
DOCUMENT RESUME

ED 280 719 SE 047 882

AUTHOR Lee, Okhwa; Lehrer, Richard
TITLE Conjectures Concerning the Origins of Misconceptions

in LOGO.
PUB DATE Apr 87
NOTE 34p.; Paper presented at the Annual Meeting of the

American Educational Research Associatior,
(Washington, DC, April 20-24, 1987).

PUB TYPE Reports - Research/Technical (143) -- Viewpoints
(120) -- Speeches/Conference Papers (150)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS Computer Oriented Programs; *Computer Science

Education; *Concept Formation; Educational Research;
*Error Patterns; Higher Education; Logic;
*Mathematics Instruction; Microcomputers;
*Programing

IDENTIFIERS *LOGO Programing Language; Mathematics Education
Research

ABSTRACT
Seven graduate students in a seminar on classroom

computing received instruction in LOGO programming. Programming
protocols were collected periodically and examined for errors and
misconceptions; in-depth interviews were conducted in order to
understand specific misconceptions better. As novice students transit
from instruction to experience in LOGO, they develop a systematic set
of misconceptions concerning the flow of control in programs. These
misconceptions result in programming errors including unnecessary
repetition of statements, inadequate use of conditional statements,
non-existent or inappropriate combination of Boolean operators,
failure to initialize variables, and difficulty traksferring simple
recursive structures developed in the graphics mode to the list
processing mode. In addition, students with prior programming
experience in BASIC inappropriately attempt to superimpose the
iterative FOR...NEXT loop of this language onto recursion in LOGO.
The origins of these misconceptions are traced to general properties
of cognition and also to specific instructional practices. Four
recommendations for instructing novices in LOGO are included.
(Author/MNS)

Reproductions supplied by EDRS are the best that can be made

from the original document.

Cr%
IJ Minor changes have bjen made to improve

Ir"4 reproduction quality.

U.S. DEPARTMENT OF EDUCATION
Office of Educatiwai Research and Improvement
EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)

?<T4'is document has been reproduced as
received from the person or organization
originating it-

points of view or opinions stated in this docu-
ment do not necessarily represeet official
OERI position or policy.

"PERMISSION TO REPRODUCE THIS
MALIpAL HAS BEEN GRANTED BY

dziert-zei-ek-

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Conjectures Concerning the Origins of Misconceptions in Logo

Okhwa Lee
(Korea Advanced Institute of Science and Technology)

Richard Lehrer
(University of Wisconsin - Madison)

Cflp

0() Running head: ORIGINS OF MISCONCEPTIONS

Dtz

r'-
:2-

(:)

1-311 2 BEST COPY AVAILABLE
V 3

Abstract

As novice students transit from instruction to experience in

Logo, they develop a systematic set of misconceptions cor,7erning the

flow of control in programs. These misconceptions result in

programming errors including unnecessary repetition of statements,

inadequate use of conditional statements, non-existent or

inappropriate combination of Boolean operators, failure to

initialize variables, and difficulty transferring simple recursive

structures developed in the graphics mode to the list processing

mode. In addition, students with prior programming experience in

BASIC inappropriately attempt to superimpoc$o ',:he iterative

FOR...NEXT loop of this language onto recursion in Logo. The origins

of these misconceptions are traced to general properties of

cognition and also to specific instructional practices. We conclude

with four recommendations for instructing novices in Logo,

3

ConitEtures concerning t1.1e origin,3 of misconceptions in Logo

As computers become more available_in school systems, their

functions expand irom administrative record-keeping to include

instruction in classrooms. Progr..mmiug is one of the most widely

practiced instructional activities related to computer "literacy"

(Becker, 1982). Consequently, research is needed to eilineate the

prospects and pitfalls students encounter as they learn a

programming language. Accordingly, this research details some of the

misconceptions students develop as they learn to program in Logo

(Papert, 1980) for the first time.

Misconceptions may be distinguished from simple errors in that

the former derive from application of a coherent organization of

knowledge about programming, also called a schema (Brewer &

Nakamura, 1984, Stevens, Collins & Goldin, 1979). To illustrate, a

misconception-based error may result from a misunderstanding about

the conditions of application for a looping construct such as

recursion. In this instance, a student may fail to include a

conditional test when creating a recursive function. The error would

be considered schematic in that it results from application of

incomplete, or incorrect knowledge. Consistent repetition of errors

is expected for as long as the learner hoids the incorrect

conception. In contrast, another error might include a failure to

recall the preciae syntax for a loop, especially when the loop is

embedded within a larger problem. This error is more easily

remediated d might not appear when the student is engaged in a

problem less demanding r.if workilig memory (Anderson, Farrell &

1

/1

Sauers, 1984). Consequently. this error would not be considered

schematic.

A second purpose of this study was to contrast the :learning of

students with prior programming experience with an imperative

language such as BASIC with the learning of students who had no

prior programming experience. Although it is widely assumed that

prior experience with a programming language will inevitably

transfer positively to the learning of a second language, we had

reservations which are detailed later. To anticipate, an imperative

language such as BASIC often includes no provision for recursion.

Hence, students learning Logo-based recursion may incorrectly apply

iterative concepts learned during BASIC programming. Thus, prior

BASIC learning may interfere with, rather than facilitate,

acquisition of Logo in some instances.

Logo was chosen for this study because it is an exemplar of a

declarative langliage (Eisenbach & Sadler, 1985) and because it is

often taught in schools. Among the programming concepts in Logo, the

flow of control (the order of statement execution) was selected as

the focus of this study. Previous research indicates novice

programmers experience difficulty implementing an appropriate flow

of control, yet knowing how to organize the flow of control

constitutes the foundation of structured programming (Copper &

Clancy, 1982; Luehrmann & Peckham, 1984; Mayer, 1981; Miller, 1981;

Pratt, 1978; Soloway, Ehrlich, Bonar & Greenspan, 1984; Soloway,

Bonar & Ehrlich, 1983; Vessey & Weber, 1984). Application of

structured programming techniques results in well written programs,

2

5

and consequently receives particular emphasis during instruction in

programming.

Models of errors and misconceptions

Models of errors and misconceptions emerge from programming

Adeals. Ideal programs, like ideal written compositions, usually

reflect a top-down modular structure which accomplishes the intended

task efficiently and clearly from the perspective of a potential

audience (Bennett & Walling, 1985). Youngs (2974) generatcid a

taxonomy for programming errors which indexes increasingly severe

violations of ideal programming practices. He proposed four general

types of programming errors: clerical, syntactic, semantic, and

logical. Clerical errors are simple typographic errors; a programmer

mistypes an expression. Syntactic errors are incorrect expressions

An the language which cause the interT3reter or compiler to generate

error messages (DuBoulay & O'Shea, 1981). In contrast, "semantic

errors try to make the computer carry out impossible or

contradictory actions, though the expression is syntactically

correct." (DuBculay & O'Shea, 1981, p 151). Lastly, "logical errors

concern the mapping from the problem to the program. Here the

program does not Droduce the desired result i.e. it does r.,:t do the

job it was designed to do. Ehese errors can be due to r:itYer poor

planning of the algorithm, or incorrect expression of the algorithm

in code form." (DuBoulay & O'Shea, 1981, p. 151). Further amplifying

Youngs' taxonomy, DuBoulay & O'Shea (loel, suggested another

category: stylistic errors, which are similar to Soloway and

Ehrlich's (1984) programming dascourse errors. Neither of these

3

types of errors (stylistic errors and programming discourse errors)

in.Lerferes with program execution or produces inaccurate results.

Instead, they violate standard programming conventions, thereby

making the program inefficient or difficult tQ comprehend and debug.

Considering a program as a composition (Newkirk, 1985), stylistic

errors correspond to deficient monitoring of one's intended

audience. In summary, clerical and syntactical errors are relatively

minor wLen co,ttrasted to the higher-order errors concerning

semantics, logic and style.

Previous research indicates a preponderance of higher-order

errors in tt,e protocols of novice programmers (Boies & Gould, 1974;

DuBoulay & O'Shea, 1981, Friend, 1975, Youngs, 1974). In these

studies, syntactic and clerical errors did not seem to be a great

source of difficulty for novices because these errors are not as

difficult to debng as are semantic errors. For instance, syntactic

and clerical errorA are detected easily by the interpreter or

compiler of thfl language but higher-order errors (semantic, logical

and stylistic errors) are more subtle. Often, higher-order errors

need to be debugged without the benefit of informative error

messages, Consequently, in this research Ile focused on higher-order

errors.

Flow oZ control

Novices usually experience difficulty when leaining about the

flow of control, which requires knowledge of conditional statements

and lcopings. Novice programmers often use looping constructs

inappropl.iately (Joni, Soloway, Goldman & Ehrlich, 1983; Soloway,

4

7

Bonar & Ehrlich, 1983; Soloway, Ehrlich, Bonar & Greenspan, 1984;

Waters, 1979; Pratt, 1978; Woodward, Hennell & Hedley, 1979).

Inapproriate use of looping constructs may be traced to several

sources. For instance, novices typically lack strategic knowledge

concerning which statements belong in the loop, what to put outside

of the loop, and where to put conditional statements (Soloway, Bonar

& Ehrlich, 1983; Vessey & Weber, 1984). In short, novices have

declarative knowledge concerning loop construction but must learn

how to implement that knowledge (Anderson et al., 1984).

Flow of control in Logo. Controlling the flow of a program

entails combinations of conditional statements and loopings, as

noted above. Conditional statements available in the Logo language

include "IF condition [THEN] [ELSE]" and "TEST IFFALSE IFTRUE", all

of which may be amplified by Boolean operations such as "AND", "OR",

and "NOT". Two commonly employed looping constructs available in the

Logo langange are the .4,EPEAT command and recursion. The REPEAT

command is analogous to a FOR...NEXT loop in BASIC and is used when

the number of looping executions is known a priori. In contrast, the

recursive looping construct can be used when the number of

executions of the loop body is not known beforehand. In recursion,

statements in the loop body will be executed until a stop rule

becomes true. Therefore, recursive procedures must include a test of

conditions. In brief, recursion enables implementation of DO-WHILE

(test to see whether a condition is true at the start of the loop)

and REPETITION-UNTIL (test condition at the end of the loop) loops

(Martin, 1985). Consequently, successful construction of recursive

5

loops in Logo requires knowledge of how to create conditional

statements, where to put the conditional statements and when to

apply recursive rather than iterative (REPEAT command) procedures.

Using Looping Constructs

Successful use of looping constructs requires knowledge of how

to (1) set up loop control variables, (2) initialize variables, (3)

update variables, and (4) terminate the loop (Pratt, 1978). We

briefly describe each of these in order to elucidate later

discussion.

Low- control variables. The loop control variable controls the

loop execution; it allows either the loop to continue or to stop.

Looping constructs must have loop control variables unless the

termination locus of the loop is known before execution of the loop.

In the example below (written in Logo), the variable :listl in the

conditional statement, IF :listl = [] [STOP], acts as a loop control

variable. (This procedure counts the number of items in a list and

prints this number. It assumes that the variable "total" is

initialized to 1 before execution of this procedure.)

TO counter :listl :total

IF :listl = [] [STOP]

PRINT :total

counter BUTFIRST :listl SUM :total 1

END

Variable initialization. There are two ways of initializing

variables in Logo: by using the MAKE command or by using procedure

parameters. Initialization of loop control variables should be done

6

9

before looping. In the previous example, the procedure will return

an error message if "total" is not given a value or the wrong answer

If "total" is not initialized properly.

Variable updatilg. Loop control variables should be updated

within a loop. As in variable initialization, either the MAKE

command or the manipulation of procedure parameters can be used for

updating variables. In the example given above, the loop control

variable (:listl) was updated with the parameter manipulation

(counter BF :listl SUM :total 1). Logo promotes use of parameter

manipulations for updating variables because parameter manipulation

of recursive procedures results in a more compact form of updating

than the MAKE command (using the MAKE command requires an extra

statement line whereas parameter manipulation does not).

Loop termination. Termination of looping can be controlled by a

conditional statement of a loop control variable. As noted

previously, the contents and placement of a conditional statement

are crucial for successful termination of recursive loops.

In this study, we intended to apply the framework described

above to examine errors as students attempted to develop appropriate

control structures for problems we presented to them.

In sum, we proposed to examine students' implementation of

looping constructs, particularly recursion, as they learned Logo for

the first time. Consequently, we investigated students'

implementations of conditiohal statements, loop control variables,

variable initialization and updating, loop termination, and the

overall flow of control.

10

Method

Subjects. Participants were 7 graduate students participating

in a seminar on classroom computing (Fall, 1985). Four students in

group B (ASIC) reported previous programming experience with BASIC.

The other three students were characterized as group A (MATEUR: no

programming experience). Anecdotal observations of 15 .3tudents who

had participated in a similar seminar the previous semester (Spring,

1985) are also occasionally referred to in the following sections.

However, except where explicitly mentioned, the results and

discussion deal with the 7 students.

Instructional procedures. Each student received instruction in

Logo programming for 1.5 hours each week for eight weeks. Each

student had his or her own microcomputer and had unlimited access to

these microcomputers during the semester for practice. Instructional

topics included turtle graphics, procedures, top-down programming,

planning, variables (global vs local), conditional commands,

recursion, words and lists, looping constructs (while, do until,

repeat loops, stop rules), and logical operations (and, or, not).

During the instruction, three programming assignments were given to

students. The programming assignments were sufficiently complex to

require nontrivial use of recursive procedures, but were simple

enough to be solved by novices in a comparatively short period of

time. Students also read a wide variety of research papers

concerning the use of Logo in schools. The programming problems were

as follows:

8

11

1. Draw a series of concentric circles with a single variable

input for the radius. The procedure should start with the smallest

circle and stop within the boundaries of the screen. Each ring

should be of a different color.

2. Given two lists of any length, print all possible pairwise

combinations of the elements of the lists.

3. Construct a rock-scissors-paper game for one player and a

computer. Recall that to win: scissors cuts paper, paper covers

rock, and rock smashes scissors. To tie: both the player and the

computer pick the same thing. To lose: anything else.

Observational procedures. Students' programming protocols were

collected periodically as they wrote programs, and in-depth

interviews were conducted informally in order to understand specific

misconceptions better. Students' performance wa#nalyzed with

respect to: (1) initialization of loop variables, (2) updating loop

control variables, (3) loop termination, (4) overall structure of

the flow of control, (5) unnecessary repetition of commands and

procedures, (6) use of infix (e.g. 2 + 3) and prefix (e. g. SUM 2 3)

notation, and (7) use of conditional statements.

Results

Errors and misconceptions common to most subjects regardless of

previous programming experience are reported first, followed by

those which seemed more prevalent among students with prior

programming experience with BASIC (n = 4).

Errors and misconce tions common to both rou s

9

12

Common errors included (1) misconceptions concerning the

use of infix notation in recursive procedures, (2) unnecessary

repetition of statements, (3) inappropriate use of conditional

statements, (4) inefficient use of logical operations and (5)

inappropriate variable initialization. In this section, we also

include conjectures concerning the origins of these errors.

Negative transfer resulting from the use of infix notation.

Among 15 participants in the first seminar (Spring, 1985), all were

able to write simple recursive procedures in the graphics mode but

most (n = 13) were not able to transfer spontaneously this knowledge

to list processing. For example, students were able to write a

procedure such as:

TO square.grow :side

IF :side > 100 [STOP]

REPEAT 4 [FD :side RT 90]

square.grow :side + 5

END

Given a small numerical input, this procedure will draw a set of

embedde.1 squares. Similarly,

TO shrink.lst :listl

IF :listl = [] [STOP]

PR :listl

shrink.lst BUTFIRST :listl

END

will reduce an input list to null, printing its elements at each

step. We thought students able to create recursive procedures in the

10

13

graphics mode, such as the one presented in the first example, would

have little trouble with similar recursive procedures in the list

mode (example 2). Yet, most students failed to transfer the

structures from graphics to list environments without considerable

help. For instance, many students failed to recognize the role of

BUTFIRST in the second example, but had no difficulty understanding

the role of addition in the first example.

The origin of this failure to transfer the structure of

recursive procedures from the graphics to the list mode appeared to

derive from the transition between infix and prefix notations (:SIDE

+ 5 is an example of an infix notation and SUM :SIDE 5 is the

corresponding prefix notation). That is, in the graphics mode,

students knew that :side + 5 was an operation on a variable but

perhaps 'the tacit (and automatic) form of this kaowledge obscured

the role of operations which manipulate parameters in recursion.

Hence, the prefix form of the operation required in list processing

(e. g. BUTFIRST :listl) was difficult for students to comprehend. We

speculate that students incorrectly focused on the surface feature

of the form of the operation (infix notation) rather than on the

more general notion that recursive procedures act through operations

at each call of the procedure. Follow-up instruction, re-formulating

the first procedure with the prefix notation, appeared to remove

this source of confusion. In the second class (n = 7) all students

spontaneously made the transition between the graphics and list

modes for simple recursive functions.

11

14

Unnecessary repetition of statements. All students
--

unnecessarily repeated commands or procedures. The example listed

below demonstrates a prototypical instance of unnecessary repetition

(denoted by *); each procedure (print.tie, print.win, print.lose)

has the same subprocedure (play.again).

TO prol

print.tie

print.win

print.lose

END

TO print.tie

IF :result = "tie [PR "tie play.again]

END

TO print.win

IF :result = "win [PR "win play.again]

END

TO print.lose

IF :result = "lose [PR "lose play.again]

END

The subprocedure, -play.again', can be called once at the same level

as the other procedures. The same program without unnecessary

repetitions is:

TO prol

print.tie

print.win

print.lose

12

15

play.again

END

where the procedures (print.tie, print.win, print.lose) do not

contain play.again as a subprocedure.

Another example of unnecessary repetition is listed below. The

three statements with * in the example program can be condensed to a

single statement; IF

TO prol

:a = :b [PR "tie]

IF AND :a = "1 :b = "1 [PR "tie]

IF AND :a = "1 :b = "2 [PR "win]

IF AND :a = "2 :b = "1 [PR "lose]

IF AND :a = 112 :b = "2 [PR "tie]

IF AND :a = "2 :b = "3 [PR "win]

IF AND :a = "3 :b = "2 [PR "lose]

IF AND :a = "3 = "3 [PR "tie]

END

Like the error involving the use of infix notation, repetition

errors appear to result from novices' attending to the surface

features of a program -- a means to accomplish an end, without

considering the finer nuances of audience (comprehension of the flow

of control by someone else or by the author at a later date). This

was manifested behaviorally as poor planning. Stated another way,

like novice writers of text, our students tended to create small

local plans, leaving the details of how these local plans would

interface as a problem to be solved later. Therefore, as they needed

new procedures, they added these procedures without considering the

13

16

entire structure of the program. Because students did not receive

any error messages from the interpreter, this error in style

(unnecessary repetition) resulted.

Inadequate use of conditionals. Two errors are identified:

failure to use the ELSE part of the IF THEN ELSE conditional, and

failure to recognize when TEST IFTRUE IFFALSE was more appropriate

than IF. When using the IF THEN ELSE construct in Logo, the ELSE

component can be omitted if it is not needed. Ease of use, however,

apparently leads to the development of an impoverished structure for

this form of the conditional. That is, students did not use the ELSE

component even when it would have been advantageous to do so. The

following is an example from a game program which does not use the

ELSE component even though it would have been helpful to do so. The

procedure consists of 7 IF conditionals whereas the same procedure

can be implemented with two IF conditionals which include ELSE. (The

procedure below is edited with minor changes for clarity. "r"

denotes rock, "p" paper, and "s" scissors.)

TO compare :computer :player

IF :computer = :player [OP [it's a tie]]

IF AND :computer = "r :player = "p [OP [you win]]

IF AND :computer = "s :player = "r [OP [you win]]

IF AND :computer = "s :player = "p [OP [sorry, you losel]

IF AND :computer = "p :player = "s [OP [you win]]

IF AND :computer = "p :player = "r [OP [sorry, you lose]]

IF AND :computer = "r :player = "s [OP [sorry, you lose]]

END

14

1 7

The following procedure will test for all conditions listed above

with two IF statements. The last statement constitutes the ELSE

.component. The revised procedure also combines Boolean operators

which we describe more fully in the next section.

TO compare :computer :player

IF :computer = :player [op [it's a tie]]

IF (OR AND :computer = "r :player = "p

AND :computer = "s :player = "r

AND :computer = "p :player = "s)

[OP [you win3] [OP [sorry, you lose]]

END

Students also failed to recognize when the second form of the

conditional, TEST IFTRUE IFFALSE, should be applied. For example,

note the comparative clarity of structure resulting from replacement

of the IF... with TEST in the last procedure.

TO compare :computer :player

IF :computer = :player [OP [it's tie]]

TEST (OR AND :computer = "r :player = "p

AND :computer = "s :player = "r

AND :computer = "p :player = "s)

IFT [OP [you win]]

IFF [OP [sorry, you lose]]

END

Once again, we believe unexamined tacit knowledge leads to

programming errors. In this instance, Logo's ease of use obscures

the ELSE component of the IF THEN ELSE construct, allowing students

15

1 8

to abstrat an incomplete form composed of the first two terms only.

On the other hand, students' failuz.e to use the TEST construct may

be traced to inadequate provision of enough concrete examples when

contrasted with their more widespread exposure to the

IF...THEN...ELSE.

Inefficient use of logical operators. Among the three logical

operations in Logo, AND, OR and NOT, the AND was used most often in

students' protocols. Only two students used ic:gical operators other

than AND eVen though combinations of operators would make programs

more efficient and less demanding of working memory. For instance,

consider the difference in the example presented above between the 7

IF statements required without combining operators to the two

statements which resulted in part from combining logical operators.

Studies in Boolean logical thinking suggest four possible ways

to combine truth tables: conjunction, disjunction, conditional, and

biconditional. Among these four, conjunction appears to be easiest

for novice programmers to code (Mayer, 1983, Gorman, 1982);

conjunction is coded as "AND". Consequently, subjects preferred AND

and avoided the more complex mappings of logic into code entailed by

combining Boolean operators.

Variable initialization. Beginning programmers often forget to

initialize variables within programs which often leads to

unanticipated action by the program. In Logo, variables may be

assigned global values in a general workspace independent of any

specific procedure. Hence, when writing programs with variables,

students often relied upon this tactic to initialize variables.

16

19

However, such a practice decreased the "visibility" of a program and

occasionally resulted in errors. For example, students saved

programs whirTh relied upon the initial values of variables in the

workspace at the time during which the program was saved. Hence, the

values of these variables were not evident upon inspection of any of

the procedures in whictl these Airlables were used. Ccnnsequently,

initialization of these variables was "invisible" to the reader of

any of the procedures. Subsequent execution of these programs often

resulted in errors when current values of variables in the workspace

did not match the valueh at the time when the program was saved.

Failure to Initialize a variable within a procedure is

encouraged by some features of Logo, as noted above. Moreover,

Miller (1981) found that in natural language initialization is

implicitly done while in a programming language initialization

should be specified explicitly. Therefore, initialization requires

novice prortrammers' attention. Although a failure to initialize a

variable is tvally corrected easily by referring to the error

messages generated by the Logo interpreter, it leads to the

development of a more subtle stylistic error -- programs with

invisible structures.

Errors and misconceptions which Varied by Group

Errors and misconceptions which varied in proportion between

groups (group A, n=3, no prior programming experience; group B, n=4,

prior programming experience with BASIC) include those concerning

(1) use of a "goto" looping structure for recursion, (2)

inappropriate use of syntax to initialize variables, (3) inefficient

17

20

use of syntax to update iariables, and (4) inefficient overall

structure (unnecessary nesting).

"Goto" recursive looping structure. All four students in group

B(ASIC) constructed a recursive loop structure with an iterative,

circular form, derived from the conceptual model of the "goto"

statement in the BASIC nrogramming language. None of the students in

group A(MATEUR) developed this structure. Two levels of errors

(shallow and deeper) based on this misconception were observed. An

example of the shallow level for the "goto" looping can be seen in

the rock-scissors-paper programming assignment. Here, students in

group B thought that calling the first procedure in the loop

structure listed below would start the whole loop, as it would in

BASIC. Two students constructed this procedure in order to ask a

player if s/he wished to play another game. The procedure is

restated in BASIC in order to demonstrate our conjectures concerning

the origins of this structure. The * denotes the "goto" construct.

Li2g2 BASIC

TO main 10 gosub 100 :rem intro

intro 20 gosub 200 :rem init

init 30 gosub 300 :rem play

play 40 gosub 400 :rem check

check 50 IF $answer = "Y goto 10 *

IF :answer = "Y [intro] * 60 END

END

18

21

As an example of the deeper level of errors ccncerning the

"goto" loop structure, students in group B constructed a top-level

procedure which contained another procedure which in turn called the

top-level procedure. In two protocols obtained from the first

programming assignment, the procedure A called B, the procedure B

called C, and the procedure C called A in order to "complete" the

looping. That is, subjects defined the following procedure.

TO main

A

C [A]

END

The iterative quality of this structure may be traced to

students' prior programming experience with the FOR...NEXT loop in

BASIC. In this instance, because students did not have a FOR...NEXT

construct in Logo, they attempted to define one by using the second

call of procedure A as a "goto" statement. Students expected the

control to return to the first execution of A. Stated another waY,

the iterative FOR...NEXT loop constitutes the "deep" structure of

the misconception which results in a variety of surface

manifestations, two of which are presented above.

Initialization of variables. Students in group B preferred the

MAKE command to parameter manipulations for variable initialization.

No such preference was observed for students in group A. Recall that

there are two ways of initializing a variable: manipulation of

procedure parameters and the MAKE command. The MAKE command is

19

22

syntactically similar to the LET command in BASIC, which is used to

initialize variables. Consequently, students in group B adopted MAKE

as the method of choice for variable initialization. This choice may

have contribuLed to their difficulties with recursion (detailed

above) because recursive procedures are implemLnted most easily with

parameter manipulation. Three students in group B consisteni.ly used

the unnecessary MAKE command when they used recursive procedures. An

example follows.

TO prol

MAKE "number 0

counter :number

END

TO counter :number

IF :number = 20 [STOP]

(PR SE [I am counting] :number)

counter SUM :number 1

END

where a more efficient procedure is (assuming the same procedure

counter" is used):

TO prol

counter 0

END

Updating variables. Group B students also preferred the MAKE

command to parameter manipulation for updating the value of

variables. In contrast, students in the first group were more likely

to use parameter manipulation. As noted previously, this tendency

20

23

among group B students resulted from their familarity with the LET

command in BASIC. Although we did not classify this tendency as an

error, it further indicates students' superimposition of iterative

concepts onto recursive structure, despite instruction which

emphasized the difference between the two. Examples of updating

variables follow.

Ideal Practice Group B Practice

TO pro1 :counter

IF :counter = 10 [STOP]

(statements of loop body)

pro1 :counter + 1

END

TO pro1 :counter

IF :counter = 10 [STOP]

(statements of loop body)

MAKE "counter :counter + 1

pro1 :counter

END

Inefficient overall structure. The overall structure of the
1

flow of control determines the visibility of a program (Greene,

1983). Well-structured programs show the logic of the control

structure more easily than programs containing unnecessarily nested

subprograms or "spaghetti" code. All the students in group B showed

unnecessarily nested procedures where each procedure was better

coded as independent of all others. Group A performed better than

group B in this matter. For instance, in the example below, studcants

in group B nest the procedure "check" within "play" which in turn is

nested within "get.value".

Ideal Practice Group B Practice

TO top TO top

intro intro

21

24

get.value get.value

play play

check check

END END

Franta and Maly (1976) reported that deeply nested constructs, such

as those characteristic of group B programming practices, are

detrimental to program readability and maintenance. The unnecessary

nesting shown in the example above decreases the comprehensibility

and the readability of the program. We speculate this unnecessary

nesting results from students continued attempts to superimpose

BASIC's iterative structure onto Logo's recursion. In this instance,

nested procedures represent a concrete way to insure a transfer of

control somewhat analogous to that of BASIC.

Discussion

A well-constructed program has characteristics of good writing.

Newkirk (1985) suggests three qualities of well-written programs as

parallels to good composition: planning, audience awareness, and

revision. Planning refers to top-down analysis and attention to the

interface among procedures as these relate to intended goals,

audience awareness may be compared to adherence to programming

conventions or styles, and revision refers to debugging. Novice

programmers in Logo, like novice writers, exhibited misconceptions

about the flow of control in programs which indicated incomplete or

inaccurate knowledge about all three aspects of the architecture of

well-written programs.

22

25

In the area of planning, all students included unnecessarily

redundant statements or procedures in their programs, reflecting a

plan-as-you-go method in preference to the development of prior

plans. As students became more knowledgeable about how to solve

problems with Logo, plan-as-you-go evolved into partial plans in

which one procedure was nested within another, a practice which

decreased the readability of these programs. A variety of other

errors also contributed to deereasing a program's accessibility to

an audAence (to either the programmer or an outside reader). For

example, students failed to combine Boolean operators resuJting in

programs which were unnecessarily long and difficult to follow.

Obscure programs also developed from students' incomplete

specification of the ELSE in the IF THEN ELSE construct. EY ling

upon the last quality of good composition, revision, consider the

difference between editing and revising. Editing concerns minor

changes in text designed to correct minor errors in syntax or in

punctuation. In contrast, revision refers to attempts to change the

text to make it more complete or coherent. Applying this difference

to programming, subjects' debugging usually involved editing and not

revising. That is, students often edited procedures for violations

of syntax or to change unanticipated products of these procedures

Comparatively little time was spent, however, in editing the

interface among procedures for purposes of increasing the visibility

of the program. Hence, we conclude that these novice programmers

edited but did not often revise their programs.

23

26

Other results indicated that prior programming experience may

inhibit rather than facilitate learning. In this instance, students

with prior programming experience in BASIC attempted to assimilate

the construct of recursion to the iterative FOR...NEXT construct of

BASIC. Consequently, although the programs constructed by these

students were recursive in that they called themselves, their

implementation included a circular nesting of procedures which was

both unnecessary and deleterious to the visibility of the program.

We consider such procedures as an attempt to reconstruct a

FOR...NEXT loop with the Logo equivalent (in the minds of these

students) of a GOTO statement in BASIC. The influence of this

iterative-based prior knowledge also manifested itself in these

students' preference for the MAKE command to update the values of

variables. Although not an error, this preference clearly stemmed

from the LET command in BASIC, a command which is often used in

iterative looping implemented in this language.

Taken as a whole, these results fit the model of the

acquisition of programming skills developed by Anderson et al.

(1984) which describes the difficulties encountered by people as

they make the transition between instruction and experience. In the

Anderson et al. theory, novice programmers rely upon templates and

concrete examples (structural analogy) when they first translate a

programming problem into code. Similarly, subjects in the first

sample (n = 15) experienced difficulties making the transition from

simple recursion in the graphics mode to simple recursion in the

list-processing mode. In this instance, use of infix notation in the

2 4

27

graphics mode provided a flawed template which inhibited transfer to

list-processing applications. Moreover, the attempt by students with

prior programming experience in BASIC to graft FOR...NEXT iteration

onto recursion resulted from use of an inappropriate template.

Anderson et al. also specify a knowledge compilation mechanism which

acts to transform procedures developed using structural analogy so

as to increase their efficiency. The structure of the goal tree

created during a problem-solving episode determines which parts of

the episode "belong together" and hence, can be transformed to

increase efficiency. From this perspective, incomplete rules may

develop due to retrieval failures resulting from heavy demands on

working memory. For example, although subjects in this study could

use the IF THEN ELSE statement appropriately in conjunction with

simple examples provided for instruction, in the context of a more

complex problem (rock-scissors-paper) they developed productions

which deleted the ELSE portion of the construct. Such deletion may

have resulted from working memory failure as students encoded the

multiple conditional branches of this game. Although some of the

misconceptions and errors developed by students appear inevitable

given the general characterisitics of cognition presented in the

Anderson et al. model, others appear susceptible to instructional

remediation. Consequently, we conclude with conjectures about

instructional practices which may prevent some of the misconceptions

we observed.

Inr:tructional Implications

25

28

Four instructional implications based on the results are

suggested: introducing prefix notation with arithmetic operatons,

recursion with parameter manipulations and stop rules, concrete

examples of the TEST IFT IFF construct, and planning before coding.

Prefix notation with arithmetic operations. If arithmetic

operations are introduced prior to list processing, use of prefix

notation rather than infix notation provides a better template for

subsequent instruction in list processing. When students are not

introduced to the prefix notation, they are required to master two

alien concepts for list processing: prefix notation and list

processing operations. Thus, students might preferably be introduced

to a recursive function as follows:

TO countup :number

IF :number < 0 [STOP]

countup DIFFERENCE :number 1

PRINT :number

END

rather than the more usual practice of using the infix notation of

:number - 1.

Recursion with parameter manipulations and stop rules.

Recursion should be introduced as a procedure wherein the call to

itself includes a parameter'manipulation. Parameter manipulation

helps students understand that each call of the procedure results in

a copy of the procedure with distinct values for variables. The

definition of the procedure should also include a stopping rule. We

suggest the common practices of introducing recursion without

-,"

26

29

parameter manipulation and without a stopping rule lead ineluctably

to iterative-based misunderstandings of recursion. These

misunderstandings are esoecially likely if students have prior

programming experience with BASIC. For example, the simple recursive

function presented above includes both a stopping rule and a single

parameter manipulation. Hence, it serves as a good template for the

development of other recursive procedures.

Concrete exam les of the TEST IFT IFF construct. All students

had difficulties combining logical operations and conditional

statements. Use of multi-logical operations should be exemplified

with the TEST IFT IFF construct rather than the IF THEN ELSE

construct because the TEST IFT IFF conditional represents each

component of the IF, THEN, ELSE conditionals as a separate

statement. Consequently, programmers can deal with one concept at a

time: for instance, they can combine logical operations without the

additional burden of coordinating the components of the IF THEN ELSE

construct. By reducing working memory demands, novice programmers

are better able to focus upon coordination of logical operations.

Planning before coding. Although students readily accepted the

idea of planning before coding, such declarative knowledge had to be

translated into specific procedures. We found that students had the

most difficulty with the "grain" of the plan. For instance, students

often planned specific procedures, reflecting "local" plans, while

they simultaneously failed to consider relations among procedures.

Hence, we speculate that concrete examples of the interplay between

global and local plans may help students develop better plans. In

27

30

this instance, a rigid adherence to top-down planning is not useful

because novices do not have enough knowledge to develop effective

plans in a purely top-down fashion. Just as writers use an outline

dialectically with ongoing text processing, novice programmers need

to view an initial top-down analysis as a temporary framework which

will likely need to be revised during the course of programming.

In summary, results of this study corroborate those of previous

studies which suggest that novice programmers tend to develop a

systematic set of misconceptions as they transit from instruction to

experience. Although the origins of these misconceptions may be

traced to more general properties of cognition (Anderson et al.,

1984), several of the misconceptions observed in this study appear

remediable through instruction. Finally, prior programming

experience may lead to negative transfer when old templates which

have surface but not deep-structure resemblance to constructs in the

new langauge are nevertheless used as analogical bridges.

28

31

Bibliography

Anderson, J. R. & Farrell, R. & Sauers, R. (984). Learning to

program in LISP, Cognitive Science, 8, 87-129.

Becker, H. (1982). Microcom.uters in the classroom -- dreams and

realities. Technical report No. 319, January, Center for

social organization of schools, The Johns Hopkins University.

Bennett, H. & Walling, D. (1985). Once again, Structured programming:

Is it necessary ?., Computers in the schools Double Issue Logo

in the schools Haworth Press, Inc. Vol.2(2/3) Summer/Fall

Boles, S.J. & Gould, J.D. (1974). Syntactic error computer

programming. Human Factors, 16, 253-257.

Brewer, W.F. & Nakamura, G.V. (1984). The nature and functions

of schemas. In R.S. Wyer & T.K. Srull (Eds.), Handbook of

Social Cognition. (pp 119-160). Hillsdale, NJ: Erlbaum.

Cooper, D. & Clancy, M. (1982). Oh! Pascal! An introduction to

programming. W-W-Norton & Company, New York.

DuBoulay, B. & O'Shea, T. (1981). Teaching novice programming.

In M.J. Coombs & J.L. Alty (Eds.) Computing skills and the

user interface.,. (pp 147-200). Academic Press. London.

Eisenbach, S. & Sadlerp C. (1985). Declarative languages: An overview

Byte, 10 (8), 181-197.

Franta, W. R. & Maly K. (1976). A multilevel flow control statement.

Intern. J. Computer Math, Section A Vol. 5 297-307.

Friend, J. (1975). Programs students write. Technical report No.

257, Institute for mathematical studies in the social science,

Stanford University.

Gorman Jr., H. (1982). The Lamplight project. Byte, 7 (8), 331-333.

Green, T.R.G. (1983). Learning big and little programming languages.

In A. C. Wilkinson (Ed.) Classroom computers and cognitive

science, Academic press. pp. 71-93.

Joni, S. & Soloway, E. & Goldman, R. & Ehrlich, K. (19E3). Just

so stories: How the program got that bug. SIGCUE, Fall, 13-26.

Luehrmann, A. & Peckham, H. (1984). Computer literacy: Survival

kit. New York: McGraw-Hill.

Martin, J. (1985). System design from provubly correct constructs.

Englewood Cliffs, NJ:Prentice-Hall.

Mayer, R. E. (1981). The psychology of how novices learn computer

programming. Computing Surveys, 13 (1) March, 121-141.

Mayer, R. (1983). Thinking, problem solving, cognition. San Francisco:

Freeman.

Miller, L.A. (1981). Natural language programming: Styles, strategies,

and contrasts. IBM System Journal, 20 (2), 184-215.

Newkirk, T. (1985). Writing and programming: Two modes of composing.

Computers/ Reading and Language Arts (CRLA), 2 (2), 40-43.

Papert, S. (1980). Mindstorms: Children Com uters and Powerful

Ideas Basic Books, Inc.

Pratt, T. W. (1978). Control computations and the design of loop

control structures. IEEE Transactions on software engineering,

Vol. Se-5, No.2, 81-89.

30 33

Ripley, G. D. & Druseikis, F. C. (1978). A statistical analysis

of syntax errors, Computing languages, 3, 227-240.

Soloway, E. & Ehrlich, K. & Bonar, J. & Greenspan, J. (1984).

What do novices know abeut programming? In A. Badre & B.

Shneiderman (Eds.), Directions in human-computer interactions.

Ablex Publishing Corporation Second printing. New Jersey.

Soloway, E. & Ehrlich, K. (1984). Empirical studies of programming

knowledge. IEEE Transactions on software engineering, Vol.

Se-10, No.5, September. 595-609.

Soloway, E. & Bonar, J. & Ehrlich, K. (1983). Cognitive strategies

and looping constructs: An empirical study. Communications of

the ACM, 26 (11), 854-860.

Stevens, A. & Collins, A. & Goldin, S. E. (1979). Misconceptions in

student's understanding. International Journal of Man-Machine

Studies, 11, 145-156.

Vessey, I. & Weber, R. (1984). Conditional statements and program

coding: an experimental evaluation. International Journal of

Man-Machine Studies, 21, 161-190.

Waters, R. (1979). A method for analyzing loop programs. IEEE

Transactions on software., Vol. Se-5 (3). 237-247.

Woodward, M. R. & Hennell, M. A. & Hedley, D. (1979). A measure

of control flow complexity in program text. IEEE Transactions

on software engineering, Vol. Se-5 (1). 45-50.

Youngs, E.A. (1974). Human errors in programming. International

Journal of Man-Machine Studies, 6, 361-376.

31

34

