DOCUMENT RESUME

ED 281 208 €s 210 427
AUTHOR Mayer, John; Kieras, bPavid E.
TITLE A Development System for Augmented Transition Network

Grammars_and a Large Grammar for Technical Prose.
Technical Report No. 25:

INSTITUTION Michigan Univ., Ann Arbor. : -

SPONS 2GENCY Office of Naval Research; Arlington, Va. Personnel

,,,,,,,,, and Training Research Programs Office.

REPORT_ NO ONR-TR-87-25

PUB_DATE 15 Mar 87 I

CONTRACT N00014-85-K—-0385

NOTE 41lp. L . : ,

PUB TYPE Viewpoints (120) -- Information Analyses (070)

EDRS PRICE MF01/PC02 Plus Postage. = S

DESCRIPTORS Algorithms; *Authoring Aids (Programing); Computer
Networks; *Computer Oriented Programs; Grammar;
Language Processing; *Programing Larguages; Reader
Text Relationship; *Resource Materials; Semantics;

o Syntax; *Technical Writing; *Training Methods

IDENTIFIERS *Augmented Transition Network Grammars; Parsing

ABSTRACT)

_____ _ _ Uusing a system based on standard augmented transition
network (ATN) parsing approach, thi:z report describes a technique for

the rapid development of natural language parsing, called High-Level

Grammar Specification Language (HGSL). The first part of the report

describes the syntax and semantics of HGSL and the network

implementation of each of its constructs, while the second section

discusses the algorithms used in the HGSL compiler and the ATN

interpreter. The third section presents a large grammar for technical

prose that was developed with the system and which allows parsing of

technical training materials in the draft stage of writing as part of

a_ computer—-based comprehensible writing aid. The report concludes

with a review of some of the results on the coverage of the grammar.

The grammar for technical training materials is appended. (FL)

* Reproductions supplied by EDRS are the best that can be made *
* from the originai document. *

iii********

Ottice of Educatianal Research and Imbrovamant

EDUCATIONAL RESQURCES INFORMATION

i ¢ . ___ _CENTEP(ERICO)

XY *Th-s document has been reproduced as

received {rom the person or organization

O _orgngtngit_ T

- - 0O Minorchanges hava been made to improve
,’\J __reproduction quality. . _ L

~-4 ® Points of view or 0pinions stated in this doc u-
S ment do not necessarily represent ofticial
":t) OERI position or policy

Nd
o
L A Development System for Augmented
Transition Network Grammars
o 7 and
A Large Grammar for Technical Prose

John Mayer and David Kieras

University of Michigan

Techiiical Report No. 25 (TR-87/ONR-25)

March 15, 1987

This research was supported by the Personnel and Training Research
Programs under Contract Number NO0O14-85-K-0385, Contract Authority
dentification Number NR 667-547. Reproduction in whole or part is
permitted for any purpose of the United States Government,

) Approved for Public Release; Distribution Unlimited
BEST Copy AVAILADLE

CsAoHT7 -

5

O
|

HO

E

RIC

‘Unclassified
- SECURITY CLASSIFICATION GF THIS PAGE

REPORT DCCUMENTATION PAGE

Form Approved
OMB No, 0704-0188

T2 REPORT SECURITY CLASSIFICATION

... --Unclassified

1b. RESTRICTIVE MARKINGS

23 SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release:

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

distribution unlimited:

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

TR-87/0NR-25

S MONITORING ORGANIZATION REPORT NUMBER(S)

6b OFFICE SYmBOL

6a. NAME QF PERFORMING ORGANIZATION
11 e d P e (If applicable)

University of Michigan

;a NAME OF MONITQRING QRGANIé;;[Ogi
tognitive Science = o
Nffice of Naval Research .Code 1142(S)
809 N, Quincy Street

6;. ;QQR,ESS (City, State, and élP,nge), L
Technical Communication Program
Ann Arbor, MI 48109-1109

7b. ADDRESS (City, State, and ZIP Code)
Arlington, VA 22217

Bb. OFFICE. SYMBOL

Ba. NAME OF FUNDING / SPONSORING
(f applicatle)

ORGANIZATION

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

NOCD14-85-K-0385

8c. ADDRESS (City, State, and 2IP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK [WORK UNIT -

ELEMENT NO INO. NO. _ |ACCESSION NO.

o 7 61153N RR04206 'RRO4206-0A} NRGB7-547

1. TITLF (nclude Security Classification) g peyelopment System for Augmented Transition Network Grammars
and a Large Grammar for Technical Prose

12. PERSONAL AUTHOR(S)

John Mayer and David E. Kieras
13a. TYPE_OF REPORT 13b TIME COVERED _ _ 14. DATE OF REPORT (Year, Month, Day) }15 PAGE COUNT
Technical FROM TO March 15, 1987
16 SUPPLEMENTARY NOTATION
17 : —COSATICODES | 18! SUBJECT. TERM,S‘ (Continae on raverse lrfrrjercefsary qnd :deprify b,y,bl,o',:k ,”“',"P‘?f’,,,
~—_ _FIELD | GROUP | SUB-GROUP _ Training Materials, Documentation, Authoring Systems,

05 09

Natural Language Processing

This_ report is

grammar was developed to
draft stage of writing, as part of a
Some results on the >

allow parsing

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

_This_report is in two major sections. The First
Grammar Specification tanguage (HGSL) which greatly simplifies the development of

a complex augmented transition n.twork grammar (ATN). A compiler converts HGSL
expressions into a. transitien network which a simple interpreter uses for
parsing. The algorithms used by the compiler and interpreter are presented. The
second section presents the HGSL for a large grammar for technical prose. The

as part of a computer-based comprehensible writing aid.
Ome res 7 > coverage of the grammar are presented to show that the
grammar is elo§e ty being practically useful.

The first presents a High-Level

training materials in the

of technical

20 _DISTRIBUTION / AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION

Q

Aruitoxt provided by Eic:

UNCLASSIFIED/UNLIMITED L[] SAME AS RPT J DTIC USERS
32a NAME OF RESPONSIBLE INDIVID! AL 22b TELEPHCNE (Include Area Code) | 22¢ OFFICE SYMBOL
__ . Susan Chipman ...} (202) 696-4318 |
0D Form 1473, JUN 86 Previous editions are olsolete —SECURITY CLASSIHTATION OF THIC PAGE ——
Unclassified
3

ABSTRACT

____ This report is iu two major sections. The first presents a
High-Level Grammar Specification Language (HGSL) which greatly

simplifies the development of a complex augmented transition

network grammar (ATN). A compiler converts HGSL expressicns into

a _transition network which a simple interpreter uses for parsing.
The algorithms used by the compiler and interpreter are
presented. The second séction presents the HGSL for a large

grammar for technical prose. The grammar was developed to allow
parsing of technical training materials in the draft stage of

writing, as part of a computer-based comprehensible writing aid.

Some results on the coverage of the grammar are presented to show
that the grammar is close to being practically useful.

A Development System for Augméntéd Transition Network Grammars

and a Large Grammar for Technical Prose
John Mayér and David Kieras

___ The system described in this report is meant to allow for the
rapid development of augmentéd transition network (ATN) parsers

for natural language parsing. This report assumes knowledge of

the basics of ATN parsers; for background; see Winograd (1983).
The system is based on the standard ATN parser approach; but the

user does not directly specify the nodes and arcs of the network
grammar to be interpreted; rather, the grammar developer uses a
more abstract shorthand called High-level Grammar Specification
Language (HGSL). An HGSL compiler converts this shorthand into

equivalent networks suitablé for use by the ATN interpreter.

The first part c©f this report describes the syntax and

semantics of HGSL, and thé network implementation of each

construct. The second part describes the algorithms used in the
HGSL compiler and the ATN interpreter and HGSL compiler. The
third part presents a large grammar for technicai prose which was
developed with this system.

A High-level Grammar Specification Language (HGSL)

HGSL allows the user to easily specify common syntactic

patterns. These specifications are then compiled invo ATN
networks, which aré interpreted during parsing. These ATN

networks are constructéd from arcs of five types: word test, lex
test, net-call, pop, and conditionail. Word test arcs allow

control to pass to the next node only if the current word matches

the given word. Lex test arcs are similar but specify a lexical
category to match, rather than a particular word. Net-call arcs

name some network which is to be called;, together with a next

state to which control passes if the net call succeeds; while a
pop arc signals a successful return from a net call. TUast, the
conditional arc causes evaluation of an arbitrary condition,
which if true, results in control passing to the specified next
state.

The language allows for matching the input sentence against

actual words, lexical categories; networks; and conditions.
These basic componénts may be combined to form sequences and
alternations. Optional and repeated items are indicated in a
straightforward way.

HGSL Syntax

. In the following discussion; we w:ll present the svntax of
each HGSL construct, its meaning, an example of its use, and
finally the ATN network into which it is compiled. Table 1 gives
a context-free grammar for HGSL; rules from this grammar will be
cited for each construct.

Table 1

Contéxt=free Grammar fbf,Eﬁéfﬁiéﬁrlé§élf3pecification Language

1 Grammar -> Netdefinition Grammar
2 S -> Netdefinition "END-GRAMMAR"
3 Netdefinition -> "NET-DEF" <string> Expression
4 Expression -> "!"<string>

5 Expression -> <string>

6 Expression -> "#"<string> ,

7 Expression -> "{" Expression Sequence

8 Sequence -> Expression Sequence

- 9 - _> "}" B o

10 Expression -> "{" Expression Alternation
11 Alternation -> "/" Expression Alternation
12)] - n}n o

13 Expression -> "-" "{" Expression "}"

124 Expression -> "+" "{" ExXpression "}"
15 Expression -> kv w{m Expression "}"
16 Expression -> "<" <lisp expression> ">"

A grammar written in HGSL is a list of network definitions,

each definition consisting of the key word NET-DEF, followed by
the name of the netwerk and an HGSL expression. The 1list is

terminated with the key word END-GRAMMAR (Rulés 1-3). The

top-level network must be named #START.

Basic expressions: The simplest HGSL expressions are used
to match actual words or lexical categories. A literal word
match is specified by prefixing the relevant word with an
exclamation point (Rule 4). Thus the expression !THE wiltl

recognize only the word the. The network which is built to
implement a literatl word match is a single word-t.st arc that

compares the current word with <string>. Far moré useful is the

ability to specify a lexical category match. Siince@ this is the
most common test in a grammar, lexical catégories are written

plainly (Rule 5). For example, the expression NOUN will match

any noun. The lexical category match generatés a single lex-test

2

6

arc. A network match is indicated by prefixing a pound sign to
the name of the network {Rule 6). For cxampie, #NP is an

invocatior. of the noun phrase network. The net-call expression
generates a net-cdll arc.

Sééﬁéﬁées; A sequencé can be described by enclosing a list

of HGSL expressions in brackets (Rules 7-9). Thus
{!THE NOUN #VP} is a sequential pattern satisfied by the word
the, followed by any word of the class noun, followed by any

group of words which satisfiés the expression for the #VP
network: This rule can be applied recursively, allowing us to
create a sequential expression from simpler sequential
expressions. For example, {#NP {#VP #NP}} is a tegal expression

which happens to be equivalent to {#NP #VP #NP}.

Alternations. To match &xactly one of severail expressions,

the alternatives are séparatéd by slashes and the whole is
enclosed in brackéets (Rulés 10-12) : The pattern
{!THE / !A / !SOME} reéquirés thé next word to be one of the
three words, the; a, or scmé. Oncé we have both s2quences and

alternations, the recursive possibilities of HGSL become more
interesting as in (#VP / {#NP #VP}}. This pattcrn could be a
top-ievel definition of #SENTENCE Since it is satisfied either by
#VP (an imperative sentence), or by the sequence {(#NP #VP} (a

declarative pattern).

Optional matches. The appearance of a subexpression in some

larger pattern may be made optional by placing a dash before it

(Rule 13). The pattern { - {!IN !ORDER} !TO #VP} matches both In
order to form a more perfect union and To form a more perfect
union:

____3epetition. Shorthand expressions are provided for two very
common types cf seguential repetition corresponding to
zero-or-more, shown by a preceding asterisk, and one-or-more
shown by a preceding plus sign (Rules 14, 15). For example,
{* {PREP #NP}} matche. any number of consecutive prepcsitional

phrases; including noné at all, and {#NP !VERB + {#NP}} matches a

sentence with one or more cbjects in the verb phrase:

.. Conditional matches. It will sometimes be convenient to be
able to insert arbitrary conditions into a larger expression. A
LISP form that evaluates to true or false can be enclosed in
angle brackets to constitute a valid HGSL expression. For
example, the pattern

{#NP #VP <EQUAL (NUMBER-OF NP) (NUMBER-OF VP) > #NP}

first matches an #NP followed by a #VP. We must then evalvate the

condition in angle brackets and then proceed to mat.ch a second NP
only if the condition evaluates to true. The condition is

implemented by a single test arec in the ATN. Note that HGSL does

3

.

not provide any standardized data structures to be tested by
conditional expressions. Thus in order to write a condition, the
grammar writer must go outside HGSL; at least in its current
form, and devise a LISP expression based on the data structures
of the interpreter.

____ _These conditions may be arbitrarily comglicated and

therefore may be a trap for the grammar developer. Using them
too often will severely reduce the ease with which the grammar
can be understocod and extended. On the other hand, a few
well-motivated conditions may allow considerable rule economy
without introducing any serious obscurity. Our experience with
using conditions shows that they can sometimes be quite simple

and still be useful.

Network Generation

Seguences. Generation of a network for

a seguence of

patterns proceeds as followS. Suppose we have obtained a subnet
for the first expression in the sequence: To ensure that the
patterns specified by the consecutive subexpressions are matched
in order; we need only build the second subnet so that its start
node is the end node for thé first subnet: We likewise let each
stbsequent pair of adjacént component networks share end and

start nodes. The start nodé for the whole network is that of the
sequentially first component network and the end node of the

*thole is +that of the last component network: This construction
is shown in Figvure 1 for the sequentiail pattern {El E2 E3}. Each
box represents an arbitrarily complicated expression. All that
has to be known about them in order to incorporate these
expressions intoc a more complex net is that they have a single
start and stop node as shown: Note how the stop node of El is
the same as the start node of E2, as suggested by the overlapping

circles. The correctness of this construction depends on the
fact that the subnets are "one-way" nets, in that control can
never flow backwards from the stop node to the start node. If

this were not the case, the net might recognizz the first
subexpression, then the second, then wander back and redo the
first.

Alternation. To build a network for an alternation we use

a _single new start node as the subnet start node for each of the

subexpressions. We then add T-test arcs (i.e. test arcs for
which the condition always evaluates to TRUE) from the various

end-ncdes to a single new end-node created for the composite net.
This is shown in Figure 1 for the alternation (El1 / E2 / E3}.

The lighter arcs réprésént the nets previously generated for E1,
E2, and E3. The arcs_added to impilement the alternation are
shown as heavy arcs. Clearly the newly constructed network can

only be traversed if exactly one of the component networks can be
satisfied.

(Ei E2£3) O & O 2 O

{E1/E2/ E3 }

+E C E ¢

Figure 1 Network Implementation of HGSL constructe.
Boxed "E" and thin arrows are the previously constructed
net of the arbitrary expression E.

.. Optional expressions: Given an expression and some net
that implem.ats it, we can easily add arcs to make the same

expression optional. We do this by adding a T-test arc,

evaluated after the first are of the expression, leading from the

start node to the end-node.: We then have the option eitheér to

pass through the net, or to match nothing to it, as shown in
Figure 1.
‘Repetitions. ,Impiemehtihg one-or-more repetition is a bit

complicated. Assuming we have generated a net for the expression

to be repeated, we add an arc leading from its end node back to

its start rnode, as sho*n in Figure 1. This will allow the
pattern to be matched more than once: We also creaté a new end
node for the compnsite network and connect the component
network’s end node to it via a T-test: After th: pattern has

been matched one or more times, control can follow this path out
of the network.

Zero-or-more repetition. As shown in Figure 1, we take the
network of the expression to be repeated and add a backward
T-test from its end to its start node. As in oneé~or-more
repetition, this allows the pattern toc be matched more than once.

The most ccmpiiCatédrhéEﬁéfk construction is that for

We also create new start and end nodes. The cld end node is
connected to the new one by a T-test arc. This is thé exit from
the network after the pattern has been matched ore or more times.
Finally we add a pair of new arcs out of the néw start node. The

first leads into the old start node: Any path through the

network which begins by taking this arc will have to satisfy the
repeated pattern one or more times: The second arc is a T-test
leading directly to the end node of the composite network. This

allows for zero repetitions of the expression.

It can be proven that the network implementations of the

HGSL constructs adopted here are correct. However it is =<lso

true that the current HGSL compiler does not produce the most

compact networks possible. For example, Figureé 2 shows a more
efficient network censtruction for alternation.

IMPLEMENTATION ALGORITHMS

The HGSL Compiler

____ FEere we deéscribe how HGSL constructs are compiled into

networks suitable for the interpreter described below. The

expression to be compiled as a network is parsed by the set of
mutually recursive functions ¢shown in Table 2. Each function is

responsible for parsing the structurs for which it is named and
adding the appropriate arcs-and nodes.

E1

E2

E3

Figure 2. Alternate network implementations of 7
{ 7E71”/ E2 / E3 }. The higher one is currently implemented,
but the lower one is more efficient.

11

Table 2

The HGSL Compiler

function #HGSLC (INPUT FILE: FILE) returns BOOLEAN is
SELECT OUT PORTION OF FILE TO BE COMPILED,

return #GRAMMAR;
end #HGSLC;

function #GRAMMAR returns BOOLEAN is
loaop o
if CURRENT-WORD = END-GRAMMAR then
return TRUE;
else if #NETWORK- -DEFINITION then do nothing;
else
return FALSE;
end if;
end. loop;
end #GRAMMAR;

functlon #NETWORK DEFINITION returns BOOLEAN is)
if CURRENT-WORDP = NET-DEF then ADVANCE -WORD; end 1f,
RECORD CURRENT-WORD AS NAME OF THIS NETWORK;
ADVANCE-WORD;
START = A START NODE FOR THIS NETWORK,,
RECORD START AS FIRST NODE OF THIS NETWORK;
if #EXPRESSION(*TART STOP) then
ADD A POP ARC BEGINNING AT STOP,
return TRUE;
else
return FALSE;
end if;
end #NETWORK-DEFINITION;

func tlon #EXPRESSEON(START STOP) returns BOOLEAN is
if CURRENT-WORD STARTS WITH "#" then
~ _return #NET-CALL (START,STOP); end if;
if CURRENT-WORD STARTS WITH "<" then
. _return #CONDETION(START STOP),,end 1f,
if CZURRENT-WORD STARTS WITH A LETTER then
retarn #LEX-TZST (START,STOP); end if;

if CURRENT-WORD STARTS WITH "!" then
. return #WORD-TEST (START, STOP); end if;
if CURRENT-WORD IS "-" then

. return #OPTIONAL (START,STOP); &nd if;
if CURRENT-WORD IS "+" then
return #ONE-OR-MORE (START,STOP); end if;

(table

12

continues)

if CURRENT-WORD I3 "*" then

return #ZERO-OR-MORE (START, STOP}; end if;
if CURRENT-WORD IS "{" then

_return #LIST-NO-PREFIX (START,STOP); end if;

. return FALSE;
end #EXPRESSION;

functlon #NET CALL(STARTLSTOPL returns BOOLEAN is
USE CJRRENT—WORD TO LOOK UP START NODE FOR INVOKED NET'
ADD NET ARC FROM START TO INVOKED NET WITH NEXT STATE = STOP;
return TRUE,
end #NET-CALL;
function #CONDITION(START STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADPD TEST ARC FROM START TO STOP USINF CURRENT -WORD
A§ TEST EXPRESSION,
‘return TRUE; ,
end #CONDITION;
functlon #WORD TEST(START STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD WORD- TEST ARC FROM START TO STOP USING CURRENT-WORD
ASfWQRD TO COMPARE WITH;
return TRUE;
end #WORD-TEST;

function #LEX-TEST(STARTLSTOPL returns BOOLEAN is

STOP = A NEWLY ALLOCATED NODE; -

ADD LEX-TEST ARC FROM START TO STOP USING CURRENT-WORD
AS LEXICAL CATEGORY TO COMPARE WITH;

return TRUE;

end #LEX-TEST;

functlon #OPTIONAL (START, STOP) retiirns BOOLEAN is
WORD-ADVANCE;

if #LIST-NO- PREFIX(START , STOP) then

ADD "T" TEST ARC FROM START TO STOP;

return TRUE;

end #OPTIONALi

(table continues)

function #ONE-OR-MORE (START; STOP) returns BOOLEAN is
WORD-ADVANCE; S
if #LIST-NO-PREFIX (START,STOP2) then
STOP = NEWLY ALLOCATED NODS;
ADD "T" TEST ARC FROM STOEF2 TO STOP;
return TRUE;
else
return FALSE;
end =f;
end #ONE-OR-MORE;

function #ZERO-OR-MORE (START,STOF) returns BOOLEAN is
ADVANCE-WORE; o
START2 = NEWLY ALLOCATED NODE;
if #LIST-NO-PREFIX(START2,STOP2) then
STOP = NEWLY ALLOCATED NODE;
ADD "T" TEST ARC FROM START TO START2;
ADD "T" TEST ARC FROM STOP2 TO STOP;
ADD "T" TEST ARC FROM START TO STOP;
ADD "T" TEST ARC FROM STOP2 TO START;
return TRUE;
else '
return FALSE;
end if;
end #ZERO-OR-MORE;

function #LIST-NO-PREFIX (START, STOP) returns BOOLEAN is
ADVANCE-WORD; o
STOP = A NEWLY ALLOCATED NODE; o .) _
if #EXPRESSfON(START;SEQE?) then null; else return FALSE; end if;
if CURRENT-WORD = "/" then
ADD "T" TEST ARC FROM STOP2 TO STOP;
until CURRENT-WORD = "}" loop
if #EXPRESSION (START,STOP2) then
ADD "T" TEST ARC FROM STOP2 TO STOP;
else:return FALSE;
end if;
end loop;
return TRUE;
else- S o
until CURRENT-WORD = "}" loop
START = 8ToP2; o
if #EXPRESSION(START,STOP2) then null;
else return FALSE; end if;
STOP. = STOP2;
return TRUE;
end if;

o $HGSLC is the top-level function of the compiler. It takes
the name of an input file and asks the user whether the entire
grammar should be compiled or if just one of the network
definitions should be recompiled: It then calls #GRAMMAR. Since

a grammar is just a list of network definitions ended by the key
word END-GRAMMAR, the function #GRAMMAR calls #NETWORK-DEFINITION

repeatedly until that key word is encountered:;

o #NETWORK-DEFINITION checks for the key word NET-DEF, records
the name of the network being defined; and then calls
#EXPRESSION. #EXPRESSION is simply a large select statement
which examines the current character to determine which type of
expression follows. The appropriate function is ,.hen called.
The functions #NET-CALL; #CONDITION; #LEX-TEST, #WORD-TEST are
low-level functions which actuaily build single arcs for the
routines that call them.

#OPTIONAL, #ONE-OR-MORE, ¥ZERO-OR-MORE, and #LIST-NO-PREFIX

are_intermediate level routjines that all call the function

#EXPRESSION one or more times; adding additional arcs to the
results of these function calls, and sometimes piecing them

together to form a larger net. #OPTIONAL adds a single arc to
whatever structure has been built for its component eéxpression.
#ONE-OR-MORE adds two arcs and #ZERO~-OR-MORE adds four.

#LIST-NO-PREFIX is the most complicated net, since it builds
either a disjunctive or a sequential net and in either casé this
requires piecing together the nets generated during calls to

#EXPRESSION as discussed above and pictured in Figure 1.

The ATN Interpreter

B The interpreter used by our system is fairly conventional.
The output of the compiler is a set of networks based on the

constructions given above. These networks ‘are represented as sets

of arcs leading from one node to another. The interpreter has
only one major data structure; a stack of nodes that is used to
maintain the current path through the various néts. The
interpreter repeatedly pops this stack and %tries to extend the
path, generally by evaluating the next arc out of thé most
recently stacked node:

__ The output produced by the HGSL system is a syntax tree such
as _that shown in Figure 3. This tree is based on the parse path
constructed automatically by the interpreter: Once parsing the
top-level net has been successfully completed; the parse path
will be stored at the top of the parse stack and can be
interpreted as a syntax tree.

Table 3 gives the interpreter algorithm in pseudo-code. The

stack framé&, deécldred in lines 2-8; contains a node id number,
the id number of the last outgoing arc examined, the position of

11

15

(#START
(#SENTENC:E
#NP
(DET THE)
(NOUN INSTRUCTORY))
v
(VERB PERFORMED)
(#NP
(DET THE)
(NOUN PROCEDURE)))))

Figure 3. Example of parser output for the sentence
"The instructor performed the procedure.”

12

16

Table 3

The ATN Interpreter

1 functxon ATN INTERPRETER returns SUCCE SSWOR—FAILURE is
2 FRAME is record

3 ° STATE: integer;

4 LAST-ARC-TESTED: integer;

5 POSITTGN fN—SENTENCE‘ 1nteger,

6 ACTIVE-NET-CALL-FLAG: boolean;

7 NET-PATH: list of FRAME;

8 end record;

-9 CURRENT-FRAME : FRAME

10 S: stack of FRAME;

11 POPPED-SENTENCE: boolean;

12 begin 7

13 POPPED-SENTENCE := FALSE,

14 PUSH(S; [#INVALID-NET- NAME l 0 TRUE NIL]),

15 PUSH (S, [#START1, 0, 1,FALSE, NIL]),

16 while not POPPED- SENTENCE loop

17 CURRENT-FRAME = POP(o),

18 if CURRENT-FRAME MATCHES [-’—'—,PRUE NET-= PATH] then
19 S := PUSH(S,NET- PATH),

20 else if CYURRENT-FRAME MATCHES [—'-r-,TRUE NIL] then
21 S := PUSH(S, [-;-,-,FALSE,NIL]) ;

22 else if CURRENT-FRAME MATCHES
23 [STATE,; ARC~- NG,POSITION FALSE, NI*J then

24 NEXT-ARC~NO := ARC-NO + 1;

25 NEXT-ARC := FETCH-ARC(STATEINEXT"APC h E;,
26

TEST~-RESULT := TEST-ARC (NEXT-ARC,PCSITION) ;
if TEST-RESUET = RAN-QUT-QF-APCS then
if STATE = INVALID-NET-NAME tL=n
return FATILURE;
~ad t£f;
else *f TEST--RESULT = SUCCESS thenwﬁ, ,
if ARC-TEST MATCHES (ARC TYPE, X, NEXT- STATE) and
MEMBER-GF(ARG-TYPE {WORD LEXl) then

7
8

9

0

1

2

3

4 S = PUSH (S, [NEXT-STATE, O, POSITION+1,FALSE,NILJ),
5]

[

7

8

9

0

else if ARC-TEST MATCHES (TEST X, NEXT-STATE) then

S = PUSH([NEXT-STATE, 0, POSITIONJ S):.

else if ARC-TEST MATCHES (POP,NIL,NIL) then

INVOKER-FRAME := MOST RECENTLY STACKED FRAME

THAT MATCHES [STATE,ARC,-, TRUE,NIL]; .
NET-PATH := ALL FRAMES ABOVE INVOKER-FRAME;

41 if STATE = ¥START1 then POPPED-SENTENCE := TRUE; end if;

42 ARC-TEST := FETCH-ARC (STATE,ARC) ;

43 - MATCH ARE-TEST TO [ARC-TYPE,NIL,NEW-STATE];
44 S := PUSH(S, [STATE,ARC, X, FALSE, NET-PATH])) ;

(table corntinues)

13

45 S := PUSH(S, [NEW-STATE, 0, X,FALSE,NIL]);
16 end if;

47 else ___ =

18 S := PUSH (S, CURRENT-~FRAME) ;

49 end if;

50 end if;

51 end loops: .

T T T T I Mo o i oo 070 o ol e S T T e U T it e T e e e . R s D Wit s s s e S U D S . S s S g T . o o o A

the parser in the current sentence when the node was reached, a
flag signalling whether the last arc evaluated :riggerad a

currently active net call; and the network path of any completed
net call originating &t the ncde: Initially the stack contains
two frames, the node #INVALID-NET-NAME which is shown invoking
the first node of the top-level network #START (lines 14,15).

The standard cycle of the interpreter is a loop (lines 16,50)
which exits either with success when the top-level net call o

#START returns; or w~ith failure when the stack is exhausted.

The loop begins with popping the stack (line 17). The
popped stack frame will fall into one of four categories. The

first case (line 18) is when the stack frame has a compléeted net
path stored with it: 1In this case, the path is removed from thé
current frame and placed on the stack allowing the interpreter to

back up into a previously completed net-call. The second case

(line 20) is for stack frames which have triggered a currently

active net call: coming across one of these indicates that the

net call has failed; so after the ACTIVE-NET-CALL-FLAG is seét to
FALSE, the stack frame is pushed to allow the next arc for that

nodé to be considered:

The third case (iine 22) is for all other frames and

involves fetching and testing the next outgoing arc (lines
24-25) . 1If there are no more arcs, then the current node will be
given no further consideraticn. If there are no moré arcs and
the current ncde is the one that marks the stack bottom, (i.e.

#INVALID-NET-NAME) , then the interpreter returns FAILURE (lines
28-29), Assuming there is an arc to evaluate, and that

evaluation succeeds (line 31), the appropriate action is taken
depending_ on the arc. If evaluation fails (line 247),; no action
is taken before beginning the next cycle when the next arc will
be examined.

. A successful word or lex test will require stacking a frame
for the next state together with a curreat word position that has
been incremented by one (lines 32-34). A successful conditional
test alsc causes the next state to be stacked (line 35-36). A

pOp arc is always successful and its processing involves looking
14

18

down in the stack for the most recent active net call (line

38-39). All nodes stacked above this represent the path which
has been found through the invokéd net and are added o the stack

frame of the node which triggered :theé net call.

If an invocation of the top-level néetwork was popped (iine

41), then POPPED-SENTENCE will be set to TRUE, control will exit
the loop; and the interpreter will return SUCCESS. Ncce that

because of this, the HGSL supplied by thé user must not be

recursive at the top level, i.e. thé grammar must not include a
call to #START.

A GRAMMAR FOR TECHNTCAL PROSE

A substantial grammar has been Jdeveloped using HGSL. This
section presents the grammar and discusses its coverage and some

of its strong and weak points.

The grammar was developed to cover a set of sentences taken

from Navy technical training matérials. Any sentence which could
not be parsed lead to an externision of the HGSL grammar. HGSL was

designed to make this process as quick as possible by allowing
nets to be described in a compact, easily-read formalism. 1In
practice the system did make improvéements easier: HGSL also
makes it easier to spot rules which are either inconsistent or
not as general as they might be. Far-ranging reorganizations of
the grammar; while very time-consuming for an explicit node and
:rc representation, are fairly Simple with a powerful grammar

shorthand like HGSL.

GRAMMAR DESCRIPTION

Table 4 presents an overview of the grammar; Table 5 lists

the lexical categories used by thé grammar. The complete HGSL

text appears as an appendix; in this section the text will be

presented for description piece-meal. One thing to note about
this grammar is that it was developed to recognize rather than to

generate sentences. Consequéntly it would not be difficult to

use it to generate someé véry bad sentences: aAlso since it is

meant . to be suitable for systems which critique poor prose (see
Kieras, 1985), the nets should not fail on sentences which are
only sliightly ungrammatical; othérwise the majority of the input

text might never surviveé the first=stage syntactic analysis.

The grammar developed here suffers from an ad hoc approach

to conjunction which has lead to the inclusion of conjunctive
branches in many of the nets. Thé option which we did not pursue
is to build a special mechanism outside the grammar that would

have constituted a general theory of where conjunction can occur,

15

Table 4

Network Names and General Characterizations

The top-level network and starting point for all parsing.

FHEADTHNG. | S o
Titles, chapter or raragraph headings, etc consisting
of some formatting mark (i.e. indentation, roman
numerals) followed by a noun phrasc.

#CSTATEMENT S , S
Conjunctive statement. One or more sentences conjoined
toge‘her:

#STATEMENT

#DECLARAT IVE~STATEMENT
#IMPERATIVE-STATEMENT

#PPCL - "

Past participle clause. Clauses based on a past
participle and explicitly intrnduced by some

subordinating conjunction such as when givén aircraft
type and weather conditions.

#VINGCL - o .)
Present participle clause. Clauses baséd on a present
participle introduced by a subordiiiating conjunction.
Whilte collecting and safeguarding drug evidence.

$svBe. , : : :
Subordinate clause. Full sentences introduced by a

subordinating conjunction. Bécause the procedure was
performed incorrectly, ...

#VERB-COMPLEX-ARGUMENT S ,
Infinitive clauses following "to" which act like the
object of a verb or simply yiveé the purpose of the
action: He tried to perform tne procedurs He

performed the procedure to coanform with regulations

(table continues)

16

#FOR-TO S , .

Infinitive clauses which begin a sentence To perform
the procedure , ... For the students to perform the
procedure.. :

#WHETHER-OR S o S , : .
Compound condition formed with "whetheér". Whether the
user is a novice or if he knows the system well, this
reference manual will be helpful.

#SUBRELCLS , - - o }

Subject relative clause:. The modified rioun is the
subject of the relative ciausa.

$ELIDED-VP , , -
Elided verb phrase. Clauses based on a past or present
participle from which a form of the verb "to be" has

been deleted:. May irtroduce a sentence or modify a
noun. Given adequate instructions, the students ... a

procedure requiring .xpert supervision

#ADJCL - o L :
Adjective clause. Clauses which follow and complete
the meaning of certain adjectives. able to perform the
procedure

#0BJRELCLS S . A ,
Object relative clause. The modified noun is the
object of the relative clause which follows. the
procedure the instructor performed

#FOR-TO-RELCLAYSE S
A relative clause based on an infinitive and possibly
introduced by "for". the equipment for the trainees to
use during class

#COMPOUND-MODIFIER , ,
Conjunction of noun-modifying phrases sometimes

following the modified noun, but sometimes preceding
it. "Whether working with a visual information.
specialist or alone, ... All procedurés, official or
unofficial, :..

#cvp , -

. Conjoined verb phrase.:

#vp
Verb phrase.

(table continues)

#VCOMP e o
Verb complement. The modifying phrases that follow the
main verb and other verb parts such as participles and
the infinitive.

#GINF :
Generalized infinitive. 1Includes not only the lexical
category INF; but multiple word infinitives followed by
modifying phrases such as The procedure is to be
performed by the instructor.

#CNP S
Counjoined noun phrases.
g , o
Noun phrase. Both the usual noun phrase consisting of
adjectives and head noun as well as whole clauses which
can function like a noun, e.g. What the instructor
said was unclear.
#GERUND , o
A present participle and its modifier acting as a noun..
Following the instructions for this procedure is crucial.
#PREPPHR o ,]) o
Prepositional phrase. Also allows for cecnjunctions as
in With the instructor’s assistance and in keeping
with the rules ...
$RELCLAUSE L
Relative clauses. Either subject (SUBRELCLS) or
object (OBJRELCLS) relative clauses.
#INTERRUPTER

Phrases typically set off by commas and seérving to
qualify a noun phrase.

T o o o o e o o o o s 00 o s o e ot it 00 00 o e o o et e e A e e s e e e e . - —— - — - —————_— 1 — o ot o

18

Dy
DO

Tabte 5

Table of Lexical Categories

ADJCL

ADJ
ADV
AJR=DO

AUX-HAVE
AUX-IS
AUX-i.z L

CONg
DEFDET
HEAD ;' NG-MARK
INF

NAME

NDEFDET

NEG

NOUN
POSS-MARK
PPCL

PREDETADJ
PREP
PRN
PROPPRN
RELPRN
RESRELPRNR

VERBING
VERBDP
VINGCL

Adjective introducing a clause -
Available for

Adjective

Adverb o -

Forms of the verb do acting as verb
auxiliaries o .
Forms of the verb have used for the
past tense S

Forms of the verb is in
progressives or passives :
Modals such as may; might, should,
etc. ,

Conjunctionn]

Definite determiner o
Characters marking a title or heading
Infinitive form of a verb

Proper name .

Indefinité determiner

Negative

Tioun. , :

Apostrophe in possessive Tforms
Words introducing a past participle
clause - though inspected by the
instructor - , ,
Adjective preceding a determiner -
all the best

Preposition

Pronoun) .

Propositional pronoun - That is not
true.

Relative proroun

Restrictive relative pronoun - that
as opposed to which) ,
Words that introduce a subordinate
clause , - :

Any form of a verb, inflected or
not S

Present participle

Past participle

Words that introduce a present
participle clause = while
performing che procadure

and thus weuld Have savad us the effort of addressing the problem
on a case-by-case basis. Such an approach has the disadvantages
of making th£€ ATN interpreter nen—-standard.

The top-level network is #START, shown in Table 6. Since

the grammar is meant to parse technical prose; recther than
isclated senténceées, #START recognizes both sentences
(#CSTATEMENT) and any headings which may occur in the passage.
Headings are assumed to be indicated by rormat markings such as
peculizr indentation or special text editor control characters
and consist of a noun phrase in the broadest sense (#CNP). #CNP

includ#s any phrase that could be the subject of a senternca.

This allows the system to handle titles such as "Hcw to perform

the procedure". For convenience of discussion; *the rest of the

grammar is divided into the following groups: sentences,
subordinate clauses, relative claises, verb phrases, and noun
phrases.

Sentences
_The main sentence patterns (see Table 6) ara
#DECLARATIVE-STATEMENT and ¥IMPERATIVE-STATEMENT. Ths f.»5: is

simply a nour phrase followed by a verb phrase, while thé second
consists only of a verb phrase. The various clauses which can

introduceé or follow these basic sentence patterns are common to
the two, and are factored off into the higher-level net
#STATEMENT. Since #STATEMENT is the first definition of any
complexity that we have so far encountered, it may be helpful to
interpret ii in some detail:

, A #STATEMENT b-gins with zero or more instances of the six
types of introductory ciause; optionally followed by a comma,
then proceeding to either a declarative or an imperative

sentence, in. either case optionally followed by a subordinate
clause. #STATEMENT is in turn the main constituént of

#CSTATEMENT which allows conjunction of two or more simple
sentences. This net is fairly subtle. It begins with a

#STATEMENT. Sinece the next expression is preceded with a "=", we

know it may also end with that first #STATEMENT. Alternately we
can add one or more comma-#STATEMENT pairs, before closing with a

CONJ (possibly preceded with a comma) and one last #STATEMENT.
There are two other nets which are entirely devoted to describing

the conjunction of simpler expressions, one for conjoined nouns
(#CNP) and one for conjoined verbs (#CVP). :

20

24

Table €

HGSL for #START and Sentences

N.T-DEF $START
{ #HEADING /
{ #CSTATEMENT !. } }

NET-DEF #HEADING _
{ HEADING-MARK #CNP }

NET-DEF #CSTATEMENT
{ #STATEMENT :
- { * { !, #STATEMENT }
1",,{,!7 }
CONg =
#STATEMENT
}
NET-DEF #STATEMENT
{ * { #FOR-TO / _
#WHETHER-OR /
#ELIDED-=VP /
#PREPPHR /
#SUBCL /
~ #ADV }
=ty B R
{ #DECLARATIVE-STATEMENT / #IMPERATIVE-STATEMENT }

- { SUBCL } }
NET-DEF #DECLARATIVE-STATEMENT
{ #CWP #CVP)}

NET-DEF #IMPERATIVE-STATEMENT
#CVP

21

21,/

Subcrdinace Clauses

There is considerable variety among the suhbordinate clauses.

#PPCL and #VINGCL, shown in Table 7, are nets baced on past and
present participles, respectively. Each is introduced by a

swbordirating conjunction. Note how the incremental approach to
grammar aoesign has lead to an option for conjunction in the
#VINGLCL, but not in #PPCL. 'fhis is because the sample sentences
so far processed have not regquis~ed conjunction in #PDPCL. #SUBCIL
is tke combination of a supbordinating conjunction and a fuiti
sentence.

#VERE-COMPLEX-ARGUMRNT is an infinitive-based phrase

appearing after the verb. Sometimes it will be identifiable as
ar. argument of the verb, thus justifying its name, as in He hop
to_get back to work. 1In other cases it will be modify the
meaning cf the entire sentence by giving the reason for which
gome action was taken, as in He did it to better his chances.

. #FOR-TO is used to introduce a sentence. Like
#VEﬁﬁ-COMPLEX;ARGUMENT;”ig 1s based on the infinitive, but allows
the subject of the infinitive to be specified by adding for and a

houn phrase at the front (For the plan to work, saa)e
#WHETHER-OR is probablv best thought of as a compléx subordinate
clause, since. it combines two #STATEMENTS into a subordinate

relation to the main. sentence, as in Whether the result is

positive or if it cannot be determined, ... On the other hand,
#WHETHER-OR differs from #SUBCL in that it may be based on.a
sentence fragment rather than a complete senteénce as in Whether
old or new, ... By comparison, Because old or new ... is
unacceptable.

Ralative Clauses

The relative clauses shown in Table 8 can be used to modify

nouns, or in some cases; can be used in the place of nouns.
#SUBRELCLS includes relative clauises in which the noun modified

Plays the role of subject in the relative clause. . The most
obvious variety uses a relative pronoun as in The procedure that

works: One type of #SUBRELCLS that does not use relative
pronouns is the #ELIDED-VP, which is based on a past or present
participle, e.g. the procedures studied in this ~course or the

trainees haﬁiﬁg;thegmost,diffiCUlty, for the above examples.

They are called elided verb phrases because they are taken to be
shortened forms; such as the procedures which were studied ‘n
this course and the trainees who are having the most difficulty.
Like most clauses which can modify a noun, #ELIDED-VP can be

shifted to the front of the sentence, in which case it is being

used to describe the subject of the sentence, as in Elected for

the first time in 1982, the congressman

22

Table 7

HGSL for Subordinate Clauses

NET-DEF #PPCL
{ PPCL VERBPP #VCOMP }

NET-DEF #VINGCL
{ VINGCL #GERUND S
* { { CONJ / !, } ¥#GERUND 1} }
NET-DEF #SUBCL
{ SUBCL #STATEMENT }
NET-DEF #VERB-COMPLEX-ARGUMENT
{ !TO #GINF }
NET-DEF #FOR-TO S
{ - { {_'FOR #CNP } / { !IN !ORDER } }
ITO #GINF }
NET-DEF #WHETHER=0OR
{ 'WHETHER ,
{ #COMPOUND-MODIFIER /
{ #STATEMENT - { !OR !IF #STATEMENT } } }
NET-DEF #COMPOUND=MODIFIER
{ - { !BOTH / !EITHER }
{ ADJ / #ELIDED-VP } S
* { { CONJ / 'y} { ADJ / #ELIDED-VP })}

T T T o o o o o e e e e e e e et e o e e e e e e e e e —— — ——————— ——— —— — — — — — — — — — — — —- =

23

Table 8

HGSL for Relative Clauses

NET-DEF #SUBRELCLS
{ { RESRELPRN #CVP } /
#PREPPHR /
#ELIDED-VP /
#ADJCL }

NET-DEF #ELIDED-VP
{ - { NEG } * { ADV }

{ #GERUND / { VERBPP #VCOMP } } }

NET-DEF #ADJCL
{t -4ty L ,
ADJCL { #PREPPHR / { !TO #GINF } } }

NET-DEF #OBJRELCLS

{ - { RESRELPRN } #DECLARATIVE-STATEMENT }

NET-DEF #FOR-TO-~-RELCLAUSE
{ -~ { 'FOR #CNP } !TO ¥GINF }

Yet another variety of #SUBRELCLS is the ¥ADJCL: It is

based on an infinitive or prepositional phrase. and introduced by
certain adjectives siuch as eager, Impatlent,wg; glad as in

Trainees glad to complete their instruction or Awvailable to_-all
employees, group insurance

Aside from #SUBRELCLS, the other major varieties of relative
clause are #OBJRELCLS and #FOR-TO-RELCLAUSE: In #OBJRELCLS the

modified noun plays the role of the object and the relative

pronoun is optional, as in The procedure fthat] the instructor
demonstrated. #FOR-TO-RELCLAUSE is a restricted version of
#FOR-TO approprlPte for use as a relative clause. It allows us

to handle the thing to do or the thing for you to do.

Verb Phrases

There are three major erb phrase nets shown in Table,9, the

principal one _being #VP, whica generates verb forms. It includes

a fairly careful description of verb formats; covering the use of
modal auxiliaries such as can or may, the use of do, be and have

as auxiliaries, and simple tensed verbs; with consideration given
to negation and adverbs occurring between

24

Table 9

HGSL 7: . ,7,;;;7 7Eli_ié ;7, -

NET-DEF #cvp
{ #vp ,
* { + {coT /!, }
- #vVP
, }
}
NET-DEF #vP ,
{ * { ADV }
{ { AUX-MODAL - { NEG } * { ADV } #GINF #VCOMP } /
{ AUX-DO - { NEG } * { ADV } INF #VCOMP } /
{ - { NEG } AUX-IS * { ADV }

{ VERBING / VERBPP } #VCOMP _ _
* { CONJ { VERBING / VERBPP } #VCOMP } } /
{ AUX-HAVE - { NEG } * { ADV } VERBDPP #VCoMP } /

{ VERB #VCOMP } } }

NET-DEF #VcoOMP
* { #CNP /
{ < LAST WORD ISWA7VEBB
- TAKING STATEMENT OBJECT > #CSTATEMENT } /
{ !THAT #CSTATEMENT } /
{ { = { !, } #PREPPHR
* { CONJ #PREPPHR } } /

ADV 7/
ADJ /

#VINGCL /

#VERB-GOMPLEX—ARGUMENT /

{ !, #INTERRUPTER !, } /

{ !{ #INTERRUPTER !} } } }

NET-DEF #GINF ,

{ * { ADV |} ,]
INF #VCOMP } [/ .]
!'H $vcomp } / .

!HAVE |I!BEEN { VERBPP / VERBING } #veemp } /
!BE * { ADV } { VERBPP / VERBING } #vcomp ,
* { CONJ { VERBPP / VERBING } #Vcomp } o}y o} o}

E?
58
E

25

parts of the verb. Sirncé this is a complicated definition, we
will give several examples of *he verb phrasés that it .ncludes.

There are baslcally flve alternatlves based on AUX-MOLaXL,

AUX- DO, AUX-IS, AUX-HAVE, or VERB. The AUX-MODAL. case begins
Wlth a modal verb such as may, might, or should, and then

contlnues on to some infinitive and whateaver object may follow

the infinitive (#VCOMP) . As an example, considér must perform

the procedure. Adverbs and negatlng,elements can be interspersed
as indicated to give must not carelessly perform the procedure.
The AUX,DO alternatlve is guite similar, but is based on a form

of the verb to do, rather than a modal. The Sort of infinitive
phrase which follows to do is alsoc slightly more reéstrictive, INF
as opposed to #GINF. #GINF can generate have doné, whereas the
lexical category INF cannoct. AsS a consequence; should have done

It is allowed, but did have done it is not.

AUX-IS verls phrases have some form of the verb to be

followed by a participle, eithér préséent (VERBING) or past

(VERBPP) . The participie can then be followed by the usual

objects. Examples of this would be been performing the procedure

or was told by the instructor. As indicated by the latter
example, AUX-1S verb phrases incliude some passive voice
constructs. The AUX-IS verb phrase has been extended to allow

~ AUX—-HAVE generates the past. tense. with have and so requIres
a past participle. An example with the optionatl arguments is
have performed the procedure. Thé VERB-based verb phrase is the
simplest pattern and captures the present tense of simple verbs,

e.g. perform the procedure.

verb of a sentence. The first alternative in #VveoMP is the

direct object (#CNP). Thé sécond alternative uses a. condition

(note the angle brackets). The rational for this condition Isras
follows. Some verbs take whole clauses as their objects,fas in I

hope they all get héré on time. It would be very inefficient to
begin parsing a sentence after every verb, so the condition

ensures that we attémpt this only if the verb is one of the
relatively faw which can take clauses ror their objects. In the

third #VCOMP option, a clause once again serves as object of the

sentence, but it is explicitly marked by that; as in I _hope that
they all get here on time.

one (or more) preposltlonal phrases and the lexical. class ADV

(adverbs) . The leéxical class ADJ (adjectlves) is appropriate
only aftér such verbs as be, seem, become, etc. Currently no
26

30

attempt is made to implement this restriction; which could be
done with a condition.

B #PPCL and #VINGCL are also possible verb complements, as in
He executed the procedure as -ordered by the instructor or He
executed the procedure before realizing it was inapplicable. As
mentioned above, #VERB-COMPLEX-ARGUMENT accounts for infinitive
phrases that follow the verb:

Theé last options given under #VCCMF are for interrupter

phrases, i.e. those which are likely to bs set off from the rest
of the sentence by commas or brackets:. Since our understanding

of the relation of these phrases to the rest of the sentence is

incomplete, this constituent has an undeniable catch-all flavor,

generating noun phrases; conjoined adjectives; and at least some
subordinate clauses. Giving a more satisfactory account of these

phrases would be an important next step for this grammar.

Likewise, the #VCOMP net could be improved by taking into

account the few sequential restrictions that govern the ordering
of the strictures included. For example, a verb complement may

include both a noun phrase and a clause object, but the order is

not arbitrary, as shown by the contrast between The officer told
the trainee his promotion was approved and *The officer told his
promotion was approved the trainee. Currently #VCOMP does not

impose any such restriction. A& ¥VCOMP consists simply of zero or

more items from the list of possible phrase structures. The
surprising thing about this net is that it works as well as it
does.

, The last major verb net is #GINF which covers infinitive
forms and likewise makes use of #VCOMP to describe compléte

infinitive-based phrases. There are basically four phrases heére
which can be illustrated by the following examples: do
something, have done something, have been doing something, ‘and be
doing Something. T

Noun Phrases

The major noun phrase net is #NP, shown in Table 10. The

first two options of the net are the most complicated. The first

describes the sort of clause which can function both as a

relative clause and as a noun, as in What he saw amazed him.
There is also an interesting conjunctive version, Do you Know

where or when this _trend started? As is clear from these
examples; RELPRN is a fairly broad class including when, wheére,
how, which; that; and so forth: It is not essential to give a

full sentence after the RELPRN to get one of these noun-replacing
clauses. An infinitive phrase will do just as well: Does he

know where to _turn?

27

Table 10

HGSL for Noun Phrases

NET-DEF #cNp - -
{ - { !BOTH / !EITHER / !NEITHER)}

{ #nNP S
*{+ { Y,/ '; / CONT } #NP }
- { % } 1

NET-DEF #NP o
{f { RELPRN * { + { €CONJ 7/ !; } RELPRN }
) #DECLARATIVE-STATEMENT } /
{ RELPRN * { + { €GONJ / !, } RELPRN }
. !TO #GINF #VcoMp } /
{ !'WHETHER #DECLARATIVE-STATEMENT ,
. 'OR { INOT / #DECLARATIVE-STATEMENT } }
{ * { PREDETADJ }
DEFDET / NDEFDET } ,
NOUN 7/ { ADJ - { EONJ } } }

%

12

0
$RELCLAUSE /
{ POSS-MARK #CNP } 7/
{ 1{ #cNP !} } } } /
NAME /
PROPPRN /
PRN /
#GERUND }
NET-DEF #GERUND S
{ = { NEG } { VERBING / !HAVING VERBPP } #VCOMP }

NET-DEF #PREPPHR
{ PREP #CNP S
* { + { CONT / !, } PREP #CNP } }
NET-DEF ¥RELCIAUSE
{ #FOR-TO-RELCLAUSE / #SUBRELCLS / #OBJRELCLS }
NET-DEF #INTERRUPTER _
{ #COMPOUND-MODIFIER /
#cNp /-
$PPCL }

28

The #WHETHER-OR clause discussed above in its role as a

sentence-introducina dependent clause can also serve in place of
a noun. For example, Whether the procedure is efficient is not
crucial. The most common pattern described by #NP is the more
obvious grouping of nouns and adjectives ending with a head noun,

and then possibly follow:d by relative clauses. This pattern
alsc covers noun phrases that turn out tou be possessive forms.

Other possible noun forms include proper names, pronouns (both

PROPPRN and PRN) and gerunds (i.e. those phrases based on a
present participle but serving as a noun).

GRAMMAR COVERAGE

~ The grammar was originally developed to handle technical
training materials written by Navy writers. The goal was to be

able to process early drafts of such material, and not finished

versions of the material; because the parser was intended to be
used as part of a computerized comprehensible writing aid. (see
Kieras, 1985). A sample of target materials was collected and
supplied by the Naval Personnel Research and Development Center

(NPRDC), along with a lexicon containing about 10,000 words,
tagged with their traditional parts of speech. This lexicon
includes most of the words appearing . in military technical

training materials. It should be noted that. a large quantity of

such material appears in essentially an outline format, with

heavy use of "telegraphic” pcose. We did not attempt to ensure

that the grammar could handle such material, both because key
parcs of the content are conveyed by the outline structure rather
than sentence content, and because the telegraphic style is
probably inappropriate for such documents anyway. As an
indication of thée coverage of the grammar, it parses all of the
examples shown in Table 11.

Convérgencé of Coverage

The grammar was originally developed to handle the target

materials in the usual non-systematic manner. That is, a few
seéntences were chosen and tried on the grammar. If there was a

failure to parse the sentence; a. decision was made whether
extending the grammar would be reasonable; and if so, the

extension was made: However; we had the usual experience of
parser developers in that a lot of syntactic coverage comes very
quickly in the development of the grammar; but each extension
accounts for fewer new syntactic forms. Thus, when coverageé is

assessed in terms of the variety of syntactic forms, further work
on the grammar tends to produce less and less additional
coverage. But if the goal is to handle real material, with

realistic distributions of syntactic forms, is it possible that

the grammar development process converges to an adequate
coverage? Of course, there are too many possible syntactic forms

29

33

Table 11
Example sentences from each NPRDC materials sample

Given the logarithm table, a chain of amplifiers and/or
attenuators with the gain or loss of e&ach é&xpréssed in db, and

the input power in watts, compute the gain or loss and output
power.

Sample 2

In order to.ensure that all art work requests leaving and

returning to the IPDD are accurate and the requested word is done
to the satisfaction of the customer, the following procedures
will be adhered to in submitting audio=visual production
requests.

Sample 3
Due to the technical nature of these performance tests and the
requirement for the proctcr to be fully aware of the examinees’

actions and their consequences at all times, it is required that
the proctor be qualified to teach this coursé of instruction.

Sample 4
Idantify ths proper methods of approaching a drug offender while
collecting and safeguarding drug evidenceé as specified in

applicable publications.

to hope realistically for a complete grammar. But ths question

is whether the process would get to a point of diminishing
returns at a reasonably high propcrtion of sentences in the

target material that are covered.

Thus; as part of the final grammar devélopment process, a
convergence study was conducted. A sériés of material samples
were used, with the grammar extended to handle each sample in
turn. A record was kept of each changé made in the grammar, _so
that we could roughly quantify whethér the extensions to the

grammar either increased or decreased as we went from one sample

to the nex:.

__The spacific samples were supplied by NPRDC. These were
actual samples of draft materials to be usced in technical

30

(ve gy

training: The sentences in these samples had been «_assified
into two groups; based on whether or not they could be simply
parsed by an extension of the relatively simple ATN grammar for
technical prose found in Kieras (1983). We assumed that all of
the sentences that could be parsed by the NPRDC grammar could

also be parsed by the current ATN, which like the NPRDC grammar,

evolved from the same original simple ATN. We then focused on
the sentences that could not be parsed by the NPRDC grammar. The
sentences shown in Table 11 are examples of senteéncés that could
not be parsed by the NPRDC grammar, but could be parsed by the
current grammar;,; after it was fully developed to handle these
samples. These examples are chosen to represent thé more complex
sentences that could not be handled by the NPRDC parser,; rather
than the simpler ones. The samples were used in order of
increasing size of the sample; which was the samé as the order of
increasing number of sentences that could not be parsed by the
NPRDC ATN. The grammar was elaborated as required for each of

the sentences; and a record kept of how many such changes were
made. ~Notice that the. criterion for a successful parse was only

that the parser succeeded in producing a parse tree that was not

grossly wrong. Such parse trees may have difficulties in terms
of semantic interpretation, but we did not make a_ systematzxc
effort to either quantify the number of such problems or to
resolve them.

. _The results are shown in Table 12. As Shown in the Table,
the first sample consisted of a total of 23 sentences; 5 of which

could not be parsed by the NPRDUC ATN, and all 5 of these

sentences required extensicns to our grammar. The next sample
had 30 such non-parsable sentences, and 12 required extensions to
the grammar. The fourth sample, however, had a total of 109
sentences in it, 62 of which could not bé parsed by the NPRDC
grammar, but by the time we reached this fourth Sample, only four

sentences required extensions to the grammar.

This overall decrease in the number of grammar extensions
suggests that the grammar is converging to a coverage of the
target materials that would be fairly adequate. Notice that each

sample came from a different writer, so that we exposed the

parser to the idiosyncracies of differunt writér’s styles.

Although this convergence study is very limited, we are
el.couraged that practically useful parsers for this target
material can be developed; and that the grammar presented here is

Cclose to being a practically useful parser.

Table 13

Grammar Convergence Results

S T T T e T T e T e o e e o e = = ———— e —— —————— —

1 2 3 4 _
Total sentences in sample 23 46 85 109
Sentences not simply parsed 5 30 39 62
Sentences requiring grammar extensions 5 12 6 4

Percentage of total 22% 26% 9% 4%

32

References

Kieras; D. E. (1983). A simulation model for the comprehension of
technical prose. In G. H. Bower (Ed.), The -Psychology of
Learning and Motivation, 17. New York, NY: Academic Press.

Kieras, D. E. (1985). The potential for advanced computerize
aids for comprehensible writing of technical documents.
(Technical Repo.st YWo. 17, TR-85/0NR-17). University of

_ Michigan o A BY S

Winograd, T. (1983,. Language as a cognitive process: . Vol. 1:

Syntax. Reading, MasSachusetts: Addison-Wesley.

Ap'pendix

The Grammar for Technical Training Materials

T e e T o T e o e e e e e e e e e e e e e e e o e e e —— — — — —————————————— —

{ #HEADING / o
{ #CSTATEMENT !. } }

NET-DEF JHEADING
{ HEADING-MARK #CNP }

SENTENCES

NET-DEF #CSTATEMENT
{ #STATEMENT
~ { * { !, #STATEMENT }
- {1}
coNg
#STATEMENT
-}
}
NET-DEF #STATEMENT
{ * { #FOR-TO /
#WHETHER-OR /
#ELIDED-VP /
#PREPPHR /
#sUBCL /
#ADV }
{ #DECLARATIVE-STATEMENT / #IMPERATIVE-STATEMENT }
- { SUBCL } }

MET-DEF #DECLARATIVE-STATEMENT
{ #CNP #CVP }

NET-DEF #IMPERATIVE-STATEMENT
#CVP

34

SUBORDINATE CLAUSES

NET-DEF #PPCL
{ PPCL VERBPP #VCOMP }

NET-DEF #VINGCL
{ VINGCL #GERUND o
* { { CONJ / !, } #GERUND } }

NET-DEF #suBcn
{ SUBCL #STATEMENT }
NET-DEF #VERB-COMPLEX-ARGUMENT
{ !To #GINF }
NET-DEF #FOR-TO
{ - { { !FOR #CNP } / { !IN !ORDER } }
!To #GINF }

NET-DEF #WHETHER-OR
{ 'WHETHER
{ #GGMPQHN37MODIEIER”/ L
{ #STATEMENT - { !OR !IF #STATEMENT } } }
NET-DEF #COMPOUND-MODIFIER
{ - { !BOTH / !EITHER }
{ abg 7/ #ELIDED-VP } o
* { "CONJ / !, } { ADJ / #ELIDED-VP } } }

RELATIVE CLAUSES

NET-DEF #SUBRE.CLS
{ { RESRELPRN #CVP } /
#PREPPHR /
#ELIDED-VP /
#3DJCL }
NET-DEF #ELIDED-VP
{-{NEG } * ADV}
{ #GERUND / { VERBPP #VCOMP } } }
NET-DEF #ADJCL
-4,y o
ADJCL { #PREPPHR / { !TO #GINF } } }
NET-DEF #OBJRELCLS o
{ — { RESRELPRN } #DECLARATIVE-STATEMENT }
35

39

NET-DEF $FOR-TO-RELCLAUSE
{ — { !'FOR #CNP } !TO #GINF }

VERB PHRASES

NET-DEF_#CVP
{ #vp
* { + { CONJ / !,
#Vp
-}
}
NET-DEF #VP
{ * {_ADV } S
{ { AUX-MODAL - { NEG } * { ADV } #GINF #vcomp } /
{ AUX=DO - { NEG } * { ADV } INF #VCOMP } /
{ ~ { NEG } AUX-IS * { ADV }
{ VERBING / VERBPP)} #vecomop
~ _* { CONJ { VERBING / VERBPP } #VCOMP } } /
{ AUX-HAVE - { NEG } * { ADV } VERBPP #VCOMP } /
{ VERB #VCOMP } } }
NET-DEF #VCOMP
* { #CNP /
{ < LAST WORD IS A VERB
TAKING_STATEMENT. OBJECT > #CSTATEMENT } /
{ !THAT #CSTATEMENT } /
{ { - {_ !, } #PREPPHR
* { CONJ #PREPPHR } } /
ADV /
,,,,,,,, ADJ /
#PPCL /
#VINGCL /. ,
#VERB-COMPLEX-ARGUMENT 7
{ ! #INTERRUPTER !, } /
{ !{ #INTERRUPTER !} } } }
NET-DEF #GINF
{ * { ADV }_ ,
{ { INE $vCOMP } / o
{ 'HAVE VERBPP #veomwp y v
{ !HAVE !BEEN { VERBPP / VERBING } #VCOMP } /
{ IBE * { ADV } { VERBPP / VERBING } #VCOMP
* { CONJ { VERBPP / VERBING } #VCOMP } } } }

36

NOUN. PHRASES

NET-DEF #CNP S S
{ - { !'BOTH / !EITHER / !NEITHER }
{ #8p S
* {+ { ', / !'; / CONJ } #NP }
- { 'Y} 1}
NET-DEF #NP)
{ { RELPRN * { + { CONJ / !, } RELPRN }
#DECLARATIVE-STATEMENT } /
{ RELPRN * { + { CONJ 7/ ', } RELPRN }
!TO #CINF #VCOMP } /
{ !WHETHER #DECLARATIVE STATEMENT
!OR { !NOT / #DECLARATIVE-STATEMENT } }
{ * { PREDETADJ }
- { DEFDET / NDEFDET }
* { NOUN / { ADJ - { CONJ } } }
NOUN
- { #RELCLAUSE /
{ POSS-MARK #CNP } /
{ Y{ #CNP !} } } } /
NAME /
PROPPRN /
PRN /
#GERUND }
NET-DEF #GERUND ,
{ = { NEG } { VERBING / iHAVING VERBPP } #VCOMP }

NET-DEF #PREPPHR
{ PREP #CNP o
* { + { CONJ / !, } PREP #CNP } }

NET-DEF #RELCLAUSE
{ #FOR-TO-RELCLAUSE / #SUBRELCLS / #OBJRELCLS }

NET-DEF #INTERRUPTER
{ #COMPOUND-MODIFIER /
#cNp /

#PPCL }

37

41

