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Factor analysis has been the traditional method for studying the
dimensionality of test data. This 1is true for dichotomous data even though
several authors have documented problems with the application of factor
analysis to this type of data (Dingman, 1958; Ferguson, 1941; Gourlay, 1951;
Guilford, 1941; cDonald and Ahlawat, 1974). The continued use of factor
analysis, especially with tetrachoric correlations, for the analysis of
dichotomous data probably stems from the need to verify the unidimensionality
assumption required for many item response theory (IRT) models. In additionm,
Lord and Novick (1968) suggest that the analysis of tetrachoric correlations
may be helpful in supporting the assumption, even though they exhibit
appropriate caution in their discussion of the topic.

However, under fairly common conditions, the factor analysis of
tetrachoric correlations does not recover the underlying structure of

dichotomous data (Gourlay, 1951; Reckase, 1979). This paper presents some
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reasons why this should be the case if it can be assumed that the dichotomous
data can be accurately described by an IRT model. Specificaliy, this paper
will show that the assumptions of the tetrachoric correlation are not
consistent with a general class of IRT models. The relationship between the
IRT models for two test items and the bivariate distribution of the ability to
respond to two test items will be described first. This relationship will
then be used to discuss the tetrachoric correlations between two items and the
implications these correlations have for factor analyses of dichotomous test

data.

A Model of the Relationship between Scores

on Dichotomous Items and a Hypothetical Latent Trait

In this paper it is assumed that the relationship between the performance
of a person on a test item and the trait measured by the item is so complex
that it can only be described by a probabilistic model. The probabilistic
model is defined by a function that relates the probability of a correct
response to the item to the level of ability of a person on a hypothetical
latent trait. This function may be described either by a mathematical formula
or by a set of ordered pairs of probabilities and corresponding abilities.

For this paper, the probabilistic model will be specified by the set of
ordered pairs because it defines a more general class of IRT models than can
be defined by mathematical formulas.

According to this model, for each value of the latent ability being
measured by an item, there is a corresponding probability of a correct
response to the item. The fact that a probabilistic model is being used

implies that there 1is uncertainty about the response of the person to the



item. At different times and under different conditions, different responses
may be given to the same item by the same person.

One way to explain the probabilistic relationship between latent ability
and the item score is to assume that the ability to respond correctly to an
item is a function of a very large number of variables that describe the
mental state of the person taking the item. Since each state variable
accounts for a very small proportion of the variance of the item score, and
because there are very many variables, the result can only be described by a
distribution of uncertainty for the individual on the item trait. Lord and
Novick (1968) have called this distribution a propensity distribution.
Thurstone (1927) called it a discriminal dispersion. Because the distribution
1s based on the effects of the combination of a large number of variables, it
can be assumed to be normal.

The propensity distribution is defined on the scale of the ability that
1s required to respond correctly to the item. Whethker or not a person obtains
a correct response to the item depends on whether or not their ability is
above or below a critical value'for the item. The critical value is located
at a point that divides the distribution into two parts, the upper part
containing a proportion equal to the probability of a correct response and the
lower part corresponding to the probability of an incorrect response.

The mean of the propensity distribution for a person's response to an
item can be determined from the person's ability and the IRT function. Using
the ability and the IRT function, the probability of a correct response can be
determined. The inverse normal distribution function can then be applied to
the probability to obtain the corresponding z-score. If the critical value of
the item is arbitrarily set at zero (this can be done because the origin of

the scale is undetermined), the z-score is equal to the mean of the propensity



distribution for that person on that item. Since the mean of the propensity
distribution has been defined as the true score by Lord and Novick (1968),
this process also defines the true score for a person on an item. The process
of conversion, from latent trait to true sCore on the item scale, is

summarized in Figure 1.
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By transforming all of the abilities in the latent distribution to means
of propensity distributions, the distribution of true scores on the item trait
can be determined. If this is done for two items simultaneously, the

bivariate distribution of the true scores on the items can be determined.

Item Trait Distributions Implied

by Several ICC Models

In order to determine the characteristics of the distribution of true
scores on the item traits given that the distribution on the latent trait is
standard normal (N (0, 1)), 2,000 cases were generated using the IMSL (1980)
random normal number generator. For each of these values, the probability of
a correct response to a series of hypothetical items was detefmined from the
ICC's for the items. The ICC's for the items were specified by ordered pairs
of the probabilities that corresponded to 8-values of -3, =2, =1, o, 1, 2,

3. The probability of a correct response for the 2,000 cases was determined
by linear interpolation or extrapolation if the values did not correspond to
the seven values used to specify the probabilities. Once the probabilities

were determined, the true scores on the item scales were obtained using the

inverse normal transformation.

The distributions of ftem traits were obtained for three different ICC
models. The probabilities corresponding to the seven 6-values for the three

items are given in Table 1.

i



Table 1

Probabilities Defining the
ICC's for Three Items

Item 6-Value
-3 -2 -1 0 1 2 3
2 .10 .05 .20 55 .70 .80 .90
17 : <15 .15 .15 .15 <30 .40 .60
20 .50 .40 .20 «50 .70 .80 .90

Item 2 is a moderately difficult item with a lower asymptote of .10.
This item has a slightly nonmonotonic item characteristic curve (JICC). The
item true score distribution that corresponds to the latent distribution for
this item is given in Figure 2a. As can be seen, this distribution is
negatively skewed with a skewness of -.58. The item true score distribution
that corresponds to the latent trait distribution for Item 17, a very hard
item, is given in Figure 2b. This distribution is highly positively skewed
(skewness = 1.32). Item 20 is a moderately difficult item with a strongly
nonmonotonic item characteristic curve. The item true score distribution for
this item is shown in Figure 2c. This distribution also deviates
substantially from a normal distribution. However, in this case the deviation

is in the form of being platykurtic (kurtosis = -.865).
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The bivariate true score distributions for each of the pairs of items are
given in Figures 3a, 3b, and 3c. For all of the cases shown here, the
bivariate distribution of the item traits is a tight curve. Clearly the
assumption of linearity is not supported. However, the strength of the

relationship clearly demonstrates the unidimensional nature of these data.
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However, true scores are never observed. To obtain the continuous score
equivalent of the observed item scores, scores were randomly sampled from the
propensity distributions for each person-item combination. The bivariate
observed score distributions For the three items given in Table 1 are
presented in Figures 4a, 4b and 4c. These are the distributions whose p-
parameter is estimated by the tetrachoric correlation coefficient. Note that

these distributions are not bivariate normal.
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Factor Analysis Results

In order to demonstrate the effects of violating the assumptions of the
tetrachoric correlations on factor analyses, dichotomous data were generated
using many different types of ICC's. The probabilities used to describe these
ICC's are given in Table 2. The factor loading matrix and eigenvalues from
the principal component analysis of the tetrachoric correlations for these

data are given in Table 3.

Table 2

Probabilities Corresponding to Seven Ability Levels
for Twenty Hypothetical Items

Item Ability Level
-3 -2 -1 0 1 2 3
1 00 80 85 90 92 95 98
2 10 05 20 55 70 80 90
3 10 30 70 80 90 95 99
4 10 10 40 70 80 90 95
5 10 10 15 50 70 80 90
6 50 70 90 91 92 93 97
7 40 60 80 - 90 95 97 99
8 35 50 70 90 95 97 99
9 20 40 60 80 90 95 99
10 15 20 50 70 90 95 99
11 15 15 40 60 80 90 95
12 20 15 30 50 70 90 95
13 15 15 20 40 60 80 90
14 20 15 15 30 50 70 90
15 15 15 15 15 40 60 90
16 20 15 15 15 40 50 80
17 15 15 15 15 30 40 60
18 25 20 15 15 15 30 50
19 00 00 40 40 60 60 90
20 50 40 20 50 70 80 90

Note: Decimal points have not been included. All values are to two decimal
places.

oo
S
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Table 3

Unrotated Principal Components of the Tetrachoric Correlations

Component Loadings#*

Item 1 2 3 4 5
1 «20 28 36 59
2 028 052 025 "041
3 51 -.59
4 49 «56 -.24
5 «58 .48
6 67 -.22
7 .38 .66
8 027 076 "024
9 049 052 -022

10 «56

11 58 31

12 «63

13 .61

14 59

15 56

16 052 "022 ‘025

17 49 -.30 <39

18 4l -.41 -.28

19 34 -.36 -.29

20 024 044 n37 "027 .31
Eigen value 4.76 1.71 1.47 1.18 1.02

Note: *Loadings less than .2 in absolute value have been deleted.

As can be seen from this analysis, the unidimensional nature of the
ability dimension was not supported. Five factors are present with
eigenvalues greater than 1.0 and none of the factors are readily related to

item characteristics.

Discussion and Conclusions

The purpose of this paper was to demonstrate that the factor analysis of

tetrachoric correlations 1is unlikely to yleld clear support for
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unidimensionality even when the data are generated to be unidimensional. This
result 1s caused by a failure of item data to meet the assumptions of the
tetrachoric correlation.

In thls study, item true score distributions were generated assuming a
normal latent trait and a variety of forms for the ICC's for the items. In
every case, these distributions were shown to be nonnormal, and the bivariate
distributions were shown not to match the bivariate normal. The principal
component analysis of data generated according to these ICC's yielded a highly
complex solution, most likely a result of the violation of the assumptions of
the tetrachoric correlations that form the basis of the analysis.

New methods for factor analysis have recently been developed specifically
for dichotomous data (Bock and Aitken, 1981; McDonald, 1967; Muth;n, 1983;
Christoffersson, 1981). These methods may be better able to meet the
requirements of data of this type. However, these methods assume a particular
form for an ICC and they may not be able to accurately describe data that are
generated using a different form for an ICC. This 1s clearly an area for

future research.
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