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A New, More Powerful Approach to Multitrait-Multimethod Analyses: An
Application of Second-order Confirmatory Factor Analysis

ABSTRACT
The advantages of applying confirmatory factor anaiysis (CFA) to multitrait-
mul timethod (MTMM) data are widely recognized. However, because CFA as
traditionally applied to MTMM data incorporates single indicators of each
scale (i.e., each trait/method combination), important weaknesses are the
failure to: a) correct appropriately for measurement error in scale scores;
b) separate error due to low internal consistency from uniqueness due to
weak trait and/or method effects; c) test whether items or subscales
accurately reflect the intended factor structure; and d) test for correlated
uniquenesses. However, when the analysis begins with multiple indicators of
each scale (i.e., items or subscales), second-order factor analysis can be
used to address each ﬁf these problems. In this approach first-order
factors defined by multiple items or subscales are posited for each scale,

and -the method and trait factors are posited as second-order factors.




MTMM Analyses 1

A New, More Puwerful Approach to Multitrait-Multimethod Analyses: An
Application of Second-order Confirmatory Factor Analysis

Campbell and Fiske (1959) advocate the assessment of construct validity
by obtaining measures of more than one trait, each of which is assessed by
more than one method. In analyzing multitrait-multimethod (MTMM) data it is
typical to assess convergent validity, discriminant validity, and
method/halo effects. Convergent validity is agreement between measures of
the same trait assessed by different methods. Discriminant validity refers
to the distinctiveness of the different traits. Method/halo effect is an
undesirable bias that inflates the correlations among the different traits
that are measured by the same method.

Determination of convergent and discriminant validity is based on
inspection or analysis of a MTMM matrix. The original guidelines develaped
by Campball and Fiske (1959) are still useful (Marsh & Hocevar, 1983).
However, they have been criticized (Althauser % Heberlein, 1970; Alwin,
1974; Sullivan & Feldman, 1979; Widaman, 1985) particularly because they

are evaluated an the observed carrelations among measures so ‘that
differences among variables in their level of reliability will distort both
correlations among measures and summary measures derived from the
correlations” (Widaman, 1985, p. 2). More recently other procedures have
been developed for the analysis of MTMM matrices and confirmatory factor
analysis (CFA) approaches have been widely recommended (e.g., Boruch &
Wolins, 1970; Joréskcg, 1974; Kenny, 1979; Forsythe, McGaghie % Friedman,
1986; Lomax & Algina, 1979; Marsh & Hocevar, 1983; 1984; Schmitt, 1978;
Schmitt & Stults, 1986; Sullivan & Feldman, 1979; Werts, Joreskog & Linn,
19725 Werts & Linn, 19703 w1damam, 1983).

e G e Tt it G et L i e e e oy e RY MO mAUR  eemEmen e e -

In the CFA of MTMM data factors defined by multiple indicators of the
sam? trait suppart the construct;validity of the trait, wherazs factors
defined by variables rapresentin& the same method argue for method/haio
corresponding to traits and/or mmthods are posited (see Marsh & Hocevar,
19833 Widaman, 1985). The purame;er astimates and the ability of alternative
models to fit the data are then usad to assess convergen: and‘discriminant
validity, and method/halo effect3. In the traditional CFA approach to MTMM
data with LISREL-type analyses (@.g.;'Forsythu, et al., 19863 Marsh &
Hocﬂvar, 19833 Schmitt % Stults, 198&; Widaman, 1985), so long as there are
at least three traits and three methods, the general CFA model is typically
defined as follows:
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1) Each scale (i.e., the nine or more distinct trait/method
combinations) is inferred on the basis of only one measured variable, often
an average of several items or subscales designed to measure that scales.

2) Factor loadings are constrained in LAMBDA Y such that each scale
loads on one method factor and on one trait factor but all other factor
loadings are fixed to be zero. One trait-factor is posited +cr each of the
multiple traits and one methiod-factor is posited for each of the multiple
inethods.

3) Correlations among these factors in PSI1 are constrained such that
correlations among method factors and among trait factors are freely
estimated, but correlations between method and trait factors are fixed to be
zero (see Joreskog, 1974; Marsh & Hocevar, 1983; Widaman, 1985).

4) The error/uniqueness of each scale is estimated in the diagonal of
THETA and off-diagonals are fixed to be zero so that scale
errorluniquenesses are uncorrelated.

Measurement error. The conceptual1zat1on of measurement error in this
traditional CFA approach to MTMM data differs drastically from that of
classical measurement theary. Because cnly one indicator of each scale is
considered, a scale’s reliability cannot be estimated on the basis of
agreement among or the internal consistency of multiple indicators of the
scale. Rather, measurement error is inferred from a scz2le’s uniqueness -—-
its chserved variation that cannot be explained by the other scales that are
considered in the analyvsis. Bhereas this estimate of measurement error
contains randum error variance as conceptualized in classical measurement
theory, it also contains trua score variance that is unique from the
variance explained by the other scales (sometimes called specific variance).
In contrast, measurement error conceptualized in classical measurement
theory depends on the relative agreement among multiple indicators of the
same gcale and not the other scales that are included in the analysis.
Censider, for example, a scale that is relatively unique from other scales
in the analysis but is defined by items or subscales that are highly
correlated. According to classical measurement theory this scale js very
reliable because its multiple indicators are highly correiated. However,
according to the traditicnal CFA approach to MTMM data this scale lacks
reliability because it hag a large component of unique or specific variance,
This inability to separate true uniqueness from random error is not

limited to the CFA of MTHK data and Mulaik (1972, pp. 97-99) describes the

D



MTMM Analyses 3

same phenomena in terms of the general factor analysis mcdel. Only when the
items (or subscales) used to define each scale are includad in the CFA will
the conceptualization of measurement error in CFA will be like that of
classical measurement theory. In this case the "uniqueness" of an item from
other items designed to measure the same scale is legitimately considered to
be error variance. Hence, both the CFA and clagsical measurement approache
to reliability infer measurement error from the lack of agreement among
items designed to measure the same scale.

The conceptualization of measurement error in the traditional CFA
approach to MTMM data creates important problems that may undermine its
value. In particular, it is impossible to separate measurement error
(random error variance) from uniqueness (specific variance) due to a lack of
trait and method effects. Thus a iow loading on a method or trait factor may
be due to either aubstantial measurement error or a true lack of trait and
method eftects. The implications of this problem are particularly serious
when the reliabilities of different scales vary as is typical in MTMM data.
Such differences will distort inferred relations among the scales, the
factor loadings on the latent method and trait factors, relations amcng thoe
latent factors, and summary statistics that are based on these parameter
estimates. Ironically, this is similar to the crit.cism of the Campbell-
Fiske criteria and is cften cited as an advantage of the CFA approach,

The construct validity of the scale scares, Multiple items Jegigned to

reflect each scale are typically averaged to form scale scores and MTMM
analyses begin with these scale scores. Implicit in this process is the
assumption that the researcher’s a priori structure (i.e., the one implied
by how scores are combined) accurately reflects the trye factor structure.
Unless there is empirical support for this a priori factor structure,
however, the interpretation of the MTMM results may be problematic. If items
from the same scaln actually reflect different traits, or items from
different scales actually reflect the same trait, then scale scores cannot
be interpreted in terme of trait and mechod effects. The use of just a
single item to represent each scale offers no solution to this problem, but
merely precludes tests of the a priori factor structure. This problem is
relevant to any approach to MTMM data that begins with scale scores, but it
is ironic that traditional CFA approachas to MTMM analyses suffer from this
problem even when multiple indicators’ of each scale are collected.

The hypathasized factor structure used to fora scale scores is rarely
tested in MTMM ltudins. In recognition of this problem, Marsh (1983)
recommended that an exploratory factor analysis shonld conducted on item

o
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responses and that subsequent MTMM analyses should be based on the factors
derived from this analysis instead of scale scores. If this recommendation
were translated into the CFA approach it would involvn first conducting a
CFA on item or subscale scores. So long as there was reasonable support for
the fit of the a priori structure, correlations among the factors derived
from this CFA of item or subscale responses could then be used as the
starting point for the traditional approach to the CFA of MTMM data.
However, as described below, this actually corresponds to a second-order
factor analysis in which the items or subscales are the meagured variables,
the factors from the first factor analysis disattenuated for measurement
error are the first-order factors, and the factors from the second factor
analysis are second-order factors used to infer trait and method effects.
The fpplication of HCEA to MIMM data in the Present Investigation.

CFA has been described in detail (see Bagozzi, 19803 Joreskog, 1981;
Joreskog & Sorboens, 1983; Long, 1983; Pedhauzur, 1982) and has been
freﬂhently applied to MTMM data as described above. Haowever, there have been
few published applications of HCFA (Marsh, 19853 in press-aj Marsh &

Hocevar, 1983), and we know of no previous applications of HCFA to MTMM
data. Hence, the purpose of the present investigation is to describe this
new approach to MTMM data that incorporates multiple indicators of each
scale and to demonstrate its advantages over the traditional CFA approach.

Conceptually, hierarchical factor analysis would be like conducting a
factor analysis on a correlation matrix of measured variables, estimating
carrelations among the first-order factors, and then doing a second factor
analysis on the correlations among the first-order factors. The results of
this second facter analysis are used to infer second-order factors that are
derived from relations among the first-order factors. In the HCFA approach,
however, both first-order and second-order factors are astimated
simultaneously in *he same analysis.

There are alternative parameterizations of the HCFA model (e.g.,
Bentler & Weeks, 1980 Jaoreskog, 1974} Joreskog & Sorbom, 19813 1983; Marsh
& Hocevar, 19853 McDonald, 1985; Olson, 1982). We used Joreskog and Sorbom’s
submodel 3B (Joreskog % Sorbom, 1983, pp. 1.113 also see Marsh and Hocevar,
19833 and Olson; 1982) and matrix definitions from LISREL VI. For this
parameterization the HCFA model is defined in terms of four parameter
matrices: LAMBDA Y (LAMBDA), the matrix of first-order factcr loadings;
BEVA, the matrix of second-order factor loadings; PSI the matrix of
residual factor variances for first-order factors (and correlations among

v



MTMM Analysas 5

residuals if posited) and factor variances and covariancaes for second-order
factors; and THETA EPSILON (THETA), the matrix of error/uniquenesses of the
measured variables (and correlations among uniquenesses if posited). Using
this specification and I=the identity matrix, the covariance matrix (S) of
the observed y-variables iss
(1) S =LAMBDA (I - BETA)  PSI (I - BETA)'~  LAMBDA’ + THETA
If gecond order factors are not hypothesized, then BETA=0 and this madel
becomes the traditional first-order factor analysia model:
(2) 8 = LAMBDA PSI LAMBDA"+ THETA

For purposes of the present investigation there are 27 measured
variables (item responses), three measured variables define each of 9
gcalaes, and each scale represents a unique combination of one of 3 traits
and one of 3 methods (see Figure 1). In the traditional CFA approach,
responses tc the three items for each scale would be combined according to
an a priori, untested hypothesis. The CFA would then be applied to the
uncorrected ? x 9 correlation matrix of scale gcores. In the HCFA approach,
correlations among the 27 measured variables are used to define nine first-
order factors. These nine factors form the basis of subsequent analyses
instead of the nine scale scores used in the CFA approach. Covariances among
these first-order factors are used to define second-order factors that
represent trait and method variance (Figure 1). As will be shown, this HCFA
approach corrects “he MTMM matrix for unreliability whereas the CFA does not
and it provides a test of the validity of the hypothesized first-order
factor structure whereas the CFA appr-oach does not.

Method

The data represent students’ evaluations of teaching effectiveness as
measured by the Students’ Evaluations of Educational Quality (SSEQ)
inastrument. SEEQ-consists of 33 items designed to measure nine factors that
have been identified in numerous factor analytic studies (e.g., Marsh,
1984). For purposes of this damonstration 3 items designed to measure each
of 3 factors (Leerning/Value, Group Interaction, and Workload/Difficulty), a
total of ? items, were selected. Class—-average ratings for 948 different
classes were selected guch that there were three sets of ratings for each of
316 ingtructors teaching the same class on threa different occasions (ses
Marsh % Hocevar, 1984, for further description). The 3 evaluation factors
represent the nultiple traits, the 3 occasions represent the multiple
methods, and each of the 9 method/trait combinations is measured by 3 items.
Hence the MTMM matrix consists of correlatione among 27 measured variables

(@]



MTMM Anrlyses 6

(3 items per trait x 3 traits x 3 occasions) for each of 316 instructors.
Researchers have frequently considered different occasions as the multiple
methods in MTMM studies (e.g., Campbell & 0’Connell, 19473 Sullivan &
Feldman, 1979; Werts, Joreskog & Linn, 1972). In the present investigztion
the same instructor was evaluated on each occasion, but the ratings were
completad by different groups of students. Hence, ratings collected on
occasion 1 have in common only the fact that the instructors being evaluated
bave taught the course less frequently than for ratings collected on
occasion 3. Thus the method effects for this MTMM study are likely to be
small.

The commercially available LISREL VI program (Joreskog & Sorbom, 1983)
was used for all statistical analyses and was the basis for the notation and
specification of models. LISREL, after testing for identification, attempts
to reproduce the observed correlation matrix under the constraints of a
hypbthesized model. A X test is used to assess whether or not residual
differences between the observed and hypothesized covariance matrices will
converge to zero as the sample size tends to infinity. However, hypothesized
models are best regarded as approximations to reality rather than exact
statements of truth so that any medel will be rejected if the sample size is
large enough (Cudeck & Browne, 1983). As noted by Marsh and Hocevar (1985,
p. 567), "most applications of confirmatory factor analysis require a
subjective evaluation of whether or not a statistically significant chi-
square is gmall enough to constitute an adequate fit." The problem of
goodness of fit is how to decide whether the residuals are sufficiently
small to justify the conclusion that a specific model édequately fits the
dgta. Many alternative indices of fit have been developed including: a) the
X /df ratioj b) the root mean square residual (RMSR) based on differences
between the original and reproduced correlation matricesy and. ci the Tucker-
Lewis index and the Bentler-Bonett index (BBI) that provide an indication of
the proportion of variance that is exblained by the hypothesized model.
Though none of these alternative indices has been univarsally endorsed, we
use each in arder tp assess goodness of fit imge Bentier & Bonett, 1980;
Cudeck & Browne, 1983; Long, 1983; Marsh, 8alia, McDonald, 1986; Marsh &
Hocevar, 1983, for further discussion).

" RESULTS

2
The firsf-orggr model ag a taraet modg&,L The X for a HCFA model can be

———— e S 1. o o ——— o ——
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only as good as the fit of the corresponding first-order model. In this
respect the first-order model represents an upper-bound or optimum for all
subsequent HCFA models, and so we refer to the first-order model (Model 1)
as a target model (see Marsh & Hocevar, 1985). The fit of this first-order
model is also important because unless the parameter estimates support the a
priori factor structure and the fit is reasonable, then subsequent
interpretations of trait and method factors may be unjustified. The pattern
of factor loadings used to define the first-order factors is shown in Table
1. Each of the nine first-arder factors represents a unique trait-method
combination that is defined by three items. Une item for each factor is
designated to be a reference indicator and its factor loaging is fixed to be
1.0. Inspection of the factor loadings for the target model (not shown since
these are nearly the same as those in Table i) indicated that each of the 9
first-order factors was well defined in that: a) all factor loadings and
factor variances differed from zero by at least 15 standard errors} b)
standardized factor loadings (not shown) were generally .9 or higher; and
c) LISREL VI also provides a 27x9 matrix of correlations botween the 27
measured variables and the 9 first-order factors, and inspection of this
matrix indicated that every item was substantially corr=lated with its
posited factor and substantially less correlated with each of the other
factors (see Hocevar & El-Zahhar, 1985, for further discussion of this
approach).

The MIMY matrix based on the first-order model. When a reference
indicator is used to determine the metric of a factor, the factor wvariances
in the diagonal of PSI are freely estimated and factor covariances appear in
the off-diagonals of PSI. In standardized form (Table 2) this is a
correlation matrix of relations among the first-order latent factors.
Superficially, this 9 x 9 correlation matrix of relations among latent
constructs is like MTMM matrices based on correlations among scale scores
such as used in the traditional CFA approach. However, the correlations in
Table 2 are based on an optimally weighted combination of the rultiple
indicators and are corrected for measurement error (see discussion below).
Hence, the Campbell-Fiske criteria can be more appropriately applied to the
correlations in Table 2 than to correlations among scale scores. Inspection
of these correlations suggests that gupport for convergent and discriminant
validity is strqng whereas support for mathod effects is weak. A more
precise quantification of these effects requires the application of HCFA.

Correction for measurement error. In the traditional approach tw CFA

vf MTMM data correlations are based on observed scale scores even when thesg
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measured variables are the mean of multiple indicators. Thus, the scale
Scores and the correlations among them reflect an unspecified amount of
measurement error. In LISREL, as in classical measurement theory, the
correlation between two scale scores corrected for attenuation due to error
variance is the correlation between their true scores. The correlation
between true scores is estimated by the correlation between the measured
variables divided by the geometric mean of appropriately determined
reliabilities of the measuras. In LISREL, however, error variance is
estimated directly in THETA (see equation 2) instead of being inferred on
the basis of reliability estimates. The relation between this correction for
attenuation and the corrections for unreliability using the traditional
formulae depends on the reliability estimate used and the appropriateness of
the reliability estimates. It should be noted, however, that this correction
for unreliability is based on the first-order model; it is not a function of
the HCFA model, but is the normal correction for unreliability incorporated
into' the LISREL analyses.

The reliability of a linear combination of multiple indicatators is the
ratio of true score variance to total ocbserved variance. Cronbach’s alpha,
as typically applied, provides an estimate of this reliability when measures
are parallel (i.e., tau-equivalent). Because LISREL uses an optimal
weighting of the multiple indicators Cronbach’s alpha underestimates
reliability unless all the factor loadings are equal (Kenny, 19793 McDonald,
1983). Kenny (1979) demonstrated how reliability estimates can be derived
from the maximum likelihood factor loadings and correlations among the
multiple indicators, and how these differ from the reliability of other
linear composites. Similarly, McDonald (1985) demonstrated how the
reliability can be estimated from just the factor loadings and the
error/uniqueness tarms (in the diagonal of THETA). Hence, the correction for
attenuation in LfSREL and more traditional approaches differ according to
the appropriateness of the reliability estimates used rather than the
operationalizatien of this correction once an appropriate estimate of
reliability has been established. As noted by McDonald (1985) the advantage
of the factor analytic perspective to reliability theory ig that it provides
information abouc about the characteristics of the items or subscales used
to estimate a construct (e.g., whether they are parallel) as well as the
information needed to egtimate reliability (see Joreskag, 1981, for further
discussion of the relation between classical test theory and LISREL).

11
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The traditional approach to CFA of MTMM data begins with correlations based
on observed scale scores so that: the measured variables have an unknown
relation to the latent constructs that they are designed to measure. There
is typically no attempt to test the validity of the a priori factor
structure implicit in the way multiple indicators are combined. In the HCFA
approach the goodness of fit and parameter estimates for the first-order
model provide a precise indication of how well the latent constructs are
defined by the items or : “.scales used to infer the latent constructs.
Furthermore, the latent construct is based on an optimal weighting of the
multiple indicators. An unweighted sum of the multiple indicators of each
scale may provide an adequate representation of the data, hut the HCFA

approach provides an empirical test of this implicit assumption,
HEFA Models of the MIMM data.

In the general HCFA model (Model 2), the pattern of the first-order
factor loadings is the same as for the target model (Model 1) and first-
order loadings (Table 1) were virtually the same as those from Model 1.
However, the 34 covariances among the first-order factors (in PSI) were all
set to be zero and six additional second-order factors were paosited to
represent the 3 traits and 3 methods (see Figure 1). The covariances among
first-order factors are set to zero because the purpose of the second-order
factors is to provide an alternative explanation of these covariances. In
the HCFA model the diagonal elements in PSI associated with these first-
order factors are residual variances. Because the measurement error
variances are contained in the diagonal of THETA, the residual variances in
PSI represent uniquenesses -- variance in the first-ordc- factors that
cannot be explained by second-order factors. In the LISREL specification
used here, the factor loadings for the second-order factors are estimated in
BETA, second-order factor variances are estimated in PSI, and covariances
among the second-order trait ‘actors and among the second-order method
factors are estimated in PSI . Each of these & second-order factors is
defined by 3 first-order factors, and one of these first-order factors is
designated to be a reference indicator whose *actor loading is set to be
1.0.

The second-order factor loadings (Table 3) for the method factors are
modest and several are not statistically significant. The loadings for the
trait factors are much larger and each loading is betwsen & to 20 times the
size of its standard error. Similarly, the variances of method factors are
small or nonsignificant relative to their standard errors, whereas variances
of the trait-factors are all significant and much larger. Collectively,

19
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these findings indicate traits effects (i.e., convergent validities) are
much larger than method/halo effects.

Covariances among method factors (Table 3) are all nonsignificant,
whereas 2 of 3 covariances among trait factors are significant.
Learning/Value correlates (i.e., the standardized covariance) .55 with Group
Interaction and .34 with Workload/Difficulty. These correlations represent
estimated relations among latent true scores that hava been corrected for
measurement error as described earlier.zln the terminnldgy of MTMM analyses
these represent true trait-covariances.

Trait-only (Model 3) and method-only (Model 4) models were also defined
by including only three second-order factors (i.e, 3 trait factors in the
trait-only model and 3 method factors in the method-only factor). In each
case the restricted model provided a poorer fit to the data (Table 4) than
Model 2. However, the trait-only model provides a substantially better fit
than does the method-only model. These results also demonstrate that trait
factors account for much more variance than method factors.

In summary, the results demonstrate: a) a well defined factor structure
as indicated by the high first-order lcadings; b) weak method effects as
indicated by the generally low loadings on second-order method factors, by
the small variances of these second-order factors, and by the small
decrement in fit produced by eliminating the method factors in Model 33 )
strong convergent validity as indicated by the high loadings on the second-
erder trait factors, by the substantial variances of these second-order
tactors, and by the substantial decrement in fit produced by eliminating the
trait-factoré in Model 43 and d) low to moderately correlated true trait-
scores (sea footnote 2). ‘

Formulation of Measurement Error.

The fit of Model 2, the general HCFA structure, can be evaluated from
different perspectives. It is well-defined in that: a) all first-order
factor loadings and at least the second-order trait factor loadings are
substantial; b) the BB! (.8%) is reasonabl; highy and c) Model 2 fits the
data nearly as well as its target model (X = 22, df=12). Nevertheless,
the overall fit to the data may be less thagi;;tisfactory in that X2/df
ratio is 5.28. Problems inherent in the assessment of fit complicate
interpretatiors of fit. Nevertheless, the comparison of Models 1 and 2
demonétrates that the lack of fit in Model 2 occurs in the definition of the

first-order factors and not the second-order factors. That is, the fit of
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Model 2 cannot possibly be better than Model 1 (i,e., the models are nested)
and Model 2 fits the data almost as well as Model 1.

One possible reason for the relatively poor fit of Model 1 is that the
simple structure that requires each measured variable to load on one and
only one first-order factor is quite restrictive, and a better fit might
result if measured variables were allowsd to load on more than one first-
order factor. However, such a model might also confound method and trait
demonstration provides a more likely explanation. Models 1-4 all require
the error/uniquenesses to be uncorrelated (i.é., THETA is a diagonal
matrix). This assumption is common in psychological measurement and may be
reascnable in many instances, but it may not be reasonable when the same
item is used on different occasions (e.g., Feldman & Sullivan, 1979;
Joreskog, 1974; 1979). For example, the same items designed to measure
Learning/Value were administered on each occasion. As shown in Figure 2, the
un1queness of item 1 on occasion 1 is posited to be correlated with the
un1queness of item 1 on occasion 2. These correlated uniquenesses may effect
the second-order trait or method factors as well as goodness of fit. It is
also important to emphasize that this type of effect cannot typically be
examined with the traditional CFA approach to MTMM data since only one
indicator of each trait/method combination is considered.

In order to test this suggestion four new models were posited to have
correlated uniquenésses. Each of these new models (Models 1a-4a) differed
from the corresponding models described earlier (Models 1-4) only in that 27
off-diagonal elements in THETA EPSILON were set free. The elements were
freed such that the uniqueness of each item was allowed to covary with the
uniqueness of the same item administered on different occasiens. A
comparison of the fit indices for Models 1 and 1a (see Table 4) provides a
test of the assumption of uncorrelated uniquenesses. Model 1a provides a
much better fit to the data than Model 1 and results in substantial
improvements in the other indices of fit. Inspection of THETA (not shown)
indicated that 22 of the 27 posited correlations were statistically
significant and all these were positive. SGimilarly, for each of the other
pairs of models (Models 2 vs. 2a, 3 vs. 3a, and 4 vs.4a), the madel with
correlated uniquenesses fits the data substantially better. These results
demonstrate that the assumption of uncorrelated uniquenesses is unjustified
for thase data.

Model 2a, the full HCFA model with correlated uniquenesses, fits the:
data nearly as well as the new target Model 1a. Thus the correlations among

14
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the first-order factors can still be adequately explained in terms of the
second-order trait and method factors. Despite the substantial improvement
in the overall fit produced by positing correlated uniquenesses, the factor
loadings for the first- and second-order factors and correlations among the
second order factors are nearly the same for Models 2 and 2a. Furthermore,
the difference in X s for Models la and 2a is nearly the same as the
difference between Models 1 and 2.

Trait-only (Model 3a) and method-only (Model 4a) with correlated
uniquenesses were also fit to the data. These models again result in a
poorer fit than the new target Model 1a, and the trait-only model again fits
the data better than the method-only model. Furthermore, the differences in
Xzs between these restricted models and the full HCFA model (i.e., 2a vs. 3a
and 4a) are nearly the same as the corresponding differences for models with
no correlated uniquenesses (see Table 4).

The correlated uniqueness associated with the idiosyncratic wording of
specific items represents a second soﬁrce of method effect that can be
evaluated from the MTMM perspective. In fact, inspection of the fit indices
in Table 4 indicates that the method effects associated with specific items
accounted for much more variance than the method effects associated with
with the multiple occasions of data collection. Method effects are typically
represented as methad factors in CFA models. However, Kenny (1979) proposed
an alternative specification of the MTMM model in which method effects are
represented as correlated uniqueneesses in THETA such as posited here and
Marsh (in press-b) noted advantages of this representation. These results
also demonstrate that more than one source of method effect can be
considered in the same MTMM study. Elsewhere, though not based on HCFA
models of MTMM data, I argued that MTMM studies that consider more than one
source of method effect provide a stronger evaluation of construct validity
than studies that.chsider only one source of method effect (Marsh, Barnes &
Hocevar, 1985; Marsh & Butler, 1984).

In summary, each of the models positi j correlated uniquenesses (Models
la-4a) provides a substantial improvement over the corresponding models
without correlated uniquenesses (Models 1-4). This demonstrate that method
effects associated with the idiosyncratic wording of specific items items
did influence the ratings even though the fatings ware made by different
groups of students. Despite this improved fit, parameter estimates for the
second-order trait factors and method factors associated with the multiple

occasions were nearly unchanged. At least in this application, the improved
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fit is primarily a function of improved fit of the first-order factors and
has nearly no impact on the second-order factor structure. Further research
is needed to establish whether this finding is typical, though we suspect
that the influence of correlated uniquenesses may be more substantial when

the same subjects respond to the same materials on different occasions as in

the typical panel design.

——— et T B e

The purpose of this demonstration is to describe new, more powerful
models based on HCFA for the analysis of MTMM data. CFA approaches to MTHM
data are used frequently but these approaches begin with a single indicator
of each scale. The failure to incorporate multiple measures of each scale,
even when available, constitutes a serious weakness in the traditional CFA
approach to MTMM data. It is ironic that MTMM studies with their emphasis on
multiple indicators, and particularly CFA approaches to MTMM data, havé not
incorporated information from the multiple indicators used to represent each
traf;/method combination. The HCFA approach to MTMM data described here
differs from the typical CFA approach in three important ways.

First, estimates of measurement error in the inferred scale scores are
based on the agreement among multiple indicators that measure the same
latent construct in the HCFA approach rather than residual variance that is
unexplained by other scales (unidueness) as in the traditional CFA approach.
In the HCFA approaéh random error inferred from low correlations among
multiple indicators of the same scale is clearly separated from uniqueness
due to weak trait and method effects, but in the traditional CFA approach
the two sources are confounded. The definition of and correction for
measurement error in the HCFA approach is clearly more consistent with
traditional conceptualizations of classical measurement theory, and seems
less arbitrary in' that reliability estimates do not depend on what other
scales are included in the analysis. In fact, the only justification for
the conceptualization of and correction for measurement error in the
traditional CFA approach seems to be its inability to separate measurement
error from uniqueness.

A second difference between the two approaches is that the HCFA
approach provides rigorous tests of the a priori factor structure posited to
underlie the multiple indicators of each scale whereas the traditional CFA
approach provides none. Typically, investiqafars merely sum ratpnnsii to the
items or subscales designed to ﬁeasuré each scale without testing their a
priori structure (i.e., the one implied by the way they combine scores). In

16
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this traditional approach the interpretation of trait- and method-factors
tests of this fit are not considered. Even when the pattern of factor
loadings is consistent with the a a priori structure, the method of combining
the measured variables to form scale scores (e.9., an unweighted sum) may be
inconsistent. In the HCFA approach, parameter estimates and fit indices for
optimally defined factors. Fufthermore, if the target model does not provide
an adequate fit, it can be modified according to the substantive nature of
the data or empirical guidelines. Higher-order method and trait factors can
then be posited on the basis of the new first-order structure as in the
present demonstration.

A third difference between the two appraoaches is that whereas both
approaches typically posit uncorrel ated error/uniquenesses for the iteas
used to define each scale, this assumption is easily tested and modified
with: the HCFA approach but not with the CFA approach. In some MTMM
applications, as in the present demonstration; the a priori naturc of the
data make this assumption preblematic. The findings demonstrated that this
assumption was unjustified, even though the correction for these correlated
uniquenesses had nearly no effect on the substantive findings. However, it
is possible that in other applications the inclusion of correlated errors
will have an even larger aeffect on goodness of fit and also affect
substantive conclusiong ~- particularly when the same gsubjects respond to
the same materxals on multiple occasions as in the typical panel design.

The HCFA approach to MTMM data has apparently not been previously
considered, but the logic on which it is based is not naw. Marsh (1983)
recognized that scale scores are based on an a priori factor structure and
he proposed the use of expioratory factor analyses to test this structure.
Campbell and Fxske (1957, p. 102) noted that MTMM matrices must be evaluated
in relation to the reliabilities of the scale scores but proposed no
systematjc approach to accqmplish this. Al thauser and Heberlein (1970)
afﬁued that under certain circumstances (e.g., measurement errors are
uncorrelated) the entire MTMM matrﬁx may be corrected for unreliability
using conventional cofkectioﬁ.fbrmulas. If the a priori factor structure
implicit in the way subscale df item scores are combined matches the
observed factor structura and if correlations among scale scores are
.correctad for measurenent error inferrad on the basis of agreenent anong

multxple xndicators, then the traditional CFA approach starting uith this

1%



) MTMM Analyses 15

I
disattenuated MTMM matrix will be equivalent to the HCFA approach. Even in
this ideal situation, howeverr the HCFA approach provides systematic teste
underlying assumptions that are typically untestable with the CFA approach.

In the present demoﬂstrﬁtion, the multiple traits were detined by the

|

same set of items administerqd on different uecasions, but the HCFA approach

is more general and can be used in most applications that are appropriate
for the traditional CFA apprqach. First, beczause it is not necessary that
the different methods consisﬁ of different occasions, the HCFA approach can
be used with all tybes of method variation. Second, it is not necessary to
use the same items for Jefining the same trait with different methods so0
long as each trait/method combination is assessed with multiple indicators.
In fact, the use of the same items for different methods in the present
demenstration appears to be a major reason why the second-order factor model
with uncorrelated uniquenesses (Model 2) failed to fit adequately the data.
Third, even if some of the trait/method combinations are inferred with only
a sf;gle indicator, it may still be possible to use the HCFA approach. Even
though the single-item factors do not allow for estimates of internal
consistency, reliability estimates can be incorporated into the model.
Testing a plausible range of such estimates could be used to assess the
sensitivity of the other parameter estimates to differences in these
assigned reliabilify estimates (see Newman, 19843 Land % Felson, 1978).
Fourth, whereas both the CFA and HCFA approaches normally require at least 3
traits and 3 methods, special CFA madels have been developed for
applications with only 2 traits (Kenny, 1979) or two methods (Marsh &
Hocevar, 1983) and can be adapted to the HCFA approach. Furthermore, the
variety of of alternative models considered in the CFA approach to MTMM data
(e.g., Marsh, in press-b; Widaman, 1985) can be easily adapted to the HCFA
approach (e.g., Mogels 3 and 4). Finally, even in MTMM studies in which each
trait/method combination is inferred with a single indicator, the HCFA
approach can be used. The HCFA approach would still have the benefit of
Separating error due to separate random error from uniqueness due to weak
trait and/or method effects, though this might be of no advantage unless
reasonable estimates of reliability were available. However, in some such
appiications where reliability estimates are available (e.g., published
studies that provide reliability estimates) the HCFA approach would be
clearly preferable. In summary, the HCFA approach to MTMM data has a wide
range of application, can be used in most applications in which the
traditional CFA approach is appropriate, and is recommended instead of the

1R
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CFA approach whenever multiple indicators of each trait/method combination
are available or when the reliability these scales can be estimated.

An anonymous reviewer suquyested several potential limitatiocns of the
HCFA approach to item level data that deserve further attention: a) items
may be dichotomous and LISREL-type CFAs, like most other factor analvytic
techniques, assume continuous variables; b) item level data are typically
less reliable --particularly when based on responses by individuals instead
of groups -- so that they may be more prong to unstable or improper
solutions (e.g., Heywood cases); c) psychological inventories often have:
many more items than in the present application so that costs of the HCFA
approach may be prohibitive. In reference to the fir-~t point, Muthen has
developed an appropriate mathematical solutiocn for analyses of dichotomous
variables and shown that LISREL-type estimates are quite robust though X
tests may be biased if item skews are extreme (Mucthen & Kaplan, 1985).
LISREL VI can analyze dichotomous variables though the corresponding X test
of significance must be ignored. The second point is intuitively reasonable,
but further research is needed to test the suggestion. In fact, the
traditional CFA approach is known to suffer from this problem and this may
be related to the its inappropriate definition of and correction for
measurement error. Thus it is possible that item level analyses will be less
prone to improper solutions. The third point suggests a practical limit to
the number of items that can be factor analyzed. Such a limit will be a
complicated function of the characteristics of the computer software, the
computer itself, the model to be tested, and the congruence between the
model and the data. A partial solution to all three potential limitations
would be to divide all the items from each scale into three or more
subscales to be used in further analyses. For example, Marsh and Hocevar
(1983) conducted a HCFA on a 56 item self-concept inventory by forming 28
two-item subscaleg'that were used to define 7 first-order factors. This
procedure, while sacrificing some item-level information, preserves most of
the advantages of the HCFA approach described here, eliminates dichotomous
responses if they exist, increases the reliability of the measured
variables, and reduces the number of measured variables to 3 or 4 times the

number of first-order factors.
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In the LISREL specification of Models 2 and 2a, 21 measured variables were

1

used to represent 15 factors -- 9 first-order and &6 second-order factors
(see Figure 1): Lambda Y was a 27x15 matrix with the first 9 columns
structured as in Table 2 and the last & columns as fixed zeros; Beta was a
15x15 matrix with fixed zeros in the first 9 columns and the last 6 columns
structured as in Table 3; PSI was a 15x195 matrix with fixed zeros in the
nct—diagonals values of the first 9 columns and the last 6 columns
structured as in Table 3; Theta Epsilon was a 27x%27 matrix that was diagonal
for Model 2 but had 27 off-diagonals that were not fixed in Model 2a (see
?gwe2h

Tharﬂiis no universally accepted criteria of what constitutes support for
discriminant validity in CFA approaches to MTMM data. Some researchers
(e.g., Kenny, 1979; Lomax & Algina, 1979; Widaman, 1985) "argue that
correlations between trait factors provide evidence against discriasinant
validity. In contrast, Werts, Linn and Jureskog (1971) note _bat there are
no Fhles for determining how high true~trait correlations should be before
before the traits are considered to be indistinguishable other than to test
whether the correlation differs significantly from unity. Similarly, Marsh
and Hocevar (1983) argue that significant correlations between trait-factors
imply true trait correlations, and should only be interpreted as a lack of
discriminant validity when such correlations approach unity or are
inconsistent with the substantive nature of the data. In support of their
argument they note that Campbell and Fiske’s fcurth guideline interprets the
consistency of correlations among di#ierent traits across methods — an
indication of true trait-covariance -- as support for discriminant validity
rather than evidence against it. This ambiguity, though an important issue,
has not been emphasized in the present demonstration because it applies to
both CFA and HCFA 9pproaches.
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Figure 1. The structure of measurec variables, first-order factors,
second~order method (M) factors and second-order trait (T) factors. Each
of the 27 measured variables (item responses) has a three-part label
corresponding to the item (1-9), the method (M1-M3) of assessment, and the
trait (T1-T3) that the item is designed to measure. Each of the first-order
factors represents a distinct trait/method combination (MIT1-M3T3) that is
inferred from responses to 3 measured variables. These first—order factors
are used to define the 3 second-order method and trait factors. Although
not shown in the figure, the *hree second-order method factors were assumed

to be correlated as were the three second-order trait factors.
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Figure 2. A Representation of Correlated Uniquenesses. T1 is the first
second-order trait-factor, M1 and M2 are the first two second-order
method-factors, M1T1 and M2T1 are first-order factors representing T1
assessed by the first two methods, 1/M1/T1, 2/M1/T1, 1/M2/T1 and 2/M2/T1
are measured variables used to infer the the first-order factors (see
Figure 1) and the U associated with each measured variable represents its
error/uniqueness. The curved arrows between uniquenesses represent the
correlated uniquenesses of the same measured variables administered

according to two different methods (occasions).

1/M1/T1 2/M1/T1 1/M2/72 \ 2/M2/T2
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Table 1
First-order Factor Loadings (and Standard Errors) of Each Measured Variable for the

General HCFA Model (Model 2)
Measured First—order Factors
Variables MIT1 M1T2 MIT3 M2T1 M2T2 M2T3 M3T1 M3T2 M3T3

1/M1/T1  .96/.03 ©
2/M1/T1 1.0 0
3/M1/T1 .95/.03 0
4/M1/72 .98/.02
5/M1/T2 1.0
6/M1/T2 .96/.02
7/M1/T3
8/M1/T3
e IMLITS
1/M2/71
2/M2/T1
3/M2/T1
4/M2/72
5/M2/72
6/M2/72
7/M2/T3
8/M2/T3
9/M2/73
1/M3/71
" 2/M3/T1
3/M3/T1
4/M3/T2
5/M3/T2
6/M3/T2
7/M3/T3
8/M3/T3
9/M3/T3

- O O O O O ©

;847,11
.99 4

c O O O O o o ©o ©

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
.98/.03 0 0
1.0 0 0
.97/.03 0 0
.95/.02 0
1.0 0
«.93/.02 0
.99/.09
.80/.05

C O 0O 0 O 0 O O O O O O O O O O © ©

o

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
.96/.03 0
1.0 0
.94/.03 0
.78/7.02
1.0

.96/.02

- O O O © O O O O O 0O O O 0 O 0 O 0O 0 0O 0o 0o 0 o °o

.0
0 . .82/.05
0 .99/.04

C O O O O O O O 0O O 0O 0O 0O 0 0O O 0o 0O 0 0O 0 ©0 o ©
©C O O O 0 O O 0O O 0 0 0 0O O 0 0o o0 o o o o0

©C O O 0 O 0O 0 O 0 0 0o 0 0 0 0 ©0 o0 O

©c O O O O 0O O 0 O O 0o O 0o O o

C O O O 0 O 0O 0 0 o o ©

OOOOOOOOO:—'

c O O O ©o ©

une variable for each factor was designated to be a reference variable and its
unstandardized factor loading was fixed at 1.0. Estimated factor loadings for all

other items are presented as a ratio of their standard errors.
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Table 2
Correlations Among Latent First-Order Factors From the Target Model (Model 1)

First-Order

Factors 1 2 3 4 S b6 7 8 ? .
1 MIT1 1.00

2 MIT2 .58 1.00

3 MIT2 .39 .01 1.00

4 M2T1 .71 .38 .31 1.00

5 M2T2 .38 .71 -.07 .53 1.00

6 M2T3 .31 .06 .86 .39 .04 1.00

7 M3T1 .74 .46 .27 <74 .44 .28 1.00

8 M3T2 .38 .75 -.10 .32 .69 .06 .58 1.00

9 M3T3 .29 .00 .87 .28 -,02 .g8 .28 -.10 1.00

Note. See Figure 1 for a definition of the first-order factors.

Correlations are the standardized factor covariances from Model 1 after
correction for unreliability due to a lack of internal consistency.
Underlined correlations are convergent validities, the correlation between

the same trait assessed by two different methods.
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Table 3
Parameter Estimates For the General HCFA Model (Model 2) and Standard
Errors: Second-Order Factor Loadings (in BETA) and Second-order Factor

Variance/Covariances {(in PSI)

Second-order Factors
Mi M2 M3 T1 T2 T

Factor Loadings (BETA)

First-Order Factors

M1/T1 1.0 0 0 .83/.10 0 0

M1/T2 .40/.13 0 0 0 i.G

M1/T3 .19/.03 0 0 o} 0] .96/.05

M2/T1 0 1.0 0 .81/.08 0 0

M2/T2 0 .43/.15 0 o .97/.05 0

M2/T3 0 .23/.09 0 0] 0] . 94/.03

M3/T1 0] 0 .03/7.65 1.0 0 0]

M3/T2 0] 0] 1.0 0 .99/.05 0

M3/T3 0 0 -.01/.12 0 0 1.0
Factor Variance/Covariances (PSI1)
Second-order Factors

M1 .54/.18

M2 .09/.06 .41/.13

M3 .03/.05 -.03/.04 3.9/76.9

T1 0] 0 0 .84/.11

T2 0 0 0 «42/.06 .71/.08

T3 0 0 0 .27/.05 -.04/.06 .746/.08

Note. See Figure 1 for a description of the first- and second-order
factors. Parameters with values of 1.0 were designated to be reference
indicators. All other-parameter estimates are presented as a ratio their

standard errors.
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MTMM Analyses

Table 4
The Goodness of Fit For Alternative Models
——— e 5 _______ . —— _—
Model X (df) X /df RMSR  BBI
Uncorrelated Uniquenesses
0 Null 12,748 (351) 36.31 .449 . 000
1 Target 1,563 (288) 9.43 .068 .877
2 Full 1,385 (300) 95.28 .071 .876
3 Trait Only 1,888 (312) 6.05 .083 .832
4 Method Only 2,802 (312) 8.98 .281 .780
Correlated Uniquenesses
1a Target 713 (261) 2.73 066  .944
2a Full 736 (273 2.70 070 .942
3a Trait Only 1,055 (285 3.70 .082  .917
4a Methad Only 1,848 (285) 6.48 .257 .B55

purposé of the null model is for computation of the BBI. Each of the other
models was first fit with all error/uniquenesses posited to be uncorrelated

and then again with correlated error/uniquenesses.
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