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One of the most appealing aspects of multiple regression to beginning

multiple regression students is the amazing feat performed by a stepwise

regression computer program. The process of selecting the "best" combination

of predictors so effortlessly and efficiently creates an overwhelming urge to

use this procedure and the computer program that accomplishes it for a multi-

tude of tasks for which it is ill suited. Many textbooks on multiple regres-

sion claim that abuse of this technique is common. Draper and Smith (1981)

give a mild statement that "the stepwise procedure is easily abused by amateur

statisticians (p. 310), while Wilkinson (1984) is much more dramatic:

Stepwise regression is probably the most abused
computerized statistical technique ever devised. If you
think you need stepwise regression to solve a particular
problem you have, it is almost certain that you do not.
Professional statisticians rarely use automated.stepwise
regression. (p. 196)

Cohen and Cohen (1975) suggest that model building should proceed

according to dictates of theory rather than relying on the whims of a

computer. But since in the social and behavioral sciences theoretical models

are relatively rare (Neter et al., 1983). Cohen and Cohen suggest that the

stepwise method is a "sore temptation" to replace theory in these situations

(p. 103).

The authors of current multiple regression textbooks suggest the follow-

ing considerations for selecting a subset of predictors for a regression

model:

1. Selection of variables for a regression model sl'ould not be a

mechanical process (Chatterjee and Price, 1917: Draper and Smith.

1981; Neter et al.. 1983; Younger, 1979).

2. No one process will consistently select the "best" model (Berenson et

al.. 1983: Gunst and Mason, 1980; Kleinbaum and Kupper, 1978:

Morrison, 1983; Pedhazur, 1982; Younger, 1979)
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3. There is no one "best" model according to any common criterion such as

the maximum R2 (Chatterjee and Price. 1977; Freund and Minton. 1979:

Neter et al., 1983).

4. The stepwise method should not be used to build models for explanatory

research (Cohen and Cohen, 1975; Pedhazur, 1982).

In addition many authors point out that the stepwise method has limited

usefulness when the predictors are highly correlated (Chatterjee and Price,

1977; Kleinbaum and Kupper, 1978; Neter et al.. 1983), if a key set of vari-

ables work in combination (Younger, 1979), or when suppression exists (Cohen

and Cohen, 1975). Chatterjee and Price (1977) suggest that with multicollih-

earity the backward method is preferred although other authors suggest that

the backward method should not be used in this case because of computational

inaccuracy that may occur if multicollinearity is severe and a near singular

matrix is inverted.

In spite of these suggestions, there are still many research studies

reported in the literature in which these guidelines are violated. Results

are reported f a model "selected" by the computer, usually using the stepwise

method with no indication that this model might not be the "correct" or "best"

one. The discussion of the selected model is done in a mechanical fashion

with no indication given of a careful critique of the adequacy of the

computer-selected model. Explanatory interpretations are frequently made

(Pedhazur, 1982) which often take the form of considering variables selected

by the computer to be "good" predictors of the dependent variable because they

have a "significant relationship" and variables not selected by the computer

are considered to be "poor" predictors because they do not have a °significant

relationship". A variable that may be one of the best predictors when studied

individually and that fits nicely into an existing theory will be considered

to be a "poor" predictor simply because it dues not occur in the selected

model even though its omission may be due CO predicting the same variance as
4
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other predictors already in the model that are no better predictors than it

is.

There are many other competing procedures that can be used to select

variables for a regression model other than the stepwise method. Three major

ones mentioned in many regression textbooks are the forward, backward, and

best subsets methods. This paper will endeavor to compare the stepwise method

with these selection methods to determine the types of models that each would

be likely to select and in so doing determine the strengths and weaknesses of

each method.

Method

The procedure used was to apply each of the common selection methods to a

number of data sets of various types and evaluate the differences between the

models chosen. The source for each of the data sets used in the analysis is

described below. In Table 1 the number of subjects and number of predictors

for each data set is.listed.

Data Sets Used

1. GMA1 -- Data Set Al from Gunst and Mason (1980)

2. GMA3 -- Data Set A3 from Gunst and Mason (1980)

3. GMA6 -- Data Set A6 from Gunst and Mason (1980)

4. GMA8 -- Data Set A8 from Gunst and Mason (1980)

5. GMB1 -- Data Set B1 from Gunst and Mason (1980)

6. GMB2A-GMB2B -- Data Set B2 from Gunst and Mason (1980)

7. TAL -- Project Talent data from Lohnes and Cooley (1968)

8. ENR1-ENR5 -- 1986 freshman enrollment data from Andrews University

9. LONG -- Data from Longley (1967)

10. BALD -- Data from Draper and Smith (1981)

11. SUP -- Data generated from a contrived correlation matrix
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Nine of the data sets were selected from textbooks that used the data

sets to illustrate interesting and/or unusual applications of regression that

would be brought out by the data. All of the variables were not included in

some of the sets. Some of the variables in the GMA3 set were not used because

there were more variables than subjects. One variable was removed from the

GMB1 set due to tolerance problems (its tolerance was below .01, and thus was

automatically excluded from the BMDP2R program although it would not have been

included in any of the models if tolerance had been ignored). The categorical

variables from the TAL set were not used.

The SUP data was generated using a program described in Morris (1975)

from a contrived correlation matrix described below that included variables

that illustrated suppression. To get a correlation matrix with suppression,

three variables were constructed composed of random numbers with the first

variable designated as the dependent variable and the other two designated as

independent variables. A fourth variable was then constructed which did not

have a high correlation with the dependent variable by itself but yielded a

high multiple correlation with the dependent Variable when combined with the

two previously chosen independent variables. The correlation matrix from this

data was then used as input to the Morris program which generated a new set of

data which gave the same correlation matrix but was "marginally normal." The

correlation matrix used was:

1 2 3 4

1 Loon .446 .292 .397

2 1.000 -.195 -.088

3 1 1.000 -.527

4 i 1.000

An alternate approach that would nave given an equivalent matrix would

have been to use the method suggested by Lutz (1983).
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GMB2 was run twice using a different dependent variable each time. The

ENR data was analyzed with 5 different sets of predictors. The variables used

for the ENR data sets were selected from 86 variables which in turn were

selected from a larger data base that included 499 variables. A principal

components factor analysis was conducted using the 86 variables and the

variables loading on the 14 factors with the highest eigen values (all above

1.3) were used in the 5 sets of predictors.

ENR1 had 1 predictor from each of the first 7 factors.

ENR2 had 2 predictors from each of the first 7 factors.

ENR3 had 4 predictors from each of the first 7 factors.

ENR4 had 1 predictor from each of the 14 factors.

ENR5 had 2 predictors from each of the 14 factors.

The computer programs used to select the best model from each data set

were BMDP2R for the stepwise, forward and backward solutions, and BMDP9R for

the best subsets solution. The stepwise and forward methods used an

F-to-enter limit of 2.0 and the stepwise method used an F-to-remove limit of

1.99. These limits are in line with recommendations made for proper use of

stepwise regression which suggest that the F-to-enter limit selected should be

fairly low so as to allow more variables a chance to show their worth in the

final model. The backward method used a comparable F-to-remove limit of 2.0.

The BMDP9R program selected the model with the lowest Cp value, which is the

default value of the program. An ideal Cp value is one that is equal to or

lower than the number of parameters in the model (predictors + 1). Dixon and

Brown (1979) suggest that this criterion will give models in which the

variables in the model have F-to-remove values above 2.0, making this

criterion similar to that used in the other three methods. Of course, the

specific models selected would differ if other criteria were used, but the

overall characteristics of the four selection methods should not change. To

evaluate a different criterion, on some comparisons it will be noted what the
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results would have been if an F-to-enter/remove level of 4.0 had been used

rather than 2.0.

Table 1 reports the characteristics of the subsets selected by the 4

selection methods with the 16 data sets. For the stepwise method the number

of predictors selected is reported along with the R2 for the selected model.

For the other methods information is only presented if the model selected was

different from the model selected by the stepwise method. Additional

information provided for these models includes the number of predictors in

that model that were not in the stepwise model and the number of predictors in

the stepwise model not included in that model.

Results

On 9 of the 16 data sets, the 4 methods chose different models using

the initial criteria of a F-to-enter/remove of 2.0 and the lowest C. In

comparison with the stepwise method, the forward method chose a different

model on 2 data sets, the backward method chose a different model on 5 data

sets, and the best subsets method chose a different model on 7 data sets. The

backward method and best subsets method differed on 4 data sets. For each of

the data sets on which differences were found, the differences will be

described in detail.

GMA3 -- The stepwise, backward and best subsets methods selected the same

model which had 1 less variable than that selected by the forward method. If

F-to-enter/remove limits of 4.0 had been used, the stepwise and backward

methods would have removed one additional variable giving a 4 predictor -

while the model chosen by the forward method would not have changed. thus

having 2 more predictors than the stepwise and backward methods.

GMA6 -- The backward and best subsets methods gave the same model wh.ch

had an R2 more than twice as much as that found by the stepwise and forward

methods which gave the same model. The R2 values found were .150 and .347.
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The stepwise/forward model had 2 predictors and the backward/best subsets

model had 7 predictors. The stepwise/forward methods did not enter a third

variable because the highest F-to-enter was 1.98. The worst variable in the 7

variable backward and best subsets model had a F-to-remove of 3.25. If an F-

to-enter limit of 4.00 had been used, there would have been no variables

included in the stepwise/forward model since the first variable entered had an

F-to-enter of 2.50 while zne oacxward method would have removed the seventh

variable leaving a 6 variable model with an R2 of .300. The stepwise method

gave much lower R2 values at F-to-enter limits of both 2.0 and 4.0. The Cp

value for the backward/best subsets model was 4.02 for 7 predictors while the

stepwise/forward model had a Cp value of 5.54 for 2 predictors, indicating the

7 predictor modal chosen by the backward and best subsets methods was a much

better model.

GMA8 -- The stepwise, forward, and backward methods produced the same

model which was different from that chosen by the best subsets method. The

best subsets model had 1 less predictor, the last variable chosen by the step-

wise/forward methods and the variable which would have been the next to be

deleted by the backward method. The R2 values for the 2 models were .886 and

.877. The C values for the 2 models were about identical (1.51 for the

stepwise/forward/backward model and 1.50 for the best subsets model). The F-

to-remove for the fourth variable included in the larger model was 2.28.

GMB1 --The 4 methods produced 3 models, with the stepwise and forward

methods selecting the same model. The R2 values for the models were .716 for

the 5 predictor best subsets model, .727 for the 6 predictor stepwise/forward

model. and .739 for the 8 predictor backward model. All of the variables in

the best subsets model were included in the stepwise/forward model with the

additional variable in the stepwise/forward model having an F-to-enter of

2.02. The backward model used 4 of the 6 predictors in the stepwise/forward

model and 4 additional predictors. The Cp values were 3.27 for the
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stepwise/forward model and 3.14 for the best subsets model. The backward

model was not listed as one of the 10 best 8 predictor models in the BMGF9R

best subsets selection even though it had an R2 uf .737 which was higher than

9 of the a variable models listed. If the F-to-enter and F-to-remove limits

had been 4.0, both the stepwise/forward and backward models would have

included 5 variables but only 3 would have been common to both. The 5

variable model R2 would have been .716 for the stepwise/forward model and .697

for the backward model.

GMB2B -- The model selected by the stepwise and forward methods had only

1 predictor with an R2 value of .176. No variable was even close to being

considered for entry as the F-to-enter value for the best additional second

variable was 0.76. .The backward and best subsets models were the same with 5

piedictors and an R2 of .509. The worst variable in the 5 predictor model had

an F-to-remove value of 6.82. The reason for the discrepancy between the

models was that 2 of the variables were only good predictors in combination.

In the stepwise solution, one of this pair would have been the second variable

added with an F-to-enter of 0.76 and increasing the R2 from .176 to .193. The

third variable added would have been the other member of the pair which would

have increased the R2 to .371. The better predictor of the pair in the second

step added only .017 (.193-.176) while together as steps 2 and 3, the pair

added .195 (.371-.176). The fourth and fifth predictors incteased the R2 from

.371 to .509.

TAL All of the methods selected the same model but the order of entry

of the variables in the stepwise/forward and backward methods were different.

The last variable entered in the stepwise and forward methods was not the same

as the variable that would have been removed next in the backward method. If

the F-to-enter/remove limit had been 4.0, the models would have been different

with the stepwise/forward method model having 4 variables with an R2 of .388

and the backwara model having 6 variables with an R2 of .396. The additional
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2 variables for the backward model were included because these 2 variables

would not have been good enough to enter alone'in the stepwise/forward

methods, but together they were good predictors, making them remain in the

backward method.

ENR3 -- The 4 methods produced 3 models, with the stepwise and forward

methods selecting the same model. The R2 values for the models were .520 for

the 8 predictor best subsets model. .521 for the 9 predictor stepwise/forward

model. and .525 for the 11 predictor backward model. All of the variables in

the best subsets model were included in the stepwise model with the additional

variable of the stepwise model having an F-to-enter of 2.02. All but one of

the variables in the stepwise/forward model were included in the backward

model with 3 additional variables added. The 3 models selected were the best,

second best, and tied for third best in the best subsets method with C values

of 5.88, 5.89, and 6.05. The other model with a Cp of 6.05 was the second

best 8 pmdictor model selected by the best subsets method. This model had 1

predictor different from the best model selected. It appears as if the

additional 2 or 3 variables of the backward model were not needed to select a

good model but other combinations of variables would have given equally good

smaller models. If an F-to-enter limit of 4.00 had been used, the

stepwise/forward model would have contained 5 predictors with an R2 of .510

and the backward model would have had 7 predictors with an R2 of .517 with

only 3 of the same predictors as the stepwise/forward model.

ENR5 -- All of the methods produced the same model but the stepwise/

forward and backward models lad a different order of entry. If the

F-to-enter/remove limit had been 4.00. the stepwise/forward model would have

had 8 predictors with a R2 of .338 and the backward model would have had 9

predictors with a RI of .343 with 6 variables the same as those in the

stepwise/forward model. If the ninth predictor of the backward model had been
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removed, the remaining 8 variables would have had the same R2 as the

stepwise/forward model (.338) with 2 variables being different.

LONG -- The stepwise, forward and backward methods chosen by BMDP2R gave

the same 3 predictor model with an R2 of .985 and the best subsets model had 4

predictors with an R2 of .995. The additional predictor in the best subsets

model was not included in the other models due to its high intercorrelation

(tolerance=.002) with the first 3 predictors in the model. BMDP9R (best sub-

sets) allows a greater degree of multicollinearity
than BMDP2R. so this

problem was not encountered with the model chosen by that program. The

F-to-remove value of the fourth variable in the best subsets model was 5.95

indicating it deserved to be in the model if the low tolerance could be

ignored. The Cp value for the 4 predictor model was 3.24 compared to the 3

predictor value of 21.66. The first variable entered in the stepwise and

forward methods was the variable that contributed the most to the high

tolerance value for the fourth variable in the model (the correlation between

them was .995). If a 3 predictor model had been chosen by all methods

ignoring the tolerance problem, the backward and best subset methods would

have chosen the same model with a higher R2 than that chosen by the

stepwise/forward method (.993 to .985). The Cp value for the 3 predictor

backward/best subsets model would have been 6.24 compared to the

stepwise/forward value of 21.66. The backwa:d/best subsets model is better

because the second and third variables entered in the stepwise/forward method

in combination pair much better with the fourth variable than the first

variable entered. The model chosen by the,backward and best subsets methods

was never evaluated in the stepwise and forward methods.

RALD --The stepwise, backward, and best subsets chose the same*2 predic-

tor model while the forward method selected a 3 predictor model, including a

variable that was the first one entered but that later became redundant with

the addition of the second and third variables.
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