
DOCUMENT RESUME

ED 281 208 CS 210 427

AUTHOR Mayer, John; Kieras, David E.
TITLE A Development System for Augmented Transition Network

Grammars and a Large Grammar for Technical Prose.
Technical Report No. 25.

INSTITUTION Michigan Univ., Ann Arbor.
SPONS AGENCY Office of Naval Research, Arlington, Va. Personnel

and Training Research Programs Office.
REPORT NO ONR-TR=87-25
PUB DATE 15 Mar 87
CONTRACT N00014=85-K=0385
NOTE 41p.
PUB TYPE Viewpoints (120) Information Analyses (070)

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

MF01/PCO2 Plus Postage.
Algorithms; *Authoring Aids (Programing); Computer
Networks; *Computer Oriented Programs; Grammar;
Language Processing; *Programing Languages; Reader
Text Relationship; *Resource Materials; Semantics;
Syntax; *Technical Writing; *Training Methods
*Augmented Transition Network Grammars; Parsing

ABSTRACT
Using a system based on standard augmented transition

network (ATN) parsing approach, this report describes a technique for
the rapid development of natural language parsing, called High-Level
Grammar Specification Language (HGSL). The first part of the report
describes the syntax and semantics of HGSL and the network
implementation of each of its constructs, while the second section
discusses the algorithms used in the HGSL compiler and the ATN
interpreter. The third section presents a large grammar for technical
prose that was developed with the system and which allows parsing of
technical training materials in the draft stage of writing as part of
a computer-based comprehensible writing aid. The report concludes
with a review of some of the results on the coverage of the grammar.
The grammar for technical training materials is appended. (FL)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

CD
(-\./
:-4
ex)
;NI

4 izZi
LLI

Office of Educational Research and Impr;ement

EDUCATIONAL RESOURCES INFORMATION
CENTEP (ERIC)

*This document has been reproduced as
received trom the person or organization
originating it

0 Minor changes hava been made to improve
reproduction oual4

Points of view or opinions staled in this docu-
ment do not necessarily represent official
OERI Position or policy

A Developitient:System for Atigitiented
TranSitiOti Net-Work Grammar8

and
A Large Grammar for Tedhnidal Prose

John Mayer and David Melts

Vitatherssitp Of atitbigan

Technical Report No. 25 (TR-87/0NR-25)

March 15, 1987

This research was supported by the Personnel and Training Research
Programs under Contract Number N00014-85-K-0385, Contract Authority
Identification Number NR 667-547. Reproduction in whole or part is
permitted for any purpose of the United States Government.

Approved for Public Release; Distribution Unlimited

6UNy AVAILADLt
2

UnclassifieJ

Form
REPORT DOCUMENTATION PAGE OMB No: 0Approved704.0788

la REPORT-SECURITY CLASSIFICATION
Itinc..1a- i f ied

lb RESTRICTIVE MARKINGS
_

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release:
distribution unlimited;2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

TR-87/0NR-25

5 MONITORING ORGANIZATION REPORT NUMBER(S)

Ea. NAME OF PERFORMING ORGANIZATION

University of Michigan
Gb OFFICE _SYMBOL 7a NAME OF _MONUTORING ORGANIZATION

(If applicable) C0o91t1ve cience
-Office of_Naval_Research ;Code 1142CS)

7c. 412DRZSS_ (City, State, and ZIPCode)
Technical Communication Program
Ann Arbor, MI 48109=1109

---300.1.--(1141.0.CYarEati---
7b. ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217

Ba. NAME OF FUNDING /SPONSORING
ORGANIZATION

Fib OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
(lf applicable)

N00014-85K-0385

8c. ADDRESS (City, State, and 2IP Code) 10 SOURCE OF FUNDING NUMBER
PROGRAM
ELEMENT NO

61153N

PROJECT
NO.

RR04206

TASK
NO.

RR042064AAR6E7-547

WORK- UNIT
ACCESSION NO.

11. TITLF (Include Security Classification) A Development System for Augmented Transition Network Grammars
and a Large Grammar for Technical Prose

12: PERSONAL AUTHOR(S) ;John Mayer and David E. Kieras

13a. TYPE OF REPORT

Technical
13b TIME COVERED

FROM TO

14. DATE OF REPORT (1' ear, Month, Day) 15 PAGE COUNT

March 15, 1987
I

48

16 SUPPLEMENTARY NOTATION

17 18: SUBJECT_ TEBNis (Continue on r2verse if necessary and identify by block number)
Training_Materials, Documentation, Authoring Systems,
NatUral Language Procetsing

FIELD

_cosATLr_o_pss_
SUB-GROUP

05

_GROUR
09

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

This_ report _is in two major sections; The first presents a High-Level
Grammar Specification Language (HGSL) which greatly simplifies the development of
a complex augmented transition n twork grammar (ATN); A compiler converts HGSL
expressions_ into a_ transition network which a simple interpreter uses for
parsing. The algorithms used by the compiler and interpreter are presented. The
second section presents the HGSL for a large grammar for technical prose. The
grammarwas developed to allow parsing of technical training materials in the
draft stage of writing; as part of a computer-based comprehensible writing aid.
Sote retUltt bn the coverage of the grammar are presented to show that the
grammar it clote to being practically useful.

v

20 DISTRIBUTION /AVAILABILITY OF_ ABSTRACT
g UNCLASSIFIED/UNLIMITED 0 SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

22a NAME OF RESPONSIBLE INDIVIDI AL
Susan Chipman.

22b TELEPHCNE (Include Area Code)

202 696-4318
22c OFFICE SYMBOL

OD Form 1473, JUN 86 Previous editions are c):)solete

3

SECuRi-T-Y CLASSIFI:ATION OF T4-411:- 0A-GE

Unclassified

ABSTRA--"r

This report is in two major sections. The first presents a
High-Level Grammar_Specification Language (HGSL) which greatly
simplifies the development of_a complex augmented transition
network grammar (ATN). A compiler converts HGSL expressicns into
a transition network which a simple interpreter uses for parsing.
The algorithms used by the compiler and interpreter are
presented. The second section presents the HGSL for a large
grammar for technical prose. The grammar was developed to allow
parsing of technical training materials in the draft stage of
writing, as part of a computer-based comprehensible writing aid.
Some results on the coverage of the grammar are preented to show
that the grammar is close to being practically useful.

4

A Development System for Augmented Transition Network Grammars

and a Large Grammar for Technical Prose

John Mayer and David Kieras

The system deScribed in this report is meant to allow for the
rapid development Of aUgmented transition network (ATN) parsers
for natural language parsing. This report assumes knowledge of
the basics of_ATN parSers; for_background, see Winograd (1983).
The_system is baSed on the standard ATN parser approach, but the
user_does not directly specify_the nodes and arcs of the network
grammar to be interpreted; _rather, _the grammar developer uses a
more abstract shorthand_called_High-level Grammar Specification
Language (HGSL). An HGSL_compiler converts this shorthand into
equivalent networks Suitable for use by the ATN interpreter.

The first part of this report describes the syntax and
semantics of HGSL, and the network implementation of each
construct. The second part describes the algorithms used in the
HGSL compiler and the ATN interpreter and HGSL compiler. The
third part presents a large grammar for technical prose which was
developed with this system.

A High-level Grammar Specification Language (HGSL)

HGSL allows the user_ to _easily specify common syntactic
patterns. _Those SpeCifications are then compiIed_inv.o ATN
networks, which _are interpreted during parsing; These ATN
networks are conStrUcted frOM arcs_ of five' types: ward_test, lex
testi net-callv pop, and conditional. Word_test_arcs allow
control_to paas to the next node only_ if the current word matches
the given_ word. Lex teSt artS a±.6 similar but specify a lexical
category to match,_ rather than a_particuIar word. Net-call arcs
name some network whith is to_be called, together with a next
state to which control passes if the net caII succeeds, _while a
pop_arc signals a SUcceSSfill retUrn from a net call; Last, the
conditional arc cauSes evaluation of an arbitrary condition,
which if true, reSult8 in control passing to the specified next
state.

The language allows for matching the input sentence against
actual words, lexical categories, networks, and conditions.
These basic components may be combined to form sequences and
alternations. Optional and repeated items are indicated in a
straightforward way.

5

HGSL Syntax

In the following discussion, we vr_11 present the syntax of
each HGSL construct, its meaning, an example of its us_e, and
finally the ATN network into which it is compiled. Table 1 giveS
a context-free grammar for HGSL; rules from this grammar will be
cited for each construct.

Table 1

Context-free Grammar for the_High-levelSpecification Language

1

2
3
4

5
6
7
8

_9
10
11
12
13
14
15
16

Grammar

Netdefinition
Expression
Expression
Expression
Expression
Sequence

Expression
Alternation

Expression
EXpression
EXpression
EXpression

->
->
->
->
->
->
->
->

->
->
->
->
->

->

Netdefinition Grammar
Netdefinition "END-GRAMMAR"
"NET-DEF" <string> Expression
"!"<string>
<string>
"#"<string>
"{" Expression Sequence
Expression Sequence

}

ii { It Expression Alternation
II/II Expression Alternation),

" Expression "}"
"{" Expression "}"

flIkr, "{" Expression "}"fl< <lisp expression> ">"

A grammar written in HGSL is a list of network definitions,
each definition consisting of the key word NET-DEF, followed
the name of the network and an HGSL expression. The list is
terminated with the key word END-GRAMMAR (Rules 1-3). The
top-level network must be named #START.

Basic expressions; The simplest SGSL expressions are used
tO tatch actual words or lexical categories. A literal word
match is specified by prefixing the televarit WOrd With an
Oktlatation point (Rule 4). Thus the expression_ !THE will
retOgnize only the word the. The network Whith iS built to
impleMent a literal word match_is a sinqle word=tSt arc that
totpares the current word with <string>. Fat more useful is the
ability to specify a Iexicalcategory _matCh. SiLde thiS is the
tbSt common test in a grammar, lexical catetIcrie_ate_Wi.itten
plainly (Rule 5) For example; the expression NOUN Will match
any noun. The lexical category match generates a Single lex-test

2

arc; A network Matth iS in-di-dated by prefixing a pound sign to
the name of the netwOrk (Rule 6) . For axampie, #NP is an
invocation of the noUn phrase network. The net-call expression
generates a net-call arc.

Sequences. A sequence can be described by enclosing a list
of HGSL expressions in brackets (Rules 7-9). Thus
IITHE NOUN #VP) is a sequential pattern satisfied by the word
the, followed by any word of the class noun, followed by any
group of words which satisfie8 the expression for the #VP
network. This rule can be applied recursively, allowing us to
create a sequential expression from simoler sequential
expressions. For example, {#NP {#VP #NP}} is a legal expression
which happens to be equivalent to {#NP #VP #NP1.

Alternations. To match exactly one of several expressions,
the alternatives are separated by slashes and the whole is
enclosed in brackets (Rules 10-12) . The_pattern
{!THE / !A / !SOME} requires the next word to be one of the
three words, the, a, or some. Once we have both squences and
alternations, the recursive_possibilities 3f HGSL become more
interesting as in {#VP / l#NP #VP1} . This pattc-,rn could be a
top-level definition of #SENTENCE Since it is satisfied either by
#V2 (an imperative sentence), or by the sequence {iNP #VP} (a
declarative pattern).

2ptional matchea. The appearance of a subexpression in some
larger pattern may be made optional by placing a dash before it
(Rule 13). The pattern { = {!IN !ORDER} !TO #VP} matches both In
arrier_ to form a more perfect union and To form a moe_perfoct
nni-on

Repetition. Shorthand expressions are provided for two very
common types of sequential repetition corresponding to
zer_o_-_oxmore, shown by a preceding asterisk, and one-or-more
shown by a preceding plus sign (Rules 14, 15). For example,
{* {PREP #NP}} matche., any number of consecutive prepcsitional
phrases, including none at all, and {#NP !VERB + {#NP}} matches a
sentence with one or more objects in the verb phrase.

Conditional matches. It will sometimes be convenient to be
able to insert arbitrary conditions into a larger expression. A
LISP form that evaluates to true or false can be enclosed in
angle brackets to constitute a valid HGSL expression. For
example, the pattern

{#NP #VP <EQUAL (NUMBER-0F NP) (NUMBER-OF VP) > #NP}

first matches an #NP followed by a #VP. We must then evaluate the
condition in angle brackets and then proceed to match a second NP
only if the condition evaluates to true. The condition is
implemented by a single test arc in che ATN. Note that HGSL does

3

7

not provide any standardized data structures to be tested by
conditional expressions. Thus in order to write a condition, the
grammar writer must o outside HGSL, at least in its current
form, and devise a LISP expression based on the data structures
of the interpreter.

These COnditions maY be arbitrarily complicated and
therefore may be a trap fdt the grammar developer. Using them
too often will severely reduce the ease with which_the grammar
can be understood and ektehded. On the other hand, a few
well-motivated COnditiont _ImAY allow considerable rule economy
without introducing any seriouS obscurity; Our experience with
using conditionS shows that they can sometimes be quite simple
and still be useful.

Network_Generation

Sequ_Emoes. Generation of a network for a sequence of
patterns proceeds as follow8. Suppose we have obtained a subnet
for the first expression in the sequence. To ensure that the
patterns specified by the consecutive subexpressions are matched
in order, we need only build the second subnet so that its start
node is the end node for the first subnet. We likewise let each
subsequent pair of adjacent component networks share end and
start nodes. The start node for the whole network is that of the
sequentially first component network and the end node of the
,Thole is that of the last component network; This construction
is shown in Figure 1 for the sequential pattern (El E2 E31. Each
box represents an arbitrarily complicated expression. All that
has to be known about them in order to incorporate these
expressions into a more complex net is that they have a Single
start and stop node as shown. Note how the stop node of El it
the_same as the start node of E2, as suggested by the overlapping
circles. The correctness of this construction depends on the
fact that the subnets are "one-way" nets, in that control can
never flow backwards from the stop node to the start node. Ifthis were not the case, the net might recognizs the first
subexpression, then the second, L.hen wander back and redo the
first.

Alternation. To build a network for an alternation we use
a single new start node as the subnet start node for each of the
subexpressions. we then Add T-test arcs (i.e. test arcs for
which the condition always evaluates to TRUE) from the various
end-nodes to a single new end=node created for the composite net.
This is shown in Figure 1 for the alternation {El E2 E3).
The lighter arcs represent the nets previously generated for El,
E2, and E3. The arcs added to implement thG alternation are
shown as heavy arcs. Clearly the newly constructed network can
only be traversed if exactly one of the component networks can be
satisfied.

El E2

+ E

E3

Figure 1 Network Implementation of FIGSL constmcts.
Boxed "E" and thin arrows are the previously constructed
net of the arbitrary expression E.

5

9

Optional expressions. Given an expression and 8ome net
that implem-as it, we can easily add arcs to make the same
expression optional. We do this by adding a T-te8t arc,
evaluated after the first arc of the expression, leading from the
start node to the end-node. We then have the option either to
pass through the net, or to match nothing to it, as shown in
Figure 1.

Repetitions. Implementing one-or-more repetition is a bit
complicated. Assuming we have generated a net for the expression
to be repeated, we add an arc leading from its end node back to
its start node, as sho,-n in Figure 1. This wIll allow the
pattern to be matched more than once. We also create a new end
node for the composite network and connect the component
network's end node to it via a T-test. After th, pattern has
been matched one or more times, control can follow this path out
of the network.

The most complicated network construction is that for
zero-or-more repetition. As shown in Figure 1, we take the
network of the expression to be repeated and add a backward
T-test from its end to its start node. Xs in one=or-more
repetition, this allows the pattern to be matched more than once.
We also create new start aLd end nodes. The old end node is
connected to the new one by a T-test arc. This i8 the exit from
the network after the pattern has been matched one or more times.
Finally we add a pair of new arcs out of the new start node. The
first leads into the old start node. Any path through the
network which begins by ',*aking this arc will have to Satisfy the
repeated pattern one or more times. The second arc is a T-test
leading directly to the end node of the composite network. This
allows for zero repetitions of the expression.

It can be proven that the network implementations of the
HGSL constructs adopted here are correct. However it is Iso
true that the current HGSL compiler does not produce the most
compact networks possible. For example, Figure 2 shows a more
efficient network construction for alternation.

IMPLEMENTATION ALGORITHMS

The HGSL Compiler

FPre we describe how HGSL constructs are compiled into
networks suitable for the interpreter described below. The
expression to be compiled as a network is parsed by the set of
mutually recursive functions shown in Table 2. Each function is
responsible for parsing the structure for which it is named and
adding the appropriate arcs and nodes.

to

Figure 2. Alternate network implementations of
{ El / E2 E3 }. The higher one is currently implemented,
but the :ower one is more efficient.

7

Table 2

The HGSL Compiler

function #HGSLC(INPUT FILE: FILE) returns BOOLEAN is
SELECT OUT PORTION OF FILE TO BE COMPILED;
ieturn #GRAMMAR;
end #HGSLC;

function #GRAMMAR returns BOOLEAN is
loop
if CURRENT-WORD = END-GRAMMAR then

return TRUE;
else if #NETWORK-DEFINITION then do nothing;
else
return FALSE;

end if;
end loop;

end #GRAMMAR;

function #NETWORK-DEFINITION returns BOOLEAN i8
if CURRENT-WORD = NET-DEF then ADVANCE-WORD; end if;
RECORD CURRENT-WORD AS NAME OF THIS NETWORK;
ADVANCE-WORD;
START = A START NODE FOR THIS NETWORK;
RECORD START AS FIRST NODE OF THIS NETWORK;
if #EXPRESSION(START,STOP) then
ADD A POP ARC BEGINNING AT STOP;
return TRUE;

elSe
return FALSE;

end if;
end #NETWORK-DEFINITION;

function #EXPRESSION(STARTiSTOP) returns BOOLEAN i8
if CURRENT-WORD STARTS WITH "#" then
_ return #NET-CALL(STARTiSTOP); end if;
if CURRENT-WORD STARTS WITH "<" then
return #CONDITION(STARTiSTOP); end if;

if CURRENT-WORD STARTS WITH A LETTER then
_ return #LEX-TEST(START,STOP); end if;
if CURRENT-WORD STARTS WITH "!" then
return #WORD-TEST(START,STOP); end if;

if CURRENT-WORD IS "-" then
return #OPTIONAL(START;STOP); end if;

if CURRENT-WORD IS "+" then
return #ONE-OR-MORE(START,STOP); end i ;

(table continues)

if CURRENT-WORD IS "*" then
return #ZERO-OR-MORE(START;STOP); end if;

if CURRENT-WORD IS "{" then
_return #LIST-NO-PREFIX(START,STOP); end if;
return FALSE;

end #EXPRESSION;

function #NET-CALL(STARTLSTOPI returnt BOOLEAN is
STOP = A NEWLY ALLOCATED NODET
USE CURRENT-WORD TO LOOK UP START NODE FOR INVOKED NET;
ADD NET ARC FROM START TO INVOKED NET WITH NEXT STATE = STOP;
return TRUE;

end #NET-CALL;

function #CONDITION(START,STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD TEST ARC FROM START TO STOP USING CURRENT-WORD
AS TEST EXPRESSION;
return TRUE;

end #CONDITION;

function #WORD-TEST(START,STOP) returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODEt_
ADD WORD-TEST ARC FROM START TO STOP USING CURRENT-WORD
AS WORD TO COMPARE WITH;
return TRUE;

end WORD-TEST;

function #LEX-TEST(STARTLSTOPI returns BOOLEAN is
STOP = A NEWLY ALLOCATED NODE;
ADD LEX-TEST ARC FROM START TO STOP USING CURRENT-WORD
AS LEXICAL CATEGORY TO COMPARE WITH;
return TRUE;

end #LEX-TEST;

function #OPTIONAL(START,STOP) returns BOOLEAN is
WORD-ADVANCE;
if #LIST-NO-PREFIX(START,STOP1 then
ADD "T" TEST ARC FROM START TO STOP;
return TRUE;

else
return FALSE;
end if;

end #OPTIONAL;

(table continues)

function #ONE-OR-MORE(START,STOP) returns BOOLEAN is
WORD-ADVANCE;
if #LIST-NO-PREFIX(START,STOP2) then
STOP = NEWLY ALLOCATED NOD:E;
ADD "T" TEST ARC FROM STOP2 TO START;
ADD "T" TEST ARC FROM STOP2 TO STOP;
return TRUE;

else
return FALSE;

end
end #ONE-OR-MORE;

function #ZEFO-OR-MORE(STRT,STOP) returns BOOLEAN is
ADVANCE-WORD;
START2 = NEWLY ALLOCATED NODE;
if #LIST-NO-PREFIX(START2,STOP2) then
STOP = NEWLY ALLOCATED NODE;
ADD "T" TEST ARC FROM START TO START2;
ADD "T" TEST ARC FROM STOP2 TO STOP;
ADD "T" TEST ARC FROM START TO STOP;
ADD "T" TEST ARC FROM STOP2 TO START;
return TRUE;

else
return FALSE;
end if;

end #ZERO-OR-MORE;

function #LIST-NO-PREFIX(START,STOP) returns BOOLEAN is
ADVANCE-WORD;
STOP = A NEWLY ALLOCATED NODE;
if #EXPRESSION(START,STOP2) then null; else return FALSE; end if;
if CURRENT-WORD = "/" then
ADD "T" TEST ARC FROM STOP2 TO STOP;
until CURRENT-WORD = loop
if #EXPRESSION(START,STOP2) then
ADD "T" TEST ARC FROM STOP2 TO STOP;
else return FALSE;
end if;

end loop;
return TRUE;

else
until CURRENT-WORD = "}" loop
START = STOP2;
if #EXPRESSION(START,STOP2) then null;
else return FALSE; end if;

end loop;
STOP = STOP2;
return TRUE;

end if;
end #LIST-NO-PREFIX;

10

14

fHGSLC is the top-level function of the compiler. It take:,
the name of an input file and asks the user whether the entire
grammar should be compiled or if just one of the network
definitiont should be recompiled. It then calls #GRAMMAR. Since
a grammar_is just a list of network definitions ended by the key
word END-GRAMMAR, the function #GRAMMAR calls #NETWORK-DEFINITION
repeatedly until that key word is encountered.

#NETWORK7DEFINITION checks for the key word NET-DEF, records
the name of the network being defined, ana then calls
#EXPRESSION. #EXPRESSION is simply a large select statement
which examines the current character to determine which type of
expression follows. The appropriate function is ,then called.
The functions #NET-CALL, #CONDITION, #LEX-TEST, #WORD-TEST art
low-level functions which actually build single arcs for the
routines that call them.

#OPTIONAL, #ONE-OR-MORE, #ZERO-OR-MORE, and #LIST-NO-PREFIX
are intermediate level routines that all call the function
#EXPRESSION one or more times, adding additional arc8 to the
reSults of these function calls, and sometimes piecing them
together to form a larger net. #OPTIONAL adds a single arc to
whatever structure has been built for its component exprettion.
#ONE-OR-MORE adds two arcs and #ZERO-OR-MORE addt four.
#LIST-NO=PREFIX is the most complicated net, since it builds
either a disjunctive or a sequential net and in either case this
requires piecing together_the nets generated_during calls to
#EXPRESSION as discussed above and pictured in Figure 1.

The ATN Interpreter

The interpreter used by our system is fairly conventional.
The output of the compiler is a set of networks based on the
constructions given above. These networks'are represented at sets
of_arcs leading from one node to another. The interpreter has
only one major data structure, a stack of nodes that is used to
maintain the current path through the various nets. The
interpreter repeatedly pops this stack and tries to extend the
path, generally by evaluating the next arc out of the most
recently stacked node.

The output produced by the HGSL system is a syntax tree such
as that shown in Figure 3. This tree is based on the parse path
constructed automatically by the interpreter. Once parsing the
top-level net has been successfully completed, the parse path
will be stored at the top of the parse stack and can be
interpreted as a syntax tree.

Table 3 gives the interpreter algorithm in pseudo-code. The
stack frame, declared in lines 2-8, contains a node id number,
the id number of the last outgoing arc examined, the position of

1 5

(#START
(#SENTENCE.

(#NP
(DET THE'

(NOUN INSTRUCTOR))
(#VP

(VERB PERFORMED)
(#NP

(DET THE)
(NOUN PROCEDURE)))))

Figure 3. Example of parser output for the sentence
"The instructor performed the procedure."

12

1 6

Table 3

The ATN Interpreter

1 function ATN_INTERPRETER returns SUCCESS-OR-FAILURE is
2 FRAME is record
3 STATE: integer;
4 LAST-ARC-TESTED: integer;
5 POSITION-IN-SENTENCE: integer;
6 ACTIVE-NET-CALL-FLAG: boolean;
7 NET-PATH: list of FRAME;
8 end record;
9 CURRENT-FRAME: FRAME;

10 S: stack of FRAME;
11 POPPED-SENTENCE: boolean;
12 begin
13 POPPED-SENTENCE := FNLSE;
14 PUSH(S,[#INVALID-NET-NAME,1,0,TRUE,NIL]);
15 PUSH(S,[#STARTI,0,1,FALSE,NIL]);
16 while not POPPED-SENTENCE loop
17 CURRENT-FRAME = POP(S);
18 if CURRENT-FRANE MATCHES [-,-,-,TRUE,NET-PATH] then
19 S := PUSH(S,NET-PATH);
20 else if CURRENT-FRAME MATCHES [-,-,-,TRUE,NIL] then
21 S := PUSH(S,[-,-,-,FALSE,NIL]);
22 else if CURRENT-FRAME MATCHES
23 [STATE,ARC-NO,POSITION,FALSE,NILJ then
24 NEXT-ARC-NO := ARC-NO + 1;
25 NEXT-ARC := FETCH-ARC(STATE,NEXT-ARC-NO);
26 TEST-RESUvr := TEST-ARC(NEXT-ARC,PCSITION);
27 if TEST-RESULT = RAN-OUT-OF-ARCS then
28 if STATE = INVALID-NET-NAME than
29 return FAILURE;
30 r.nd if;
31 else if TEST-RESULT = SUCCESS then
39 if ARC-TESr MATCHES (ARC-TYPE,X,NEXT-STATE) and
33 MEMBER-OF(ARC-TYPE,(WORD,LEXI) then
34 S = PUSH(S,[NEXT-STATE,O,POSITION+1,FALSE,NILD;
35 else if ARC-TEST MATCHES (TESTLX,NEXT-STATE) then
36 S = PUSHUNEXT-STATE,O,POSITION],S11
37 else if ARC-TEST MATCHES (POP,NILLNII) then
38 INVOKER-FRANE := MOST RECENTLY STACKED FRAME
39 THAT MATCHES [STATE,ARC,-,TRUE,NILj;
40 NET-PATH := ALL FRAMES ABOVE INVOKER-FRAME;
41 if STATE = #ST7RT1 then POPPED-SENTENCE := TRUE; end if;
42 ARC-TEST := FETCH-ARC(STATE,ARC)1
43 MATCH ARC-TEST TO [ARC-TYPE,NIL,NEW=STATE];
44 S := PUSH(S,[STATE,ARC,X,FALSE,NET-PATH]));

(table continues)

13

45 S := PUSH(S,[NEW-STATE,O,X,FALSE,NILJ);
46 end if;
47 else
48 S := PUSH(S,CURRENT-FRAME);
49 end if;
50 end if;
51 end loop;
52 return SUCCESS;
53 end ATN_INTERPRETER;

the parser in the current sentence when the node was reached, a
flag signalling whether the last arc evaluated zzigger(1 a
currently active net call, and the network path of any completed
net call originating at the node. Initially the stack contains
two framet, the node #INVALID-NET-NAME which is shown invoking
the firtt node of the top-level network #START (lines 14,15);
The standard cycle of the interpreter is a loop (lines 16,50)
which exits either with success when the top-level net call to
#START returns, or dith failure when the stack is exhausted.

The loop begins with popping the stack (line 17). The
popped ttack frame will fall into one of four categories. The
first case (line 18) is when the stack frame has a completed net
path ttored with it. In this case, the path is removed from the
current frame and placed on the stack allowing the interpreter to
back up into a previously completed net-call. The second case
(line 20) is for stack frames which have triggered a currently
tctive net call. Coming across one of these indicates that the
net call has failed, so after the ACTIVE-NET-CALL-FLAG is set to
FALSE, the stack frame is pushed to allow the next arc for that
node to be considered.

The third: case (line 22) is for all other frames and
inVelVet fetching and testing the next outgoing are (lines
24=25). If there are no more arcs, then the current node will be
given he further consideration; If there are no tore arct_and
the _OUrrent node is the one chat marks the stack betteMt (i.e.
#INVALID--NET-NAME), then the interpreter returns FAILURE (lines
28,=29) . Assuming there is an arc to evaluate, and_ that
evaltiatiOn tucceeds (line 31), the appropriate action i8 taken
depending_on the arc; If evaluation fails (line 47), no action
i8 taken before beginning the next cycle when the next arc will
be examined.

A successful word or lex test will require stacking a frame
for the next state together with a current word position that hat
been incremented by one (lines 32-34). A successful conditional
test also causes the next state to be stacked (line 35-36). A
pop arc is always successful and its processing involves looking

14

1 8

down in the stack for the most recent active net call (line
38-39). All nodes stacked above this represent th(2! path which
has been found through the invoked net and are added to the stack
frame of the node which triggered the net call.

If an invocation of the top-level network was popped (line
41), then POPPED-SENTENCE will be set to TRUE, control will exit
the loop, and the interpreter Tetll return SUCCESS. Noe that
because of this, rhe HGSL supplied by the user must not be
recursive at the top level, i.e. the grammar must not include a
call to #START.

A GRAMMAR FOR TECHNICAL PROSE

: A substantial grammar has been developed u.F.ing HGSL. This
Section pl'esents the grammar and discusses its coverage and some
of its strong and weak points.

The grammar was developed to cover a set of sentences taken
from Navy technical training materials. Any sentence which could
not be parsed lead to an extension of the HGSL grammar. HGSL was
designed to make this process as quick as possible by allowing
nets to be described in a compact, easily-read formalism. In
practice the system did make improvements easier. HGSL also
makes it easier to spot rules which are either inconsistent or
not as general as they might be. Far-ranging reorganizations of
the grammar, while very time-consuming for an explicit node and
arc representation, are fairly simple with a powerful grammar
si-zorthand like HGSL.

GRAMMAR DESCRIPTION

Table 4 presents an overview of the grammar; Table 5 lists
the lexical categories uSed by the grammar. The complete HGSL
text appears as an appendix; in this section the text will be
presented for description piece-meal. One thing to note about
this grammar is that it wa8 developed to recognize rather than to
generate sentences. Consequently it would not be difficLlt to
use it to generate some very bad sentences. Also since it is
meant to be suitable for systems which critique poor prose (see
Kieras, 1985), the nets Should not fail on sentences which _are
only slightly ungrammatical; otherwise the majority of the inpt
text might never survive the first-stage syntactic analysis.

The grammar developed here suffers from an ad hoc approach
to conjunction which ha8 lead to the inclusion of conjunctive
branches in many of the nets. The option which we did not pursue
is to build a special mechanism outside the grammar that would
have constituted a general theory of where conjunction can occur,

15

19

Table 4

Network Names and General_ Characterizations

#START
The top-level network and starting point for all parsing.

#HEADING_
Titles, chapter or naragraph headings, etc consisting
of some formatting mark (i.e. indentation, roman
numerals) followed by a noun phrasG.

#CSTATEMENT
Conjunctive statement. One or more sentences conjoined
toget.her.

#STATEMENT
Either declarative ,r imperative.

#OECLARATIVE-STATEMENT

#IMPERATIVE-STATEMENT

#PPOL
Past participle clause. Clauses based on a past
participle and explicitly introduced by some
subordinating conjunction such as when given aircraft
type and weather conditions.

#VINGCL _ _ _

Present participle clause. Clauses based on a present
participle introduced by a subordinating conjunction.
While collecting and safeguarding drug evidence.

#SUBOL
Subordinate clause. Full sentences introduced by a
subordinating conjunction. Because the procedure was
performed incorrectly, ...

#VERB-COMPLEX-ARGUMENT
Infinitive clauses following "to" which act like the
object of a verb or simply give the purpose of the
action. He tried to perform the procedure He
performed the procedure to conform with regulations

(table continues)

16

#FOR-TO
Infinitive clauses which begin a sentence To perform
the procedure , For the students to perform the
procedure...

WHETHER-OR
Compound condition formed with "whether". Whether the
user is a novice or if he knows the system well, this
reference manual will be helpful.

#SUBRELCLS
Subject relative clause. The modified noun is the
subject of the relative clausc4.

#ELIDED-VP
Elided verb phrase. Clauses based on a past or present
participle from which a form of the verb "to be" has
been deleted, May introduce a sentence or modify a
noun. Given adequatc instructions, the students ... a
procedure requiring _xpert supervision

#ADJCL
Adjective clause. Clauses which follow and complete
the meaning of certain adjectives, able to perform the
procedure

#OBJRELCLS
Object relative clause. The modified noun is the
object of the relative clause which follows. the
procedure the instructor performed

#FOR-TO-RELCLAUSE
A relative clause based on an infinitive and possibly
introduced by "for". the equipment for the trainees to
use during class

#COMPOUND-MODIFIER
Conjunction of noun-modifying phrases sometimes
following the modified noun, but sometimes preceding
it. "Whether working with a visual information
specialist or alone, ... All procedures, official or
unofficial, ...

#CVP
Conjoined verb phrase.

#VP
Verb phrase.

17

(table continues)

#VCOMP
Ve..:b complement. The modifying phrases that follow the
main verb and other verb parts such as participles and
the infinitive.

#GINF
Generalized infinitive. Includes not only the lexical
category INF, but multiple word infinitives followed by
modifying Phrases such as The procedure is to be
performed by the instructor.

#CNP
Conjoined noun phrases.

#NP
Noun phrase. Both the usual noun phrase consisting of
adjectives and head noun as well as whole clauses which
can function like a noun, e.g. What the instructor
said was unclear.

#GERUND
A present participle and its modifier acting as a noun.
Following the instructions for this procedure is crucial.

REPPHR
Prepositional phrase. Also allows for conjunctions as
in With the instructor's assistance and in keeping
with the rules ..

#RELCLAUSE
Relative clauses. Either subject (SUBRELCLS) or
object (OBJRELCLS) relative clauses.

#INTERRUPTER
Phrases typically set off by commas and serving to
qualify a noun phrase.

18

22

Table 5

Table of_Lexical Categories

ADJCL

ADJ
ADV
AUX-DO

AUX-HAVE

AUX-IS

COW'
DEFDET
HEAD;14G-MARK
INF
NANE
NDEFDET
NEG
NOUN
POSS-NARX
PPCL

PREDETADJ

PREP
PRN
PROPPRN

LPRN
RESRELPRNR

SUBCL

VERB

VERBING
VERBPP
VINGCL

Adjective introducing a clause
Available for ...
Adjective
Adverb
Forms of the verb do acting as verb
auxiliaries
Forms of the verb have used for the
past tense
Forms of the verb i8 in
progressives or passives
Modals such as mar, might, should,
etc.
Coniunction
Definite determiner
Characters marking a title or heading
Infinitive form of a verb
Proper name
Indefinite determiner
Negative
noun
Apostrophe in poSsessive forms
Words introducing a past participle
clause - though inspected by the
instructor
Adjective preceding a determiner -
all the best
Pieposition
Pronoun
Propositional pt.onoun That is not
true.
Relative pronoun
Restrictive relative pronoun - that
as opposed to which
Words that introduce a subordinate
clause
Any form of a verb, inflected or
not
Present participle
Past participle
Words that introduce a present
participle clause -= while
performing the procdure

19

23

and thus would have saNad us the effort of addressing che problem
on a case-by-case basis. Such an approach has the disadvantage
of making the ATN interpretez non-standard.

The top-level network is #START, shown in Table 6. Since
the grammar is meant to parse technical prose, rether than
isolatetiS_Ontences,_#START recognizes both s_entences
_(#CSTATEMENT) And any headings which may occur in the passage.
Headings are_assumed to be indicated by format markings such a8
peculier_ indentation or special text editor control characters
and_consiat Of A noun phrase in the broadest sense (#CNP). #CNP
includes any_ phrase that could be the subject of a sentence.
This allows the system to handle titles such as "How to perforM
the procedure". _For _convenience of discussion, the rest of the
grammar is divided into the following groups: sentenc08,
subordinate clauSeS, relative clwases, verb phrases, and noun
phra808.

Sentences

The main sentence patterns (see Table 6) are
#DECLARATIVE-STATEMENT and #IMPERATIVE-STATEMENT. The f:rs7 is
simply a flour, phrase followed by a verb phrase, while the Second
consists only of_a verb phrase. The various clauses which can
introduce or follow these basic sentence patterns are common to
the two, and are factored off into the higher-level net
#STATEMENT. Since #STATEMENT is the first definition of any
complexity that we have so far encountered, it may be helpful to
interpret 4..0 in some detail.

A #STATEMENT b gins with zero or mcr7e instances of the six
types of introductory clause, optionally followed by a comma,
then proceeding to either a declarative or an imperative
sentence, in either case optionally followed by a subordinate
clause. #STATEMENT is in turn the main constituent of
#CSTATEMENT which allows conjunction of two or more Simple
sentenceS. This net is fairly subtle. It begins with a
#STATEMENT. Since the next expression is preceded with a "=", we
know it may also end vith that fir-;t #STATEMENT. Alternately we
can add one or more comma-#STATEMENT pairs, before cloSing with a
CONJ (possibly preceded with a comma) and one last #STATEMENT.
There are two other nets which are entirely devoted to describing
the conjunction of simpler expressions, one for conjoined nouns
(fCNP) and one for conjoined verbs (#CVP).

20

Table 6

HGSL fr #START and Séntences

M..7-DEF #START
{ #HEADING

i #CSTATEMENT }

NET-DEF #HEADING
{ HEADING-MARK #CNP }

NET-DEF #CSTATEMENT
{ #STATEMENT

{ * { !, #STATEMENT

CONJ
#STATEMENT

NZT-DEF 'STATEMENT
{ * { #FOR-TO I

#WHETHER=OR /
#ELIDED=VP /
#PREPPHR /
#SUBCL /
#ADV

7 { !L_J_
{ #DECLARATIVE-STATEMENT #IMPERATIVE-STATEMENT

{ SUBCL } }

NET-DEF #DECLARP3IVE-STATEMENT
{ #CNP #CVP I

NET-DEF #IMPERATIVE-STATEMENT
#CVP

Subordinate Clauses

There is considerable variety among the subordinate clauses.
#PTCL and fVINGCL, shown in Table 7, are netA based on past and
present participles, respectively. Each iS introduced by a
snbordinating conjunction. Note how the incremental approach to
grammar design has lead to an option for conjunction in the
#VINGLCL, but not in #PPCL. This is because the sample sentences
So far processed have not requi::ed conjunction in #PPCL. #SUBCL
i8 Uhe combination of a suoordinating conjunction and a full
sentence.

#VErtE-COMPLEX-ARGUMENT is an infinitive-based phrase
appearing after the verb. Sometimes it will be identifiable as
an argument of the verb, thus justifying its name, as in He hope'R
to get back to work. In other cases it will be modify the
meaning of the entire sentence by giving the reason for which
some action was taken, as in He-did it to better his chances.

#FOR=TO is used to introduce a SentOnce. Like
#VERB-COMPLEX=ARGUMENT, it is based on the infinitive, but allows
the Subject of the infinitive tO be specified by adding for and anoun phrase at the front (For the plan to work, ...).
#WHETHER-OR is probably best thought of aS a complex subordinate
clause, since it combines two #STATEMENTS imto a subordinate
relation to the main sentence, as in Whether the result_is
positive or if it cannot._ be_datermined, ... On the other hand,
#WHETHER=OR differs from #SUBCL in that it may be based on a
sentence fragment rather than a complete tentence as in Whetherold or new, By comparison, Because old or new .. is
unacceptable.

RelatiVe Clauses

The relative clauses shown in Table_8 can be used to modify
noUnS, Or in some cases, can be used in _the place of nouns;
#SUBRELCLS includes relative clauses ih WhiCh the noun modified
plays the role of subject_ in the relatiVe clause._ The most
ObViOUS variety uses a relative pronoun as in The procedure,_thatworks. One type of #SUBREL_CLS _that does not use relative
prOhouns is the #ELIDED7VP, which is based_on a past or present
Participle, e_._g; the---procedures studied in this-course or the
trainees having the most diffittltV, for the above examples.
They are called elided verb_phraSOS bedaUSe they are_taken to beShOttened forms, such as the procedures which we-T-e studied in
thiS course and thetrainees WhO_are haVing the most_datIficulty.
Like most clauses which can modify a nounr #ELIDED-VP can be
Shifted to the front of the_sentence, in Which case it is being
used_to describe the subject Of the Sentence, as in Elected-for
the first time in 198-2r the congreSSman

22

26

Table 7

HGSL for Subordinate Clauses

NET-DEF #PPCL
{ PPCL VERBPP #VCOMP }

NET-DEF #VINGCL
{ VINGCL #GERUND

* { { CONJ / !, } #GERUND 1 }

NET-DEF #surmi
{ SUBCL #STATEMENT 1

NET-DEF #VERB=COMPLEX-ARGUMENT
{ !TO #GINF }

NET-DEF #FOR=TO
{ !FOR #CNP / { !IN !ORDER } }

!TO #GINF }

NET-DEF #WHETHER-OR
{ !WHETHER

#COMPOUND-MODIFIER /
{ #STATEMENT - { !OR !IF #STATEMENT } } }

NET-DEF #COMPOUND-MODIFIER
{ -{!BOTHJ EITHER }

{ ADJ /AtELIDED-VP }
* { { CONJ / } { ADJ / #ELIDED-VP } } }

Table 8

HGSL forRelative Clauses

NET-DEF #SUBRELCLS
{ { RESRELPRN #CVP } /

#PREPPHR /
#ELIDED-VP /
#ADJCL }

NET-DEF #ELIDED-VP
{ { NEG } * { ADV)

{ #GERUND / { VERBPP #VCOMP } }

NET-DEF #ADJCL
{ { !;
ADJCL { #PREPPHR / !TO #GINF I } }

NET-DEF #OBJRELCLS
{ { REShELPRN } #DECLARATIVE-STATEMENT }

NET-DEF #FOR-TO-RELCLAUSE
{ - { !FOR #CNP } !TO #GINF }

Yet another variety of #SUBRELCLS is the #ADJCL. It is
based on an infinitive or prepositional phrase and introduced by
certain adjectiveS such at eager, impatient, or gl_ad as in
Trainees glad to complete their instruction or Avallable_t_o all
employees, group inSurance .

Aside from #SUBRELCLS, the other major varieties of relative
clause are #OBJRELCLS and #FOR-TO-RELCLAUSE. In #OBJRELCLS the
modified noun playS the role of the object and the relative
pronoun is optional, as in The procedure rtlaatl the_instructor
demonstrated. #FOR=TO-RELCLAUSE is a restricted version of
#FOR-TO appropriate for use as a relative clause. It allows us
to handle the thing to do or the thing for you to_do.

Verb _Phrases

There are three major verb phrase nets shown in Table 9, the
principal one being #VP, which generates verb forms; It includes
a fairly careful deScription of verb formats, covering the use of
modal auxiliarie8 such as can or may, the use of da, be and have
as auxiliaries, And simple tensed verbs, with consideration given
to negation and adverbs occurring between

24

28

Table 9

HGSL far_Verb Phrases

NET-DEF #CVP
{ #VP

* { + { CO,JJ / !,

#VP

NET-DEF #VP
{ * { ADV }

{ { AUX-MODAL { NEG } * 1 ADV I IGINF_#VCOMP } /
{ AUX-DO { NEG } * { ADV } INF #VCOMP } /

} AUX-IS * 1 ADV }
{ VERBING / VERBPP } #VCOMP
* { CONJ { VERBING / VERBPP } #VCOMP } } /

{ AUX-HAVE { NEG } * { ADV VERBPP #VCOMP } /
{ VERB #VCOMP 1 } }

NET-DEF #VCOMP
* { #CNP /

{ < LAST WORD IS A VERB
TAKING STANEMENT OBJECT > #CSTATEMENT } /

{ !THAT #CSTATEMENT I /
{ { - { } #PREPPHR

* { CONJ #PREPPHR } } /
ADV /
ADJ /

#PPCL /
#VINGCL /
#VERB-COMPLEX-ARGUMENT /
{ !, #INTERRUPTER !, } /
{ !{ OINTERRUPTER !} } }

NET-DEF #GINF
{ * { ADV }

{ { INF #VCOMP } /
{ !HAVE VERBPP #VCOMP /
{ !HAVE !BEEN { VERBPP-/ VERBING } #VCOMP } /
{ !BE * { ADV j { VERBPP / VERBING } #VCOMP

* { CONJ { VERBPP / VERBING } #VCOMP } } }

25

29

parts of the verb. Since this is a complicated definition, we
will give several examples of the verb phrases that it Includes.

There are basically five alternatives based on AUX-MODAL,
AUX-DO, AUX-IS, AUX-HAVE, or VERB. The AUX-MODAL case begins
with a modal verb such as may, might, or Should, and then
continues on to some infinitive and whatever object may follow
the infinitive (#VCOMP). As an example, consider must perform
the_procedure. Adverbs and negating elements can be interspersed
as indicated to give must not carelessly perform the procedure.
The AUX-DO alternative is quite similar, but is based on a form
of the verb t,a-do, rather than a modal. The sort of infinitive
phrase which follows to do is also slightly more restrictive, INF
as opposed to #GINF.--TTNF can generate have done, whereas the
lexical category INF cannot. As a consequence, should have done
it is allowed, but did have done it is not.

AUX-IS verb phrases have some form of the verb to be
followed by a participle, either present(VERBING) or past
(VERBPP). The participle can then be followed by the usual
objects. Examples of this would be been performing the procedure
or wast-old by the instructor. As indicated by the latter
example, AUX-IS verb phrases include some passive voice
constructs. The AUX-IS verb phrase has been extended to allow
building conjunctive verb phrases by adding a CONJ and a second
particip2e to give phrases such as been cleaned and inspected.

AUX-HAVE generates the past.tense with have and so requires
a past participle. An example with the optional arguments is
have performed the procedure. The VERB-based verb phrase is the
simplest pattern and captures the present tense of simple verbs,
e.g perform the procedure.

Every basic verb phrase described in #VP ends with a #VCOMP,
a net describing the numerous phrases which can follow the main
verb of a sentence. The first alternative in #VCOMP is the
direct object (#CNP). The second alternative uses a condition
(note the angle brackets). The rational for this condition is as
follows. Some verbs take whole clauses as their objects, as in I
hope thel, all get here on time. It would be very inefficient tip-
begin parsing a sentence after every verb, so the condition
ensures that we attempt this only if the verb is one of the
relatively few which can take clauses for their objects; In the
third tVCOMP option, a clause once again serves as object of the
sentence, but it is explicitly marked by that, as in I hope _that
they all get here on time.

Some of the more straightforward post-verb elements include
one (or more)_prepositional phrases and the lexical class ADV
(adverbs) . The lexical class ADJ (adjectives) is appropriate
only after such verbs as be, seem, become, etc. Currently no

26

attempt is made to implement this restriction, which could be
done with a condition.

#PPCL and #VINGCL are also possible verb complementS, a8 in
He eXedUted the procedurede_r_ed_Aay-the instructor or He
eXeCUted_the procedure before realizing_it-was inapplicable. A8
Mentitined_ abovev iVERB-COMPLEX-ARGUMENT accounts for infinitiVe
phra868 that follow the verb;

The last options given under #VCCMP are for interrupter
phrases, i.e. those which are likely to be set off from the rest
of the Sentence by commas or brackets. Since our understanding
of the relation of these phrases to the rest of the sentence is
incomplete, thi8 constituent has an undeniable catch-all flavor,
generating noun phrases, conjoined adjectives, and at least some
subordinate clauses. Giving a more satisfactory account of these
phrases would be an important next step for this grammar.

Likewise, the #VCOMP net could be improved by taking into
account the few Sequential restrictions that govern the ordering
of the structures included. For example, a verb complement may
include both a noun phrase and a clause object, but the order i8
not arbitrary, as shown by the contrast between The officer told
the trainee his promotion was approved and *The officer told hi8
promotion was approved the trainee. Currently #VCOMP does not
impose any such restriction. A #VCOMP consists simply of zero or
more items from the list of possible phrase structures. The
surprising thing about this net is that it works as well as it
does.

The last major verb net is #GINF which covers infinitive
forms and likewise makes use of #VCOMP to describe complete
infinitive-based phrases. There are basically four phrases here
which can be illustrated by the following examples: do
something, have done something, have been doing something, 'and be
doing something.

Noun Phrases
_ .

The major noun phrase net is #NP, shown in Table 10. The
first two options of the net are the most complicated. The fir8t
deScribes the sort of clause which can function both aS a
relative clause and as a noun, as in What he saw amazed him.
There is also an interesting conjunctive version, Do you know
where or when this _t_r_e_ad_st_artd? As is clear from theSe
examples, RELPRN is a fairly broad class including when, where,
how, which, that, and so forth. It is not essential to give a
full sentence after the RELPRN to get one of these noun-replacing
clauses. An infinitive phrase will do just as well: Dots he
know where to_turn9

27

31

Table 10

HGSL for Noun Phrases

NET-DEF #CNP
{ { !BOTH / !EITHER / !NEITHER }

{ #NP
* { { !i / !: / CONJ } #NP }

{ ! }

NET=DEF #NP
{ { RELPRN * { + { CONJ / !i } RELPRN }

#DECLARATIVE-STATEMENT } /
{ RELPRN * { + { CONJ / !i } RELPRN }

_ !TO #GINF #VCOMP } /
{ !WHETHERL#DECLARATIVE-STATEMENT

!OR { !NOT / #DECLARATIVE-STATEMENT } }

* PREDETADJ
= { DEFDET / NDEFDET }
* { NOUN / { ADJ - { CONJ } }

NOUN_
= { #RELCLAUSE /

{ POSS-MARK #CNP } /

_{ !{ #CNP !} } } } /
NAME /
PROPPRN /
PRN /
#GERUND }

NET=DEF #GERUND
{ - { NEG } { VERBING / !HAVING VERBPP } #VCOMP }

NET-DEF #PREPPHR
{ PREP #CNP

* { + { CONJ / !i } PREP #CNP

NET-DEF #RELCLAUSE
{ #FOR-TO-RELCLAUSE / #SUBRELCLS / #OBJRELCLS }

NET-DEF #INTERRUPTER
{ #COMPOUND-MODIFIER /

#CNP /
#PPCL }

28

32

The #WHETHER-OR clause discussed above in its role as a
sentence-introducing dependent clause can also serve in place of
a noun. ror example, Whether the_larccedarie_is-efficient is not
crucial. The most common pattern described by #NP is the more
obvious grouping of nouns and adjectives ending with a head noun,
and then possibly follow?d by relative clauses. This pattern
alSc covers_noun phrases that turn out to be possessive forms.
Other possible noun forms include proper names, pronouns (both
PROPPRN and PRN) and gerunds (i.e. those phrases based on a
present participle but serving as a noun).

GRAMMAR COVERAGE

The grammar was originally developed to handle technical
training materials written by Navy writers. The goal was to be
able to process early drafts of such material, and not finished
versiong of the material, because the parser was intended to be
used as part of a computerized comprehensible writing aid,(See
Kieras, 1985). A sample of target materials was collected and
supplied by the Naval Personnel Research and Duvelopment Center
(NPRDC), along with a lexicon containing about 10,000 words,
tagged with their traditional parts of speech. This lexicon
includes most of thè words appearing in military technical
training materials. It should be noted that a large quantity of
such material appears in essentially an outline format, with
heavy use of "telegraphic" prose. We did not attempt to ensure
that the grammar could handle such material, both because key
pates of the content are conveyed by the outline structure rather
than sentence content, and because the telegrapl,ic style is
probably inappropriate for such documents anyway. As an
indication of the coverage of the grammar, it parses all of the
examples shown in Table 11.

Convergence Of Coverage

The gratmar was originally developed to handle the target
materials in the usual non-systematic manner. That is; a few
sentences were chosen and tried on the grammar; If there was a
failure to parse the sentencei a_decision was made whether
extending the grammar would be reasonablei and if so; the
eXtension was made. However, we had the usual experience of
parser developers in that-a Jot of syntactic coverage comes vety
quitkly in the development of the_ grammar; but each extension
acColatts for fewer new syntactic forms; Thus; when coverage iS
ASSessed in terms of the variety of syntactic forms; further work
bb the grammar: tends to produce less and less additional
cOVerage. But :if the goal is to handle real material; with
realiStid distributions of syntactic forms, is it possible that
the gkammar development process converges to an adequat4=1:
Coverage? Of course, there are too many possible syntactic forms

29

33

Table II

Example sentencee frome-ach--NPRDC materials Sample

Sample

Given the logarithm table, a chain of amplifiers and/or
attenuators with the gain or loss of each expressed in db, and
the input power in watts, compute the gain or loss and output
power.

Sample 2

In order to ensure that all art work requests leaving and
returning to the IPDD are accurate and the requested word is done
to the satisfaction of the customer, the following procedures
will be adhered to in submitting audio=visual production
requests.

Sample 3

Due to the technical nature of these performance tests and the
requirement for the proctcr to be fully awar of the examinees'
actions and their consequences at all times, it is required that
the proctor be qualified to teach this course of instruction.

Sample 4

Identify the proper methods of approaching a drug offender while
collecting and safeguarding drug evidence as specified in
applicable publications.

to hope realistically_for a complete grammar. But thl question
is whether the process would get to a point of diminishing
returns at a reasonably high proportion of sentences in the
target material that are covered.

Thus, as part of the final grammar development process, a
convergence study was conducted. A Series of material samples
were used, with the grammar extended to handle each sample in
turn. A record_was kept of each change made in the grammar,_so
that we could roughly quantify whether the extensions to the
grammar either increased or decreated as we went from one sample
to the next.

The specific samples were supplied by NPRDC. These were
actual samples of draft materials to be used in technical

30

3 4

training. The sentences in these samples had been .._assified
into two groups, based on whether or not they could be simply
parsed by an extension of the relatively simple ATN grammar for
technical prose found in Kieras_(1983). We aSsumed that all of
the 8entences that could be parsed by the NPRDC grammar could
al8o be parsed by the current AgN, which like_the NPRDC grammar,
evolved from the same original simple ATN. We then focused on
the 8entences that could not be parsed by the NPRDC grammar. The
8entences shown in Table 11 are examples of Sentencet that could
not be parsed by the NPRDC grammar, but could be parsed by the
current grammar, after it was fully developed to handle these
Samples. These examples are chosen to repreSent the more complex
sentences that could not be _handled by the NPRDC parser, rather
than the simpler ones. _The samples were uted in order of
increasing size of the sample, which was the Same a8 the order of
increasing number of sentences that could not be parted by the
NPRDC ATN. The grammar was elaborated as required for each of
the sentences, and a record kept of how many Such changes were
made. Notice that the criterion for a successful parse was only
that the parser succeeded in producing a parSe tree that was not
grottly wrong. Such parse trees may have difficulties in terms
of semantic interpretation, but we did not make a systematic
effort to either quantify the number of such problems or to
resolve them.

The results are shown in Table 12. As shown in the Table,
the firtt sample consisted of a total of 23 Sentences, 5 of which
could not be parsed by the NPRDC ATN, and all 5 of these
Sentences required extensicns to our grammar. The next sample
had 30 such non-parsable sentences, and 12 required extensions to
the grammar. The fourth sample, however, had a total of 109
Sentences in it, 62 of which could not be parsed by the NPRDC
grammar, but by the time we reached this fourth sample, only four
Sentences required extensions to the grammar.

This overall decrease in the number of grammar extensions
suggests that the grammar is converging to a coverage of the
target materials that would be fairly adequate. Notice that each
Sample came from a different writer, so that we exposed the
par8er to the idiosyncracies of differ.mt writer's styles.
Although this convergence study is 17,3ry limited, we are
eLcouraged that practically useful parsers for this target
material can be developed, and that the grammar presented here is
close to being a practically useful parser.

Table 12

Grammar_Canvergence_ Results

Sample in order

1 2 3

Total sentences in sample 23 46 65 109

Sentences not simply parsed 5 30 39 62

Sentences requiring grammar extensions 5 12 6

Percentage of total 22% 26% 9% 4%

32

76

References

Kieras, D. E. (1983). A Simulation model for the comprehension of
technical pros. In G. H. Bower (Ed.), The RsynhalagT of
Learnlng-and Motivation, 17. New_York, NY: Academi_c. Press.

Kieras, D. E. (1985) . The potential for advanced nomputerized
aids forc-omprehensible writing of technical donume_mt-s.
(Technical Repo,:t No. 17, TR-85/0NR-17). University of
Michigan

Winograd, T. (1983, . Language as a cognitive process: VaL- 1:
Syntax. Reading, Massachusetts: Addison-Wesley.

3 7

Appendix

The Grammar for Technical Training Materi-als

NET-DEF #START
#HEADING /

{ #CSTATEMENT !. })

NET-DEF iHEADING
HEADING-MARK #CNP

SENTENCES_

NET-DEF #CSTATEMENT
{ #STATEMENT

{ * { !i #STATEMENT
{ ! }

COW'
#STATEMENT

NET-DEF #STATEMENT
* #FOR-TO
#WHETHER-OR /
#ELIDED-VP /
#PREPPHR /
#SUBCL /
#ADV }

- !i }

{ #DECLARATIVE-STATEMENT / #IMPERATIVE-STATEMENT
- SUBCI, } }

MET-DEF #DECLARATIVE-STATEMENT
{ #CNP #CVP }

NET-DEF #IMPERATIVE-STATEMENT
#CVP

SUBORDINATE_CLAUSES

NET-DEF #PPCL
{ PPCL VERBPP tVCOMP }

NET-DEF tVINGCL
{ VINGCL #GERUND

* f f CONJ / !. } #GERUND

NET-DEF #SUBCL
f SUBCL #STATEMENT }

NET-DEF #VERB-COMPLEX-ARGUMENT
{ !TO #GINF }

NET-DEF #FOR-TO
{ - f { !FOR #CNP } / { !IN !ORDER } }

!TO #GINF }

NET-DEF #WHETHER-OR
!WHETHER

{ #COMPOUND-MODIFIER /
{ #STATEMENT - { !OR !IF #STATEMENT } } }

NET-DEF #COMPOUND-MODIFIER
{ { !BOTH / !EITHER 1

f ADJ / #EL1DED-VP }
* { ` CONJ !, } { ADJ / #ELIDED-VP } } }

RELATIVE CLAUSES

NET-DEF #SUBR&XLS
{ { RESRELPRN #CVP } /

#PREPPHR /
4tEL1DED-VP /
#ADJCL }

NET-DEF #ELIDED-VP
{ { NEG } * ADV

#GERUND / VERBPP #VCOMP } } }

NET-DEF #ADJCL
{ - { !, }

ADJCL #PREPPHR / f !TO #GINF }) }

NET-DEF 4toEuRgixLs
- RESRELPRN 1 #DECLARATIVE-STATEMENT }

35

39

NET-DEF #FOR-TO-RELCLAUSE
- { !FOR #CNP !TO #GINF }

VERB PHRASES

NET-DEF _JCVP
(*VP
* { L { CONJ / !,

#VP

NET-DEF #VP
{ * ADV_}
{ { AUX-MODAL { NEG } { ADV } #GINF #VCOMP } /

AUX=DO NEG } * { ADV } INF #VCOMP } /
-L{_NEG } AUX-IS * { ADV)
f VERBING / VERBPP } #VCOMP

CONJ VERBING / VERBPP } #VCOMP }_j_/
AUX=HAVE - { NEG * { ADV } VERBPP #VCOMP } /

(VERB #VCOMP } } }

NET-DEF #VCOMP
* { #CNP /

f < LAST WORD IS A VERB
TAKING STATEMENT_OBJECT > #CSTATEMENT } /
(!THAT #CSTATEMENT } /

#PREPPHR
* { CONJ #PREPPHR } } /
ADV /
ADJ /

#PPCL /
#VINGCL /
#VERB-COMPLEX=ARGUMENT /
{ !, #INTERRUPTER !, } /
{ !{ #INTERRUPTER !} } } }

NET-DEF #GINF
{ * { ADV

{ {INF #VCOMP } /

(!HAVE VERBPP #VCOMP } /
f !HAVE !BEEN { VERBPP / VERBING } #VCOMP 1 /

!BE * { ADV } { VERBPP / VERBING } #VCOMP
* { CONJ { VERBPP / VERBING } #VCOMP } } } }

36

4 0

NOUN P HRA.S ES

NET-DEF #CNP
{ { !BOTH / !EITHER / !NEITHER }

#NP
* { + { ! , / ! ; / CONJ } #NP }

!

NET-DEF #NP
{ { RELPRN * { + { CONJ / ! , } RELPRN

#DECLARATIVE-STATEMENT /
{ RELPRN * { + { CONJ / ! } RELPRN }

! TO #CINF #VCOMP /
{ !WHETHER #DECLARATIVE-STATEMENT
! OR { !NOT / #DECLARATIVE-STATEMENT } }

* { PREDETADJ
- { DEFDET / NDEFDET }
* { NOUN / { ADJ { CONJ } } }

NOUN
{ #RELCLAUSE /
{ POSS-MARK #CNP } /
{ ! { #CNP ! } } } } /

NAME /
PROPPRN /
PRN /
#GERUND }

NET-DEF #GERUND
f NEG } { VERBING / !HAVING VERBPP

NET-DEF #PREPPHR
PREP #CNP
* { + { CONJ / ! , } PREP #CNP }

} #VCOMP }

NET-DEF #RELCLAUSE
{ #FOR-TO-RELCLAUSE / #SUBRELCLS / #OBJRELCLS }

NET-DEF # INTERRUPTER
#COMPOUND-MODIFIER /
#CNP /
#PPCL

