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The Factorial Invariance of Responses by Males and

Females to a Multidimensional Self-concept Instrument:

Substantive and Methodological Issues

ABSTRACT

The purposes of this study are to examine the factorial invariance of

responses by preadolescent males and females to a multidimensional self-

concept instrument, and to demonstrate the use of confirmatory factor

analysis (CFA). Sets of responses by 500 males and by 500 females were each

randomly divided in half to form four groups (M1, M2, Fl, and F2). The

factorial invariance of an a priori structure demonstrated the replicability

of the structure across random sp/it halves (M1 & M2, and Fl & F2), and the

generality of the structures across opposite-sex comparisons (M1 & Fl, and M2

& F2). Additione a posteriori structures that better fit the data were

derived on the basis of the initial art..1!,=1s, but the estimated values of the

new parameters were not strictly invariant across either random split halves

or opposite-sex comparisons. This suggests that some of the improved fit was

illusory and due to capitalizing on chance. However, all opposite-sex

comparisons demonstrated the invariance of factor loadings and factor

correlations for a priori and a posteriori stfuctures.
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Factorial Invariance 1

The Factorial Invariance of Responses by Males and

Females to a Multidimensional Self-concept Instrument:

Substantive and Methodological Issues

The Substantive and Methodological Issues of the Study.

The purposes of this study are to: a) examine the factorial invariance

of responses by preadolescent males and females to a multidimensional self-

concept instrument, a substantive issue; and b) demonstrate the use of

confirmatory factor analysis (CFA) for tests of factorial invariance and to

examine potential problems with its use and interpretation, a methodological

issue.

The Structure of Self-conceRt: The Substantive Issue.

Self-concept research has suffered from a paucity of theoretical models

and psychometrically-sound measurement instruments. Shavelson, Hubner, and

Stanton (1976) reviewed theoretical and empirical research, and developed a

multifaceted model of self-concept that served as the basis of the Self

Description Questionnaire (SDQ) used in the present investigation. Through

the mid-1970s self-concept instruments typically consisted of a hodge-podge

of self-referent items, and "blind" applications of exploratory factor

analysis (EFA) typically failed to identify salient, replicable factors (see

Marsh & Smith, 1982; Shavelson, et al., 1976). More recently, researchers

have developed instruments to measure specific self facets that are at least

loosely based on explicit theoretical models such as proposed by Shavelson,

and then used factor analyses to support these a priori factors (Boersma &

Chapman, 1979; Dusek & Flaherty, 1981; Fleming & Courtney, 1984; Harter,

1982; Marsh, Barnes, Cairns & Tidman, 1984; Marsh & Hocevar, 1985; Marsh,

Smith & Barnes9 1985; Soares & Soares, 1982). Recent reviews of such

research (Byrnm. 1984; Marsh & Shavelson, 1985) support the multidimensional

structure of self-concept, and emphasize research based on the SDQ.

Sex differences are one of the most frequently examined influences on

self-concept responses (e.g., Wylie, 1979; Marsh, Barnes, et al., 1984;

Marsh, 1985a; 1986a). However, few researchers have examined the factor

structures of responses by males and females, and unless the factor

structures are similar then there may be no basis for comparing mean

responses by males and females. Marsh, Barnes, et al. (1984) examined sex

and age effects in responses to the SDO by preadolescent students in grades

2-5 (also see Marsh, 1985a; 1986a), and illustrated a moderate degree of

similarity in factor structures identified by EFA across the four age

groups, but did not examine separate factor analyses for responses by males
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Factorial Invariance 2

and females. Dusek & Flaherty (1981) used EFA to show that factor structures

for their self-concept instrument were similar across age groups and

responses by males and females. However, Marsh and Hocevar (1485) argued

that EFA was not entirely appropriate for the comparisor 4-1:tor structures

(see discussion below) and used confirmatory factor an

demonstrate that factor loadings used to define each 4c

across age groups. Consistent with the Shavelson model, th'..

size of correlations among the factors varied systematici

iCFA) to

.1 invariant

Ind that the

h age. The

substantive focus of the present investigation is to examine t invariance
of responses to the SDQ across responses by males and females with CFA.

Factorial Invariance -- The Methodological Issue.

Historically, EFA has been used tt examine the similaritt of two

independent factor structures. The similarity of solutions based on the

same measured variables for similar groups is used to infer the

replicability of the factor solution, while the similarity across

dissimilar groups is an indication of the generalizability of the factor

solution. A wide variety of comparison procedures based on the similarity

of the factor loadings from EFAs have been proposed (see Gorsuch, 1974;

Harman, 1967; Everett, 1983; Everett & Entrekin, 1980). While EFA continues

to be widely used, as typically applied it imposes many undesirable

limitations. First, the researcher is unable to define a particular factor

structure beyond determining the number of factors to be rotated, and

perhaps the obliqueness of the rotated factors. Second, the factor

solution is not unique and mathematically equivalent solutions with

different interpretations are plausible. When the observed factor

structure does not closely correspond to the hypothesized struf:ture, there

is no way of determining the extent to which the hypothesized structure is

able to fit the data. These limitations are even more serious when trying

to compare factor solutions from two or more groups; the researcher is not

able to define the factor structure for either group or to specify that the

structure be the same across the groups. If both solutions do not closely

match the hypothesized structure or each other, then there is no way to

determine how well the hypothesized structure is able to fit the data from

either group or hch, well solutions from each group match each other. Alwin

and Jackson (1981) further noted that the investigation of factorial

invariance with EFA confounds separate and distinct issues suct as the

invariance of specific aspects of the factor solution, and argued that "the

use of exploratory factor analysis in its conventional form to examine

issues of factorial invariance is of limited utility" (p. 253).
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Factorial Invariance 3

In CFA the researcher defines the specific factor structure to be

examined, and is able to test its ability to fit the data. Recent

methodological advances in the application of CFA (Alwin & Jackson, 1981;

Joreskog & Sorbom, 1981; Marsh, 1985b; Marsh & Hocevar, 1985) provide a more

rigorous comparison of the factor structures resulting from multiple groups

where the researcher is able to test the fit of a model in which any

specified group of parameter estimates are constrained to be invariant

across groups. This allows the researcher to specify the factor structure

to be examined, to uniquely identify parameters in the solutions, and to

test hypotheses of invariance for particular components of the factor

solution. Here, the researcher is not only examining the similarity of the

pattern of parameter estimates from two different groupv, but is testing

whether the actual values of the parameters are the same across groups.

Methods.

The Self DescriRtion Questionnaire.

The SDI] assesses three areas of academic self-concept and four areas of

nonacademic self-concept derived from the Shavelson model of self-concept

(Shavelson, et al. 1976) as well as a General-self derived from the Rosenberg

(19651 self-esteem scale. On the SDO, preadolescent children are asked to

respond to simple declarative sentences (e.g., I'm good at mathematics, I

make friends easily) with one of five response categories: false; mostly

false; sometimes false, sometimes true; mostly true; true. Each of the eight

SDO scales is inferred on the basis of eight positively worded items. For all

students in the present investigation, the SDO was adminjstered to intact

classes of students during regular school hours according to standardized

administration procedures that are presented in the test manual (Marsh,

1986a). A brief description of the eight SDO scales is as follows:

1) Physical Abilities/Sports (Phys) -- student ratings of their ability

and enjoyment of physical activities, sports and games;

2) Physic:al Appearance (Appr) -- student ratings of their own

attractiveness, how their appearance compares with others, and how others

think they look;

3) Peer Relations (Peer) -- student ratings of how easily they make

friends, their popularity, and whether others want them as a friend;

4) Parent Relations (Prnt) student ratings of how well they get

along with their parents and whether they like their parents;

5) Reading (Read) -- student ratings of their ability in and their

:njoyment/interest in reading;

6) Mathematics (Math) -- student ratings of their ability in and their
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Factorial Invariance 4

enjoyment/interest in mathematics;

7) General-school (Schl) -- student ratings of their ability in and

their enjoyment/interest in "all school subjects;"

8) General-self (Genr) -- student ratings of themselves as effective,

capable individuals, who are proud and satisfied with the way they are.

Descriptions of the instrument, the theoretical definition of self-

concept upon which it is based, the eight scales, internal consistency

estimates of reliability, numerous EFAs and CFAs of responses to the SIM,

and construct validity studies are summarized in the test manual (Marsh,
1986a; also see Marsh, 1985a; 1986b; Marsh, Barnes, et al., 1984; Marsh &
Hocevar, 1985; Marsh & Parker, 1984; Marsh, Parker & Smith, 1983; Marsh,
Relich & Smith, 1984; Marsh & Richards, 1986; Marsh & Shavelson, 1985;

Marsh, Smith & Barnes, 1983; 1984; 1985; Marsh, Smith, Barnes & Butler,

1983). This research has shown the SDO scales to be well defined, quite
distinct (mean r = .16), reliable coefficient alphas in the .80s and

.90s), moderately correlated with measures of corresponding academic

abilities (.3 to .7), in agreement with self-concepts inferred by others,
affected by experimental manipulations designed to enhance self-concepts,
and logically related to other constructs.

Data For the Present Investigation.

Data for the present investigation come from the normative archive of

responses to the SDO by preadolescents in grades 2 to 6 as described in the

SDO test manual (Marsh, 1986a). For purposes of the present investigation

responses by 1000 fifth graders -- 500 males (M) and 500 females (F) -- were
randomly selected, and each set of 500 responses was then randomly divided
into half to form four groups of 250 called Ml, M2, Fl, and F2. Hence,

factor structures based on groups M1 and M2, and those based on groups Fl

and F2, differ from each other only by random chance, whereas factor

strvztures based on groups M1 and Fl, and on groups M2 and F2, may differ
from each other due to the sex of the respondent as well as random chance.
Furthermore, a posteriori alterations of the a priori factor structure based
on tests of M1 and Fl can be cross-validated with tests of M2 and F2, and a

posteriori alterations to M2 and F2 can be cross-validated with M1 and Fl.

For purposes of this analysis, as in other SDO research, each of the

eight SDO factors is represented by four variables and each variable is the

total score of two SDO items that are designed to measure the same factor

(see Marsh, 1986a; Marsh & Hocevar, 1985; Marsh, Barnes, et al. 1984). Thus,
each of the analyses described later is based on one of four 32 x 32

covariance matrices derived from groups Ml, M2, Fl or F2.
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Factorial Invariance 5

The Definition and Tests of the Confirmatory Factor Analyses (CFA) Models.

The definition of a priori models. The application of CFA for single

groups, and the advantages of CFA over EFA for such purposes, are well known

and will not be the focus of the present investigation (see Bagozzi, 1980;

Jareskag, 1981; Jareskag & Sarbom, 1983; Lang, 1983; Marsh, 1985b; Marsh &

Hacevar, 1983; 1984; 1985; Pedhauzur, 1982; Walfle, 1981). The parameter

estimates from CFA are conceptually similar to those from conventional EFAs

except that the researcher is able to fix or constrain elements in

accordance to an a priori model to be tested. In the present investigation,

three design matrices were used to define the a priori factor model: a 32

(variables) x 8 (factors) matrix of factor loadings; an 8 x 8 factor

variance-covariance matrix which represents the relationships among the

factors; and a 32 x 32 matrix of errar/uniquenesses in which the diagonal

elements are similar to one minus communality estimates in EFA and the off-

diagonal elements, if estimated, represent correlated errors. The a priori

model (see Table 2 in Results section) had a simple structure in that each

measured variable was allowed to define only the factor it was designed to

measure, and its loadings an all other variables were specified to be zero.

One measured variahle for each of the 8 SDO factors was selected to be a

reference indicator, and its loading was fixed to be 1.0. Values far tlie

other 24 factor loadings, the 8 factor variances, the 28 factor covariances,

and the 32 errar/uniquenesses are estimated as part of the analysis. All

other elements in the design matrices are specified to be zero.

Goodness of Fit in CFA. In CFA there are no well established guidelines

for what minimal conditions constitute an adequate iit. The general

approach is to:

1) examine estimated parameters in relation to the substantive, a

priori structure (and also estimates outside the range of permissible values

such as negative variance estimates);
2

2) evaluate the overall X in terms of statistical significance, and

compare this with values obtained from alternative models;

3) evaluate subjective indices of goodness of fit that give an

indication nf the proportion of variance that is explained by the model, and

compare th2se indices fram alternative models;

4) perhaps, if the a priori structure is not judged to adequately fit

the data, to formulate alternative, a posteriori structures that fit the

data better. However, when substantial changes are made to the original, a

priori structure, the results should be interpreted caut:ously and

replicated with new data. For this reason, sets of responses by males and by
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females were each divided into random halves in the present investigation in

order to provide tests of the replicability and generalizability of a

posteriori alterations in the original model.

All analyses in the present investigation were performed with the

commercially available LISREL V program (Joreskog & Sorbom, 1981). LISREL V,

after testing for identification, attempts to minimize a maximum likelihood
function that is based on differences between the original (observed) and

reproduced (predicted) covariance matrix, and provides an overall chi-square
goodness-of-fit test. In contrast to traditional significance testing, the
researcher often prefers a nonsignificant chi-square that indicates that the
hypothesized model fits the observed data. There are, however, problems with
this test. First, it is highly sensitive to departures from multivariate
normality. Second, for large, complex problems (i.e., where there are many

variables and many parameters to be estimated) the observed chi-square will

nearly always be statistically significant even when there is a reasonably
good fit to the data. Third, the chi-square test is strongly influenced by

sample size so that a poor fit based upon a small sample size may result in a

nonsignificant chi-square while a good fit based upon a large sample size may2
result in a significant X . Hence, most practical applications of CFA

require a subjective evaluation of whether or not a statistically significant

chi-square is small enough to constitute an adequate fit, and this is an

important, unresolved issue in the use of CFA (see Bentler & Bonett, 1980;

Fornell, 1983; Hoelter, 1983; Marsh & Balla, 1986; Marsh & Hocevar, 1984;

1985; Sobel & Bohrnstedt, 1985; for further diussion).

A number of alternative indices or indications of goodness-of-4it have

been developed, and those to be used in the present investigation are

defined in Table 1. None of the alternative measures r.5f goodness-of-fit has

been universally accepted, each has problems, and some of these problems are

particularly relevant to this investigation. Ultimately, each of the

alternative indices depends upon a subjective impression about what value

reflects an adequate fit, and thus undermines some of the rigor of CFA.

Insert Table 1 About Here

Results For The A Priori Structure

The Fit of the A Priori Structure With No Invariance Constraints.

When the a priori structure is fit separately for each of the four

groups (M1, M2, Fl, F2), each estimated factor loading and factor variance

(see Model 1 in Table 2 for results of M1 & Fl) is large and statistically

significant. These results provide support for the a priori model. While2
the X for Model 1 is statistically significant for all four groups, other

9



Factorial Invariance 7

goodness-of-fit indices suggest that the fit may be reasonable (Table 3).

However, even if a model with no invariance constraints (i.e., Model 1) is

able to fit the data from each group separately, the results should not be

interpreted to mean that the factor structure is invariant across the groups.

Instead, the results indicate that the same pattern of parameter estimates

are able to fit the data from each group, but not that these parameter

estimates take on the same, or even similar, values for the different groups.

Tests of factorial invariance require additional models that posit some or

all of the parameters to be the same across different groups.

Insert Tables 2 & 3 About Here

Tests of the Factorial'. Invariance of the A Priori Structure.

Goodness-of-fit for models with invariance constraints. In tests of

factorial invariance, some or all of the parameter estimates from Model I

are constrained so that the estimates are the same across the groups being

tested. In this sense, the goodness of fit of Model 1, without any

invariance constraints, represents an absolute upper bound -- an optimum or

a target -- for alternative models that impose equality constraints. For
2

example, the X for any tests of invariance across groups M1 and Fl must be
2

at least 1849.2 (851.5 + 997.7), the sum of the X s for M1 and Fl for Model

1. No alternative models that require any or all parameters to be the Lame
2 2

across the two groups could have a X smaller than 1849.2, and the X for

such an alternative model would only approach 1849.2 to the extent that the

parameter estimates in the unconstrained models for M1 and Fl are the same.

Thus, to extent that an alternative model with equality constraints is

able to fit the data nearly as well as Model 1, then there is support for

the alternative model and the invariance of the constrained parameters.

Hence, the compari.son of goodness of fits for Model 1 with those of

subsequent models of factorial invariance is very important.
2

The statistical significance of the difference in X s for two nested

models (see Benner & Bonett, 1980: Long, 1983; Sobel & Bohrnstedt, 1985;

for a discussion of nested models) can be evaluated relative to the

difference in the df for the two models. For example, Model 2 differs from

Model 1 in that the 24 factor loadings are required to be the same in the

two groups being tested, and so the difference in df is 24. For the MI/F1
2

comparison the difference in X for Models 1 and 2 is 27.5 (Table 3) and not

statistically significant for df=24. Thus, these results provide strong

support for the invariance of factor loadings in these two groups. Since
2

this X test is very powerful, it is also important to evaluate subjective
2

indicators of goodness of fit even when the X is statistically
diff

10



Factorial Invariance 8

significant. The comparison of traditional goodness-of-fit indices for two

nested models is useful, but Marsh (Marsh, 1985b; Marsh & Hocevar, 1985)

also developed the target coefficient (TC; see Table 1) specifically for

this purpose. For purposes of the present investigation, the TC scales the
2

X for the model with invariance constraints along a zero-to-one scale in

which the zero-point is defined by the null model and the top of the scale

is defined by the fit of the corresponding a priori model without any

equality constraints (Model 1). Thus TC provides an estimate of the

proportion of variance explained by the unconstrained Model 1 that can be

explained by the constrained (nested) model.

The Invariance models to be tested. For purposes of the present

investigation, different sets of parameters are specified to be invariant in

Models 2-7. The minimum condition of factorial invariance is for the factor

loadings to be invariant (Model 2), and Models 2-7 all require the 24

estimated factor loadings to be invariant. In Models 3-7 factor variances,
1

factor correlations , error/uniquenesses and various combinations of these

parameters are also constrained to be invariant across groups. For each

model, four tests of factorial invariance are performed. Tests of factorial

invariance across opposite-sex groups, Ml/F1 and M2/F2, provide two separate

tests of factorial invariance across responses by males and females. Tests

of factorial invariance across same-sex groups, Ml/M2 and Fl/F2, provide two

separate tests of factorial invariance across random split-halves that

differ only by random chance.

Model 1 (No Invar) -- no invariance constraints are imposed and this

model provides one basis of comparison for evaluating Models 2-6 as well as

the ability of the unconstrained model to fit the data.

Model 2 (FL Invar) the 24 factor loadings (FL) are specified to be

invariant across groups, and this model is taken to be the minimum condition

of factorial invariance.

Model 3 (FL, Fcovar & Fvar Invar) -- the 24 factor loadings, the 24

factor covariances (Fcovar), and the 8 factor variances (Fvar) are specified

to be.invariant.

Model 4 (FL & Fcorr Invar) -- the 24 factor loadings and the 24 factor

correlations (Fcorr; factor covariances that have been standardized -- see

footnote 1) are specified to be invariant.

Model 5 (FL & UE Invar) -- the 24 factor loadings and the 32

error/uniquenesses (UEs) ure specified to be invariant.

Model 6 (FL, Fcorr & UE Invar) -- the 24 factor loadings, the 24 factor

correlations, and the 32 error/uniquenesses (UEs) are specified to

11



Factorial Invariance 9

invariant.

Model 7 (Total Invar) -- all 92 parameter estimates are specified to be

invariant.

It is important to realise that this set of models in no way exhausts

all possibilities, and many other models could be hypothesized that are

consistent with the theoretical nature of the study, or are suggested by the

results of preliminary analyses.

Empirical Results For The Invariance of the A Priori Structure.

For the two saoe-sex sets of comparisons none of the invariance

constraints imposed in Models 2 - 7 has any substantial effect on the
2
X s (Table 3). For the two male samples, not even the test of total

invariance (Model 7) differs significantly from Model 1 (i.e., the
2

difference in X of 126 is not statistically significant for df= 92). For

the two female samples, the invariance of the structures is not met in a

strict statistical sense, but the goodness-of-fit indicators show that the

model of total invariance provides a reasonable fit; the subjective goodness
2

of fit indicators (X /df, RBI, & TLI) are nearly the same for Models 1 and

7, and the TC for Model 7 is .984. These findings are reasonable since these

two same-sex comparisons each involve comparisons across two random split

halves that differ only by random chance. Nevertheless, the results do

provide a strong demonstration of the replicability of the a priori factor

structure designed to explain responses to the SDO.

For the two opposite-sex comparisons, the various sets of invariance
2

constraints have a somewhat larger effect on the X s. For Model 7 the2
X s (210 and 206 with df=92) are statistically significant, and largerdiff
than for the same-sex comparisons. Hence, the hypothesis of total invariance

may hot be tenable. However, the invariance of factor loadings (Model 2) and

factor loadings in combination with factor correlations (Model 4) are not

statistically significant. The comparison of Models 3 and 4 suggests that the

factor variances are not strictly invariant, whereas the comparison of

Models 2 and 6 suggests that the uniqueness/errors are not strictly

invariant. Thus Model 4, positing the invariance of factor loadings and

factor correlations, appears to be the most restrictive model that can be

unequivocally supported for the opposite-sex comparisons. Nevertheless, it

should be noted that even Model 7 that posits total invariance provides a

reasonable fit for these opposite-sex comparisons. This observation is
2

based on the finding that the BBI, TLI, and the X /df ratios are nearly the

same for Models 1 and 7, and that the TCs for Model 7 are .976 and .978.

Hence, most of the variance that can be explained by the a priori structure

12



Factorial Invariance 10

with no invariance constraints can also be explained by the model of total
factorial invariance for the opposite-sex comparisons. These findings
support the generalizability of the a priori factor structure across
responses by males and females.

&sults For A Posteriori Structures.

ReveloRment gi A Posteriori gtructures.

The a priori structure provides a reasonable fit to the data, but is
not acceptable on strictly statistical criteria. Since this situation is
almost always the case for CFA studies, the inability to establish

generalizable criteria of what constitutes an adequate goodness of fit is a
serious problem. While the a priori structure provides a reasonable fit, a
less restrictive structure, one in which nontarget loadings were estimated
or error/uniquenesses were allowed to be correlated, might provide a better
fit to the data. The determination of which parameter estimates should be
freed has not been well established in the CFA literature. The best approach
is to use the substantive nature of the data for developing alternative

structures (e.g., the use of correlated errors is substantively reasonable
for longitudinal panel data). However, in many applications, the decision is
based on empirical results from a previous analyses of the same data. This
sequential development of new structures based on tests of cld structures

that are tested with the same data has serious implications both for tests
of statistical significance and for the replicability of the results to new
data, and such problems are not unique to CFA (e.g., step-wise procedures in
multiple regression have similar problems). When the a posteriori structure

differs substantially from the a priori structure most researchers argue
that such a model should be cross-validated with new data, but cross-
validations are infrequent. Hence, one purpose of the present investigation
is to demonstrate an application of such a cross-validation using random
split-halves of the responses by males and by females.

Joreskog and Sorbom (1981) describe a modification index that is

provided by LISREL V for each parameter that is fixed or constrained. The
index is the lower-bound estimate of the expected decrease in the observed
chi-square that would result if that particular parameter were freed, and
they suggest that a modification index should be at least 5 before a model2
is modified. (A X of 5 for df=1 is statistically significant at

2
approximately p =.025.) As with the X , the modification index is

substantial2y influenced by sample size, but it does provide a valuable tool

far suggesting alternative structures. The modification indices far different
parameters are not independent so that freeing two parameters with

1 3



Factorial Invariance 11

modification indices of five is unlikely to result in a change in chi=square

of 10. Hence, Joreskog and Sorbom suggest that only one parameter should be

modified and tested at. a time. However, this suggestion is likely to result

in unacceptable costs for practical applications in which there are many

parameters with modification indices greater than 5.

For purposes of this study new parameters to be estimated in two a

posteriori structures were selected on the basis of Model 1 which has no

invariance constraints, so that the selection was independent of invariance

constraints tested in subsequent models. Inspection of the modification

indices for all four groups suggested that the fit would not be

substantially improved by freeing nontarget loadings, but that freeing
2

correlated errors might result in a substantial improvement . The

correlated errors to be estimated in the first a posteriori structure were

selected on the basis of results from Model 1 as applied to groups M1 and

Fl. Correlated errors were estimated in the a posteriori structure when the

corresponding modification index was greater than 5 for both M1 and Fl, and

a total of 15 (of 496) correlated errors were so selected. The second a

posteriori structure was based on a similar procedure applied to groups M2

and F2, and 14 correlated errors were identified. In order to facilitate

comparisons described below, one additional correlated error that had a

modification index greater than 5 for one group but not the other was also

selected so that a total of 15 correlated errors were estimated in each of

the a posteriori structures. These two a posteriori structures, one based

on M1 and Fl and one based on M2 and F2, were then fit to Models 1-7.

Models 1-7 as applied here differ from those summarized earlier (also see

Table 3) only in that: a) 15 correlated errors were estimated foc each

group; and b) Models 5-7 that constrain error/uniquenesses to be invariant

also constrain the correlated errors to be invariant.

The Goodness-of-fit For Models of the A Posteriori Structures.

Models with no invariance constraints. Both a posteriori structures
2

resulted in large and statistically significant improvements in X s for
2

Model 1 (Tables 4 & 5) in comparison to the corresponding X s for the a
2

priori structure (Table 3) for each of the four groups (differences in X s

vary from 97 to 236 with df = 15 for the eight tests). As expected, the

first a posteriori structure based on M1 and Fl produces a larger

improvement in MI and Fl than for M2 and F2 (Table 4), whereas the second a

posteriori structure based on M2 and F2 produces a larger improvement for

M2 and F2 than for M1 and Fl (Table 5). Nevertheless, these results

demonstrate that correlated errors selected on the basis of one set of data

1 4
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produce a substantial improvement in goodness of fit for another set of

data. However, it is important to note that it is only the selection of

parameters to be estimated that is cross-validated by these results and nat

the actual values of the parameters.

Insert Tables 4 & 5 About Here

Same-sex comparisons for models with invariance constraints. As

described earlier the same-sex groups (M1 & M2, and Fl & F2) differ only by

random chance, and results for the a priori structure indicated that all

parameter estimates were reasonably invariant across these same-sex

comparisons. However, tests of factorial invariance for the two a posteriori

structures differ from those for the a priori structure. Since the

correlated errors to be estimated in the first a posteriori structure were

derived from Mi and Fl, tests of invariance (Table 4) across M1 and M2, and

across Fl and F2, constitute a rigorous test in which both the selection of

parameters and the actual values of these parameters are cross-validated.

Similarly, the correlated errors in the second a posteriori structure were

derived from M2 and F2 so that tests of invariance (Table 5) across the

same-sex groups constitute a second, equally rigorous cross-validation. As

with the a priori structure, models that do not require the correlated

errors to be invariant (Models 1 - 4 in Tables 5 & 6) are reasonably

invariant. However, Models 5-7 that posit the invariance of the correlated

errors do not support the invariance of these parameters in a strict
2

statistical sense. In particular Models 5-7 have X s that are s gnificantly

larger than Model 1 for both a posteriori structures (Tables 5 )5c 6). Hence,

these results suggest that the actual values estimated for parameters

selected on the basis of one set of data do not cross-validate very well to

results based on another set of data. Nevertheless, it should be noted that

the goodness-of-fit indices for all such models of invariance across same-

sex groups are reasonable, and differ only modestly from those based on

Model 1 with no invariance constraints. Furthermore, even for the model of

total invariance (Model 7) the TCs, which vary from .975 to .981, indicate

that nearly all the variation explained by the unconstrained models can be

explained in terms of the model of total factorial invariance.

Opposite-sex comparisons for models with invariance constraints. Results

for opposite-sex comparisons for both a posteriori structures, as with the a

priori structure, suggest that there is invariance of factor loadings (Model

2) and factor correlations (Model 4), but that factor variances and

error/uniquenesses (including correlated errors) are not strictly invariant.
2

Furthermore, the X s for the a posteriori structures are substantially
diff

15



Factorial Invariance 13

larger than those for the a priori structure for models that posit the

invariance of correlated errors (Models 5 7). The interpretation of these
2

results is complicated by the significant X s for the a priori model and
diff

the lack of invariance of the correlated errors across random split-halves of

the same group. Hence, the lack of fit of the most restrictive invariance

models, apparently, is due in part to the lack of invariance across responses

by males and females, and in part to the lack of replicability of a

posteriori parameters selected on the basis of one set of data to another set

of data. Nevertheless, this statistical lack of invariance also reilects the
2

power of the X test, as evidenced by the similarity of goodness-of-fit

indicators for Models 1 and 7 and the large TCs, varying between .967 and

.974, for Model 7. From a practical perspective, most of the variance that

can be explained by the unconstrained models is explicable by even the most

restrictive tests of factorial invariance.

Summixy of Tests For the Two A Posteriori Structures.

A priori structures provided reasonably good fits to the data, but

inspection of modification indices indicated that the addition of some

correlated errors would improve the fit. Tests of two such a posteriori

structures did provide better fits for all four groups, even when additional

parameters selected on the basis of one set of data were tested with another

set of data. However, the improvement in fit was larger for the random

split-half groups used to select the additional parameters than for the

random split-half groups used to cross-validate the selection. Furthermore,

strict statistical tests that required the estimated values of the additional

parameters to be the same across cross-validation groups were not satisfied.

This suggests that some of the improvement due to the inclusion of additional

parameters may have been illusory and may be explained by capitalizing on

chance in the selection of additional parameters to be estimated.

Tests of factorial invariance across opposite-sex comparisons were
2

complicated for the a posteriori comparisons. The X s for all opposite-sex

comparisons, no matter which a posteriori model was used and what invariance
2

constraints were imposed, were better than the corresponding X s for the a

priori structures. As with the a priori structures, there was support of

the invariance of factor loadings and factor correlations but support for

the invariance of factor variances and error/uniquenesses was weaker.

However, for tests that involved the invariance of the correlated errors,2
the X s (between Model 1 and the tested model) were larger for the a

diff
posteriori structures than for the a priori structure. Thus, while the

inclusion of correlated errors improves the goodness of fit for all models,

16
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the actual values of these correlated errors were not strictly invariant

across the responses by males and females.

Summary,. Discussion and Imglications.

The Substantive Issue.

Historically self-concept researchers have generally been unable to

identify salient factors in responses to self-concept instruments that were

replicable across similar groups or that generalized across different

groups. Results of the present investigation demonstrate that an a priori

factor structure for responses to the SIMI was invariant across responses by

random split-halves of the saw.' group, and that the a priori structure was

reasonably invariant across responses by males and by females. These

results provide support for both the replicability and generalizability of

the factor structure underlying responses to the SDO.

Sex differences are frequently examined by self-concept researchers,

but such comparisons are generally based on mean differences between groups

that implicitly assume that the factor structures of responses by males and

females are relatively invariant. Similarly, the comparison of mean

responses across any groups (e.g., age groups, ethnic groups, experimental

and control groups) implicitly assumes a reasonable invariance of the factor

structure for responses by the groups, but the assumption is rarely

examined. While a few researchers have used EFA to compare factors identified

in r2sponses by males and females, such comparisons are of limited utility

for tests of factorial invariance. Hence, the demonstration of factorial

invariance across responses by males and females is substantively important,

provides further justification for the comparison of mean responses by males

and females that has been examined in previous SDO research, and provides a

methodological demonstration that has wide applicability.

The Methodological Issue.

Analyses described in this section demonstrate how the invariance of a

factor structure can be tested across different groups of subjects

responding to the same set of stimuli. In this application, clear support

was shown for the factorial invariance of parameters from an a priori

structure across random split-halves of the same groups, but support was

smewhat weaker for the opposite-sex comparisons. Based on the results from

one set of data, additional parameters were used to define a posteriori

structures that were cross-validated with a different set of data. While the

a posteriori structures substantially improved the goodness of fit compared

to the a priori structure, even when cross-validated with different data,

the values of the estimated parameters were not strictly invariant across

17
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random split halves or across opposite-sex comparisons.

Important issues and misconceptions in the application of CFA to tests

of factorial invariance were identified:

1) While CFA allows the researcher to rigorously define the model to be

fit and to generate parameter estimates, indications of the ability of such

models to fit the data are often subjective. Furthermore, conventional

"rules of thumb" are not always appropriate, and their limitiation are not

well understood. The comparison of goodness-of-fit indicators among

alternative models, and models representing a null fit and logically

constructed optimum fits, are more useful than attempts to interpret the

absolute value of indicators for any one model according to rules of thumb

(see Marsh & Balla, 1986; Sobel & Bohrnstedt, 1985 for further discussion).

2) When factor variances are estimated separately for each group,

factor correlations (as opposed to factor covariances) can only be tested

with a specially constructed model. Even though factor correlations are

often the concern of researchers, support for the invariance of factor

covariances does not imply that factor correlations are invariant, and

rejection of the hypothesis of the invariance of the factor

variance/covariance matrix does not imply that factor correlations are not

invariant (see footnote 1).

3) Applications of CFA, including tests of factorial invariance, often

posit an a priori structure which does not fit the data according to strict

statistical criteria. An important unresolved question is whether additional

a post.Tiori structures should be examined that better fit the data, even if

the changes are based on empirical guidelines rather than the substantive

issues. An emprical procedure for modifying the a priori structure in a way

that substantially improved the fit was demonstrated. Parameters selected on

the basis of one set of data improved the fit for another set of data.

However, the actual values estimated for these parameters were not strictly

invariant across either random split halves of the same groups, or across

responses by males and females. Hence, some of the improved fit due to the

inclusion of additional parameters was apparently illusory in that it could

not be cross-validated. Furthe-more, the inability to adequately summarize

goodness of fit in CFA meant that the extent of this problem was difficult to

gauge even when cross-validation samples were tested. Thus an important

problem is the determination of the extent of bias -- improvements in fit that

cannot be cross-validated -- due to using the tests of a priori structures to

formulate a posteriori structures that are tested with the same data.
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FOOTNOTESFactor
correlations depend on both factor

covariances and factor
variances, so that when factcr

covariances and factor
variances are

constrained to be equal, factor
correlations are also equal. However,

constraining factor
covariances to be invariant but allowing factor

variances to be free does not provide a test of the invariance ot factor
correlations. Marsh and Hocevar (1985) argued that it is often the
invariance of factor

correlations, rather than factor
covariances, that is

of
theoretical

interest. In order to test the
invariance of factor

correlations when factor
variances are not

invariant, factor variances are
estimated in one diagonal

matrix, while
covariances among the factors are

estimated in a second matrix where the diagonal
values were set to l's. In

the
specification of this LISREL model (e.g., Models 4 & 6 in Tables 3 - 5)

there were: 32
y-variables (NY = 32); eight factors on the y-side (NE = 8);

eight factors on the x-side (NK = 8); an 8 x 8 diagonal GAMMA matrix where
factor variances were estimated;

an 8 x 8 PHI matrix with the diagonal
fixed to be l's and estimated factor

correlations in the
off-diagonals; and

a 32 x 32 THETA EPSILON matrix of
error/uniquenesses (see Marsh & Hocevar,

1985 for further
discussion).

2 --
Correlated errors are

interpreted to mean that the
error/uniqueness far

one measured
variable is more highly

correlated with the
error/uniqueness of

another variable than can be explained in terms of the
variables's mutual

reliance on a
common factor (if both

variables are used to infer the same
factor) or on the

covariation between the factors inferred by each
variable.

This may occur,
for example, if two items are nearly

synonymous, if there is

an unusual
phrase that is common to two items, or if two

variables share
some other

source of unique variation. The
requirement that

modification
indices for the correlated errors be at least 5 for both M1 and Fl (or for

M2 and F2) before the
additional parameter was included in the first (or

second) a posteriori
structure provided a more

conservative criterion than
suggested by Joreskog

and Sorbom
(1981) and

guaranteed that the
selection of

additional parameters had some
generality across

opposite-sex
comparisons.

Nevertheless, only 4 of the 15
correlated

errors selected for the first a
posteriori structure were also selected for the second a posteriori
structure. Joreskog and Sorbom also suggested that only one parameter

should

be added at a time, since the
modification indices for

different parameters

are not
independent and the

addition of one new parameter may affect the
modification indices of other

parameters. In the present
investigation, all

15 correlated errors were added at one time
(because of

substantial
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additional cost of adding one at a time), and 12 of 60 correlated errors

(i.e., 15 for each of the four groups) were not statistically significant

for the group used to select the correlated error. However, no additional

correlated errors had a modification index greater than 5 for both MI and Fl

(or M2 and F2) in the first (second) a postersiori structure after the

inclusion of the originally selected 15 correlated errors. It should also be
2

noted that the modification index like the X , is substantially influenced

by sample size so that the number of parameters with modifications indices

greater than 5 will increase with the sample size. If the sample sizes are

particularly large, it may be preferablE to select a laroer modification

index as the criterion for inclusion of additional parameters so that the

contribution is practically as well as statistically significant.
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TABLE 1

Descrigtion of Goodness-of-fit Indicators Used in The Present Investigation

Indicator Description

2
2X /df The ratio of the chi-square (X ) to the degrees-of-freedom (df).

2BBI The Bentler-Bonett Index is: I - N/T where N and T are the X s far

the null model and model to be tested (see Bentler & Bonett, 1980).

TLI The Tucker-Lewis index is: C(N/df - T/df ) / C(N/df 13.

2
where N/df and T/df are the X /df ratios for the null model and

the model being tested (see Bentler & Bonett, 1980).

2 2X The difference between X for models with invariance constraints and

Model 1 with no invariance constraints.

TC The Target Coefficient, a measure of the ability of a model

with invariance constraints explain the covariation compared to the

corresponding model with no invariance constraints, is defined

2as: (N I)/(N U) where N, I and U are the X s for the null

model (N), the model with invariance constraints (I) and the

corresponding model withcut any invariance constraints (U; Model 1

in the present application). TC varies between 0 and 1.
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TABLE 2

Model 1 Parameter Estimates For Males

Factor Loading Matrix

Phys Appr Peer Prnt Read Math

Factoriar-Divariance

(M) and Females

Schl Genl

22

(F)

Error/

Uniqueness

Physl M 1.00 0 0 0 0 0 0 0 1.26*
F 1.00 0 0 0 0 0 0 0 1.98*

Phys2 M 1.19* 0 0 0 0 0 0 0 1.63*F 1.02* 0 0 0 0 0 0 0 2.16*

Phys3 M 1.07* 0 0 0 0 0 0 0 2.03*
F 1.07* 0 0 0 0 0 0 0 1.76*

Phys4 M .93* 0 0 0 0 0 0 0 2.10*F 1.11* 0 0 0 0 0 0 0 1.61*

Apprl M 0 1.00 0 0 0 0 0 0 1.54*
F 0 1.00 0 0 0 0 0 0 2.17*

Appr2 M 0 .86* 0 0 0 0 0 0 1.18*
F 0 .84* 0 0 0 0 0 0 2.38*

Appr3 M 0 1.34* 0 0 0 0 0 0 1.53*
F 0 1.32* 0 0 0 0 0 0 1.57*

Appr4 M 0 1.10* 0 0 0 0 0 0 1.11*
F 0 1.32* 0 0 0 0 0 0 1.35*

Peerl M 0 0 1.00 0 0 0 0 0 1.69*F 0 0 1.00 0 0 0 0 0 1.81*

Peer2 M 0 0 1.18* 0 0 0 0 0 1.34*
F 0 0 1.16* 0 0 0 0 0 1.07*

Peer3 M 0 0 1.35* 0 0 0 0 0 1.81*
F 0 0 1.23* 0 0 0 0 0 1.58*

Peer4 M 0 0 1.23* 0 0 0 0 0 1.50*F 0 0 1.20* 0 0 0 0 0 1.26*

Prntl M 0 0 0 1.00 0 0 0 0 .98*
F 0 0 0 1.00 0 0 0 0 .94*

Prnt2 M 0 0 0 1.45* 0 0 0 0 .93*
F 0 0 0 1.24* 0 0 0 0 1.39*

Prnt3 M 0 0 0 1.84* 0 0 0 0 1.35*
F 0 0 0 2.18* 0 0 0 0 1.38*

Prnt4 M 0 0 0 1.68* 0 0
F 0 0 0 1.94* 0 0

0
0

0
0

.85*

.62*

Readl M 0 0 0 0 1.00 0 0 0 1.0E*
F 0 0 0 0 1.00 0 0 0 1.25*

Read2 M 0 0 0 0 1.04* 0 0 0 .90*
F 0 0 0 0 1.11* 0 0 0 .92*

Read3 M 0 0 0 0 1.10* 0 0 0 1.21*
F 0 0 0 0 1.16* 0 0 0 .65*

Read4 M 0 0 0 0 1.12* 0 0 0 1.34*F 0 0 0 0 1.13* 0 0 0 1.24*

Mathl M 0 0 0 0 0 1.00 0 0 2.11*
F 0 0 0 0 0 1.00 0 0 1.24*

Math2 M 0 0 0 0 0 .91* 0 0 1.16*
F 0 0 0 0 0 .92* 0 0 1.05*

Math3 M 0 0 0 0 0 1.04* 0 0 .87*
F 0 0 0 0 0 .99* 0 0 1.10*

Math4 M 0 0 0 0 0 .99*
F 0 0 0 0 0 .99*

0
0

0
0

.74*
1.05*



TABLE 2 continued

Factor Loading Matrix Error/

Phys Appr Peer Prnt Read Math Schl Genl Uniqueness

Schll M 0 0 0 0 0 0 1.00 0 1.89*
F 0 0 0 0 0 0 1.00 0 1.40*

Sch12 M 0 0 0 0 0 0 .84* 0 1.98*
F 0 0 0 0 0 0 .79* 0 1.87*

Sch13 M 0 0 0 0 0 0 1.31* 0 1.72*
F 0 0 0 0 0 0 1.46* 0 1.80*

Sch14 M 0 0 0 0 0 0 1.15* 0 1.19*
F 0 0 0 0 0 6 1.24* 0 1.14*

Genll M 0 0 0 0 0 0 0 1.00 1.83*
F 0 0 0 0 0 0 0 1.00 1.86*

Gen12 M 0 0 0 0 0 0 0 1.16* 1.11*
F 0 0 0 0 0 0 0 1.57* 1.23*

Gen13 M 0 0 0 0 0 0 0 1.38* .68*
F 0 0 0 0 0 0 0 1.28* 1.30*

Gen14 M 0 0 0 0 0 0 0 1.04* 1.41*
F 0 0 0 0 0 0 0 1.28* 1.63*

Factors Variance/Covariance Matrix (factor correlations above the
main diagonal)

PHYS
Factors

APPR PEER PRNT READ MATH SCHL GENL

PHYS M 3.35* .43 .65 .33 .20 .23 .25 .74
F 2.99* .40 .56 .23 .20 .22 .27 .75

APPR M .77* .94* .55 .22 .20 .33 .34 .51
F .96* 1.93* .30 .01 .02 .04 .16 .30

PEER M 1.47* .66* 1.53* .36 .28 .27 .31 .63
F 1.23* .53* 1.63* .29 .23 .28 .32 .81

PRNT M .41* .15* .31* .49* .36 .15 .25 .44
F .27* .01 .25* .46* .12 .09 .15 .28

READ M .64* .33 .60* .43* 3.05* .26 .55 .32
F .49* .05 .41* .12 1.91* .26 .52 .35

MATH M .94* .70* .72* .23 .99* 4.82* .75 .36
F .73* .10 .69* .12 .70* 3.69* .71 .36

SCHL M .77* .56* .65* .30* 1.64* 2.81* 2.91* .42
F .54* .26 .49* .12 .83* 1.58* 1.35* .43

GENL M 1.23* .45* .71* .28* .50* .72* .65* .83*
F 1.16* .37* .92* .17* .43* .62* .45* .80*

* p < .01

Note. Parameters with Values of 0 and 1 were fixed and not estimated as

part of the analysis, and so no tests of statistical significance were

performed for these values. The four measured variables designed to measure

each factor are the sums of responses to pairs of positively worded items.

Factor correlations, standardized factor covariances, were derived from the

factor covariances and are presented to facilitate interpretations.
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TABLE 3
Factorial Invariance 24

Goodness of Fit Indices far the CFA Models of Factorial Invariance Across
Eairs of Groups (no correlated errors)

2
Model Description X

a.
0) Nuil Model

df
2
X /df BBI TLI X

2
df

d d
TC

Ml/F1 10566.2 992 10.65 .00 .00 ----M2/F2 11313.4 992 11.40 .00 .00 ----Ml/M2 10883.7 992 10.97 .00 .00 ----Fl/F2 10995.9
a

992 11.08 .00 .00 ----

I) No Invariance

MI/F1 1849.2 872 2.12 .82 .88 0 0 1.0M2/F2 1888.1 872 2.17 .83 .89 0 0 1.0Ml/M2 1621.2 872 1.86 .85 .91 0 0 1.0Fl/F2 2116.6 872 2.42 .81 .86 0 0 1.0

2) Factor Loadings invariant

M1/F1 1876.7 896 2.09 .82 .89 '27.5 24 .997M2/F2 1907.9 896 2.13 .83 .89 19.8 24 .998Ml/M2 1647.5 896 1.83 .85 .92 26.3 24 .997F1/F2 2137.0 896 2.39 .81 .86 20.4 24 .997

3) Factor Loadings, factor variances and factor covariances invariant

M1/F1 1969.0 932 2.11 .81 .88 119.8 60 .986M2/F2 1981.4 932 2.13 .82 .89 93.3 60 .990Ml/M2 1693.1 932 1.82 .84 .92 71.9 60 .992Fl/F2 2194.3 932 2.35 .80 .87 77.7 60 .991

4) Factor Loadings and factor correlations invariant

Ml/F1 1926.4 924 2.08 .82 .89 77.2 52 .991M2/F2 1959.6 924 2.12 .83 .89 71.5 52 .992Ml/M2 1682.8 924 1.82 .85 .92 61.6 52 .993Fl/F2 2187.6 924 2.37 .80 .86 71.0 52 .992

5) Factor Loadings and uniquenesses invariant

MI/F1 1963.9 928 2.12 .81 .88 114.7 56 .987M2/F2 2010.9 928 2.17 .82 .89 122.8 56 .9P7Ml/M2 1710.7 928 1.84 .84 .92 89.5 56 .190F1/1-2 2203.2 928 2.37 .80 .86 86.6 56 .990

6) Factor Loadings, factor correlations, and uniquenesses invariant

Ml/F1 2012.2 956 2.10 .81 .89 163.0 84 .981M2/F2 2068.7 956 2.16 .82 .89 180.6 84 .981Ml/M2 1747.8 956 1.83 .84 .92 126.6 84 .986F1/F2 2257.9 956 2.36 .79 .87 141.3 84 .984

7) Total Invariance

Ml/F/ 2059.2 964 2.13 .81 .88 210.0 92 .976M2/F2 2093.8 964 2.17 .82 .89 205.7 92 .978Ml/M2 1757.2 964 1.82 .84 .92 126.0 92 .986Fl/F2 2262.4 964 2.35 .79 .87 145.8 92 .984

Note. See Table 1 for a description of the goodness-of-fit indicators. The

Null model hypothesizes complete independence of all measured variables and

is used in computing other indicators (see Table 1). For Models 2 - 6, the2 2
X and df are the differences between the X and df for the model being

tested and Model 1 for which no invariance constraints were imposed.

a 2
The X s for the four null models are 5505.8, 5060.4, 5377.9, 5935.5 with

2496 df for Ml, Fl, M2 and F2 respectively, while the corresponding X s for

Mo ar 9 -
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TABLE 4

Goodness of Fit Indices for the CFA Models of Factorial Invariance Across
Pairs of Groups (With Correlated Errors Based on M1 and Fl)

Model Description
2
X df

2
X /df BRI

2
TLI X d dfd TC

1) No Invariance

M1/F1 1461.1 842 1.74 .86 .92 0 1.0M2/F2 1691.7 842 2.01 .85 .90 0 0 1.0M1/M2 1328.3 842 1.65 .87 .94 0 0 1.0F1/F2 1764.5 842 2.10 .84 .89 0 0 1.0
2) Factor Loadings invariant

Ml/F1 1487.3 866 1.72 .86 .93 26.2 24 .997M2/F2 1707.1 866 1.97 .85 .91 15.4 24 .997Ml/M2 1411.5 866 1.63 .87 .94 23.2 24 .997F1/F2 1788.3 866 2.07 .84 .89 23.8 24 .997
3) Factor Loadings, {actor variances and.factor covariances invariant

Ml/F1 1585.7 902 1.75 .85 .92 124.6M2/F2 1777.9 902 1.97 .83 .92 86.2M1/M2 1461.5 902 1.62 .87 .94 73.2F1/F2 1849.1 902 2.05 .83 .90 84.5
4) Factor Loadings and factor correlations invariant

Ml/F1 1545.1 894 1.73 .85 .93 84.0M2/F2 1750.7 894 1.96 .85 .91 59.0M1/M2 1451.4 894 1.62 .87 .94 63.1F1/F2 1840.0 894 2.06 .83 .90 75.5
5) Factor Loadings and uniquenesses invariant

MI/F1 1660.4 913 1.82 .84 .92 199.3M2/F2 1861.3 913 2.04 .84 .90 169.6Ml/M2 1539.4 913 1.69 .86 .93 151.1F1/F2 1909.6 913 2.09 .83 .89 145.1

60 .986
60 .991
60 .992
60 .991

52 .991
52 .994
52 .993
52 .992

71 .978
71 .982
71 .984
71 .984

6) Factor Loadings, factor correlations, and uniquenesses invariant
Ml/F1 1714.1 941 1.82 .84 .92 253.0 99 .972M2/F2 1914.1 941 2.03 .84 .90 222.4 99 .977Ml/M2 1581.3 941 1.68 .85 .93 193.0 99 .980Fl/F2 1961.6 941 2.08 .82 .89 197.1 99 .9797) Total Invariance

Ml/F1 1764.2 949 1.86 .83 .91 303.1 107 .967M2/F2 1941.0 949 2.05 .83 .90 249.3 107 .974Ml/M2 1590.0 949 1.68 .85 .93 201.7 107 .979Fl/F2 1970.1 949 2.08 .82 .89 205.6 107 .978

Note. The null models are the same as in Table 3. See note in Table 3 and
Table 1 for a description of the goodness-of-fit indicators.
a 2

The X s for the four individual group tests of Model 1 are 705.8, 755.3,
682.5, 1009.2 with 421 df for Ml, Fl, M2 ande2 respectively.
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TABLE 5

Goodness of Fit Indices for the CFA Models of Factorial Invariance Across
Pairs of Groups (With Correlated Errors Based on M2 and F2)

2 2 2Model Description X df X /df BBI TLI X d dfd TC

a
1) No Invariance

Ml/F1 1571.4 842 1.86 .85 .91 0 0 1.0M2/F2 1525.0 842 1.81 .87 .92 0 0 1.0Ml/M2 1399.4 842 1.66 .87 .93 0 0 1.0Fl/F2 1697.0 842 2.02 .85 .90 0 0 1.0
2) Factor Loadings invariant

MI/F1 1597.1 866 1.84 .85 .91 25.7 24 .997M2/F2 1542.3 866 1.78 .86 .93 17.3 24 .998Ml/M2 1417.8 866 1.64 .87 .94 18.4 24 .998Fl/F2 1723.8 866 1.99 .84 .90 26.8 24 .997
3) Factor Loadings, factor variances and factor covariances invariant

Ml/F1 1690.8 902 1.87 .84 .91 119.4 60 .987M2/F2 1615.3 902 1.79 .86 .92 90.3 60 .987Ml/M2 1467.2 902 1.63 .87 .94 67.8 60 .993Fl/F2 1784.2 902 1.98 .84 .90 87.2 60 .991

4) Factor Loadings and factor correlations invariant

Ml/F1 1650.0 894 1.84 .84 .91 78.6 52 .991M2/F2 1589.4 894 1.78 .86 .93 64.4 52 .993Ml/M2 1456.2 894 1.63 .87 .94 56.8 52 .994F1/F2 1777.1 894 1.99 .84 .90 80.1 52 .991

5) Factor Loadings and uniquenLses invariant

Ml/F1 1719.8 913 1.88 .84 .91 148.4 71 .984M2/F2 1727.3 913 1.89 .85 .91 202.3 71 .979Ml/M2 1534.4 913 1.68 .86 .93 135.0 71 .986Fl/F2 1869.9 913 2.04 .83 .90 172.9 71 .981
6) Factor Loadings, factor correlations, and uniquenesses invariant

Ml/F1 1771.2 941 1.88 .83 .91 199.8 99 .978M2/F2 1786.1 941 1.90 .84 .91 261.1 99 .973Ml/M2 1574.4 941 1.67 .86 .93 175.0 99 .982Fl/F2 1924.1 941 2.04 .83 .90 227.1 99 .976
7) Total Invariance

Ml/F1 1819.7 949 1.92 .83 .91 248.0 107 .972M2/F2 1812.7 949 1.91 .84 .91 287.7 107 .971Ml/M2 1583.5 949 1.67 .85 .93 '84.1 107 .981Fl/F2 1929.3 949 2.03 .82 .90 232.3 107 .975

Note. The null models are the same as in Table 3. See note in Table 3 and
Table 1 for a description of the goodness-of-fit indicators.
a 2

The X s for the four individual group tests of Model 1 are 754.5, 816.9,

644.9, 880.1 with 421 df for Ml, Fl, M2 and F2 respectively.
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