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The Factorial Invariance of Responses by Males and
Females to a Multidimensional Sel f-concept Instrument:

Substantive and Methodological Issues

ABSTRACT

The purposes of this study are to examine the factorial invariance of
responses by preadolescent males and females to a multidimensional sel -~
concept instrument, and to demonstrate the use of confirmatory factor
analysis (CFA). Sets of respanses by 500 males and by S00 females were each
randomly divided in half to form four groups (Mi, M2, Fi, and F2). The
factorial invariance of an a pricri structure demonstrated the replicability
of the structure across random split halves (Mi & M2, and F1 & F2), and the
generality of the structures across opposite-sex comparisons (M1 & Fi, and M2
& F2). Additional a pasteriori structures that better fit the data were
derived an the basis of the initial an. ! =35, but the estimated values of the
new parameters were not strictly invariant across either randoimn split halves
or opposite-sex comparisons. This suggests that some of the improved fit was
illusory and due to capitalizing on chance. However, all opposite-sex
comparisons demonstrated the invariance of factor loadings and factor

correlations for a priori and a posteriori stfuctures.



Factorial Invariance 1
The Factorial Invariance of Responses by Males and
Females to a Multidimensional Self-concept Instrument:

Substantive and Methaodological Issues

The purposes of this study are to: a) examine the factorial invariance
of responses by preadolescent males and females to a multidimensional self-
concept instrument, a substantive issue; and b) demonstrate the use of
confirmatory factor analysis (CFA) for tests of factorial invariance and to
examine potential problems with its use and interpretation, a methodological
issue.

Self-cancept research has suffered from a paucity of theoretical models
and psychometrically-sound measurement instruments. Shavelson, Hubner, and
Stanton (1974) reviewed theoretical and empirical research, and develaoped a
multifaceted model of self-concept that served as the basis of the Self
Description Questionnaire (SDG) used in the present investigation. Through
the mid-1970s self-concept instruments typically consisted of a haodge-podge
of self-referent items, and "blind" applicstions of exploratory factor
analysis (EFA) typically failed to identify salient, replicable factars (see
Marsh & Smith, 1982; Shavelson, et al., 1974). Mare recently, researchers
have developed instruments to measure specific self facets that are at least
loosely based on explicit theoretical models such as proposed by Shavelson,
and then used factor analyses to support these a priori factors (Boersma &
Chapman, 1979; Dusek & Flaherty, 1981; Fleming % Courtney, 1984; Harter,
1982; Marsh, Barnes, Cairns & Tidman, 1984; Marsh & Hocevar, 1985; Marsh,
Smith & Barnes, 1985; Soares & Soares, 1982). Recent reviews of such
research (Byrn:. 1984; Marsh & Shavelson, 1985) support the multidimensional
structure of self-concept, and emphasize research based on the SDQ.

Sex differences are one of the most frequently examined influences an
sel f~concept responses (e.g., Wylie, 1979; Marsh, Barnes, et al., 1984;
Marsh, 1983a; 1984a). However, few researchers have examined the factor
structures of respaonses by males and females, and unless the factor
structures are similar then there may be no basis for comparing mean
responses by males and females. Marsh, Barnes, et al. (1984) examined sex
and age #ffects in responses to the SD@ by preadolescent students in graces
2~5 (also see Marsh, 1985a; 1984a), and illustrated a moderate degree of
similarity in factor structures identified by EFA across the four age

groups, but did rot examine separate factor analyses for responses by males



Factorial Invariance 2
and females. Dusek & Flaherty (1981) used EFA to show that factor structures
for their self-cancept instrument were similar across age groups and

responses by males and females. However, Marsh and Hocevar (1985) argued

that EFA was not entirely appropriate for the comparise” ' <attor structures
(see discussion below) and used confirmatory factor ane’ (EFA) %o
demonstrate that factor loadings used to define each fuc - 3 inQariant
across age groups. Consistent with the Shavel son model, th. nd that the
size of correlations among the factors varijed systematic: h age. The

substantive focus of the present investigation is to examine t invariance
of responses to the SDR across responses by males and females with CFA.

Historically, EFA has been used tu examine the similarit: of two
independent factor structures. The similarity of solutions based on the
same measured variables for similar groups is used to infer the
replicability of the factor solution, while the similarity across
dissimilar groups is an indication of the generalizability of the factor
solution. A wide variety of comparison procedures based on the similarity
of the factor loadings from EFAs have been proposed (see Gorsuch, 1974;
Harman, 1967; Everett, 1983; Everett & Entrekin, 1980). While EFA continues
to be widely used, as typically applied it imposes many undesirable
limitations. First, the researcher is unable to define a particular factor
structure beyond determining the number of factors to be rotated, and
perhaps the obliqueness of the rotated factors. Second, the factor
solution is not uniquz and mathematically equivalent solutions with
different interpretations are plausible. When the observed factor
structure does not closely correspond to the hypothesized strurture, there
is no way of determining the extent to which the hypothesized structure is
able to fit the data. These limitations are even more serious when trying
to compare factor solutions from two or more groups; the researcher is not
able to define the factor structure for either group or to specify that the
structure be the same across the groups. If both solutions do not Closely
match the hypothesized structure or each other, then there is no way to
determine how well the hypothesized structure is able to fit the data from
either group or how well solutians from each group match each other. Alwin
and Jackson (1981) further noted :hat the investigation of factorial
invariance with EFA confounds separate and distinct issues suc- as the
invariance of specific aspects of the factor solution, and arqued that “the
use of exploratory factor analysis in its conventional form to examine

issues of factorial invariance is of limited utility" (p. 253).
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Factorial Invariance 3

In CFA the researcher defines the specific factor structure to be
examined, and is able to test its ability to fit the data. Recent
methodological advances in the application of CFA (Rlwin & Jackson, 1981;
Joreskog & Sorbom, 1981; Marsh, 1985b; Marsh & Hocevar, 1985) provide a more
rigorous comparison of the factor structures resulting from multiple groups
where the researcher is able to test the fit of a model in which any
specified group of parameter estimates are constrained to be invariant
across groups. This allows the researcher to specify the factor structure
to be examined, to uniquely identify parameters in the solutions, and to
test hypotheses of invariance for particular components of the factor
solution. Here, the researcher is not only examining the similarity of the
pattern of parameter estimates from two different groupyv, but is testing
whether the actual values of the parameters are the same across groups.

Methods.

The Self Description Questionnaire.

The SD@ assesses three areas of academic self-concept and four areas of
nonacademic self-concept derived from the Shavelson model of self-concept
(Shavelson, et al. 1974) as well as a General-self derived from the Rosenberg
(19465) self-esteem scale. On the SD@, preadolescent children are asked to
respond to simple declarative sentences (e.g., I’m good at mathematics, I
make friends easily) with one of five response categories: false; mostly
false; sometimes false, sometimes true; mostly true; trua. Each of the eight
SDA scales is inferred on the basis of eight positively worded items. For all
students in the present investigation, the SDQ was administered to intact
classes of students during regular school hours according to standardized
administration procedures that are presented in the test manual (Marsh,
1986a). A brief description of the eight SD@ scales is as follows:

1) Physical Abilities/Sports (Phys) -— student ratings of their ability
and enjoyment of physical activities, sports and games;

2) Physical Appearance (Appr) -- student ratings of their own
attractiveness, how their appearance compares with others, and how others
think they look;

3) Peer Relations (Peer) —- student ratings of how easily they make
friends, their popularity, and whether others want them as a friend;

4) Parent Relations (Prnt) —— student ratings of how well they get
along with their parents and whether they like their parents;

3) Reading (Read) ~- student ratings of their ability in and their
injoyment/interest in reading;

4) Mathematics (Math) —- student ratings of their ability in and their
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enjoyment/interest in mathematics;

7) General-school (Schl) -~ student ratings of their ability in and
their enjoyment/interest in "all school sub jects;"

8) General-self (Genr) -~ student ratings of themselves as effective,
capable individuals, who are proud and satisfied with the way they are.

Descriptions of the instrument, the theoretical cefinition of self-
concept upon which it is based, the eight scales, internal consistency
estimates of reliability, numerous EFAs and CFAs of responses to the SDQ,
ana construct validity studies are summarized in the test manual (Marsh,
1986a; also see Marsh, 1983a; 1984b; Marsh, Barnes, et al., 1984; Marsh &
Hocevar, 1985; Marsh & Parker, 1984; Marsh, Parker & Smith, 1983; Marsh,
Relich & Smith, 1984; Marsh & Richards, 1984; Marsh & Shavelson, 1983;
Marsh, Smith & Barnes, 1983; 1984; 1985; Marsh, Smith, Barnes & Butler,
1983). This research has shawn the SD@ scales to be well defined, quite
distinct (mean r = .14), reliable \coefficient alphas in the .80s and

.70s), moderately correlated with measures of corresponding academic

abilities (.3 to .7), in agreement with self-concepts inferred by others,
affected by experimental manipulations designed to enhance self-concepts,
and legically related to other constructs.

Data for the present investigation come from the normative archive of

responses to the SDQ by preadolescents in grades 2 to 4 as described in the
SDA test manual (Marsh, 1986a). For purposes of the present investigation
responses by 1000 fifth graders -—- 500 males (M) and 500 females (F) -- were
randomly selected, and each set of 500 respanses was then randomly divided
into half to form four groups of 250 called M1, M2, F1i, and F2. Hence,
factor structures based on groups M1 and M2, and those based on groups F1
and F2, differ from each other only by random chance, whereas factor
structures based an groups M1 and F1, and on groups M2 and F2, may differ
from each other due to the sex of the respondent as well as random chance.
Furthermore, a posteriori alterations of the a priori factor structure based
on tests of M1 and F1 can be cross-validated with tests of M2 and F2, and a
posteriori alterations to M2 and F2 can be cross-validated with M1 and Fi.

For purposes of this analysis, as in other SDQ résearch, each of tha
eight SDQ factors is represented by four variables and each variable is the
total score of two SDQ items that are designed to measure the same factor
(see Marsh, 198ba; Marsh & Hocevar, 1985; Marsh, Barnes, et al. 1984). Thus,
each of the analyses described later is bared on one of four 32 x 32

caovariance matrices derived from groups M1, M2, F1 or F2.
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Factorial Invariance 5

groups, and the advantages af CFA over EFA for such purposes, are well known
and will not be the focus of the present investigation (see Bagozzi, 1980;
Joreskog, 1981; Joreskog & Sorbom, 1983; Long, 1983; Marsh, 1985b; Marsh &
Hocevar, 1983; 1984; 1985; Pedhauzur, 1982; Wolfle, 1981). The parameter
estimates from CFA are conceptually similar tc thaose from conventional EFAs
except that the researcher ig able to fix or constrain elements in
accordance to an a priori model to be tested. In the present investigation,
three design matrices were used to define the a priori factor model: a 32
(variables) x 8 (factors) matrix of factor loadings; an 8 x 8 factor
variance-covariance mairix which represents the relationships ameng the
factors; and a 32 x 32 matrix of errcr/uniquenesses in which the diagonal
elements are similar to one minus communality estimates in EFA and the off-
diagonal elements, if estimated, represent correlated errors. The a priori
model (see Table 2 in Results section) had a simple structure in that each
measured variable was allowed to define only the factor it was designed to
measure, and its loadings on all other variables were specified to be zero.
One measured variable for each of the 8 SDQ factors was selected to be a
reference indicator, and its loading was fixed to be 1.0. Values for the
other 24 factor loadings, the 8 factor variances, the 28 factor covariances,
and the 32 error/uniquenesses are estimated as part of the analysis. All
other elements in the design matrices are specified to be zero.

Goodness af Fit in CFA. In CFA there are no well established ruidelines
for what minimal conditions constitute an adequate vit. The general
approach is to:

1) examine estimated parameters in relation tc the substantive, a
priori structure (and also estimates outside the range of permissible values
such as negative variance estigates);

2) evaluate the overall X in terms of statistical significance, and
compare this with values obtained from alternative models;

3) evaluate subjective indices of goodness of fit that give an
indication »f the proportion of variance that is explained by the model, and
compare thzse indices from alternative models;

4) perhaps, if the a priori structure is not judged to adequately fit
the data, to formulate alternative, a posteriori structures that fit the
data better. However, when substantial changes are made to the original, a
prigri structure, the results should be interpreted caut.cusly and

replicated with new data. For this reason, sets of responses by males and by
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Factorial Invariance 6
females were each divided into random halves in the present investigation in
order to pravide tests of the replicability and generalizability of a
posteriori alterations in the original model.

All analyses in the prasent investigation were perfarmed with the
caommercially available LISREL V program (Joreskag & Sorbam, 1981). LISREL v,
after testing far identification, attempts to minimize a maximum 1ikelihood
function that is based on differences between the original (observed) and
reproduced (predicted) covariance matrix, and provides an averall chi-square
goodness-af-fit test. In contrast to traditional significance testing, the
researcher often prefers a nansignificent chi-square that indicates that the
hypothesized madel fits the observed data. There are, however, praoblems with
this test. First, it is highly sensitive to departures from multivariate
normality. Second, for large, complex prablems (i.e., where there ara many
variables and meny parameters to be estimated) the observed chi-square will
nearly always be statistically significant even when there is a reasanably
goad fit to the data. Third, the chi-square test is strongly influenced by
sample size so that a poor fit based upon a small sample size may result in a
nonsignificant chi~square while a good fit based upon a large sainple size may
result in a significant X . Hence, most practical applications of CFA
require a subjective evaluation of whether or not a statistically significant
chi-square is small enough to constitute an adequate fit, and this is an
important, unresolved issue in the use of CFA (see Bentler & Bonett, 1980;
Farnell, 1983; Hoelter, 1983; Marsh & Balla, 1984; Marsh & Hacévar, 1984;
1985; Sobel & Bohrnstedt, 1985; for further dic-ussion).

A number of alternative indices or indications of goodness-of-fit have
been develaped, and those ta be used in the present investigation are
defined in Table 1. None of the alternative measures goodness—-af—-fit has
been universally accepted, each has problems, and saome of these prablems are
particularly relevant to this investigation. Ultimately, each of the
alternative indices depends upon a subjective impression about what value
reflects an adequate fit, and thus undermines same of the rigor of CFA.

Insert Table 1 About Here

e il -t AL I AR A AR 4 P Y- 13— ——————————

When the a priori structure is fit separately for each of the four
groups (M1, M2, F1, F2), each estimated factor loading and factor variance
(see Model 1 in Table 2 for results of M1 & F1) is large and statistically

‘ significant. These results pravide suppart for the a priori madel. While

the X for Maodel 1 is statistically significant for all four groups, ather

ERIC 9




Factorial Invariance 7

goodness-of-fit indices suggest that the fit may be reasonable (Table 3).
However, even if a model with no invariance constraints (i.e., Model 1) is
able to fit the data from each group separately, the results should not be
interpreted to mean that the factor structure is invarian®t across the groups.
Instead, the results indicate that the same pattern of parameter estimates
are able to fit the data from each group, but not that thase parameter
estimates take on the same, or even similar, values for the different groups.
Tests of factorial invariance require additional models that posit some ar
all of the pa;ameterg to be the same across different groups.

Insert Tables 2 & 3 About Here

Tests of the Factoria: Invariance of the A Priori Structure.

Goodness—of-fit for models with invariance constraints. In tests of

factorial invariance, some or all of the parameter estimates from Model 1
are constrained so that the estimates are the same across the groups being
tested. In this sense, the goodness of fit of Model 1, without any
invariance constraints, represents an absolute upper bound —-- an optimum or
a target -- foE alternative models that impose equality constraints. For
example, the X for any tests of invariance across groups M1 and F1 must be
at least 1849.2 (851.5 + 997.7), the sum of the X s for M1 and F1 for Model
1. No alternative models that requirg any or all parameters to be the Lame
across the two groups could have a X smaller than 1849.2, and the X for
such an alternative model would only approach 1849.2 to the extent that the
parameter estimates in the unconstrained models for M1 and F1 are *he same.
Thus, to the extent that an alternative model with equality constraints is
able to fit the data nearly as well as Model 1, then there is support for
the alternative model and the invariance of the constrained parameters.
Hence, the comparison of goodness of fits for Model 1 with those of
subsequent models of factorial invariance is very important.

The statisticel significance of the difference in Xzs for two nested
models (see Bentler & Bonett, 1980: Long, 1983; Sobel & Bohrnstedt, 1985;
for a discussion of nested models) can be evaluated relative to the
difference in the df for the two models. For example, Model 2 differs from
Hodel 1 in that the 24 factor loadings are required to be the same in the
two groups being tested, and sg the difference in df is 24. For the M1/F1
comparison the difference in X for Models 1 and 2 is 27.5 (Table 3) and not
statistically significant for df=24. Thus, these results provide strong
suppor% for the invariance of factor loadings in these two groups. Since
this X test is very powerful, it is also impgrtant to evaluate subjective

indicators of goodness of fit even when the X dif is statistically
i

10



Factorial Invariance 8

significant. The comparison of traditional goodness-of-fit indices for two
nested models is useful, but Marsh (Marsh, 1985b; Marsh & Hocevar, 19835)
2lsao developed the target coefficient (TC; see Table 1) specifically far
tgis purpose. For purposes of the present investigation, the TC scales the
X for the madel with invariance constraints along a zero-to-one scale in
which the zero-point is defined by the null model and the top of the scale
is defined by the fit of the corresponding a priori model without any
equality constraints (Maodel 1). Thus TC pravides an estimate aof the
proportion of variance explained by the unconstrained Model 1 that can be
explained by the constrained (nested) model.

The Invariance models to be tested. For purposes of the present
investigation, different sets of parameters are specified to be invariant in
Models 2-7. The minimum condition of factorial invariance is for the factar
loadings to be irvariant (Model 2), and Models 2-7 all require the 24
estimated factor laa?ings to be invariant. In Models 3-7 factor variances,
factor correlations , errer/uniquenesses and various combinations of these
parameters are also constrained to be invariant acrass groups. For each
model, four tests of factorial invariance are performed. Tests of factorial
invariance across opposite-sex groups, M1/F1 and MZ/F2, pravide two separate
tests of factorial invariance acrass respanses by males and females. Tests
of factorial invariance across same-sex groups, M1/M2 and F1/FZ, provide two
separate tests of factorial invariance across random split-halves that
differ only by random chance.

Model 1 (No Invar) -— no invariance constraints are impaosed and this
model provides one basis of comparisaon faor evaluating Models 2-6 as well as
the ability of the unconstrained model to fit the data.

Model 2 (FL Invar) -- the 24 factor loadings (FL) are specified to be
invariant across groups, and this model is taken to be the minimum condition
of factarial invariance.

Madel 3 (FL, Fcovar & Fvar Invar) -—— the 24 factor loadings. the 24
factor cavariances (Fcavar), and the B factar variances (Fvar) are specified
to be invariant.

Model 4 (FL & Fcarr Invar) —— the 24 factor loadings and the 24 factor
correlations (Fcorr; factor covariances that have been standardized —— see
footnote 1) are specified to be invariant.

Model 5 (FL & UE Invar) —- the 24 factor loadings and the 32
erraor/uniquenesses (UEs) are specified to be invariant.

Model & (FL, Fcorr & UE Invar) -- the 24 factor loadings, the 24 factor

correlations, and the 32 error/uniquenesses (UEs) are specified to s
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Factorial Invariance 9

invariant.

Madel 7 (Total Invar) -- all 92 parameter estimates are specified to be
invariant.

It is important to realise that this set of models in no way exhausts
all possibilities, and many other models could be hypothesized that are
consistent with the thearetical nature of the study, or are suggested by the

results of preliminary analyses.

23—+ — e caenen EmERET ScEmes R e e e tE e e e emem

For the two sawe-sex sets of comparisons nane of the invariance
cgnstraints imposed in Models 2 - 7 has any substantial effect on the
X s (Table 3). For the two male samples, not even the test of total
invariance (Madgl 7) differs significantly from Model 1 (i.e., the
difference in X of 124 is not statistically significant for df= 92). Far
the two female samples, the invariance of the structures is not met in a
strict statistical sense, but the goodness-of-fit indicatars shaw that the
model of total invariance praovides a reasanable fit; the subjective goodness
of fit indicators (X /df, BBI, & TLI) are nearly the same for Models 1 and
7, and the TC for Model 7 is .984. These findings are reasonable since these
two same-sex comparisons eain involve campariscns acrass two random split
halves that differ only by random chance. Nevertheless, the results dao
provide a strong demonstratian of the replicability of the a priori factor
structure designed to explain respanses to the SDQG.

For the two opposite-sex comparisaons, the various sets of invariance
constraints have a somewhat larger effect an the X s. For Maodel 7 the
deiffs (210 and 2046 with df=92) are statistically significant, and larger
than for the same-sex comparisans. Hence, the hypothesis of total invariance
may ot be tenable. However, the invariance of factor loadings (Madel 2) and
factor loadings in combination with factor correlations (Model 4) are not
statistically significant. The comparison of Models 3 and 4 suggests that the
factar variances are nat strictly invariant, whereas the camparisan of
Models 2 and & suggests that the uniqueness/errars are not strictly
invariant. Thus Model 4, pasiting the invariance of factor loadings and
factor correlations, appears to be the most restrictive model that can be
unequivacally supparted for the opposite-sex comparisons. Nevertheless, it
shauld be noted that even Model 7 that posits total invariance pravides a
reasanable fit for these opposite-sex comparisaons. This observation is
based on the finding that the BBI, TLI, and the X /df ratios are nearly the
same faor Models 1 and 7, and that the TCs far Madel 7 are .976 and .978.

Hence, most of the variance that can be explained by the a priori structure

12



Factorial Invariance 10

with no invariance constraints can also be explained by the model of total
factorial invariance for the opposite-sex comparisons. These findings
suppoirt the generalizabiiity of the a priori factor structure across
responses by males and females.

Development of A Pastericri Structures.

The a priori structurs provides a reascnable fit to the data, but is
not acceptable on strictly statistical criteria. Since this situation is
almost always the case for CFA studies, the inability to establish
generalizable criteria of what constitutes an adequate goodness of fit is a
serious problem. While the a priori structure provides a reasonable fit, a
less restrictive structure, one in which nontarget loadings were estimated
or'error/uniquanesses were allowed to be correiated, might provide a hetter
fit to the data. The determination of which parameter estimates should be
freed has not been well established in the CFA literature. The best approach
is to use the substantive nature of the data for developing alternative
structures (e.g., the use of correlated errors is substantively reasonable
for longitudinal panel data). However, in many applications, the decision is
based on empirical results from a Previous analyses of the same data. This
sequential development of new structures based on tests of cld structures
that are tested with the same data has serious implications both for tests
of statistical significance and for the replicability of the results to new
data, and such problems are not unique to CFA (e.g., step-wise procedures in
multiple regression have similar praoblems). When the a posteriori structure
differs substantially from the a priori structure most researchers argue
tkat such a model should be cfoss-validated with new data, but cross-
validations are infrequent. Hence, one purpose af the present investigation
is to demonstrate an application of such a craoss-validation using random
split-halves of the responses by males and by females.

Joreskag and Sorbom (1981) describe a modification index that is
provided by LISREL V for each parameter that is fixed or constrained. The
index is the lower-bound estimate of the expected decrease in the observed
chi-square that would result if that particular parameter were freed, and
they suggest that a modification index should be at least S5 before a model
if modified., (A X2 of 5 for df=1 is statistically significant at
approximately p =.025.) As with the xz, the modification index is
substantially influenced by sample size, but it does provide a valuable tool
far suggesting alternative structures. The modification indices for different

parameters are not independent so that freeing two parameters with
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modification indices of five is unlikely to result in a change in chi-square
of 10. Hence, Joreskog and Sorbom suggest that only one parameter should be
modified and tested at. a time. However, this suggestion is likely to result
in unacceptable costs for practical applications in which there are many
parameters with modification indices greater than S.

For purposes of this study new parameters to be estimated in two a
posteriori structures were selected on the basis of Model i which has no
invariance constraints, so that the selection was independent of invariance
constraints tested in subsequent models. Inspection of the modification
indices for all four groups suggested that the fit would not be
substantially improved by freeing naontarget ldadings, but that freeing
correlated errors might result in a substantial improvementz. The
correlated errors to be estimated in the first a posteriori structure were
selected on the basis of results from Model 1 as applied to groups M1 and
Fi1. Correlated errors were estimated in the a posteriori structure when the
corresponding modification index was greater than S5 for both M1 and F1, and
a total of 15 (of 496) correlated errors were so selected. The second a
posteriori structure was based on a similar procedure applied to groups M2
and F2, and 14 correlated errors were identified. In order to facilitate
comparisons described below, one additional correlated error that had a
modification index greater than S5 for one group but not the other was also
selected so that a total of 15 correlated errors were estimated in each of
the a posteriori structures. These two a posteriori structures, one based
on M1 and F1 and one based on M2 and F2, were then fit to Models 1-7.

Models 1-7 as applied here differ from those summarized earlier (also see
Table 3) cnly in that: a) 15 ceorrelated errors were estimated for each
groups; and b) Models 5-7 that coanstrain error/uniquenesses to be invariant
also constrain the correlated errors to be invariant.

Ihe Goodnezs-of-fit For Models of the & Posteriori Structures.

Models with no invariance constraints. Both a posteriori structures

resulted in iarge and statistically significant improvements in Xzs for
Model 1 (Tables 4 & 5) in comparisan to the carresponding X s for the a
priori structure (Table 3) for each of the four groups (differences in X s
vary from 97 to 236 with df = 15 for the eight tests). As expected, the
first a posteriori structure based on M1 and F1 produces a larger
improvement in M1 and F1 than for M2 and F2 (Table 4), whereas he second a
pusteriori structure based on M2 and F2 praduces a larger improvement for
M2 and F2 than for M1 and F1 (Table S). Nevertheless, these results

demonstrate that correlated errors selected on the basis of one set of data
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produce a substantial improvement in goodness of fit for another set of
data. However, it is important to note that it is only the selection of
parameters to be estimated that is cross-validated by these results and noat
the actual values of the parameters. )

Insert Tables 4 & 5 About Here

described earlier the same-sex groups (M1 & M2, and F1 & F2) differ aonly by
random chance, and results for the a priori structure indicated that all
parameter estimates were reasonably invariant across these same-sex
comparisons. However, tests of factorial invariance for the two a pasteriori
structures differ from those for the a priori structure. Since the
correlated errors to be estimated in the first a posteriori structure were
derived from M1 and F1, tests of invariance (Table 4) across M1 and M2, and
across F1 and F2, constitute a rigorous test in which both the selection of
parameters and the actual values of these parameters are cross-validated.
Similarly, the correlated errors in the second a posteriori structure were
derived from M2 and F2 so that tests of invariance (Table 5) across the
same-sex groups constitute a second, equally rigarous cross-validation. As
with the a priori structure, models that do not require the correlated
errors to be invariant (Models 1 - 4 in Tables 5 & &) are reasonably
invariant. However, Models 5-7 that pcsit the invariance of the correlated
errors do not support the invariance of these parameteré in a strict
statistical sense. In particular Models 5-7 have X s that are s .gnificantly
larger than Model 1 for both a posteriori structures (Tables 5 x &). Hence,
these results suggest that the actual values estimated for parameters
selected on the basis of one set of data do not cross-validate very well to
results based on another set of data. Mevertheless, it should be noted that
the goodness—of-fit indices for all such models of invariance acrass same-
sex groups are reasonable, and differ only modestly from those based on
Model 1 with no invariance constraints. Furthermore, even for the model of
total invariance (Model 7) the TCs, which vary from .975 to .981, indicate
that nearly all the variation explained by the unconstrained models can be
explained in terms of the model of total factorial invariance.

Opposite-sex comparisons for models with invariance constraints. Results

for opposite-sex comparisons for both a posteriori structures, as with the a
priori structure, suggest that there is invariance of factor loadings (Model
2) and factor correlations (Model 4), but that factor variances and

error/uniquenesse52(including correlated errors) are not strictly invariant.

Furthermore, the X d'ffs for the a posteriori structures are substantially
i

15
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larger than those for the a priori structure for models that posit the
invariance of correlated errors (Models 5 - 7). The interpretation of these .
results is complicated by the significant X diffs for the a priori model and
the lack of invariance of the correlated errors across random split-halves of
the same group. Hence, the lack of fit of the most restrictive invariance
models, apparently, is due in part to the lack of invaéiance across responses
by males and females, and in part to the lack of replicability of a
posteriori parameters selected on the basis of one set of data to another set
of data. Nevertheless, this statistical lack of invariance also retlects the
power of the X2 test, as evidenced by the similarity of goodness-of-fit
indicators for Models 1 and 7 and the large TCs, varying between .967 and
-974, for Model 7. From a practical perspective, most of the variance that
can be explained by the unconstrained models is explicable by even the most

restrictive tests of factorial invariance.

A priori structures provided reasonably good fits to the gata, but
inspection of modification indices indicated that “he addition of some
correlated errors would improve the fit. Tests of two such a posteriori
structures did provide better fits for all four groups, even when additional
parameters selected on the basis of one set of data were tested with another
set of data. However, the improvement in fit was larger for the random
split-half groups used to select the additional parameters than for the
random split~half groups used to cross-validate the selection. Furthermore,
strict statistical tests that required the estimated values of the additional
parameters to be the same écross cross—validation groups were not satisfied.
This suggests that some of the improvement due to the inclusion of additional
parameters may have been illusory and may be explained by capitalizing on
chance in the selection of additional psrameters to be estimated.

Tests of factorial invariance across opposite-sex comparisons were
complicated for the a posteriori comparisons. The Xzs for all opposite-sex
comparisons, nc matter which a posteriori model was used and what invariance
constraints were imposed, were better than the corresponding X s for the a
priori structures. As with the a priori structures, there was support of
the invariance of factor loadings and factor correlations but support for
the invariance of factor variances and error/uniquenesses was weaker.
However, for tests that involved the invariance of the’correlated errors,
the X diffs (between Model 1 and the tested model) were larger for the a
posteriori structures than for the a priori structure. Thus, while the

inclusion of correlated errors improves the goodness of fit for all models,

16
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the actual values of these carrelated erraors were not strictly invariant

across the respaonses by males and females.

LoC PS> A VLA B4 —FN

Historically self-cancept researchers have generally been unatle ta
identify salient factors in respanses ta self-concept instruments that were
replicable across similar groups or that generalized acrass different
groups. Results of the present investigation demonstrate that an a priori
factor structure for responses to the SDQ was invariant across responses by
random split-halves of the sam~ group, and that the a priori structure was
reasonably invariant acraoss responses by males and by females. These
results pravide support for both the replicability and generalizability of
the factor structure underlying responses to the SDA.

Sex differences are frequently examined by self-concept researchers,
but such comparisons are generally based on mean differences between graoups
that implicitly assume that the factor structures of respaonses by males and
females are relatively invariant. Similarly, the comparison of mean
responses across any groups (e.g., age groups, ethnic groups, experimental
and control groups) implicitly assumes a reasaonable invariance of the factor
structure for responses by the graoups, but the assumption is rarely
examined. While a few researchers have used EFA to campare factors identified
in rasponses by males and females, such comparisons are of limited utility
far tests of factorial invariance. Hence, the demanstration of factaorial
invariance across responses by males and females is substantively important,
pravides further justification for the comparison of mean responses by males
and females that has been examined in previous SD@ research, and provides a
methodological demonstration that has wide apolicability.

The Methodological Issue.

Analyses described in this section demonstrate haw the invariance of a
factor structure can be tested across different groups of subjects
responding to the same set of stimuli. In this application, clear suppart
was shaown for the factorial invariance of parameters from an a priori
structure across randam split-halves of the same groups, but suoport was
san.ewhat weaker for the opposite-sex comparisons. Based on the results fram
one set of data, additional parameters were used to define a posteriaori
structures that were craoss-validated with a different set of data. While the
a posteriori structures substantially impraoved the goodness of fit compared
to the a priori structure, even when crass-validated with different data,

the values of the estimated parameters were naot strictly invariant acrass
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random split halves or across opposite-sex comparisons.

Important issues and misconceptions in the application of CFA to tests
of factorial invariance were identified:

1) While CFA allows the researcher to rigorously define the model to be
fit and to generate parameter estimates, indications of the ability of such
nodels to fit the data are often sub jective. Furthermore, conventional
“rules of thumb" are not always appropriate, and their limitiation are not
well understood. The comparicon of goodness-of-fit indicators among
alternative models, and models representing a null fit and logically
constructed optimum fits, are more useful than attempts to interpret the
absolute value of indicators for any one model according to rules of thumb
(see Marsh & Balla, 1986; Sobel & Bohrnstedt, 1985 for further discussion).

2) When factor variances are estimated separately for each group,
factor correlations (as opposed to factor covariances) can only be tested
with a specially constructed model. Even though factor correlations are
often the concern of researchers, support for the invariance of factor
covariances does not imply that factor correlations are invariant, and
rejection of the hypothesis of the invariance of the factor
variance/covariance matrix does not imply that factor correlations are not
invariant (see footnote 1).

3) Applicationé of CFA, including tests of factorial invariance, often
posit an a priori structure which does not fit the data according Lo strict
statistical criteria. An important unresolved question is whether additional
a postiriori structures should be examined that better fit the data, even if
the changes are based on empirical guidelines rather than the substantive
issues. An emprical procedure for modifying the a priori structure in & way
that substantially improved the fit was demonstrated. Parameters selected on
the basis of one set of data improved the fit for another set of data.
However, the actual values estimated for these parameters were not strictly
invariant across either random split halves of the same groups, Or across
responses by males and females. Hence,; some of the improved fit due to the
inclusion of additional parameters was apparently illusory in that it could
not be cross-validated. Furthe~more, the inability to adequately summarize
goodness of fit in CFA meant that the extent of this problem was difficult to
gauge even when cross-validation samples were tested. Thus an important
problem is the determination of the extent of hias —— improvements in fit that
cannot be cross-validated -- due to using the tests of a priori structures to

formulate a posteriori structures that are tested with the same data.
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FOOTNOTES
i - Factor Correlations depend an both factor Covarianceg and factor
variances,.so that whenp facte- Covarianceg and factor vVariances are
Constrained tg be equal, factor Correlationg are also equaj, However,

the Specification of this LISREL mode} (e.q., Models 4 & 6 in Tables 3 - 3)
there were. 32 Y-variables (Ny = 32); eight factors on the y-side (NE = 8);

Some other SQurce of unique variation. The requirement that modification
indices for the Correlated er}ors be at least S for bath M1 and Fi (or for
M2 ang F2) befgre the additiong] Parameter wag included in the first (or
Seécond) g POsteriori Structure Provided a mgre Conservatjve Criterion than
suggested by Joreskog and Sorbom (1981) ang Suaranteed that the Selection of
additieonaj Parameters Rag some generality &Cross Opposi te-sey Comparisons,
Nevertheless, only 4 gf the 15 correl ated errors selected for the first a

Posteriori Structure were algg Selected fgor the second 4 posteriori

Structure, Joreskog and Sorp
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additional cost of adding ane at a time), and 12 of 40 correlated errars
(i.e., 15 for each of the four groups) were nat statistically significant
for the group used to select the correlated error. However, no additional
carrelated errors had a modification index greater than 5 for both M1 and Fi
(ar M2 and F2) in the first (second) a pasteriori structure after the
inclusion of the originally selected 15 carrslated erraors. It should also be
noted that the modification index like the X s is substantially influenced
by sample size so that the rumber of parameters with modifications indices
greater than S5 will increase with the sample size. If the sample sizes are
particularly large, it may be preferable to select a larger modification
index as the criterion for inclusion of additional parameters so that the

cantribution is practically as well as statistically significant.
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TABLE 1

Description gf Goodness-of-fit Indicators Used in The Present Investigation

— o e o ———— e, e o=l

Indicator Descriptiaon

2 2
X /df The ratio of the chi-square (X ) to the degrees-of-freedom (df).

BBI The Bentler-Bonett Index is: 1 -~ N/T where N and T are the xzs for
the null model and model to be tested (see Bentler % Bonett, 1980).
TLI The Tucker-Lewis index is: [(N/dfn - T/dft) / [(N/dfn - 1l.
vhere N/dfn and T/dft are the X2/df ratios for the null model and

the model being tested (see Bentler & Bonett, 1980).

2 , 2

X p The difference between X for models with invariance constraints and
Model 1 with no invariance constraints.

TC The Target Coefficient, a measure of the ability of a model

with invariance constraints explain the covariation campared to the
torresponding model with no invariance constraints, is defined

as: (N- I)/(N - ) where N, I and U are the Xzs for the null
model (N), the model with invariance constraints (I) and the
corresponding model withcut any invariance constraints (U; Model 1

in the present application). TC varies between 0 and {.
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Error/

Factor Loading Matrix
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TABLE 2 continued
Factor Loading Matrix Error/

Phys Appr Peer Prnt Read Math Schl Genl Uniqueness

Schit M O 0 0 0 ¢ 0 1.00 O 1.89%
F o0 0 0 0 0 0 1.00 O 1.40%
Schl2 M 9 0 0 0 0 0 .84x O 1.98%
F o0 0 0 0 0 0 .79% O 1.87%
Schi3 M 0 0 0 0 0 0 1.31x O 1.72%
F o0 0 0 0 0 0 1.46x O 1.80%
Schl4 M 0 0 0 0 0 0O 1.15%x O i.i9%
F o0 0 0 0 0 U 1.24x O 1.14x
Genlt M O 0 0 0 0 0 0 1.00 1.83x
F o0 0 0 0 0 0 0 1.00 1.86%
Genl2 M O 0 0 0 0 0 0 1.16% 1.11x
F o0 0 0 0 0 0 0 1.357x 1.23%
Genl3 M O 0 0 0 0 0 0 1.38% .68x
F o0 0 0 0 0 0 0 1.28% 1.30x%
Genl4 M O 0 0 0 0 0 0 1.04x 1.41x
F o0 0 o 0 0 0 0 1.28% 1.63x%

Factors Variance/Covariance Matrix (factor correlations above the
main diagonal)

PHYS APPR PEER PRNT READ MATH SCHL GENL

Factors
PHYS M 3.35x .43 .69 .33 .20 .23 <29 .74
F 2.99% .40 - .56 <23 .20 .22 .27 .79
APPR M .77x .94%x .55 .22 .20 «33 .34 .91
F .96% 1.93x .30 .01 .02 .04 .16 .30
PEER M 1.47% .66% 1.53%x .36 .28 .27 .31 .63
F 1.23x .53x 1.43% .29 .23 .28 32 .81
PRNT M .41x .15x .31x .49% .34 15 «29 .44
F .27x .01 .25k .46% .12 .09 .15 .28
READ M .64% .33 .60 .43% 3.05%x .26 «99 .32
F .49% .05 A1 12 1.91x .26 .92 « 35
MATH M .94x .70x .72% .23 .99% 4.82x .75 .36
F .73x .10 .69% .12 .70% 3.69% .71 .36
SCHL ™M .77% _.56% .65% .30% 1.64x 2.81% 2.91x .42
F .54x .26 .49 .12 .83% 1.58% 1.35%x .43
GENL M 1.23% .45%x .71x% .28%x .S50%x .72% .65% .83x%x
F 1.16% .37% .92x .17x .43%x .62 .45%x .80%
¥x p <.01

Note. Parameters with Values of O and 1| were fixed and not estimated as
part of the analysis, and so no tests of statistical significance were
performed for these values. The four measured variables designed to measure
each factor are the sums of responses to pairs of positively worded items.
Factor correlations, standardized factor covariances, were derived from the

factor covariances and are presented to facilitate interpretations.
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TABLE 3

Goodness of Fit Indices for the CFA Models of Factorial Invariance Across
Bairs of Groups (nc correlated errars)
o 2 2 2
Model Description X df X /df BBI TLI X p dfd TC
" _— -
0) Nuil HModel
M1/F1 10566.2 292 10.65 .00 .00 -——- ———— ————
M2/F2 11313.4 992 11.40 .00 .00
M1/H2 10883.7 992 10.97 .00 .00 ————= ———e ____
F1/F2 10993.9 992 11.08 .00 .00 ~—~—= ——m—  ———e
a
1) No Invariance
M1/F1 1849.2 872 2,12 .82 .88 0 0 1.0
M2/F2 1688.1 872 2,17 .83 .89 0 0 1.0
M1/M2 1621.2 872 1.86 .85 .91 0 0 1.0
F1/F2 2116.6 872 2.42 .81 .86 0 o 1.0
2) Factor Loadings invariant
M1/F1 1876.7 896 2.09 .82 .89 °27.5 24 ,997
M2/F2 1907.9 896 2,13 .83 .89 19.8 24 ,998
M1/M2 1647.5 896 1.83 .85 .92 26.3 24 997
F1/F2 2137.0 895 2,39 .81 .86 20.4 24 .997
3) Factor Loadings, factor variances and factor covariances invariant
M1/F1 1969.0 632 2.11 .81 .88 119.8 60 .986
M2/F2 1981.4 932 2,13 .82 .89 93.3 60 ,.990
M1/42 1693. 1 ?32 1.82 .84 .92 71.9 60 ,.992
F1/F2 2194.3 932 2.35 .80 .87 77.7 60 .991
4) Factor Loadings and factor correlations invariant
Mi/F1 1926.4 924 2.08 .82 .89 77.2 92 .991
M2/F2 1959.6 924 2.12 .83 .89 71.5 52 .992
M1/M2 1682.8 924 1.82 .85 .92 61.6 52 .993
F1/F2 2187.6 924 2,37 .80 .86 71.0 52 .992
5) Factor Loadings and uniquenesses invariant
M1/F1 1963.9 928 2.12 .B1 .88 114.7 596 .987
M2/E2 2010.9 928 2.17 .82 .89 i22.8 a6 907
M1/m2 1710.7 928 1.84 .84 .92 89.35 56 .790
F1/F2 2293.2 928 2.37 .80 .86 86.6 56 .990
6) Factor Loadings, factor correiations, and uniquenesses invariant
M1/F1 2012.2 956 2.10 .81 .89 163.0 84 .981
M2/F2 2068.7 956 2,16 .82 .89 180.& 84 .981
Mi/M2 1747.8 956 1.83 .B4 .92 126.6 84 .986
F1/F2 £257.9 956 2.345 .79 .87 141.3 B4 .984
7) Total Invariance
M1/F1 2059.2 964 2,13 .81 .88 210.0 92 .976
M2/F2 2093.8 64 2.17 .82 .89 205.7 92 .978
M1/M2 1757.2 9464 1.82 .B4 .92 126.0 92 .986
F1/F2 2262.4 964 2,35 ,79 .87 145.8 92 .984

Null model hypothesizes complete independence of all measured variables and
is used in computing other indicators (see Tagle 1). For Models 2 - &, the
¥ and dfd are the differences between the X and df for the model being
tested and Model 1 for which no invariance constraints were imposed.

a 2
The X s for the four null models are 5505.8, 5060.4, 5377.9, 5935é5 with

494 df for M1, F1, M2 and F2 respectively, while the carresponding X s for

E e Hogdel 1 arg Sled. 997.7,.769.2, and 11189 with AZhedé o O
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TABLE 4

TEETSESss e sRwm S22 LML e TES SSemmems ke o= =m=esEn 2XCllAdILE —— —— —

Paire of Groups (With Correlatad Errors Based on M1 and F1)

2 2 2
Model Description X df X /df BBI TLI X d dfd TC
1) No Invariance
Mi/F1 1461.1 842 1.74 .86 .92 0 0 1.0
M2/F2 1691.7 842 2,01 .85 .90 0 0 1.0
M1/M2 1338.3 842 (.65 .87 .94 0 0 1.0
F1/F2 1764.5 842 2.10 .84 .89 0 0 1.0
2) Factor Loadings invariant
M1/F1 1487.3 866 1.72 .86 .93 26.2 24 .997
M2/F2 i707.1 846 1.97 .85 .91 15.4 24 .997
M1/M2 1411.5 866 1.63 .87 .94 23.2 24 .997
F1/F2 1788.3 866 2.07 .84 .89 23.8 24 997
3) Factor Loadings, factor variances and factor cavariances invariant
M1/F1 1585.7 902 1.75 .85 .92 124.% 60 .986
M2/F2 1777.9 902 1.97 .83 .92 86.2 60 .991
M1/M2 1461.5 902 1.62 .87 .94 73.5 60 .992
F1/F2 1849.1 902 2,05 .83 .90 84.5 60 .991
4) Factor Loadings and factar correlations invariant
M1/F1 1545.1 894 1.73 .85 .93 84.0 52 .991
M2/F2 1750.7 894 1.96 .85 .91 59.0 S2 .994
M1/M2 1451.4 894 1.62 .87 .94 3.1 92 .993
F1/F2 1840.0 894 2.06 .83 .90 75.5 52 .992
3) Factor Loadings and uniquenesses invariant
Mi/F1 1660.4 913 1.82 .84 .92 199.3 71 .978
M2/F2 1861.3 913 2,04 .84 .90 149.% 71 ,982
M1/M2 1339.4 913  1.69 .86 .93 151.1 71 .984
Fi/F2 1909.6 913 2.09 .83 .89 145.1 71 .984

6) Factor Loadings, factor correlations, and uniquenesses invariant

Mi/F1 _ 1714.1 941 1.82 .84 .92 253.0 99 .972
M2/F2 19i4.1 941 2,03 .84 .90 222.4 99 .977
M1/M2 1581.3 941 1.68 .85 .93 193.0 99 .980
F1/F2 1961.6 941 2.08 .82 .89 197.1 99 .979
7} Total Invariance
M1/F1 1764.2 949 1.86 .83 .91 303.1 107 .9647
M2/F2 1941.0 949 2,05 .83 .90 249.3 107 .974
M1/M2 1590.0 949 1.68 .85 .93 201.7 107 .979
F1/F2 1970.1 949 2.08 .82 .89 205.4 107 .978

Note. The null maodels are the same as in Table 3. See nate in Table 3 and

Table 1 for a description of the gaodness-aof-fit indicatars.

a 2
The X s far the four individual group tests of Model 1 are 705.8, 755. 3,

682.5, 1009.2 with 421 df for M1, F1, M2 anq@FZ respectively.
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TABLE 5

TEESESEs S =5 S =s DL e W dUdEL S T ISt es Semmmen = Okl U

2 2 2
Model Description X df X /df BBI TLI X d dfd TC
a
1) No Invariance
M1/F1 1571.4 842 1.86 .85 .91 0 0 1.0
M2/F2 1525.0 842 1.81 .87 .92 0 0 1.0
M1i/M2 1399.4 842 1.66 .87 .93 0 0 1.0
F1/F2 1697.0 842 2,02 .85 .90 o] 0 1.0
2) Factor Loadings invariant
Mi/F1 1597.1 866 1.84 .85 .91 25.7 24 997
M2/F2 1542.3 866 1.78 .86 .93 17.3 24 ,998
M1/M2 1417.8 866 1.64 .87 .94 18.4 24 ,998
F1/F2 1723.8 866 1.99 .84 .90 26.8 24 997
3) Factor Loadings, factor variances and factor covariances invariant
M1/F1 1690.8 902 1.87 .84 .91 119.4 &0 .987
M2/F2 1615.3 902 1.79 .86 .92 90.3 60 .987
M1/M2 1467.2 902 1.63 .87 .94 47.8 60 ,.993
F1/F2 1784.2 902 1.98 .84 .90 g7.2 60 ,991
4) Factor Loadings and factor correlations invariant
M1/F1 1650.0 894 1.84 .84 .91 78.6 52 .991
M2/F2 1589.4 894 1.78 .86 .93 44.4 92 .993
M1/M2 1456.2 894 1,63 .87 .94 54.8 52 .994
F1/F2 1777.1 894 1.99 .84 .90 g80.1 92 .991
S) Factor Loadings and uniquencsses invariant
M1/F1 17i9.8 913 1.88 .84 .91 148.4 71 .984
M2/F2 1727.3 913 1.89 .85 .91 202.3 71 .979
M1/M2 1534.4 913 1.68 .86 .93 135.0 71 .986
F1/F2 1869.9 913 2.04 .83 .90 172.9 71 .%381
6) Factor Loadings, factor correlations, and uniquenesses invariant
M1/F1 1771.2 941 1.88 .83 .91 199.8 99 .978
M2/F2 1786.1 941 1.90 .84 .91 261.1 29 .973
M1/M2 1574.4 941 1.67 .86 .93 175.0 99 .982
F1/F2 1924.1 941 2.04 .83 .90 227.1 99 .976
7) Total Invariance
M1/F1 1819.7 949 1,92 .83 .91 248.0 107 972
M2/F2 1812.7 949 1.91 .84 .91 287.7 107 -971
M1/M2 1583.5 949 1.467 .85 .93 184.1 107 .981
F1/F2 1929.3 949 2.03 .82 .90 232.3 107 973

Note. The null models are the same as in Table 3. See note in Table 3 and

Table 1 for a description of the goodness—of-fit indicators.

a 2
The X s for the four individual group tests of Model 1 are 754.5, 816.9,
644.9, 880.1 with 421 df for M1, F1, M2 and F2 respectively.




