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A New, More Powerful Approach to Multitrait-Multimethod Analyses: An

Application of Second-order Confirmatory Factor Analysis

ABSTRACT

The advantages of applying confirmatory factor anaiysis (CFA) to multitrait-
multimethod (MTMM) data are widely recognized. However, because CFA as
traditionally applied to MTMM data incorporates single indicators of each
scale (i.e., each trait/method combinatian), important weaknesses are the
failure to: a) correct appropriately for measurement error in scale scores;
b) separate error due to low internal consistency from uniqueness due to

weak trait and/or method effects; c) test whether items or subscales

accurately reflect the intended factor structure; and d) test for correlated

uniquenesses. However, when the analysis begins with multiple indicators of
each scale (i.e., items or subscales), second-order factor analysis can be
used to address each of these problems. In this approach first-order

factors defined by multiple items or subscales are posited far each scale,

and.the method and trait factors are posited as second-order factors.
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A New, More Pewerful Approach to Multitrait-Multimethod Analyses: An

Application of Second-order Confirmatory Factor Analysis

Campbell and Fiske (1959) advocate the assessment of construct validity

by obtaining measures of more than one trait, each of which is assessed by
more than one method. In analyzing multitrait-multimethod (MTMM) data At is
typical to assess convergent validity, discriminant validity, and

method/halo effects. Convergent validity is agreement between measures of

the same trait assessed by different methods. Discriminant validity refers
to the distinctiveness of the different traits. Method/halo effect is an

undesirable bias that inflates the correlations among the different traits

that are measured by the same method.

Determinatian of convergent and discriminant validity is based on
inspection or analysis of a MTMM matrix. The original guidelines developed

by Campbell and Fiske (1959) are still useful (Marsh & Hocevar, 1983).

However, they have been criticized (Althauser & Heberlein, 1970; Alwin

1974; Sullivan & Feldman, 1979; Wideman, 1985) particulaaly because they
"are evaluated on the observed correlations among measures so that

differences among variables in their level of reliability will distort both
correlations among measures and summary measures derived from the

correlations" (Wideman, 1985, p. 2). More recently other procedures have

been developed for the analysis of MTMM matrices and confirmatory factor

analysis (CFA) approaches have been widely recommended (e.g., Baruch &
Wolins, 1970; Joreskcg, 1974; Kenny, 1979; Forsythe, McGaghie & Friedman,

1986; Lomax & Algina, 1979; Marsh & Hocevar, 1983; 1984; Schmitt, 1978;
Schmitt & Stults, 1986; Sullivan & Feldman, 1979; Wefts, Joreskog & Linn,
1972; Werts & Linn, 1970; Widamah, 1985).

The Traditional CFA ARRroach to fITMM Data.

In the CFA of MTMM data facters defined by multiple indicators of the
same trait support the constructHealidity of the trait, whereas factors

defined by variables representing the same method argue for method/halo

effects. In this approach a verOty of CFA models with A Rriori factors

corresponding to traits and/or m4hods are posited (see Marsh & However,

1983; Wideman, 1985). The parameter estimates and the ability of alterhative
models to fit the data are then Lised to assess convergent and discriminant
validity, and method/halo effect. In the traditional CFA approach to MTMM
data with LISREL-type analyses (e.g.,Forsythe, et al., 19861 Marsh &
HoceVar, 1983; Schmitt & Stults, 1966; Wideman, 1985), so long as-there are
at least three traits and three Methods, the general CFA model is typically
defined as follows:

!
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1) Each scele (i.e., the nine or more distinct trait/method

combinations) is inferred on the basis of only one measured variable, ofiLen

an average of several items or subscales designed to measure that scale.

2) Factor loadings are constrained in LAMBDA Y such that each scale

loads on one method factor and an one trait factor but all other factor

loadings are fixed to be zero. One trait-factor is posited i-cr each of the
multiple traits and one method-factor is posited for each of the multiple
methods.

3) Correlations among these factors in PSI are constrained such that
correlations among method factors and among trait factors are freely
estimated, but correlations between method and trait factors are fixed to be
zero (see Joreskog, 1974; Marsh & Hocevar, 1983; Wideman, 1985).

4) The error/uniqueness of each scale is estimated in the diagonal of
THETA and off-diagonals are fixed to be zero so that scale

error/uniquenesses are uncorrelated.

Problems With The Traditional CFA Anproach to MTMM Data.

Measurement error. The conceptualization of measurement error in this

traditional CFA approach to MTMM data differs drastically from that of
classical measurement theory. Because only one indicator of each scale is
considered, a scale's reliability cannot be estimated on the basis of
agreement among or the internal consistency of multiple indicators of the
scale. Rather, measurement error is inferred from a scele's uniqueness --
its eleserved variation that cannot be explained by the other scales that are
considered in the analysis. Whereas this estimate of measurement error
contains random error variance as conceptualized in classical measurement

theory, it also contains true score variance that is uriique from the
variance explained by the other scales (sometimes called specific variance).
In contrast, measerement error conceptualized in classical measurement
theory depends on the relative agreement among multiple indicators of the
same acale and not the other scales that are included in the analysis.
Consider, for example, a scale that is relatively unique from other scales
in the analysis but is defined by items or subscales that are highly
correlated. According to classical measurement theory this scale is very
reliable becauae its multiple indicators are highly correlated. However,
according to the traditional CFA approach to MTMM data this scale lacks
reliability because it has a large component of unique or specific variance.

This inability to separate true uniqueness from random error is not
limited to the CFA of MTKM data and Mulaik (1972, pp. 97-97) describes the

5
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same phenomena in terms of the general factor analysis model. Only when the

items (or subscales) used to define each scale are included in the CFA win
the conceptualization of measurement error in CFA will be like that of

classical measurement theory. In this case the "uniqueness" of an item from
other items designed to measure the same scale is legitimately considered to

be error variance. Hence, both the CFA and classical measurement approacNt
to reliability infer measurement error from the lack of agreement among
items designed to measure the same scale.

The conceptualization of measurement error in the traditional CFA
approach to MTMM data creates important problems that may undermine its
value. In particular, it is impossible to separate measurement error

(random error variance) from uniqueness (specific variance) due to a lack of
trait and method effects. Thus a low loading on a method or trait factor may
be due to either substantial measurement error or a true lack of trait and
method effects. The implications of this problem are particularly serious

when the reliabilitiet of different scales vary as is typical in MTMM data.

Such differences will distort inferred relations among the scales, the

factor loadings on the latent method and trait factors, relations among the
latent factors, and summary statistics that are based on these parameter

estimates. Ironically, this is similar to the critIcism of the Campbell-

Fiske criteria and is often cited as an advantage of the CFA approach.

The constcuct validity of the scale scores. Multiple items designed to

reflect each scale are typically averaged to form scale scores and MTMM

analyses begin with these scale scores. Implicit in this process is the

assumption that the researcher's a eriori structure (i.e., the one implied
by how scores are combined) accurately reflects the true factor structure.
Unless there is empirical supbort for this eriori factor structure,

however, the interpretation of the MTMM results may be problematic. If items
from the same scall actually reflect different traits, or items from

different scales actually reflect the same trait, then scale scores cannot
be interpreted in terms of trait and mechod effects. The use of just a

single item to represent each ,acale offers no solution to this problem, but
merely precludes tests of the a priori factor structure. This problem is

relevant to any approach to MTMM data that begins with scale scores, but it
is ironic that traditional CFA approaches to MTMM analyses suffer from this
problem even when multiple indicators'of each:scale are collected.

The hypothesized factor structure used to form scale scores is rarely
tested in MTMM studies. In recognition of this problem, Marsh (1983)

recommended that an exploratory factor analysis shonld conducted on item



MTMM Analyses 4

responses and that subsequent MTMM analyses should be based on the factors

derived from this analysis instead of scale scores. If this recommendation

were translated into the CFA approach it would involvl first conducting a
CFA on item or subscale scores. So long as there was reasonable support for
the fit of the a Rrigri structure, correlations among the factors derived
from this CFA of Item or subscale responses could then be used as the
starting point for the traditional approach to the CFA of MTMM data.

However, as described below, this actually corresponds to a second-order
factor analysis in which the items or subscales are the measured variables,

the factors from the first factor analysis disattenuated far measurement
error are the first-order factors, and the factors from the second factor

analysis are second-order factors used to infer trait and method effects.
The Amlication of HCFA to MTMM data in the Present Investigation.

CFA has been described in detail (see Bagozzi, 1980; Joreskog, 1981;

Joreskog & Sorbam, 1983; Long, 1983; Pedhauzur, 1982) and has been

frequently applied to MTMM data as described above. However, there have been
few published applications of HCFA (Marsh, 1985; in press-a; Marsh &

Hocevar, 1985), and we know of no previous applications of HCFA to MTMM
data. Hence, the purpose of the present investigation is to describe this
new approach to MTMM data that incorporates multiple indicators of each
scale and to demonstrate its advantages over the traditional CFA approach.

Conceptually, hierarchical factor analysis would be like conducting a
factor analysis an a correlation matrix of measured variables, estimating

correlations among the first-order factors, and then doing a second factor
analysis on the correlations among the first-order factors. The results of
this second facter analysis are used to infer second-oder factors that are
derived from relations among the first-order factors. In the HCFA approach,

however, both first-order and second-order factors are estimated

simultaneously in the same analysis.

There are alternative parameterizations of the HCFA model (e.g.,

Bentler & Weeks, 1980; Joreskog, 1974; Joreskog & Sorbom, 1981; 1983; Marsh
& Hocevar, 1985; McDonald, 1985; Olson, 1982). We used JorRskog and Sorbcm's
submodel 38 (Joreskog & Sorbom, 1983, pp. 1.11; also see Marsh and Hocevar,

l985; and Olsoni 1982) and matrix definition% from LISREL VI. Far this
parsmeterization the HCFA model is defined in terms of four parameter

matrices: LAMBDA Y (LAMBDA), the matrix of first-order factor loadings;
BETA, the matrix of second-order factor loadings; PS7, the matrix a/

residual factor variances for first-order factors (and correlations among
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residuals if posited) and factor variances and covariancas for second-order
factors; and THETA EPSILON (THETA), the matrix of error/uniquenesses of the
measured variables (and correlations among uniquenesses if posited). Using

this specification and I=the identity matrix, the covariance matrix (S) of
the observed y-variables iss

.1/
(1) S = LAMBDA (I - BETA) PSI (I BETA) LAMBDA/ + THETA
If second order factors are not hypothesized, then BETA=0 and this model

becomes the traditional first-order factor analysis model:

(2) S = LAMBDA PSI LAMBDA THETA

For purposes of the present investigation there are 27 measured

variables (item responses), three measured variables define each of 9

scales, and each scale represents a unique combination of one of 3 traits
and one of 3 methods (see Figure 1). In the traditional CFA approach,

responses to the three items far each scale would be combined according to

an a pciori, untested Nypothesis. The CFA would then be applied to the

uncorrected 9 x 9 correlation matrix of scale scores. In the HCFA approach,

correlations among the 27 measured variables are used to define nine first-

order factors. These nine factors form the basis of subsequent analyses

instead of the nine scale scores used in the CFA approach. Covariances among
these first-order factors are used to define second-order factors that

represent trait and method variance (Figure 1)- As will be shown, this HCFA

approach corrects the MTMM matrix for unreliability whereas the CFA does not
and it provides a test of the validity of the hypothesized first-order

factor structure whereas the CFA approach does not.

Method

The Datax

The data represent students' evaluations of teaching effectiveness as

measured by the Students' Evaluations of Educational Quality (SEM)

instrument. SEEQ-consists ol 35 items designed to measure nine factors that

have been identified in numerous factor analytic studies (e.g., Marsh,

1984). For purposes of this demonstration 3 items designed to measure each
of 3 factors (Learning/Value, Group Interaction, and Workload/Difficulty), a
total of 9 items, were selected. Class-average ratings far 948 different

classes were selected such that there were three sets of ratings far each of

316 instructors teaching the same class on three different occasions (see
Marsh & Hocevar, 1984, for further description). The 3 evaluation factors
represent the multiple traits, the 3 occasions represent the multiple
methods, and each of the 9 method/trait combinations is measured hy 3 items.
Hence the MTMM matrix consists of correlations among 27 measured variables
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(3 items per trait x 3 traits x 3 occasions) for each of 316 instructors.

Researchers have frequently considered different occasions as the multiple
methods in MTMM studies (e.g., Campbell & O'Connell, 1967; Sullivan &

Feldman, 1979; Werts, Joreskog & Linn, 1972). In the present investigation
the same instructor was evaluated on each occasion, but the ratings were
completod by different groups of students. Hence, ratings collected on

occasion 1 have in common only the fact that the instructors being evaluated
have taught the course less frequentl/ than for ratings collected on
occasion 3. Thus the method effects for this MTMM study are likely to be
small.

Statistical Analyses.

The commercially available LISREL VI program (Joreskog & Sorbom, 1983)
was used for all statistical analyses and was the basis for the notation and
specification of models. LISREL, after testing fx:r identification, attempts
to reproduce the observed correlation matrix under the constraints of a2
hypiathesized model. A X test is used to assess whether or not residual

differences between the observed and hypothesized covariance matrices will

converge to zero as the sample size tends to infinity. However, hypothesized
models are best regarded as approximations to reality rather than exact
statemens of truth so that any mcIdel will be rejected if the sample size is
large enough (Cudeck & Browne, 1983). As noted by Marsh and Hocevar (1985,
p, 567), "most applications of confirmatory factor analysis require a

subjective evaluation of whether or not a statistically significant chi-
square is small enough to constitute an adequate fit." The problem of

goodness of fit is how to decide whether the residuals are sufficiently
small to justify the conclusion that a specific model adequately fits the
data. Many alternative indices of fit have been developed includings a) the2
X /df ratio; b) the root mean square residual (RMSR) based on differences
between the original and reproduced correlation matrices; and.c) the Tucker-
Lewis index and the Bentler-Bonett index (BI) that provide an indication of
the proportion of variance that is explained by the hypothesized model.
Though none of these alternative indices has been universally endorsed, we
use each in order to assess goodness of fit i.see Bentler & Bonett, 1980;

Cudeck & Browne, 1983; Long, 1983; Marsh, Bal.la, McDonald, 1986; Marsh &
Hocevar, 1985, for further discussion).

RESULTS

The First-Order No013
2

The fics!i=ordar model al a target modell. The X for a HCFA model can be
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only as good as the fit of the corresponding first-order model. In this

respect the first-order model represents an upper-bound or optimum for all
subsequent HCFA models, and so we refer to the first-order model (Model 1)

as a target model (see Marsh & Hocevar, 1985). The fit of this first-order

model is also important because unless the parameter estimates support the a

priori factor structure and the fit is reasonable, then subsequent

interpretations of trait and method factors may be unjustified. The pattern

of factor loadings used to define the first-order factors is shown in Table

1. Each of the nine first-lrder factors represents a unique trait-method

combination that is defined by three items. One item for each factor is

designated to be a reference indicator and its factor loading is fixed to be

1.0. Inspection of the factor loadings for the target model (not shown since
these are nearly the same as those in Table 1) indicated that each of the 9

first-order factors was well defined in that: a) all factor loadings and

factor variances differed from zero by at least 15 standard errors; b)

standardized factor loadings (not shown) were generally .9 or higher; and
c) LISREL VI also provides a 27x9 matrix of correlations between the 27

measured variables and the 9 first-order factors, and inspection of this

matrix indicated that every item was substantially correlated with its

posited factor and substantially less correlated with each of the other

factors (see Hocevar & EI-Zahhar, 1985, for further discussion of this

approach).

The MTMM matrix based on tbe fiEst-grder model. When a reference

indicator is used to determine the metric of a factor, the factor yariances

in the diagonal of PSI are freely estimated and factor covariances appear in

the off-diagonals of PSI. In standardized form (Table.2) this is a

correlation matrix of relations among the first-order latent factors.

Superficially, this 9 x 9 correlation matrix of relations among latent

constructs is like MTMM matrices based on correlations among scale scores

such as used in the traditional CFA approach. However, the correlations in

Table 2 are based on an optimally weighted combination of the rultiple

indicators and are corrected for measurement error (see discussion below).

Hence, the Campbell-Fiske criteria can be more appropriately applied to the

correlations in Table 2 than to correlations among scale scares. Inspection

of these correlations suggests that support for convergent and discriminant

validity is strong whereas support far method effects is weak. A more

precise quantification of these effects requires the application of HCFA.

Corregtign for mgasuremegt euer. In the traditional approach tu CFA
MTMM data correlations are based on observed scale scores even when these
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measured variables are the mean of multiple indicators. Thus, the scale

scores and the correlations among them reflect an unspecified amount of
measurement error. In LISREL, as in classical measurement theory, the

correlation between two scale scores corrected for attenuation due to error
variance is the correlation between their true scores. The correlation
between true scores is estimated by the correlation between the measured
variables divided by the geometric mean of appropriately determined
reliabilities of the measures. In LISREL, however, error variance is
estimated directly in THETA (see equation 2) instead of being inferred on
the basis of reliability estimates. The relation between this correction for
attenuation and the corrections for unreliability using the traditional
formulae depends on the reliability estimate used and the appropriateness of
the reliability estimates. It should be noted, however, that this correction
for unreliability is based on the first-order model; it is not a function of
the HCFA model, but is the normal correction for unreliability incorporated
intO,the LISREL analyses.

The reliability of a linear combination of multiple indicatators is the
ratio of true score variance to total observed variance. Cronbach's alpha,
as typically applied, provides an estimate of this reliability When measures
are parallel (i.e., tau-equivalent). Because LISREL uses an optimal
weighting of the multiple indicators Cronbach's alpha underestimates
reliability unless all the factar loadings are equal (Kenny, 1979; McDonald,
1985). Kenny (1979) demonstrated how reliability estimates can be derived
from the maximum likelihood factor loadings and correlations among the
multiple indicators, and how these differ from the reliability of other
linear composites. Similarly, McDonald (1985) demonstrated how the
reliability can be estimated from just the factor loadings and the

error/uniqueness.terms (in the diagonal of THETA). Hence, the correction for
attenuation in LISREL and more traditional approaches differ according to
the appropriateness of the reliability estimates used rather than the
operationalization of this correction once an appropriate estimate of

reliability has been established. As noted by McDonald (1985) the advantage
of the factor analytic perspective to reliability theory is that it provides
information about about the characteristics of the items or subscales used
to estimate a construct (e.g., whether they are parallel) as well as the
information needed to estimate reliability (see Joreskog, 1981, for further
discussion of the relation between classical test theory and LISREL).

The validity of the a priori factor structure usgd tg combine items.

1 1
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The traditional approach to CFA of MTMM data begins with correlations based

on observed scale scores so that the measured variables have an unknown

relation to the latent constructs that they are designed to measure. There

is typically no attempt to test the validity of the a eciori factor

structure implicit in the way multiple indicators are combined. In the HCFA

approach the goodness of fit and parameter estimates for the first-order

model provide a precise indication of how well the latent constructs are

defined by the items or ..scales used to infer the latent constructs.

Furthermore, the latent construct is based on an optimal weighting of the

multiple indicators. An unweighted sum of the multiple indicators of each

scale may provide an adequate representation of the data, hut the HCFA

approach provides an empirical test of this implicit assumption.
HCFA Models of the MIMM data.

In the general HCFA model (Model 2), the pattern of the first-order

factor loadings is the same as for the target model (Model 1) and first-

order loadings (Table 1) were virtually the same as those from Model 1.

However, the 36 covariances among the first-order factors (in PSI) were all

set to be zero and six additional second-order factors were posited to

represent the 3 traits and 3 methods (see Figure 1). The covariances among

first-order factors are set to zero because the purpose of the second-order

factors is to provide an alternative explanation of these covariances. In

the HCFA model the diagonal elements in PSI associated with these first-

order factors are residual variances. Because the measurement error

variances are contained in the diagonal of THETA, the residual vitriances in
PSI represent uniquenesses -- variance in the first-ordc.,- factors that

cannot be explained by second-order factors. In the LISREL specification

used here, the factor loadings for the second-order factors are estimated in

BETA, second-order factor variances are estimated in PSI, and covariances

among the second-order trait .actors and among the second-order method
1

factors are estimated in PSI . Each of these 6 second-order factors is

defined by 3 first-order factors, and one of these first-order factors is

designated to be a reference indicatar whose gactor loading is set to be
1.0.

The second-order factor loadings (Table 3) for the method factors are

modest and several are not statistically significant. The loadings far the

trait factors are much larger and each loading is between 6 to 20 times the
size of its standard error. Similarly, the variances of method factors are

small or nonsignificant relative to their standard errors, whereas variances

of the trait-factors are all significant and much laroer. Collectively,

1 c)
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The traditional approach to CFA of MTMM data begins with correlations based

on observed scale scores so that the measured variables have an unknown

relation to the latent constructs that they are designed to measure. There

is typically no attempt to test the validity of the a pciori factor

structure implicit in the way multiple indicators are combined. In the HCFA

approach the goodness of fit and parameter estimates for the first-order

model provide a precise indication of how well the latent constructs are

defined by the items or ..scales used to infer the latent constructs.

Furthermore, the latent construct is based on an optimal weighting of the

multiple indicators. An unweighted sum of the multiple indicators of each

scale may provide an adequate representation of the data, hut the HCFA

approach provides an empirical test of this implicit aSSUMptiCh.
HCFA Models of the MIMM data.

In the general HCFA model (Model 2), the pattern of the first-order

factor loadings is the same as for the target model (Model 1) and first-

order loadings (Table 1) were virtually the same as those from Model 1.

However, the 36 covariances among the first-order factors (in PSI) were all

set to be zero and six additional second-order factors were posited to

represent the 3 traits and 3 methods (see Figure 1). The covariances among

first-order factors are set to zero because the purpose of the second-order

factors is to provide an alternative explanation of these covariances. In

the HCFA model the diagonal elements in PSI associated with these first-

order factors are residual variances. Because the measurement error

variances are contained in the diagonal of THETA, the residual vitriances in
PSI represent uniquenesses -- variance in the first-ordc,. Factors that

cannot be explained by second-order factors. In the LISREL specification

used here, the factor loadings for the second-order factors are estimated in
BETA, second-order factor variances are estimated in PSI, and covariances
among the second-order trait ;.actors and among the second-order method

1

factors are estimated in PSI . Each of these 6 second-order factors is

defined by 3 first-order factors, and one of these first-order factors is

designated to be a reference indicator whose cactor loading is set to be
10

The second-order factor loadings (Table 3) for the method factors are
modest and several are not statistically significant. The loadings for the

trait factors are much larger and each loading is between 6 to 20 times the

size of its standard error. Similarly, the variances of method factors are
small or nonsignificant relative to their standard errors, whereas variances

of the trait-factors are all significant and much laroer. Collectively,

1 2
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these findings indicate traits effects (i.e., convergent validities) are

much larger than method/halo effects.

Covariances among method factors (Table 3) are all nonsignificant,

whereas 2 of 3 covariances among trait factors are significant.

Learning/Valde correlates (i.e., the standardized covariance) .55 with Group
Interactian and .34 with Workload/Difficulty. These correlations represent
estimated relations among latent true scores that have been corrected for

measurement error as described earlier. In the terminology of MTMM analyses
2

these represent true trait-covariances.

Trait-only (Model 3) and method-only (Model 4) models were also defined

by including only three second-order factors (i.e, 3 trait factors in the

trait-only model and 3 method factors in the method-only factor). In each
case the restricted model provided a poorer fit to the data (Table 4) than

Model 2. However, the trait-only model provides a substantially better fit

than does the method-only model. These results also demonstrate that trait

factors account for much more variance than method factors.

In summary, the results demonstrate: a) a well defined factor structure

as indicated by the high first-order loadings; b) weak method effects as
indicated by the generally low loadings on second-order method factors, by

the small variances of these second-order factors, and by the small

decrement in fit produced by eliminating the method factors in Model 3; c)

strong convergent validity as indicated by the high loadings on the second-
order trait factors, by the substantial variances of these second-order
factors, and by the substantial decrement in fit produced by eliminating the
trait-factors in Model 4; and d) low to moderately correlated true trait-

scores (see footnote 2).

The Second-order CFA Model With Correlated Uniguenesses: An Expanded

Formulation o4 Measurement Error2.

The fit of Model 2, the general HCFA structure, can be evaluated from
different perspectives. It is well-defined in that: a) all first-order
factor loadings and at least the second-order trait factor loadings are

substantial; b) the MI (.85) is reasonabl high; and c) Model 2 fits the
data nearly as well as its target model (X = 22, df=12). Nevertheless,

diff 2the overall fit to the data may be less than satisfactory in that X /df
ratio is 5.28. Problems inherent in the assessment of fit complicate

interpretations of fit. Nevertheless, the comparison of Models 1 and 2

demonstrat.es that the lack of fit in Model 2 occurs in the definition of the

first-order factors and not the second-order factors. That is, the fit of

1 3
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Model 2 cannot possibly be better than Model 1 (i.e., the models are nested)

and Model 2 fits the data almost as well as Model 1.

One possible reason for the relatively poor fit of Model 1 is that the

simple structure that requires each measured variable to load on one and

only one first-order factor is quite restrictive, and a better fit might

result if measured variables were allowed to load on more than one first-

order factor. However, such a model might also confound method and trait

factors. Furthermore, the a priori nature of the data for this particular

demonstration provides a more likely explanation. Models 1-4 all require

the error/uniquenesses to be uncorrelated (i.e., THETA is a diagonal

matrix). This assumption is common in psychological measurement and may be

reasonable in many instances, but it may not be reasonable when the same
item is used on different occasions (e.g., Feldman & Sullivan, 1979;

Joreskog, 1974; 1979). For example, the same items designed to measure
Learning/Value were administered on each occasion. As shown in Figure 2, the

uniqueness of item 1 on occasion 1 is posited to be correlated with the

uniqueness of item 1 on occasion 2. These correlated uniquenesses may effect
the second-order trait or method factors as well as goodness of fit. It is

also important to emphasize that this type of effect cannot typically be

examined with the traditional CFA approach to MTMM data since only one

indicator of each trait/method combination is considered.

In order to test this suggestion four new models were posited to have

correlated uniquenesses. Each of these new models (Models la-4a) differed

from the corresponding models described earlier (Models 1-4) only in that 27

off-diagonal elements in THETA EPSILON were set free. The elements were

freed such that the uniqueness of each item was allowed to covary with the

uniqueness of the same item administered on different occasions. A

comparison of the fit indices for Models 1 and la (see Table 4) provides a

test of the assumption of uncorrelated uniquenesses. Model la provides a

much better fit to the data than Model 1 and results in substantial

improvements in the other indices of fit. Inspection of THETA (not shown)

indicated that 22 of the 27 posited correlations were statistically

significant and all these were positive. Similarly, for each of the other

pairs of models (Models 2 vs. 2a, 3 vs. 3a, and 4 vs.4a), the model with

correlated uniquenesses fits the data substantially better. These results
demonstrate that the assumption of uncorrelated uniquenesses is unjustified
for these data.

Model 2a, the full HCFA model with correlated uniquenesses fits the'
data nearly as well as the new target Model la. Thus the correlations among

1 d
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the first-order factors can still be adequately explained in terms of the

second-order trait and method factors. Despite the substantial improvement

in the overall fit produced by positing correlated uniquenesses, the factor

loadings for the first- and second-order factors and correlations among the

second order factors are nearly the same for Models 2 and 2a. Furthermore,
2

the difference in X s for Models la and 2a is nearly the same as the

difference between Models 1 and 2.

Trait-only (Model 3a) and method-only (Model 4a) with correlated

uniquenesses were also fit to the data. These models again result in a

poorer fit than the new target Model la, and the trait-only model again fits
the data better than the method-only model. Furthermore, the differences in2
X s between these restricted models and the full HCFA model (i.e., 2a vs. 3a
and 4a) are nearly the same as the corresponding differences for models with

no correlated uniquenesses (see Table 4).

The correlated uniqueness associated with the idiosyncratic wording of

specific items represents a second source of method effect that can be
evaluated from the MTMM perspective. In fact, inspection of the fit indices

in Table 4 indicates that the method effects associated with specific items

accounted for much more variance than the method effects associated with

with the multiple occasions of data collection. Method effects are typicall/

represented as method factors in CFA models. However, Kenny (1979) proposed

an alternative specification of the MTMM model in which method effects are

represented as correlated uniqueneesses in THETA such as posited here and

Marsh (in press-b) noted advantages of this representation. These results

also demonstrate that more than one source of method effect can be

considered in the same MTMM study. Elsewhere, though mit based on HCFA

models of MTMM data, I argued that MTMM studies that consider more than one

source of method effect provide a stronger evaluation of construct validity

than studies that Consider only one source of method effect (Marsh, Barnes &

Hocevar, 1985; Marsh & Butler, 1984).

In summary, each of the models positi j correlated uniquenesses (Models

la-4a) provides a substantial improvement over the corresponding models

without correlated uniquenesses (Models 1-4). This demonstrate that method

effects associated with the idiosyncratic wording of specific items items

did influence the ratings even though the ratings were made by different

groups of students. Despite this improved fit, parameter estimates for the

second-order trait factors and method factors associated with the multiple

occasions were nearly unchanged. At least in this application, the improved
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fit is primarily a function of improved fit of the first-order factors and

has nearly no impact on the second-order factor structure. Further research
is needed to establish whether this finding is typical, though we suspect

that the influence of correlated uniquenesses may be more substantial when

the same subjects respond to the same materials on different occasions as in

the typical panel design.

Diseussion and Inlications

A Comparison of the CFA and HCFA Aooroaches To MTMM Data.

The purpose of this demonstration is to describe new, more powerful

models based on HCFA for the analysis of MTMM data. CFA approaches to MTMM

data are used frequently but these approaches begin with a Single indicator

of each scale. The failure to incorporate multiple measures of each scale,

even when available, constitutes a serious weakness in the traditional CFA

approach to MTMM data. It is ironic that MTMM studies with their emphasis on
multiple indicators, and particularly CFA approaches to MTMM data, have not

incorporated information from the multiple indicators used to represent each

trait/method combination. The HCFA approach to MTMM data described here

differs from the typical CFA approach in three important ways.

First, estimates of measurement error in the inferred scale scores are
based on the agreement among multiple indicators that measure the same

latent construct in the HCFA approach rather than residual variance that is

unexplained by other scales (uniqueness) as in the traditional CFA approach.

In the HCFA approach random error inferred from low correlations among

multiple indicators of the same scale is clearly separated from uniqueness

due to weak trait and method effects, but in the traditional CFA approach

the two sources are confounded. The de4inition of and,correction for

measurement error in the HCFA approach is clearly more consistent with

traditional conceptualizations of classical measurement theory, and seems
less arbitrary in.that reliability estimates do not depend on what other

scales are included in the analysis. In fact, the only justification for

the conceptualization of and correction for measurement error in the

traditional CFA approach seems to be its inability to separate measurement
error from uniqueness.

A second difference between the two approaches is that the HCFA

approach provides rigorous tests of the a oriori factor structure posited to
underlie the multiple indicators of each scal.e whereas the traditional CFA
approach provides none. Typically, investigators merely sum responsis to'the
items or subscales designed to measure each scale without testing their

Rriori structure (i.e., the one implied by the way they combine scores). In

1 6
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this traditional approach, the interpretation of trait- and method-factors

wi/1 be problematic if the a griori structure does not fit the data, but

tests of this fit are not considered. Even when the pattern of factor

loadings is consistent with the a Rriori structure, the method of combining

the measured variables to form scale scores (e.g., an unweightEd sum) may be
inconsistent. In the HCFA approach, parameter estimates and fit indices for
the target model provide an empirical t2st of the a Rriori model and

optimally defined factors. Furthermore, if the target model does not provide
an adequate fit, it can be modified according to the substantive nature of
the data or empirical guidelines. Higher-order method and trait factors can

then be posited on the basis of the new first-order structure as in the

present demonstration.

A third difference between the two approaches is that whereas both

approaches typically posit uncorrelated error/uniquenesses for the items
used to define each scale, this assumption is easily tested and modified

wittithe HCFA approach but not with the CFA approach. In some MTMM

applications, as in the present demonstration, the a Rriori nattim of the

data make this assumption problematic. The findings demonstrated that this
assumption was unjustified, even though the correction for these correlated

uniquenesses had nearly no effect on the substantive findings. However, it

is possible that in other applications the inclusion of correlated errors
will have an even larger effect on goodness of fit and also affect

substantive conclusions -- particularly when the same subjects respand to
the same materials on multiple occasions as in the typical panel design.

The HCFA approach to MTMM data has apparently not been previously

considered, but the logic on which it is based is not riew. Marsh (1983)

recognized that scale scores are based on an a Rciori factor structure and

he proposed the use of exploratory factor analyses to test this structure.
Campbell and Fiske-(1951, p. 102) noted that MTMM matrices must be evaluated
in relation to the reliabilities of the scale scores but proposed no
systematic approach to accomplish this. Althauser and Heberlein (1970)

argued that under certain circumstances (e.g., measurement errors are
uncorrelated) the entire MTMM matrix may be corrected far unreliability

using conventional correctionformulas. If the g Rciork factor structure

implicit in the way subscale,or item scores are combined matches the

observed factor structure and if.correlations among scale scores are
.carrected for meaiUremint error inferred On the basis of agreement among

multiple indicators, then the traditional CFA approach starting with this
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disattenuated MTMM matrix will be equivalent to the HCFA approach. Even in
this ideal situation, however, the HCFA approach provides systematic test
underlying assumptions that are typically untestable with the CFA approach.

The Generality and Potential Weaknessizs in the HCFA Aggroach.

In the present demonstration, the multiple traits were defined by the
same set of items administered on different occasions, but the HCFA approach
is more generai and can be used in most applications that are appropriate
for the traditional CFA approach. First) because it is not necessary that
the different methods consist) of different occasions, the HCFA approach can

be used with all types of method variation. Second, it is not necessary to
use the same items for defining the same trait with different methods so

long as each trait/method combination is asses/ed with multiple indicators.
In fact, the use of the same items far different methods in the present

demonstration appears to be a major reason why the second-order factar model

with uncorrelated unfquenesses (Model 2) failed to fit adequately the data.

Third, even if some of the trait/method combinations are inferred with only
a single indicator, it may still be possible to use the HCFA approach. Even
though the single-item factors do not allow for estimates of internal

consistency, reliability estimates can be incorporated into the model.

Testing a plausible range of such estimates could be used to assess the
sensitivity of the other parameter estimates to differences in these

assigned reliability estimates (see Newman, 1984; Land & Felson, 1978).

Fourth, whereas both the CFA and HCFA approaches normally require at least 3
traits and 3 methods, special CFA models have been developed for

applications with only 2 traits (Kenny, 1979) or two methods (Marsh &
Hocevar, 1983) and can be adapted to the HCFA approach., Furthermore, the
variety of of alternative models considered in the CFA approach to MTMM data
(e.g., Marsh, in press-b; Wideman, 1985) can be easily adapted to the HCFA
approach (e.g., Models 3 and 4). Finally, even in MTMM studies in which each

trait/method combination is inferred with a single indicator, the HCFA

approach can be used. The HCFA approach would still have the benefit of

separating error due to separate random error from uniqueness due to weak
trait and/or method effects, though this might be of no advantage unless

reasonable estimates of reliability were available. However, in some such

applications where reliability estimates are available (e.g., published
studies that provide reliability estimates) the HCFA approach would be
clearly preferable. In summary, the. HCFA approach to MTMM data'has a wide

range of application, can be used in most applications in which the

traditional CFA approach is appropriate, and is recommended instead of the

I Q
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CFA approach whenever multiple indicators of each trait/method combination

are available or when the reliability these scales can be estimated.

An anonymous reviewer suggested seferal potential limitations of the

HCFA approach to item level data that deserve further attention: a) items

may be dichotomous and LISREL-type CFAs, like most other factor analytic

techniques, assume continuous variables; b) item level data are typically

less reliable --particularly when based on responses by individuals instead

of groups -- so that they may be gnre prone to unstable or improper

solutions (e.g., Heywood cases); c) psychological inventories often have

many more items than in the present application so that costs of the HCFA

approach may be prohibitive. In reference to the fir...t point, Muthen has

developed an appropriate mathematical solution for analyses of dichotomous
2

variables and shown that LISREL-type estimates are quite robust though X

tests may be biased if item skews are extreme (Muethen & Kaplan, 1985).
2LISREL VI can analyze dichotomous variables though the corresponding X test

of significance must be ignored. The second point is intuitively reasonable,

but further research is needed to test the suggestion. In fact, the

traditional CFA approach is known to suffer from this problem and this may

be related to the its inappropriate definition of and correction for

measurement error. Thus it is possible that item level analyses will be less

prone to improper solutions. The third point suggests a practical limit to

the number of items that can be factor analyzed. Such a limit will be a

complicated function of the characteristics of the computer software, the

computer itself, the model to be tested, and the congruence between the

model and the data. A partial solution to all three potential limitations

would be to divide all the items from each scale into three or more

subscales to be used in further analyses. For example, Marsh and Hocevar

(1985) conducted a HCFA on a 56 item self-concept inventory by forming 28

two-item subscales'that were used to define 7 first-order factors. This

procedure, while sacrificing some item-level information, preserves most of

the advantages of the HCFA approach described here, eliminates dichotomous

responses if they exist, increases the reliability of the measured

variables, and reduces the number of measured variables to 3 or 4 times the

number of first-order factors.

1 9
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Footnotes
1

In the LISREL specification of Models 2 and 2a, 21 measured variables were
used to represent 15 factors -- 9 first-order and 6 second-order factors

(see Figure 1): Lambda Y was a 27x15 matrix with the first 9 columns

structured as in Table 2 and the last 6 columns as fixed zeros; Beta was a

15x15 matrix with fixed zeros in the first 9 columns and the last 6 columns

structured as in Table 3; PSI was a 15x15 matrix with fixed zeros in the

nun-diagonals values of the first 9 columns and the last 6 columns

structured as in Table 3; Theta Epsilon was a 27x27 matrix that was diagonal

for Model 2 but had 27 off-diagonals that were not fixed in Model 2a (see
Figure 2).
2
There is no universally accepted criteria of what constitutes support for

discriminant validity in CFA approaches to MTMM data. Same researchers

(e.g., Kenny, 1979; Lomax & Algina, 1979; Widaman, 1985)-argue that

correlations between trait far:tors provide evidence against discrfAinant

validity. In contrast, Werts, Linn and Joreskog (1971) note .LOAt there are

no rules for determining how high true-trait correlations should be before

before the traits are considered to be indistinguishable other than to test

whether the correlation differs significantly from unity. Similarly, Marsh

and Hocevar (1983) argue that significant correlations between trait-factors

imply true trait correlations, and should only be interpreted as a lack of

discriminant validity when such correlations approach unity or are

inconsistent with the substantive nature of the data. In support of their

argument they note that Campbell and Fiske's fourth guideline interprets the

consistency of correlations among different traits across methods -- an

indication of true trait-covariance -- as support for discriminant validity

rather than evidence against it. This ambiguity, though an important issue,

has not been emphasized in the present demonstration because it applies to
both CFA and HCFA approaches.

20
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Figure 1. The structure of measured variables, first-order factors,

second-order method (M) factors and second-order trait (T) factors. Each

of the 27 measured variables (item responses) has a three-part label

corresponding to the item (1-9), the method (M1-M3) of assessment, and the

trait (T1-T3) that the item is designed to measure. Each of the first-order

factors represents a distinct trait/method combination (M1T1-M3T3) that is

inferred from responses to 3 measured variables. These first-order factors

are used to define the 3 second-order method and trait factors. Although

not shown in the figure, the three second-order method factors were assumed

to be correlated as were the three second-order trait factors.
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Figure 2. A Representation of Correlated Uniquenesses. T1 is the first

second-order trait-factor, M1 and M2 are the first two second-order

method-factors, MITI and M2T1 are first-order factors representing T1

assessed by the first two methods, 1/M1/T1, 2/M1/T1, 1/M2/T1 and 2/M2/T1

are measured variables used to infer the the first-order factors (see

Figure 1) and the U associated with each measured variable represents its

error/uniqueness. The curved arrows between uniquenesses represent the

correlated uniquenesses of the same measured variables administered

according to two different methods (occasions).

M1 M2

T1

112T2

1/M1/T11 2/M1/T1 1/M2/T2 2/12/T2
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Table 1

First-order Factor Loadings (and Standard Errors) of Each Measureo Variable for the

General HCFA Model (Model 2)

Measured First-order Factors

Variables M1T1 M1T2 M1T3 M2T1 M2T2 M2T3 M3T1 M3T2 M3T3

1/M1/T1 .961.03 0 0 0 0 0 0 0 0

2/M1/T1 1.0 0 0 0 0 0 0 0 0

3/M1/T1 .951.03 0 0 0 0 0 0 0 0

4/M1/T2 0 .98/.02 0 0 0 0 0 0 0

5/M1/T2 0 1.0 0 0 0 0 0 0 0

6/M1/T2 0 .96/.02 0 0 0 0 0 0 0

7/M1/T3 0 0 1.0 0 0 0 0 0 0

8/M1/T3 0 0 .841...1 0 0 0 0 0 0

9/M1/T3 0 0 .99 )4 0 0 0 0 0 0

1/M2/T1 0 0 0 .98/.03 0 0 0 0 0

2/M2/T1 0 0 0 1.0 0 0 0 0 0

3/M2/T1 0 0 0 .971.03 0 0 0 0 0

4/M2/T2 0 0 0 0 .95/.02 0 0 0 0

5/M2/T2 0 0 0 0 1.0 0 0 0 0

6/M2/T2 0 0 0 0 .951.02 0 0 0 0

7/M2/T3 0 0 0 0 0 .99/.05 0 0 0

8/M2/T3 0 0 0 0 0 .80/.05 0 0 0

9/M2/T3 0 0 0 0 0 1.0 0 0 0

1/M3/T1 0 0 0 0 0 0 .96/.03 0 0

2/M3/T1 0 0 0 0 0 0 1.0 0 0

3/M3/T1 0 0 0 0 0 0 .941.03 0 0

4/M3/T2 0 0 0 0 0 0 0 .98/.02 0

5/M3/T2 0 0 0 0 0 0 0 1.0 0

6/M3/T2 0 0 0 0 0 0 0 .96/.02 0

7/M3/T3 0 0 0 0 0 0 0 0 1.0

8/M3/T3 0 0 0 0 0 0 0 0 . .82/.05

9/M3/T3 0 0 0 0 0 0 0 0 .99/.04

Note. See Figure 1 for a description of the measured variables (items) and factors.

tine variable for each factor was designated to be a reference variable and its

unstandardized factor loading was fixed at 1.0. Estimated factor loadings for all

other items are presented as a ratio of their standard errors.

24,
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Table 2

Correlations Among Latent First-Order Factors From the Target Model (Model 1)

First-Order

Factors

1 M1T1

2 M1T2

3 M1T2

4 M2T1

5 M2T2

6 M2T3

7 M3T1

8 M3T2

9 M3T3

1

1.00

.58

.39

,71

.38

.31

74
.38

.29

2

1.00

.01

.38

,71

.06

.46

75
.00

3

1.00

.31

-.07

,86

.27

-.10

,87

4

1.00

_53

.39

74
.32

.28

5

1.00

.04

.44

69
-.02

6

1.00

.28

.06

88

7

1.00

.58

.28

8

1.00

-.10

9

1.00

Note. See Figure 1 for a definition of the first-order factors.

Correlations are the standardized factor covariances from Model 1 after

correction for unreliability due to a lack of internal consistency.

Underlined correlations are convergent validities, the correlation between

the same trait assessed by two different methods.
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Table 3

Parameter Estimates For the General HCFA Model (Model 2) and Standard

Errors: Second-Order Factor Loadings (in BETA) and Second-order Factor

Variance/Covariances (in PSI)

Second-order Factors

MI

Factor Loadings (BETA)

First-Order Factors

M2 M3 Tl T2 T7S

Ml/T1 1.0 0 0 .831.10 0 0

Ml/T2 .40/.13 0 0 0 1.0 0

Ml/T3 .191.03 0 0 0 0 .96/.05

M2/T1 0 1.0 0 .811.08 0 0

M2/T2 0 .451.15 0 0 .97/.05 0

M2/T3 0 .231.09 0 0 0 .941.05

M3/T1 0 0 .031.65 1.0 0 0

M3/T2 0 0 1.0 0 .99/.05 0

M3/T3 0 0 -.01/.12 0 0 1.0

Factor Variance/Covariances (PSI)

Second-order Factors

M1 .54/.18

M2 .09/.06 .41/.13

M3 .03/.05 -.03/.04 3.9/76.9

T1 0 0 0 .84/.11

12 0 0 0 .42/.06 .711.08

T3 0 0 0 .27/.05 -.04/.06 .76/.08

Note. See Figure 1 for a description of the first- and second-order

factors. Parameters with values of 1.0 were designated to be reference

indicators. All other-parameter estimates are presented as a ratio their

standard errors.
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Table 4

The Goodness of Fit For Alternative Models

2 ,
Model X (df) X /df RMSR BBI

Uncorrelated Uniquenesses

0 Null 12,748 (351) 36.31 .449 .000

1 Target 1,563 (288) 5.43 .068 .877

2 Full 1,585 (300) 5.28 .071 .876

3 Trait Only 1,888 (312) 6.05 .083 .852

4 Method Only 2,802 (312) 8.98 .281 .780

Correlated Uniquenesses

la Target 713 (261) 2.73 .066 .944

2a Full 736 (273) 2.70 .070 .942

3a Trait Only 1,055 (285) 3.70 .082 .917

4a Method Only 1,848 (285) 6.48 .257 .855

Note. RMSR = Root Mean Square Residual; BBI = Bentler Bonett Index. The

purpose of the null model is for computation of the BBI. Each of the other

models was first fit with all error/uniquenesses posited to be uncorrelated

and then again with correlated error/uniquenesses.


