, Bag, BytArray, Cltn,
Dictionary, IntArmay, Cltn, Dictionary, IntArray, OrdCltn, Point, Rectangle, Sequence, Sets, Stack and

Unknown.

-24-

33

ERIC

Diagram of Hierarchy of Classes in Basic and Foundation Library[PPI8S5)

\\\\\

// T~

NN

*w\\\ AR

m | ?a;"‘"\

§\\\

AN

4 4 A

\x
3\%&&%

\\\\\Q

NN

AN

Dmmm.‘,
Ons Coertible

(es mm., o oty
e Set, as Bag) .

. Foudation CIEsSes (Pylun = Geonatry)

emhns = instance of

'_-ﬁ- voris with

% BesiG ity (hylun = Prinitive)

Founmtion Classes (Pylum =Coltection)

25,

34

The implementer of an Object/Message application must be familiar with the available classes to
appropriately use the inheritance properties inherent in the class hierarchy. In the prototype
implementation, the class Object was used. In the discussion of future work in Chapter 7, the development
of other classes are described o support the task of crenting consistency in the hétérogénéous bib]iographic

citation database.

4.2.2 Unix Tool: Lex

The Unix tool; Lex, is a program or module generator: The basic model for Lex is based on the
theory of regular expressions[Aho74]. It penerates a modiile that is a deterministic flnite state automaton.
The input to Eex is based on user specified rules that are in the form of regular expressions. Regular
expressions are rules for specifying character Strings to bé matched and include opérator characters to
account for repetition of strings, optional or required occurrences of strings, and the ordering of strings.
The user may associaté a procedure with 2 rule so further processing is done when a rule is matched: For
example, if a rule in the form of a regular expression expects a number, the associated procedure may
verify that the number is in an expected range and flag an error if it is not valid[Les75). Lex generates the
module that does lexical anai'ys'is on the inpm character stream cbnsisting of the detaﬂ information
associated with a data tag in a bibliographic citation. The tokens and optional values are passed to the

parser.

4.2.3 Unix Tool: Yacc

Yace is a tool that generates a program or module called the parser. Yacc is based on Context Free
Grammars using Backus-Naur Form(BNF) descriptors to specify the parser that accepts the language. The
formal discussion is found in [Aho74] and a user’s manual in [Joh75]. The input to Yact are user specified
gramivar rules and 'o"pti'onai procédurés' to be invoked when the grammar rule is recognized:. The parser
includes a call to the lexical analyzer that passes tokens and optional values recognized from the input

character stream.
26-

33

The parser does a syntactic analysis and does the associated actions if the input satisfies the grammar ruie.
For the prototype the grammar rules include aii the legal variations in the detail iz ormation for a data tag
in a bibliographic citation.
4.2.4 Unix Tool: Make

The Unix tool Make is a software managemerit tool that allows dependencies to be specified by the
user among software modules. Changes to a source file are automatically detected and trigger the
appropriate actions specified in the dependenicy rule. For example, modifications to a source file couid
trigger récompilations of other dependent source files.

4.3 Summary

implementation.

27

Chapter 5:

Prototype Implemenzation

This chapter introduces the basic data abstraction mechanism in Objective-C, the class. A prototype
for processing heterogeneous bibliographic information is described to show how the abstraction is used in
program design and how it is used and implemented in Objective-C. A system overview that details the

major steps in producing the prototype i diagramed.

~ lbbout Main Program

Yecc Speciticetion File yyrerse
) R

System Overview of Prototype Implementation

28.

5.1 Sources of Data

The source of data could bé the result of a session by a user at a terminal making queries of an on-
line system such as the Dialog system that involve the search of bibliographiic citations on a topic. The
output is usually in the form of a disy "y of the retrieved citations and may be followed by a more complete

printout of the citations. In our case, the facilities at the LLNL Techniology Information System (TIS) were

used to obtain bibliographic citations on the subject of "Computer Gateways and Networks” from the six
following on-line database services: DTIC/DROLS-TR, DIALOG NTIS FILE 6; BRS, DOE/RECON;
NASA/RECON,; and SDE/LIBRARY and INFORMATION SCIENCE ABSTRACT. An on-litie sessior
with each particular database service was used to capture the information into iocal file. The citations in
the local file was translated into the TIS standard form for bibliographic citations. The six local fi'3s were
then merged into a single file so that post-processing analysis could be done on a single file. A sample of
the merged file is included in Appendix D.

Each bibliographic citation consists of an average of twenty fields of information. Each field begins
on a new line and consists of a data tag delimited by left and right angle brackets (<;>) and ending with the
descriptive information. In database terminology, one can consider the data tag as a field Iabel and the

descuiptive information as the field detail.

5.2 Reformatting the Detail Information for Consistency
On closer examination of the bibliographic citations in the merged file one finds similar types of

information may be represented in differing formats if they come from different database sources. There

may be varying formats within a database for items coming from different publication types. For example,
"<DATE> 1985." appears in a BRS/National Library of Médiciné Database record, whereas, "<DATE>
Aug 1984" appears in a DIALOG NTIS FILE 6 citation. Another problem is that "<TITLE> PLURIBUS
SATELITE IMP DEVELOPMENT MOBILE ACCESS TERMINAL NETWORK" appears in upper-case
in the DTIC/DROLS-TR citation but "<TITLES An on-line directory of databases for material properties”
appears in lower case except for the first word in the NASA/recon citation database. One can make the
observation, however, that similar "classes” of information occur in bibliogtébﬁié citaticns.

» 38

The task of reformatting the detail information for consistency is a complex job. The detail
information from different database sources may appear with a different data tag: An example is
"<TITLEs Post-processing of Bibliographic Citations from DOE/RECON, NASA/RECON, and
DOD/DROLS. Kevision 1." from the DIALOG NTIS FILE 6 whereas the same citation in the DOE/recon
database has "<TITLE(MONO)> Post-processing of Bibliographic Citations from DOE/RECON,
NASA/RECON, and DOD/DROLS: Revision 1." The task of consistency may include a cross correlation
of information. If the title is not available with the <TITLES data tag; the information may be available
with the <TITLE(MON®)> data tag. Hence a duplicate may be detected and removed. Typically, one
in the area. We pointed out in Chapter 2, they estimate that thirty=five percent of the bibliographic citations

are duplicates[Hal83] and so the accounting of duplicates is important.

5.3 Program Design Abstractions

Consider the merged file as a data abstraction called in-stream, and the data abstraction called out-
stream that will contain bibliographic citations in a consistent format. We will need procedural
abstractions that indicate when in-stream is empty, or determine the next data tag and data field pair. We
can consider each data tag and data field 'p’air as an abstraction, Hénce; we Can arrive at abstract data types
for "date", "title", "author”, and etc. that are based on the data tags found in the merged file.

The <DATES abstraction is presented with details for its implementation. The bibliographic data
tags such as <DATE>, <AUTHOR>, or <TITLE> are hindled as left context operators. They trigger
environments that are very dissimilar. On closer examination, the information associated with <TITLES is
considered as a string, whereas the information associated with <DATE> is considered on a word basis;
where a word is any nonempty sequence of alphanumeric characters. Adjacent words may be separated by
non-alphanumeric characters as space, punctuation,; or ﬁérv’v'iihe.' Héryée’ the lexical rules and actions must
be specified 's'epa'rateiy for these two different environments. In looking at the <AUTHOR> and <DATE>
detail information, the parser rules and actions must be specified individually also. An author June E.
Smith has a first name of "June", whereas June should be handled as the sixth montn if it is a date.

30-

39

A discussion on handling of left context sensitivity is described in the Lex reference[Les75]. Once the data

tag has been identified; then separate lexical and parser routines associated with Lex and Yacc rules are
called to process the information. We can think of Lex and Yacc as procedural abstractions in the
development of our prototype class. The Unix tools Yacc and Lex produce C modules of advanced
algorithms in a convenient form that ¢an be easily integrated into the prototype application program. These
program generators do special jobs based on user specifications that are easy to update. Yacc produces the
module "yyparse" and Lex produces the module "yylex":; The user can insert C code before; within, and
after the call to either module to add a large amount of flexibility. The modules generated are special
purpose and have excellent performance in terms of time and space. They save thie user from writing their
own C code and hence frees the procgrammer from details that are conceptualized as procedural

abstractions.

5.4 The Prototype

To show the ease in creating Objective-C classes, the p’"rotctype for the Date class is described. The
prototype consists of the Lex and Yacc specification files, the Date ciass data abstraction, and the main
program module. The tutorials on Lex and Yacc were helpful in developing the specification filesfBel78].
S4.1 Lex Specification File

The generai format of Lex input is:

{déﬁniﬁons}
%%

{rules}

%%

{user routines}

- 40

The definition section is:

%{

#include "objc.h”

#include "y.tab.h"

#define MON(x) { yylval.lex=x; retarn MONTH; }

~(N,Collection,Primitive)

%}

The include file "objc.h” contains mrost of the standird definitions for the user of the Objective-C
compiler. The file contains various C types such as STR for string, SEL for selzctor, BOOL for boolean,
IOD for /O descriptor and SHR for the shared part of an object. The include file y-tab:h is created by Yacc
and contains the tokens used for communication between the lexical analyzer and the parser. The macro
MON(x) is defined to assign a value to yylval.lex that is returned to the parser. Values returned by the
lexical analyzer and associated action procedures are intégers by default. The rules to Yacc can define
other types. that the parser tree handles so the stick properly carries out the reduce'.and shifts to determine
an &cébﬁhg state for the statement being parsed. The Yacc discussion covers the union of types that

account for the suffix ".lex". The last statement is an Objective-C declaration for the Phyla fiies.

The rules section conSiSu;ng of regular expressions is:
%%
[i7]an("."Juary)? MON(1);

[dDJec("."lember)? MON(12);

e

[0-9] {yylvallex = yytext[0] - '0' ; return DIGIT;}

[] {; /* delete blanks */ }

- {rewmEOL; }

A { return EOL ; }

In the regular expression *[jJ]an("."juary)?"; the months are allowed in aiffé;éﬁi forms, i. e. jan; jan,,
january,Jan, Jan., or January. The macro MON(x) is the action statemient where the valué returned is an
integer, that is 1 for January, 2 for February, and etc. The value is stored in yylval.lex; and MONTH is the
token returned. The characters 0 through 9 are recognized by the regular expression [0-9] and the action is
to retiim the integer value for the character representation and DIGIT for the token. The regiilar expression

[] deletes blanks since there is no action statement. The regular expression "\n" recognizes end-of-lines

and returns the EOL token. The regular expression "." recognizes any other character and the action
statemefit returns the singié character.

The last section defines procedure "date(month,day,year)" for checking that the month is in the range
Terse error warnings are included that could be changed to more sophisticated error recovery actions. See
Appendix C for the details. Hence the lexical analyzer module, yylex, should be able to recognize the

tokens in the eight variations for "date” that are tabulated in Chapter 2.

5.4.2 Yacc S‘feajﬁcatfon File
We now describe the specification filé that is input to Yacc to generaté the module yyparse. The
general form looks like:
declarations
%%

rules

-33- o

%%

programs

The declaration section is:
%{
#include "objc.h"
= (N, Collection, Primitive)

extern id dateObj;
%}
%union {
short lex;
id obj;
}
%Start prog
%token<lex> DIGIT MONTH
%token<lex> EOL
%type<lex> number year day

%type<obj> DateStmt

In the declaration section we have the include file objc.h and the phyla declaration that were
described in the previous section on Lex. The external declaration of the instantiation of the Date class;
dateObj, is required since dateObj is created in the main program. The union statement defines the two
data structures on the parser tree, the "lex" integer data structure and the Objective-C "obj" id data

structure. The goal symbol, prog, is defined by the %Start statement, and the legal lexical tokens that yylex

-34-

W

recognizés are DIGIT, MONTH; and EOL. Number, year, and day are parsed by yyparsé and have the

"lex" integer data structure. The DateStmt has the "obj" id data suucture.

Thé ru'iés séction is:
%%
prog: DateStmt EOL { exit ();} ;

DateStmt: MONTH day °,’ year

{
date ($1, $2, %4);
$$ = [dateObj mo: $1 da: $2 yr; $4 J;
[dateObj print];
}
[---}

da'y: numﬁér;
year: number;

number: DIGIT | number DIGIT {$$ = 10 * $1 + $2; };

The rules section specifies the BNF grammar for parsing the legal forms of date: The date procedure
checks that the number of days is within the correct range for the month, with leap year taken into

consideration.

The following statement:

$$ = [dateObj mo: $1 da: $2 yr: $4J;

stores the month, day, and year values in the object, dateObj. The Objective-C message expression is
contained between the pair of square brackets([...]). The message is sent to the receiver, dateObj. There
.35.

o 44

are three keyword selectors, mo, da, and yedr, that consist of a string of characters ending in a colon:
character: The arguments to the keyword selectors are $1, $2, and $4 that are obtained from the parse tree:
This is an invocation of a method defined in the Date class and is a behavior in addition to the instance

methods that Class Date inherits from the Object Class.
[dateOb;j print];

The print method is défined in the Daté class and defines a behavior for printing the values stored in
the dateObj object for month, day and year. The user simply invokes the print method and is not
encumbered by the details of the data structures of month, day, or year to print the information correctly.
In contrast, the Fortran programmer must know whether the mionth, day, or year may be in ascii, octal, or
integer format to select the proper conversion specification in the "Format" statement. The proper
definition of the methods in a class should encompass the create, modify, or réply so that the user’s
requiremerits in working with the class object is complete.

The program section is the last section and contains an error diagnostic that prints a warning to the
user if the input can niot be parsed by the grammar rules contained in the input specification file for Yacc.
space, /, and variations in the date format are handled with a minimum amount of software. The values for
month, day, and year are stored as instance variables into the object, dateObj, through the method defined
within the class Date; and the print operation is easily invoked since the details are encapsulated as a

method il‘l the CiaSS bate.

5.43 Date Class
The Date class is defined in the source code file, "date.m”. The declaration section has the
Objective-C include file, objc.h, and the Yacc include file, y.tabh. Next, the declaration for ascii

representations for month is included for the print method.

o
1 ¢

The following statement:

= Date:Object (N,Collection,Primitive)

reflects that the Date class inherits properties from the Object Class, and the Date class will be included in
the writable phylum file "N". Also, the Date class may use the classes in the Ubjective-C librar: s
Collection, and Primitive. The instance variable are declared to be integer for month, day, and year, and
are called mon, da, and yr respectively. The first method prefaced with "-mo: ..." stores the values in the
instance object. The next method denoted by “-print ..." prints the date to the terminal. The print method
will test for the default values of -1 and vary the printout. The three sample printout forms are:

1 May 1985

May 1985

1985

5.4.4 Main Module

The main program contained in the file, "main.m", begins with the include filé for the C compiler
standard I/O library, stdio.h, and the Objective-C include file, objc.h. The phyla declaration statement for
the main program follows. The éxternals are declared in addition to the instance object, dateObj. The
main program sets the output to be the terminal that is the Unix standard output device.
The statement:

dateObj = [Date new] ;
creates the object for the Date class. Since the method "new" is not defined in the Date Class, the method
is inherited from the Object Class. The prompt ">" is printed at the terminal and then the input is expected
from user at the terminal so that it can be parsed and have its values for month, day, and year stored into
the date object just created. The print method is thien invoked to verify the proper values are stored in

this a'ppiicaﬁon program.

3 48

Chapter 6

Summary and Results:

The intent of the éiéiéiiﬁé implementation is to provide a programming cxample of the Class data
abstraction méchanism of Objective-C as applied to the Date class to obtain data consistency in varying
forms of dates that are contained in bibliographic citations. Through a simple example, features of the
abstraction mechanism in Objective-C have been presented. The Unix tools, Lex and Yace Qék used to
develop the procedural abstractions, yylex, and yyparse, that do the lexical analysis and syntactic analysis
on the varying date forms. Eight variations of dates consisting of month, day and year were established in
the dateObj object for the Date class. With the instance variables set to specific values, the print method
could be invoked to take care of the task. The private data and daia access methods are encapsulated
within the Date class, and reciuires that the user communicate through messages to the object to elicit the
behaviors desired.

The Date class is an elementary example to show how other classes for the bibliographic citation
database can be developed for accomplishing data consistency in the numerous fields in a bibliographic
citation. The Date class can eas’iiy be extended to mcluded more methods, categorized as setting, inq’uirhg,

performing arithmetic and printing.

Setting:
1. -setmo: aMonth set the month
2. =setda: aDay set the day

3. -setyr: aYear set the year

.38-

47

fncjuiring: :
1. -getmo: aMonth reply the month
2. -getda: aDay reply the day

3. -gétyr: aYear reply the year

Performing Arithmetic:
1. -julian reply the Julian day

2. -dayofyear reply the nth day of year

1. -printmo reply the month

2. -printdy reply the day

3. -printyr reply the year

The goal is to develop a comprehensive Date class to simplify the task of constructing reliable
software that is easy to understand, modify, and maintain. This Date class wil be part of the Class Library
that is accessed by application programmers who will rely on the skill of the designer who develops the
abstraction. The classes must be defined such that the behaviors of the class of information is fuily defined.
These include the create, modify and reply operations. In the event that additionzl behaviors are necessary,
the concept of abstraction mechanisms in the programming language as Objective-C will guarantee that
software will not have to be re-examined or re-written because of the change.
application for data consistenicy in heterogeneous bibﬁo”grap'h'id citation databases. The main program is
expanded to examine the in-stream of data and look for the "<AUTHORS" or "<TITLE>" data tag. This is
easily done since the data tags are enclosed in the left and right angle brackets. The characters following

the right angle bracket are saved in a buffer until a left angle bracket is detected. This buffer of characters

is then passed as data input to the parser developed for the particular data tag information.
-39-

4 48

In the TITLE data tag the Lex spe'ciﬁczition' file will have the action statement convert the text to

upper-case for consistency, and then will store the title into the object

yylval.obj = [String str: yytext];

return STRING;

The Yacc specification file will contain the action statement:

$5 = [:itleObj str: $17 ;

In the case of the AUTHOR data tag, the buffer of characters captured after detecting the Author tag
is passed to the Author parser that has BNF specifications to handle the variations in author uames. The
author list could be saved in the Set class. The creation of an Author object could include an initialization
that would givé a wild card charactér like "*" for the first or middle name in cases where the names are
missing from the input stream. The methods defined for the author class could treat the names as wild
cards when a match is required.

The fext i’o’giczii dévéiopmént is to défine a citation objéct that contains the Author, 'I:itlé, and Date

Objects as a related triple.

extem id String, Sei; id citationObj;
citationObj = [self with: 3

[dateOb; str];

[titleOb; str];

[authorOjb str]; 1;

Methods could be defined to create; add, delete; or modify a citation, in addition to printing the citation in
"pretty" forms for easy user viewing:
-40-

49

The prime idea in defining classes for the heterogeneous bibliographic citation databases is to present the
application programmer with aSstr’actionS that handle the data types involved, and include all mettiods to
process the abstract data types. Hence the objects are the entities that are handled by the application
programmer to reduce the details that must he remembered. The particular class should characterize the
behavior of the data entirely. If not, additional methods may be added to the class definition. Indeed, even
if this is done, software that has been written based on the former class definition may not have to be
rewritten unless it accesses the new features in the class: The undetlying physical structure of the program
is taken care of by the physical interfaces used by the Objective-C 'co"mp'iiér.' The basic actions in
programming the application are assignment statements that create objects and invocations of class

methods through messages to the objects to exhibit behaviors.

-4i-

-,
Y
«

A
|

S

Chapter 7

Discussion and Future Directions

In recent years a variety of powerful generic tools have been created. Database Management
Systems(DBMS) and Spreadsheets are examples. They gain their power from the ability to operate on
various data. They provide the generic operations of create; modify, and output: We have attempted to
create the tool for data conversion. This Stiidy was iéstricted to blbhographlc citations to sée how far the
idea of a generic library tool can be extended. The development of the generic library tool requires the
definition of classes which the application programmer incorporates into user software. The concept of
abstract data types via classes can be extended to Database Managemient Systems. If one coasiders the
relational model, then the relations in the form of tables can be considered the data structure of the class.
The operations of retrieve, update, and append with qualifiers can be considered the class methods. This
abstraction is a convenient one for the application programmer since tables of information are a common
occurrence. But a detail look at the physical implementation of the data structure may be complex: The
storage and access mechanisms may be based on hashing algorithms if the data are sparse and have a
balanced distribution. B-trees may be used with linked lists for fast searches. Here the user is relieved of
the cbmpiexities that are Ieft to the Database Management System impleméntérs. To access the relations
the user relies on the query language that allows operations on the relations. In this same regard, the person
developing the classes for an Object Oriented application must provide the application programmer with
the necessary classes o do a jOb The classes must be générai énough io handle ap'pﬁcaﬁon programs tﬁat
have not yet been defined. This is what a good Database Management System provides, and is what the

being enhanced to do a better job for the user, and it is expected that the class library will bé improved with

42-

51

time. WHat is important is that the user will not have to réwrite any software that has been &évéiéﬁé&:t
Even if the underlying physical structure is chunged to improve speed or space, the user need not be
concérned, and all the benefits will be automatically gained. One can now readily understand the strength
in using abstractions. Through Object Oriented Programming the abstraction mechanism found in
Database Management Systems and Spreadsheets can now be extended to programming languages through

This project has demonstrated the feasibility of establishing data consiStency in heterogencous

bibliographic citation databases through data abstractions; called ciasses: Tutere work involves specifying
and implementing the full set of classes for this application. With the classes in place, the application
programs can be written to further the data consistency goal.

We have discussed the bilio-citation object consisting of the title, author, and date objects. The
objects associated within the citation object should be expanded to include the necessary elements for
identifying a bibliographic citation. This requires the establishment of a canonical form for a bibliographic
citation. A study of the bibliographic citation format from different sources shows that the data tag names
are diverse and many are singular. For example, the DOE/RECON database uses "<PAGE NOs 17",
whereas the DTIC/DROLS-TR has "<PAGINATION> 30P". Goldstein and Prettyman have proposed a set
of 36 fields for the citation canonical form and it appears in chapter 2. They propose two character data
tags, such as PG for the number of pages in the reference. Their canonical form is based on bibliography
preparation. The data fields for the general case needs to be studied and proposed: On a cursory glance;
the expanded canonical form should include "AB" for abstract, and "KW" for keyword descriptors. We
note singular data tags that probably are only meaningful to the iocal bibliographic database such as
"<LIMITATION CODESs 1"; can be excluded from the canonical form of the citation. With the data tag
and associated data elements defined for the canonical form of a bibliographic citation, the definition of
classes for data consistency can proceed. The Daté class can bé re-used for the journal date, publication
year, copyright year, and the meeting date. The definition of 2 Location class is appropriate for the meeting
location, publication location, and autior location: This class should access an abbreviation dictionary to
produce a consistent form of the location.

43-

If the location is listed as London, then London, England should be substituted: The location US; U.S.A.,
or United States should be made consistent in the same fashion. Wamings should be included for data not
found in the dictionary, so that it may be updated with new entries: The standardization of publication
titles can be added to a Source ciass. Certainly, the conversion for case consisténcy in a character strings,
and the expansion of abbreviations should be included in the class methods. Alternate names for people or
institutions could be accessible from a dictionary to further aid in_data consistency. We note that the
Dictionary class is available in Objective-C and can be incorporated into ar. class.

A future expansion should include the post-processing tasks in terms of the classes defined in the
application tool library. Methods could be iricluded to "pretty-print a bibliographic citation", to analyze
bibliographic text, to display the citations on the CRT screen; to plot the statistical information on a graph,
and to do cross-correlations on the data fields. The convenient tools of Unix can be incorporated into the
classes since Objective-C is designed with the use of Unix tools in mind. We have seen how the Unix tools
Leéx and Yacc were incorporatéd into the Objective-C program: -

The procedure of establishing data co’nsistency in a hétérogenébus bibiiographic citation database
through the definition of abstract data types can be extended to other heterogeneous databases. The
restriction ic that the information in the heterogeneous databases derive from a common base; as in
bibliographic citations. Hence for a relational database where a relation is employee, a field in the selation
is name, and its detail information is John Jones, the data tag could be <employee.names, and the detail
field would be Johin Jones. The existerice of a data tag and and an associated detail field in the database

establishes the reuse of the data abstractions created for the bibliographic citation database.

-44-

o
LW

[Aho74]

[Bel78]

[Bol84]

[Bur84]

[BuH84]

[Cua84]

[Cox84]

[Eag85]

[Hal83]

[Ham79]

References

Aho, A. V., Hoperoft J. E., The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, Massachusetts, 1974,

The Bell System Technical Journal; july-August 1978, Vol. 57, No. 6, Part 2., American
Telephone and Telegraph Co., pages 2155-2176.

Bellinger, W. A., Hampel, V. E., Harrison, I, Murphy;'f;P:.; Post-Processing of Bibliographic
Citations from DOEI/RECON, NASA/RECON, and DODIDROLS, Lawrence Livarmore
National Laboratory, UCRL-89995 Rev. 1, August 1984.

Burton, H. D, Integration of an Automated Library Support System with an Intelligent

Gateway, Lawrence Livermoré National Laboratory, UCRL-91383; August 1984

Burton, H. D. and Hampel, V. E., Integration of Common Command Languages with
Intelligent Gateways, Technology Information System, Lawrence Livermore National
Laboratory, 1984.

Cuadra, R. N., Abels, D: M:, Wagner, J, Directory of Online Databases, Cuadra Associates,

 Inc., Santa Monica, Ca., 1984, Vol. 5, No. 3, Spring 1984.

Cox, B. I, "Message/Object Programming: An Evolutionary Change in Programming
Technology”, IEEE Software, Vol. 1, Number 1, January 1984, pp50-61.

Eagles Project, Electronics Engineering, Engineering Research Division, Lawrence Livermore
National Laboratory, Livermore, Ca., 1985.

Hall, J. L. and Brown; M. 1.; Online Bibliographic Databases: A Directory and Sourcebook,
Third Edition, 1953., Aslib, London, 1983.

Hampél; V. E;; McGrogan, S. K, Gallo, L. E;, Swanson, J. E., The LLNL "Meta-Machine",
Fourth Berkeley Conference on Distributed Data Management and Computer Networks, San
Francisco, California, August 28-30, 1979, Lawrence Livermore National Laboratcry, UCRL-

4554

(Ham8S5)

[Gol83]

[Gol8d)

[Gol8s]

[KeP84]

[Joh75]

[Les75]

[Sha84]

83064, May; 1979.
Hampel, V. E; "TIS, The Intelligent Giuteway Processor", Proceedings of the Eighteenth

Annual Hawaii International Conference on Systcm Sciences, 198S.

Goidbe’rg, A. and Robson, L)., Smalltalk-80, The Language and its impie’mentau‘on; Addison-

Wesley, New York; 1983.

doi'db’e'rg, A. Smalltalk-80, The Inmteractive i’ragramnzfng g‘nviranmenl; Addfson-Wesley,
New York, 1984.

Goldstein, C. M. dnd Prettyman, M., Procéssing Downloaded Citations”, Lister Hill National
Center for Biomedical Communications, National Library of Medicine, Bethesda, Md., 1985.
Kernighan; B: W, Pike, R;, The Unix Programming Environment, Prentice-Hall Software
Series, Englewoad CIiffs, N.J.; 1984,

Johnson, S. C., Yacc: Yet Another Compiler Compiler, Computing Science Technical Report
No. 32, 1975, Bell Laboratories, Murray Hill; New Jersey, 1975

Lesk, M. E. and Schmidt, E., Léx- A Lexical Analyzer Gencrator, Computing Science
Technical Report No. 32, 1975, Bell Laboratories; Murray Hill, New Jersey, 1975.

Liskov, Barbara, Zilles, S phen, Programming with Abstract Data Types, Proc. ACM
SIGPLAN Conf. on Very High Level Language., SIGPLAN Notice 9,4 (April 1974) 50-59.
Liskov; Barbara; Snyder, A, Atkinson; R:; and Schaffert, C., Abstraction Mechanisms in CLU,
Comm ACM, 20, 8, Augiist 1977, 564-576.

Objective-C Reference Manual, Productivity Products Intemational, Sandy Hook, CT, 1985.
Shaw, Mary, Abstraction Techniques in Modern Programming Languages, IEEE Software,

Oct. 1984.

-46-

55

O

ERIC

Aruitoxt provided by Eic:

Object
Qclass. .
__ Object
Qphyla
Primitive

Hierarchy of Objective-C Classes - @class, @phyla [PPI8S][Eag85)

AVLTree
Qclass
. _ AVLTYes
[ophyla
Collectlon
Primitive
AVLDict
Qclass -
ALVDict
—— 1dAray
. _ Sequence
Ophyla
Collection
Primitive
OrdCltn
Qclass ._ .
QdClta
— IdArray
_ Sequence
Qphyla -
Collection
Primitive
- Dictionary
Cltn Qclass -
Qclass Dicitionary
Clta o ldArray
L IdArmy - — Sequence
_ Sequence Set _ Assoc
Ophyla Qclass Qphyla
Collection Set Collection
Primitive ldArray Primitive
— Sequence Y. .
Qpbyla - Baogelﬁi
Callection Bag
Primitive IdArry
— Sequernce
_ IntArray
Qphyla
Collection
Primitive
Stack
Qclass
Stack
— IdArray
. Sequence
Qphyla
Collection
Primitive .
47

56

O

ERIC

Aruitoxt provided by Eic:

Object
Qclass-
_ _Object
Qphyla .
Primitive

Assoc

Qclass

— -Assoc

Qphyla
Collection
Primitive

Array

Qclass

Amy —T—

Qphyla
Primitive

Point
Qclass
~ Peint
Qphiyla
Géometry
Primitive
Rectangle
Qclass
Rectangle
- -Point
Qphyla
Geometry
Primitive

-48-

BytArray
Qclass
- BytAray
Qphyla - -
Primitive
IdArray
Qclass
___IdArmay
Qphyla
Primitive

IntArray
Qclasa
.. IntArray
Qphyla
Primitive

S7

ﬁierarchy of 6bjéctive-C Classes (continued)

Qclass
, Sequence
: — __ IdAmay
. : Qphyls
Collection

T Primitive
Object R ——
Qelass | String
Object —] Qclase _ _
Qphyla [__ String
Primitive Qphyla
Primitive

— _. Unknows
Qpliyla.
Primitive

49. 98

-
- -

O

ERIC

Aruitoxt provided by Eic:

Appendix B

Objective-C Base Tree - methods [PPI85][Eag85]

Object
initialise
ndxVarSize

describe
doesNotRecognize: e

wwor AVLTree

free key:

hash . .
idOfSTR: addCoriterntaTo:
sCopyOf: addKeysTo:
iaEqual: _ —n fnd:
isKindOf: free
insertlnto:
] isCopyOf:
name _ key
notEqual: key: -
notlmplemented printOn:
notSame:

perform: with: R
parform: with: with:
pring__

printOn:_
printString:
responds To:
self
shallowCopy
shouidNotImplemens
show

sise -

storeOn:

str .

superClais

-50-

O

ERIC

Aruitoxt provided by Eic:

O

ERIC

Aruitoxt provided by Eic:

Object
mitlalize
ndxVarSise
new
poseAs:
readFrom:
23aGraph:
ke Citn
new
new:
with:
add
addContentsOf:
addContents To:
asBag
380rdCltn
asSet-
- contains:
= sachElemeat -
axpaind
find:
froe
hash
notlmplemented laCopyOf:
aotSame: isEmpty
perform: isEqual:
D hn: Wit imiCantentiOn:
ggﬁlzgm. with: with: PHiaton:

- remove: . -
:gg:gin;iiii removeContentsOf:
respondsTo: eise
)
shallo.” Sopy
shouldNovImplement
show
sise .
toreOn:
str

:nb;lus&spomibiiity
superClase

S

Objective-C Base Tree (continued)

-51-

60

AVLDict

remove:
sise
values
OrdCltn
add: .
addContenteTo:
at:
bouzdsError:
find:
findMatching:
#8ndSTR:
firstElsment
18CopyOf:
lastElsmaent
lastIndex
ramove:
sise

add: [

addContents To:
contains:
differance:
expand

filter:

find: . e
findElementOrNil:
interdsction: _
occdrrencas Of:
remove:

replace: L

slze
unjon:

i2CopyOf:
lastElement
pop

push:

size

swap

Dictionary

with:
associationAt:
atKey:
atKey: put: -
includesAssociition:
includesKey:
keys_
values

Bag
new:
add: ... _
add: withOccurrences:
éxpand
free
includes:
occurrenceaOf:
printContentsOn:
remove:
size

o

ERIC

Aruitoxt provided by Eic:

copy_ . .
doesNotRecogniza:
deepCopy

describe

error:

free

name
notEqual: __
notImplemented

perform: with:
perform: with: with;

PHntString:
responidsTo:
shallowCopy
shouldNotlmplement
size

storeOn:

str o
subclassResponsibility
superClass

Objective-C Base Tree (continued)

Array
new:
ndxVarSize_
ndxVarType
with:

slinnsy
béiiaiYiélatléni

printContentsOn:
printOn:

sige

sort

52.

61

BytArray
ndxVarSize
ndxVarType
new: -

toncat:
concasSTR:

printContentsOn:
sort :
str

str:

IdArray
ndxVarSize
ndxVarType
with:

add:
addContentsOf:
addContentsTo:
at:

at: put:
containa:
describe
eachElement

d

offsstMatching:
offaetMatchingSTR:
prifitContentsOn:
remove:

size

sort

IntArray
ndxVarSize
ndxVarType

describe

hash

intAt:

intAt: put:
INtAt: add:
i3CopyOf:
isEqual: _
printConténtiOn:
_sort

f)bjectivelé Base Tree (continued)

Assoc
key:
key: value:

compars:

awake _

capacity r
compare:

copy- - -
doesNotRecognize:
despCopy

describe

arror:

free_

idOfSTR:
lsCopyOf:
isEqual:
isKindOf:
sMemberOf:
isSamse:

name -
notEqualk .
notlmplemented
notSame: __

printString:
respondsTo:
b

show _
shallowCspy -
should NotImplement
size

storeOn:

sr
subclassResponsibility
superClass

-53-
62

ERIC

Aruitoxt provided by Eic:

Object
frée
initialize.
ndxVarSize
nsw

noslmplemcﬁiéci
notSame:
perform:

tw h. with:

Objective-C Base Tree (continued)

Rectangle
fromUser
new -
origin: corner:

:: corner:
¢ extent:

i exteat:

bottom: . .
bottomCenter
bottomLeft
bottomRight
center
centerX
centarY
containe:

printString:

respondsTo:

sell

ahallowCopy - . nen.

shouldNotImplement !35556. B

show rightCenter

size :gg,

toreO op: -

L?" " topCenter

subclassResponsibility topLeit

superClass i&;}i)?:.zht
width
width:
-54-

o

ERIC

Aruitoxt provided by Eic:

Objective-C Base Tree (continued)

Sequence
over:
fint
F_ WCHprOf:
next
orer:
rewind
8Graph: - String
awaks ndxVasSize
capacity ndxVarType
class Dew
compars: :
copy ___
despCopy
describe
doesNotRecognise:
efror:
free
bash

coneat:
concatSTR:
notEqual: CopY_ __
notimpiemented describe
hash
isCopyOf:
T lsEual:
with: ISEZualSTR:
printOn:

waiwCon: Unknown

shouldNotire - ~ment ndxVarSis

show ndxVarType .
%) newClass: Vars: onlOD: Text:
wkors- Sng L printOn:

.7 - - -

sabclans Tesponali . ity Eipacity

iperst . desctibe

doeaNoiRe agnize:
iiVarCapacity:

=55-

(wal
A\

.

ERIC

Aruitoxt provided by Eic:

HPCREN

Q

ERIC

Aruitoxt provided by Eic:

Appendix C
i’rototype Source Code

LEX Specification File

s - - - -

#include "“objc.h"-

#inclode "y.tab.h"™ . . _

#define MON(x) { yylval.lex = x ; Feturn MONTH : }
= (N, Collection, Primitive)

%)

(1 - o
fjglan{~."luary)? MON(1) :
[fF)eb (" .= |ruary) ? MON{2) ;
(mMlar(~."|ch)2 MON{3) :
[aA)pz("."1i1)? MON(4) :
[mMlay MON(5) :
[JgJun("."le)? MON(6) ¢
£3Jqul(."1y) 2 MON(7) ;
[aA)ug{™."|ust)? MON(8) :

[8s}ep(™."|tember)? MON{9)-;
fo0lct("."|obexr)?_ MON{ILD)
[nNJov("."|ember)? MON(11)
[dD]ec("."|ember)? MON(12) 7

TR TN

{0-9] { yylval.lex = yytext(0] - 70’ ;

.- - return DIGIT ; }

{1 { ; /* delete blanks #*/)

“\n" { return EOL ; }

".r { return EOL ;)

- « . . _ . S .

' return (yytext[0]) : } /* return single characters */

#_incltde "“stdio.h"™

int nolezp [] = { - o< o= - —- - o o e i -
o o, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, }
int leap [] = {

: [0. 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31, }
date (month, day, year)

. .

int *daysin ; . Lo .

daysin_=_isleap (year.).?_ leap : noleap ;

if (month < 1)| month > 12) .= = _ _

{ printf ("month out of range \n") ;
return ;

R U
if (day <-1-1{ -day > daysin[month]) o 3
{ printf { “day of the month out of range\n") ;
return ;

}
isleap (year) L
{ if (year % 4 i= 0) return (0)
“f (year % 100 != . : return (1)
1f (year % 400 = G ° return (0)
return (1)

:)
int =.9rap ()
Ire:~1a(l);)

Y ACC Specification File

Si_

4include- "obic.h® S - - PR

= (N, Collection, Piimltivi) 7* phyle */

axtern id dateOb3

‘)

tunion L,, . /* atack typ
ahort lex ; ' /* Jexical code %/
id obj ¢ /* an object */

J-
AStart prog
stoken<lex> DIGIT MONTH
sfoken<lax> EOQL.
ttype<lax> number yoar day
\iype<obj> DateStmt
L1 T R S R
prog: Datestmt - EOL { exitl); } s
DateStmt: MONTH day ’',’ Yyear

date (-51,_52, $4) .

$$ = [dateOb) mo: S§1 dn. $2 yr: $4) s

| dsteOb3y print) ;

i
l day MONTH yoar
data (52, $1, 53) 1. L
$8 = [dateObj mo: $2-cda: 81 yuo: $3)
. { dateOb) pzrint) ;

| S __
| number /' nu~her 7/’ number

if (5% - T, 4 1900;
date { - I . -
$§ « 7 ia: $2 yr: S5)
) [R

-}

| bpunbex ?.

~5 da: -1 yv: §1] ¢
aAnt) ;

date (1 1, s11 ;
3$S « | dateObj mo: —-1-da: -1 yr: $1) ;
[dateOb) pxint)

).
! MONTH number
- .
dste ($1; -1, $2) ;

$$ = [dateOb3 mo: $1-da: -1 yr: $2) ;
- { dateoObj print) :

date ($1, =1, $3) : ST
$5 = [dateOb3 mo: 51 da: =1 yr: §3) ;
I

| . s
H(‘)N“H ’,’ number

. JateObj print) :
)

day: number
ymar: number
number: DXGXT

i number_ DIGIT -

{ 56 = 10 = §1 4+ 52 ;)

s -
lIncIude acdiol -
yyezzaz (s) /* cnlled for yacc syntcx exror %/

char *s:
(e oo S
) warning(a, (char *) 0):
) ——_——
chaz 'pzognamb - . R
uaminq(s, ti, t2, t3, td, t5, t6, - t7, tB, €9) /* print warning message */

char *S, *£l, *t2, *t3, *td4, *t5, *t6, -:7; “tg, *tS5;

extern-int -yylineno: - ..
TAd fprintf (stderr, "file 83: 7, pxoqnann) Y
fprintf (stderr, a, tl, t2, t3, t4, t5,.t6, t7, to, t9):

fpriatf (scderr, " near liné 3d\n", ¥ylineno):

e 66

\)H

ERIC

Aruitoxt provided by Eic:

Date Class Source File

#include "objc.h"

#include "v.tab.h" L o
char * MON[] = { "o "Jan" n?ebn "Mar" "Apl" "Mayll— "Jun";
. l'Jui" "Augl' llsepll "Qct" IVINov" "Decll’ } ;

= Date: ObJect (N, Collection, Primitive)
{ int mon, dy; year :.} L
= mo:(int) aMonth da: (int) aDay yr:(int) aYear
{ mon = aMonth ;
dy = abDay ;
year = aYear ;
return self ;
} ,
=~ print
t_ . . S
if (dy>0 sg mon>0) ,
printf ("<DATE> %d %s %d\n", dy, MON[mon], year) ;

if (d¥ < 0 && mon<0)
printf ("<DATE> %d\n", year) ;

if (dy < 0 && mon 50)
printf ("<DATE> %s %d\n"; MON[mon], year) ;

/% insert code for different type of prints to account for defaults*/
}

-58-

67

Main Program Source File

#include "stdio.h"™

#include_"objec.h"”

= (N; Collection; Primitive)
extern BOOL msgFlag ;
extern IOD yyin, yyout; msglOD ;
id dateObj :

maih i)

{

extern id Date, Set ;

msgIOD = stdout;
msgFlag = NO ;

dateObj = [Date new 1 ;
printf (">") ;

yyparse() :

}
@class (Date, Set,Cltn; IdArray, Sequence)
@phyla (N, Collection, Primitive)

-59-

' 68

O

ERIC

Aruitoxt provided by Eic:

Database Sources

<ACCESSION NO.> £5129022. 8506. e
<DATABASE SDURCE> BRS/Not natl Librory et Med)rcine Dgtopecse
<€AOTHORES> _Eilisan=J rf{f-E-A;

<PAA> Combriage Hosp ossocnuseéetts. _ _ _
<TXTL£> More than o the rote of the e
__inb theé communify mentol heolth netwark.. - - -- -
<PUB DESC> No:p—Comnunlty-P:ychlolry. 1985 FoB. 36(2). P 18@-5.
<LANGUAGE>-EN---- - —-

;;}é;ialry service

<MAJOR CATEQOBI> CONMDNITY—HENTAL—HEALTH—CENTERS —0g.—- EMERGENCY-SERVICE-HOSPITAL.

EVERGENCY—SERV]CES-PSYCHXATRXC aq. XNTERINSTITUTIONA[-RE[ATXONS. MENTAL~HEALTH-SERVICES:

EA-HEALTH.
CRISIS-INTERVENTION. FEMALE. hﬁSPlTAL -BE 3 WQ-4994,HUMAN‘
MALE. _MIDDLE-AGE. ROLE. SOCIA K n.nq the emergency wunit
build closer tianshipa witn_ camuunn!y agetcies 13 its controct with-
the stote to rm evoluotions of oll ogdmissions to the state hospitol
piyéhiotric_unit_serving the cotchment orea. The emergency unit performs
triage ond provid bockup for _the agenciés, ¢oordinotes_{he Monagement
of multi-oqency c ond holds weekly educotional caonferences for agency
stat!._ _Using . cose exompies, the outhors illustrate how unit ond agency
stoft colloborote to ensure continuity of potient ¢G6ré. Author.

<SB>-m - ___

<DATE> 1985 .

<ISSN> @@22-1597.

<IN> 21.,1087.567.875..

<!M> 8506,

<ED> 850404.

<NO>_MH17582-. -

<ACCESSION-NOIF 147675 -1

<DATABASE SOURCE> DTXc/drola-tr

<TRANSLATION-DATE> Man Jut -1 13:33:43 PDT 1985 (489098823)

<DOWNLOAD DATE> Man Jul_1 10:18:29 PDT 1985 (489086309)

<DOWNLOAD FILE NAME> gote

<F1ELDS_AND_-GROUPS>-1772. - - —-

<ENTRY_CLASSIFICATIONS UNCEASSIFXED e R

<CORPORATE AUTHOR> BOLT BERANEK AND NEWMAN lNC CAMBRIDGE MA -

<TITLE> PLURIBUS SATELITE IMP-DEVELOPMENT MOBILE AGCESS TERMINAL NETWORK.

<TITLE CLASSIFICATICN> UNCLASSIFIED .

<9ESGRIPTXVE NOTE> OUARTERLY TECHNICAL REPT. NO. 33. 1 FEB-30 APR 84.

<DATE> _MAY_. 1984

<PAGINATION> 30P

<REPORT -NUMBER> BB 77 I

<CONTRACT NUMBERS - MDAQDJ—BD-G-Gésév— @39-81-Cc-0408

<REPORT CLASSIFICAT]ON> UNCLASSIFIED _ _ . _ . . B

S>-¢SATELLITE COMMUNICATIONS: *TERMINALS; NETWORKS; SHIPBOARD:

i MOBILE: WORK . [

<DESCRIPTOR CLASSIFICATION> UNCLASSIFIED e E— B

<IDENTIFJERS> PLURIBUS SATELLITE. PACKET NETWORKS, AKPANET. GATEWAYS

<IDENTIFIER CLASSIFICATION>. UNCLASSIFIED-- - -

<ABSTRACT> THIS QUARTERLY TECHNICAL REPORT DESCRIBES WORK ON TNE DEVELOP“ENT
?EU:LUR;BUS SATELL!TL IMPS: AND ON SHEPDOARD SATELLITE COMMUNICATIONS.
_(AUTHOR -

<ABSTRACT cLA ICATION> UNCLASSIFIED N

<INLITIAL INYENTORY> 12

<LIMITAT]OWN_ CODES> 1%

<MINOR CATEGORY> ADULT. BOSTON. _CASE=REPORT. . CATCHMENT<j

. <SOURCE CODE> ¢6e1e@

SDOCLMENT . LOCATION> NTiS

<GEOPOL1TICAL CODE> 7538

<TYPE-COCE> 4

<ACCESSION HO.s tiGises-

<DATABASE SOQOURCI> DIALOGC HY ? 'ILE

<RFERORT ~n0.> <NT1S> DER;“?GG‘I;‘A’, T S -

<TITLE> Post-Processing oi Bivt:onrupnic Citotions from DOE/RECON NASA/RECON,
ond COO/QROLS. Revitioes ¢

<AUTHORS> Boliinger,. W, &. .omncl V. E. H Norrn:on. 1. Murphy, T.

<FUB DESC> Lowrencs. E|verﬁ£ra Nétionol Lob., CA. | <Code> @68147000; 9513035
-8+ ;- UCRL-89995~REV. 5, COMNI=841243-1-REV.1

<DATE> AGG 1584

<PG> 17p

<LANGUAGE> -Engiin
<DOCUMEMT_TYPE>.Cenlercence proceeding
<PC> PC _ABZI/IF A01
<JA> _GRALY397 SA.0ed

<CO _O7 _PUBL> Urited Siates - L
<NT1> Inisrnatiorol cniine isisrmotion meéeting, London, UK, 4 Dec 1984.
ZCN> W—7285~ENG=4l L.
CABSTRACT> We havs developed aon interactive, self-guided prercu for the

-60-

69

chérlménl

Merged File of Heterogeneous Bibiiographic Citations (continuéd)

joint post-otocessing of bibl-oqrophiefz-lot-ons trom the fuderol informotior
centers ot _the Deooriment 61 Energy [OOE}. fne Ceéborfment of Oefense_(00D).
ond. the_ Notiono! Aeronoutics_ond Spoce Administrotion (NASA). This progrom
tiy-in tollcd on-ths Intelligent Gotewoy Processor of the Technology
_{TIS/1GP) _ot the .Lowrence Livermore Nofionol_Loborofory
ion by the TIS user community te terminols
-] . over -TYMNET, ond- the ARPA conm etwork. Users
ore individuolly oufhorized for outomoted intormotion
centers. ond use stonoord commonds for the downlooding. compilotion,
ond-online review of .citotions in. o common.- formot. Freviousiy reported- -
post—procéssing cobobilities _nove bedn further exdondeo; _permitting:_ _(1)._
oniine ¢ tion review. cotsgorizotion, ond oddition of new doto elements;
{2) -disossembly ono re-ossembly of citotions: (3) .-stotisticol onolysis
of _doto fiald contents: (4) crose—correlotion_ of doto field _contaunts: __
ond (5) concordance generotion. In odditi . the new two-003s interpreter
for_ ng_progrom _permita: the tronsformotion of obbrevioted
doto field nod . o E ish _nomee preferred by eoch goncyl,tnc atotistico!?
onolysis of ds in-selected sets
of _bibliogrophic_ ont citotions._(using
user—apecifisd criterio). ona t e lotter is o powertul
tool -for th rotion of ti ependent chorocteristies in-o por
fisld ot reeedOrch. o6f _on _orgoOnizZotion. or for on_guthor. Grophicol! disploys
of publicotlon rot os & function of time ond the normolized stotistics
of terns used in the deacription of the work, -cun be-used to sSignol-new
directions of ongoing reseorch ond the |nton-|ty of itea suppoert. (ERA
10:001706

itotions._fhe

tion: sComputer Networks; Informotion Retrievoli;
Specificotions __. _ . ___ ____ _ . __. _

<Indexing Terms> EROA/990300; NTISOE

<SH> 5B._(Behovioral_end- Soclol Scienc
98 (Electronics aond Electricol Engi --zpnqerCanutgrs) .. 8BB (Librory
ond Informotion Sciences-—Info motion Systems). 62B (Conputcrs. Control.

SACCESSION..NO.¥284C0188558

<DATABASE -SOURCE> QOE/recon I - -
<TRANSLATION_OATE> Mon_Jul_-1_13:33;43 PDT_ 1885 _[489058023)

<O0OWNLOAO OATE> Mon Jul 1 10:1B:29 POT 19B5 (489686309)
<DOWNLOAO-FILE-NAME> gote - - -

<REPORT_NO.PAGE> UCRL--89995-Rev.1 P. 17 DEB5050617 -

<TITLE(MONO)> Post—processing of bibllogrophlc citotions from OOE/2ECON.

Technology);

-NASA/RECON,--and-000/0ROLS. Revision 1
<EOJTOR_OR COMP> Bollinger, W.A.; Hompel, V.E.:. Horr-son. l., Murphy, T P.
<CORPORATE AUTH> Lowrence Livermore Notionol Lob., CA (USA)
<CORPORATE COOE> 9513035
<TYPE> R .
<SEC REPT N0> CONF=—B41243-—1—-Rev.1
<PAGE.-NO>. 17_ .
<AVA1LA81LITY> NTISL ec ABZ/MF AO!.
<OROER NUMBER> OEBS5000617
<CONTRACT_NO> Confroct W-7405-ENG-4B - -
<CONF TITLE> B. internotionol online informotion meeting
<CONF PLACE> -London; -UK
<CONF_OATE>_4_Oec 1984
<OATE> Aug 19B4 :
<CO OF AUTH> US .
<CQ OF PUBL> US_ _ _ .
<ANN J> ERA-10:001706:E0B-B4:188555
<O]ISTRIBUTION> MN-32
<DOCUMENT ORIGIN> P
<BIS> 1IC
<CATEGORIES>. EOB-~990300_ . __..__. R
<PRIMARY CAT> EDB—SQQ;QB(GENEBAE ANO MISCECCANEOUS.,lNEORMATION HANOE!HG)
<ABSTRACT> We hove developed on interoctiv selt-qguided progron for the
joint posit~processing-of -bibliogrophic citotions.-from the federol
informotion centers of the Deportment ot Energy (DOE) the Deportment 5t
Detense (000),7ond the Notionol Aeronou trotion
{NASA). This progiom. is.currently instoiled.on the _lnteliigent Gotewoy
Procesaor of _the Technology Informotion System (TIS/IGP) ot the_ (owiénce
Lnycrmorc Notiono) Loborotory ond is under evoluotion by the TIS user
cammunity from remote terminois by telephone dioi~up. over TYMNET., ond the
ARPA_computér network. Users ore_individuolly outhorized tor_oufomafed. . .
occeas to specific informotion centers. ond use stondord commonds for the
downioodinj. compilotion. ond online raview of citctions in o common
formot. Prgvnnusly reported poat-processing _cobobilitied nové been_further
tipnnded pe 9 (1) online citotion review, cotegorizotion, ond
6diition o' no- doto elements; (2) Gisossembiy ond re-oasembly of
citotions:; {2) stotisticol onolysis of doto field contenta: (4)
cfo‘s-corralo!~on of doto fieid contents; ond (5) concoraonce generotioe,

-61-

ERIC

Aruitoxt provided by Eic:

Merged File of Heterogeneous Bibliographic Citations (continued)

ln _addition. the new two—pDass_ interpreter ftor tne post—processing_prooror

permits: the tronstormotion of obbrevioteo dotoc fie1o0 nomes i1nto_en

nomes Preferrsd by-e cy. the stotisticos onolysis of the oensul)

ono _completeness of odto fialds in _selected sets of bibliagroPhic._

citotions, the eliminotion of redundont citotions (using user—specif ed

criterio), ond trend onoiysis. The lotter. is o powerful tooil for the

explarotion of time-dependent chorocteristics in o Paorticulor field of

research. of on orgonizotion;, or for-on outhor. Grophicol dispiays of

publication rotes os o _function_ of time. ond the _normolized _astotistics of
terms vsed in the deucruptuon of the work, con_be used to signol new

—directions of - aagonag reseorch and the -ntenu-ly of-its support.

<NESCRIPTORS> «INFORMATION-—~computer networks; INFORMATION RETRIEVAL:
SPECIFICATIONS

<]1SSUE> 8423 -

<DOCUMENT NO> 8‘ 1835‘5,,

SAGCESS LONINO 22 "B4CRF7389Y

<DATABASE SOURCE> DOE/recon- I R

<TRANS _ATION DATE> Mon_Jul 1 13:33: 41 PDT 1985 (4 023)

<DOWNLOAP DATE> Mon Jul 1 10:18:29 PDT 1985 (489085309)

<DOWNLGAL. _FILE. NAME>. gote .

<REPO".T _NO.PAGE> UCRL—-91383 P 10 DEBSBO1741

<T] L C(MON)> lntogrolion of on outoua'ed librory support system with on

_ 1»1:1 nt

<EDJY.R

<6T RPQR ¥

<CORPORATE CODE> 9513035

<TYPE> R

€SEC-REPT NO> CONF-B840917L--1

<PAGE_NO> 16 __ el

<AVAILABILITY> WTIS. PC AOZ/MF A7

<CROER -NUMBER>_-DEBS0Q1741_ - -

<CONTRACT. N> .CORErect Wo-T405 -ENG-48 .

<CONF TITLE> Integrater onllne f.braury sysieme centerence

<CONF PLACE> Atlonto--CGA, USA

<CONF _DATE> 13 _Sép 1984

<DATE> Aug 1984

<CO OF AUTH> US

«CO_OF _PUBL> US .

<ANN J> EDB-84:173691

<DISTRIBUTION> .MN-32

<DOCUMENT ORIGEIN> P

<B1S> T1C

<CATEGORIES> EDB-9950300 .- -

<PR(MARY CAT>_ ;pa—sgaaeo(csnsnu AND A _INFORMATION HANDLING)

<ABSTRACT> A new project of the Technology Informotion System (TIS) ot the
Lowrence _Livermore Notuonol Loborotory {(LLNL) colls tor the_evoluotion of
commerciolly ovoiloble. 5
integrotion of the most desirable system with the TIS gotewoy to provide o
comprehensive. p-ototype_tor librories_and intormotion_centers. This_._
prototype system is Plonned to focilitote occess to ond nonoganent of

cob.. CA (USA}

in-house octivities euch os catologing. -seriols control. and ocquieitions,
os_well _ o- to_intertoce_to_externol sy:lona and _ for _dota
Coopera
cotologing, distr t -inter~library
loan, _and _custdmized bibliography production. ozc some_of the_feofures
plonned for the prototype. Development of a user—friendly front—end
processor will ollow the user to negotiote his seorch query in g -
semi-outomdted madneéer _Using 6 ainJle. English—)ike command longuage. Th-
T1S ot Lowrence Livermore Notionoi Loborotory (LLNL) hos developed o
computer~bosed intelligent gotewoy for ocutomoted occess_to. such-diverse,
geographicoliy distributed informotion syatems _os DOE/RECON. _DOD/DROLS.
NASA/RECON, CAS On-Line, DARC (Fronce) ond DECHEMA (Wwest Ge mony). omong
y others. New_informotion resources centers ore being added os requi-’ d
ond _ysers con _connect _simultoneousiy to more than _one host _to compore
r doto. The TIS online moster dnrecto;grpypy!den the user with o
gle. integroted view.of ovoiloble ond relevont resources. The -outomoted
occess _procedures permit the user _to concentrote on_the intormation
ospects of his -gggirother thon _be burdened with vorious log=on_
procedures.. dotcbose formots ond protocolis.. The merger of the lubrery
support with the T1S gotewoy should provide uaers wifh 6 copobilities fo. _
"d utilize the full spectrum of textuol, numeric ond 9-aphics doto

<DESC51PTQRS> -lNFORMAT]ON SYSTEMS-—computor nct-orks DATA BASE kANAuEMENT
-LAWRENCE LIVERMORE LABORATORY

<JISSOE> 8421 _ -

<UPPOSTED DESC> MANAGEMENT ; NATIONAL OQGANIZATIONS us AEC US DOE US ERDA‘US
-ORGANIZATIONS

<DOCUMENT NO> 84: 173591

-62-

ERIC |

Aruitoxt provided by Eic:

Q

ERIC

Aruitoxt provided by Eic:

- €LANGUAGE
' <POCUMENT TYPE> Con

Merged File of Héteropeneous Bibliographic Citations (continued)

<ACCESSION. NO.>_-B4N33099f

<DATABASE SQURCE> NASA/récéan

<TRANSLATION DATE> Maon Jul 1 13:33:43 PDT 1985 _(489098023)

<DOWNLOAD DATES Mon- vul- 1 18:18:29 PDT 1985 (489086309)

<DOWNLOAD FILE NAME> gote

<1SSUE>-22-

<PAGE> 3643

<CATEGORY> 62 == _ R

<RPT#> DEB4-013210 UCRL-90276 CONF-B8406139-1

<CNT#> W—=7405-ENG-48

<DATE> 1984

<PAGES>- 122- - e

<DOC. CLASSIF.>_UNCLASSIFIED - . . - : o

<TITLE> An online directary of _datobasés far moteriol properties -

<AUTHORS>-HAMPEL.-V. E.; BOLLINGER, W. A.; GAYNOR., C. A.: OLDANI., J. 3:

<PAA> C/(Contral _Dato Caorp.)

<PUB DESC> Colifornio Univ..
(Technaology- f i

.. rence. L rmore Lob. CSS:
) AVAIL.NTIS SAP: HC * </MF_A®1 Prasentad
ot thé 9fh liniaen. : + Jerusolem,-24-28 . 1984 .
<DESCRIPTORS> DATA BASE_ MANAGEMENT SYSTEMS:DATA BASES:DIRECTORIES: INFORMATION
---DISSEMINATION: INFORMATION SYSTEMS "~ = === AP ey
<MINS>_/_COMPUTER_NETWORKS/. COMPUTER TECHNIOUES/ DATA PROCESSING/ ON-LINE
SYSTEMS / STATISTICAL ANALYSIS
SABA>. DOE- - .- - - e
<ABSTRACT> An_onitine _directory ol-dotoboses of moteriod pra the
Technology Infarmotion System ot Lowrence Liversore® Nationol_Labaratory-
(LLNL/T1S) ia described. Thie directory t d to provide :nteroctive

occe to._scientiti¢ ond _tachbnicéoi_databo oble to- the public thot
cante inform n _pertoining to nucleor. dtomic. malacular, physical, -
chemicol,_ond. nicaol pr rt of subetoncee. In oddition to_ the 101

Th

doto faorma ie updoted with more
n- .3 d ti systems in these fields. In__ __
aoddition_to d tibing the contente of the do oses, updoted informotion
ie provided on the ovoilaobility 61 thé dotabosse and fheir aoniine occezs
aver public t Phane ond doto netwarks. Some _of the numeric dotobosae_ote
directiy occeesible Dy outhorized users-vio the TIS Intelligent «e Gatewaoy
ee Processar ot LLNL (TIS/IGP). with Sélf-guiding praocedures fofr the -
downlooding, merging, post-praocessing, and grophicol/stotisticol onalysie

__of deota. _ .. ______ _.

10 aeteswy

— CE>-OIALOG-NTIS FILE 6

<REPORT NO.> <NTIS> = _DEB4013238. - - - -

<TITLE> Online Directory of Octoboses ‘or Matéiia! Propartiee. . .

_Previously ore report
eric dotoboses oand pre

"<AUTHORS> Hompei. V. E. ; Bollingar. W. A. ; Goynor, C. A. ; Oldani. J.

Sod. . s . _ N .)
<PUB DESC> Lowrence Livermore National Lab.;, CA. ;: <Code> ©58147006: 9513035

—--DC._ .. .UCRL-90276;: CONF-8406139-1
<DATE> Moy 1984

<PG> 122p
<AY> Partiaons o

. ble in microfiche products.
E> English_

YPE> Co nce praoceeding
<PC> PU _ABS/MF ADY__ __
<JA> GFA1B423: NSAQ900

<CO JOF PUBL> United States o -
<NI> Internotionol CODATA conference. Jerusalem, lercel. 24 Jun 1984.
<CN> W-7405-ENG-48 .
<ABSTRACT> we hove creot

properti on the. Technoiagy-Infaorm n System ot Lowrence Livermore._
Nationol _Laoborotory (LLNL/TIS). This_ direcfary_is. intended to praovide
oclive acceas to scientific and technicol databo ovaitoble 6 __. . __

public_thot _contoin infarmaotion pertoining to nuclear. otamic, moleculor,
Physical. chemical, and mechanicol propérti€s of subsfonces. The directary
is bosed on work-Jone-earlier by Joseph Hilsenroth of the Notionol Buteau.
of Standards_(NBS/OSRD)_ond Jaock H. Westbrook of Generol Elect
In o¢dition to the 121 doto files_ _Drevioualy raporfed, we hov
the -infaormation aond-iiaxntified- mare than 38 new numeric_databa
predictive systems in_th tields. We hove inciuded, where appl
entries contaoined in the ectaries_Published By Cuodro-Associotes.

CODATA. ond UNESCO. 1In. o an to de!gripingitngrggolgg(g,o!f!h.,dﬁ!ﬁﬁuiii;
provided dpdotad_intormotion_on the evoilobility of the datobasej
_oniine occess over public telephaone and_dafa networks. The
directory is prepaored-for use-b entists ond engineers_and. . .
enhgnce the shoring of S ond T_trescurces aver cammuricotion networks.
ctory is expected to become pDorticuloriy impartant to the mational
and internotionol mognetic— ond loser-energy fusion projects, _adclaor
criticolity sofety. ond . computer oided engineering pragroms. Some of

the numeric dotoboses ore directly accessible by outhorized ueers vio

-63-

iar

Dopor!nch(

Q

ERIC

Aruitoxt provided by Eic:

Merged file of Heterogeneous Bibliographic Citations (continur 4)

‘Fecge 33

deacribes !hg gnbl'cox:ons -hnch nqyc nenolniea 4 rom_ARPANET.during the

raport-ng period. anollx. it discusaes on investigo

to provide ee 9olo-oy ee fociliti
_wére two _lines. An interne twork Tronsmission Control Prot
implemented which is designed tao be opplicoblé. £16.6 Host~host

protocol between-hosts-on di
propéerties of thia profocoil

gaoteway

n of the techn:iques

for.focsimile tronsmission between different devices over the network.

Eorlier work in ottocking hosts by _front-¢érnd {&chniques_ hoa been broodened

ies between computer._ networks. Here,

TCcP

ts to test the
CL, Stonford U ong
put_into_designifg.ond
€ node octa 03 0 ee

e* botween two néetworka ond_pertorima o_mopping.between the-

stondord protocols of eoch. lnvostngoled wos_ the oppllcgnnlngy of 1nja

approoch-to severol networks, inciuding the connection-oo ARPANET oand the

UK_Post Office Experimental Packet Switched Searvice EPSS, Preliminory

results show thot the technidQue should be feosible, but since the other
-—networks are_not yet operotionol. the technique wos not demonatroted.

£
<DATABASE SOURCE> SOC/Librory ond Info o
<IRANSLATION OATE> Man_Jul. 1 13:48:58 POT. 1985_ (489698450)

<0

NLOAO OATE> Mon Jy! 1 10:50:40 POT 1985 (48908B824@)

<DOWNLOAD-FILE NAME> sdcgote

<OATE>_1926 _____

<TITLE> The _reference dcparlncnt §otc-oy io the ﬁé(iénéi Lgﬁfory

<AUTHORS> Umo, M.G.

<PUB.OESC> Nigarbiblias, 1 (1) Jon 1876, 19-20., 22

<CO OFf PUBL> Engl
<Cotegory-Code> RuNj

ign”

<OESCRIPTORS> Relererice Work: Deportmanta; Notionol libraries: National

<ABSTBACT§ Ouflir

rence DebPatrtment .
rence aeportm'nt:.iglg
e the bosic responsibitities of-the refearence doparlmojl

which offers o 12 hour o doy service tao uéedrs. The 4predd_ot _moferiol on

various f

Briafiy adescribes_such routine foeks os: mointoining the -pub

shelf-reading;

eventsa; ond mointaining the p
angmercoted. A_ pollcy of moximum courtesy ond minimum deloy is odopted in
t

<ACCE! N} -
£OATABASE . SQURGE) _0TIC/dral §—(r

ors and the constont shifting oround of stock pos

problems.
¢ cotologue:
tocktaking: compiling the plcturé file of_ importont

file. Reference desk duties ore

ires.

3 248

<TRANSLATION OATE> Mon Jul 1 13: 33: 43 POT 1985 (439098023)
<DOWNLOAD DATE> Mon. Jul-1 10:18:29 POT 1985 (489086309)
<OOWNLOAD FILE NAME> gote

<FIELOS-AND-GROUPS> 15/5. 5/11

<ENTRY CLASSIFICATION> UNCLASSIFIED -

<CORPORATE AUTHOR> RANO CORP_SANTA uouch CALIF

<TITLE> -GETTING -PEOPLE TO- PARKS

<TITLE CLASSIFICATIONS> UNCEASSIFIEB

<AUTHORS> VAUGHAN.ROGER J. ;

<DATE> - APR--, 1976
<PAGINATION> 25P__

<REPORT NUMBEF> P-5654

<REFORT-CLASSIFICATIONS _UNCLASSIFIED- ---

<OESCRIPTORS> eTRANSPORTATION; «PASSENGERS; aRECREATION: NEW YORK CiTY(NEW
YORX); NEW JERSEY; PASSENGER VEHICLES: PARKING FACILITIES: ACCESS:

--ECONOMIC_ANALYSIS — - —o oo

<OESCRIPTOR CLASSIFICATIONS ONCCASSIFIEO

<IOENTIFIERS> *GATEWAY NATIONAL RECREATION AREA

<IDENTIFIER_CLASSIFICATION> .U

<ABSTRACT> THE PURPOSE QF THIS PAPER IS TO. PRDYIOE AN ECONOMIC PERSPECTIVE ON
THE PROBLEM OF TRANSPORTING PEOPLE TO GATEWAY NATIONAL_RECREATION_AREA.
LOCATEO IN--NEW- YORK-CI1TY-AND NORTHEASTERN NEW-JERSEY. wHILE IT OOES NOT
CONTAIN ANY OETAILEO EMPIRICAL CALCULATIONS FOR THE SOLUTION..TO_THIS-

COMPLEX ISSUE.

IT 1S HOPEO THAT SOME OF THE SUGGESTIONS MIGHT BE pSEFUL

INPUT _INTO- THE PLANNING PROCESS, ANO MIGHT OPEN THE WAY TO MORE OETAILEO
_ _RESEARCH. ANO_ANALYSIS..

<ABSTRACT CLASS

ICATION> UNCLASSIFIEO

<INITIAL-INVENTORY>.2
<LIMITATION_CCDES>._1
<SOURCE COOE> 296600
<OOCUMENTY - LOCATION> NTIS
<GEQPOLITICAL COOE> 0628

<TYPE COOE> W

<ACCESSION ‘NO»»»IR=3I5R

<OATABASE SOURCE> SDC/Librory and_Into.

<TRANSLATION OATE> Mon Jul 1 13:40:50 POT 1985 (489098450)
<DOWNLOAO OATE> Mon Jul 1 10:50:40 POT 1985 (489088240)

