
DOCUMENT RESUME

ED 275 302 IR 012 361

AUTHOR Laird, John E.
TITLE Soar User's Manual.
INSTITUTION Xerox Corp., Palo Alto, CA. Palo Alto Research

Center.
SPONS AGENCY Office cf Naval Research, Arlington, Va. Personnel

and Training Research Programs Office.
REPORT NO XEROX-PARC-ISL-15
PUB DATE 31 Jan 86
CONTRACT N00014-82C-0067
NOTE 114p.; For a description of the Sear system, see IR

012 360.
PUB TYPE Guides - General (050) -- Reports - Descriptive (141)

EDRS PRICE MF01/PC05 Plus Postage.
DESCRIPTORS Annotated Bibliographies; Cognitive Processes;

*Decision Making; *Expert Systems; Heuristics;
Objectives; *Problem Solving; Programing Languages;
Search Strategies

IDENTIFIERS Chunking; LISP Programing Language; *Soar Project

ABSTRACT
This manual describes Version 4 of Soar, an

architecture for problem solving and learning based on heuristic
search and chunking. Version 4 is available as of January 1986 in
Common Lisp, Franz-Lisp, Interlisp, and Zeta-Lisp. An introduction to
the Soar system is presented, and information is provided about the
following system aspects: (1) data representation in working memory;
(2) production representation; (3) decision procedure; (4) subgoals;
(5) default search control; (6) chunking; (7) encoding a task; (8)
operator implementation goal tests and operator parallelism; (9)
top-level variables and functions; (10) errors, warnings, and
recovery hints; and (11) the installation of Soar. Also provided are
a performance comparison of the time required to solve a simple
problem in the Eight Puzzle on different Lisp systems in Version 4,
release 1; a brief annotated Soar bibliography; and a distribution
list for this report. Two appendices contain a list of search-control
productions and a sunmary of functions and variables, and an index is
provided. (KM)

Reproductions supplied by EDRS are the best that can be made
from the original document.

A biz Alb Albr'
LC%

- U S. DEPARTMENT Of EDUCATION1%
Othce of Educational Research and improve. Int
EDUCATIONAL RESOURCES INFORMATIONrj

CENTER (ERIC)
jp(Tt..a document has been reproduced as

received from the person or organization
originating it.

0 Minor changes have been made to improve
reproduction qualify

Points of view or opinions stated in this docu-
ment do not necessarily represent official
OERI position or policy

Soar User's Manual

John E. Laird

BEST COPY AviAILAbLi.

Unclassified
ACURITY CLASSIFICATION OF THIS PsitGc

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

approved for public release; distribution
unlimited

2b. DECLASSIFiCATION /DOWNGRADING SCHEDULE

4, PERFORMING ORGANIZATION REPORT NUMBER(S)

ISL-15

5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

Xerox Palo Alto Research

6o. OFFICE SYMBOL
(If app licable)

7a. NAME OF MONITORING ORGANIZATION

Personnel and Training Research Program
Office of Naval Research (Code 442 PT)

6c ADDRESS (City, State, and ZIP Code)

3333 Coyote Hill Road
Palo Alto, CA 94304

7b. ADDRESS (City, State, and ZIP Code)

Arlington, VA 22217

Ba. NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-82C-0067

8c ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

6 1153N

PROJECT
NO.

RR042-06

TASK
NO.

RR042-06-0A

WORK UNIT
ACCESSION NO

NR667-477

11. TITLE (Include Security Clessification)

Soar User's Manual

12. PERSONAL AUTHOR(S)
Laird, John Edwin

13a. TYPE OF REPORT 13b. TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day)

Januar 31 1.986

15. PAGE COUNT
1.06

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue CM reverse if necessary and identify by block number)
Cognitive Architecture, problem solving, learning, produc-
tion system, problem spaces, goals

FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Soar is an architecture for problem solving and learning, based on heuristic search and

chunking. This manual describes Soar, version 4. This is the version of Soar currently

available (January, 1986) in Common Lisp, Franz-Lisp, 1nterlisp and Zeta-Lisp.

20 DISTRiBUTION:AVAILABILITY OF ABSTRACT
III Li-iv CI ASSI F:E D/U N UM IT E D IN SAME AS RPT. DTIC USERS

21. ABSTRACT SECURITY CLASS;FICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b.TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

OD FORM 1473, 84 MAR 83 APR edition may be used und exhausted.
AU other ecitons am oimiete.

3

SECURITY CIASSIRCATION OF THIS PAGE

Unclassified

Soar User's Manual
Version 4

John E. Laird

1SL-15 January 1986 [P85-00140]

® Copyright Xerox Corporation 1988. AU rights reserved.

Principal researchers of the Soar Project:
John E. Laird (Xerox PARC)
Allen Newell (Carnegie-Mellon University)
Paul S. Rosenbloom (Stanford University)

The Soar software is available for non-commercial research purposes and it may be copied only
for that use. Any questions concerning the use of Soar should be directed to John E. Laird at the
address below. This software is made available AS IS and Xerox Corporation makes no warranty
about the software, its performance, or the accuracy of this manual in describing the software.
All aspects of Soar are subject to change in future releases.

This research was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-81-K-1539 and the Personnel and Training Research Programs, Psychological Sciences
Division, Office of Naval Reseach, under Contract Number N00014-82C-0067, Contract Authority
Indentification Number NR 667-477. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of Defense Advanced Research Projects Agency, the Office of Naval
Research, or the US Government.

XEROX

Approved for public release;
Distribution unlimited.

Xerox Corporation
Palo Alto Research Centers
3333 Coyote Hill Road
Palo Alto, California 94304

TABLE OF CONTENTS

Table of Contents
1. introduction 3

2. Data Representation in Working Memory 7

2.1. Working Memory in Ops5 7

2.2. Working Memory in Soar 7

2.3. Goal-contexts 9

2.4. Preferences 9

3. Productions 11

3.1. Production Conditions 11

3.2. Production Actions and Functions 13

3.3. SP Format 15

3.4. Conjunctive Negations 17

4. Decision Procedure 19

5. Subgoals 23

6. Default Search Control 25

6.1. Common Search-Control Productions 25

6.2. Default Knowledge for Impasses 25

6.3. Selection Problem Space 26

6.4. Evaluation Subgoal 30

6.5. Operator Subgoaling 32

7. Chunking 35

7.1. Determining Conditions and Actions 35

7.2. Replacing Identifiers with Variables 37

7.3. Removing Extraneous Conditions 37

7.4. Splitting Chunks Based on Duplicate Conditions 37

7.5. Ordering Conditions 38

7.6. Making Different Variables Distinct 38

7.7. Refractory Inhibition of Chunks 38

7.8. Over-generalization 38

8. Encoding a Task 41

8.1. Problem Space Decomposition 41

8.2. States 41

8.3. Operator Creation 45

8.4. Operator Application 46

8.5. Goal Detection 47

8.6. Initialization 50

8.7. Monitoring States 52

8.8. Set-up 53

8.9. Search Control 53

8.10. Example Trace 55

9. Advanced Topics 59

9.1. Operator Implementation Goal Tests 59

9.2. Operator Parallelism 60

NTROX PARt. b. Pe NA- ."*".

ii SOAR CSER'S MANCAL

10. Top-level Variables and Functions 61

10.1. Global Variables 61

10.2. Initialization 62

10.3. Loading, Running, and Breaking 63

10.4. Tracing 65

10.5. Displaying Information 67

10.6. Changing Working Memory and Production Memory 71

10.7. Chunking 73

11. Errors, Warnings, and Recovery Hints 75

11.1. Errors 75

11.2. Warnings 75

11.3. Recovery Hints 78

12. Installing Soar 79

13. Performance Comparison 81

14. $oar Bibliography 83.,

Appendix I. Default Search-Control Productions 85
Appendix II. Summary of Functions and Variables 99

Index 101

6

I.RtA fit v. id(

PREFACE

Preface
This manual describes Soar. version 4. This is the version of Saar currently available (January. 1986) in

Common Lisp. Franz-Lisp. Interlisp and Zeta-lisp.

Soar is an architecnire for problem solving and learning, based on heuristic search and chunking. Soar is

embedded in a production-system architecture a modified version of Ops.5 where all the volatile

short-term information is held in working memory and all the fixed longterm knowledge is encoded as

productions. Chapter 1 is an overview and introduction to the structure of the Soar architecture. Chapters 2

and 3 describe the nitty-gritty of working-memory representation and production representation in Soar.

Chapter 4 describes the decision scheme that determines the selection of problem spaces. states and operators.

Chapter 5 gives the details of how subgoals are automatically created and terminated. Chapter 6 describes the

default processing in Soar. that is. the search-control knowledge that comes with Soar. Chapter 7 describes

chunking the learning mechanism in Soar. Chapter 8 is a short tutotial that describes how to encode goals.

problem spaces. states. operators. and evaluation functions using the Eight Puzzle as an example. Chapter 9

discusses advanced programming topics. Chapter 10 describes the global variables and top-level functions of

Sow. Chapter 11 lists all of the error and warning messages generated by Soar and includes some hints on

correcting difficult bugs. Chapter 12 describes how to obtain and install Soar for different machines. Chapter

13 is a summary of benchmarking runs of Soar on a wide variety of computers. Chapter 14 contains an

annotated bibliography of Soar publications. An appendix lists all of the default productions that come with

Soar. An index is at the end of the manual. This manual does not attempt to substitute for the general

scientific descriptions of Soar provided by the publications listed in the bibliography.

Soar is the result of joint development between John Laird, Allen Newell and Paul Rosenbloom. Credit is

due to Paul Rosenbloom and Dan Scales for implementing parts of Soar and Ron Saul for writing the

programs that convert Soar from InterLisp to the other dialects. A note of appreciation is due Lanny Forgy

for creating Ops5, which forms the backbone of the production-system interpreter in the current.

implementation of Soar.

I would like to thank Allen Newell, Paul Rosenbloom. Jill Fain. Gregg Yost, Stephen Srnoliar. Dan Scales

and David Steier for comments on earlier drafts of this manual.

All suggestions, comments. and questions concerning this manUal or Soarshould be directed to

soarehh.cs.cmu.edu for computer net-mail or

;ohn E. Laird, Xerox PARC, 3333 Coyote Hill Rd.. Palo Alto. CA. 94304.

7
\LROXPARC :SI TAM.

INTRODUCTION 3

1 . Int roduction
Soar is an architecture for general intelligence that has been applied to a variety of tasks: many of the classic

artificial intelligence (AI) toy tasks such as the Tower of Hanoi, and the Blocks World; tasks that appear to

involve complex, non-search reasoning, such as syllogisms, the three wise men puzzle, and sequence

extrapolation; and large tasks requiring expert-level knowledge, such as the RI computer-configuration task.

This chapter provides a brief overview of the Soararchitecture.

In Soar. every v41,; oi problem is formulated as heuristic search in a problem space to achieve a goal. A

problem space consisN,of a set of states and a set of operators that transform one state into another. Problem

solving is the process of moving from a given initial state in the problem space through intermediate states

generated by operators until a desired state is reached that is recognized as attaining the goal. For each goal.

there is always a single current problem space, state, and operator. The current problem space. state and

operator, together with the goal. form a context. Goals (and their contexts) can have subgoals (and associated

contexts), which form a strict goal-subgoal hierarchy. The detailed structure of these objects is described in

Chapter 2.

Throughout the search, decisions are made to select between the available problem spaces, states, and

operators. Every problem-solving episode consists of a sequence of such decisions and these decisions

determine the behavior of the system. Problem solving begins with the selection of a problem space for an

existing goal. This is followed by the selection of an initial state, and then an operator to apply to the state.

Once the operator is selected, it is applied to create a new state. The new state can (but need not) then be

selected, and the process repeats as a new operator is selected to apply to the selected state. The knowledge

that implements a task suggests feasible problem spaces, creates initial states, implements operators is

collectively called task-implementation knowledge. All standard weak methods can be rer-esented as

knowledge to control the selection of problem spaces, states and operators. The knowledge that controls these

decisions is collectively called search control. Problem solving without search control is quite common,

however the result is an exhaustive search of the problem space.

Figure 1-1 shows a schematic representation of the decision-making process. To bring all available task-

implementation and search-control knowledge to bear on making a decision, each decision involves a

monotonic elaboration phase. During the elaboration phase. all directly available knowledge relevant to the

current situation is brought to bear. Knowledge that is not directly available, but can be extracted by search.

can be brought to bear only in subuoals. The directly available knowledge in Soar is represented as

productions. Chapter 3 describes the language for specifying productions in Soar. Ile contexts of the goal

hierarchy and their augmentations serve as the working memory for these productions. The information

8
LROX P.R i. JAI MO. -eih

4 SOAR USER'S MANUAL

added during the elaboration phase can take one of two forms. First, existing objects may have their

descriptions augmented with new or existing objects. For example, a new state can be created that is the

result of applying the current operator to the current state. Second. data structures called preferences can be

created that assert the worth of an object for a role in a context. Each preference indicates the context in

which it is relevant by specifying the goal, problem space and state.

DECISION 1

Elaboration
%If Phase

`14"1"If 4,

Deci ion

Proc ure

DECISION 2

44

Quiescence

Gather
Preferences

Replace
Interpret > Context

Preferences Object

Impasse

Create
Subgoal

Figure I-1: The Soar decision cycle.

On each cycle of the elaboration phase, all instantiations of satisfied productions fire in parallel. When the

elaboration phase reaches quiescence no more productions eligible to fire a fixed decision procedure is

run that integrates the preferences provided by the elaboration phase into a specific decision. The decision

procedure is described in detail in Chapter 4. Starting from the oldest context, the decision procedure uses

the preferences to determine if the current problem space, state and operator in each context should be

changed. If sufficient knowledge is available during the search to determine a unique decision, the search

proceeds unabated. However, in many cases, the directly available knowledge, encoded as productions, may

be insufficient. When this occurs, because the available preferences do not determine a unique, uncontested

change in a context, an impasse in problem solving has been reached. Four types of impasses can arise: tie

(no single object was better than all of the other objects competing to change a context), conflict (two or more

objects were better than each other while competing to change a context), no-change (the elaboration phase

ran to quiescence without suggesting any changes to the contexts), and rejection (all competing objects were

rejected, including the one currently in place).

INTRODUCTION 5

Soar creates a subgoal (and an associated context) to resolve the impasse. Once a subgoal is created, a

problem space must be selected, followed by an initial state, and then an operator. If an impasse is reached in

any of these decisions, another subgoal will be created to resolve it. leading to the hierarchy of goals in Soar.

By treating an impasse as a subgoal. the full problem-solving power of Soarcan be brought to bear to resolve

the impasse, creating whatever response is appropriate for the particular instance of the impasse. These

subgoals correspond to the full variety of subgoals created in standard Al systems. This ability to generate

automatically all subgoals in response to impasses and to open up all aspects of problem-solving behavior to

problem solving when necessary is called universal subgoaling. Chapter 5 gives a complete description of

subgoal creation and termination in Soar.

A subgoal terminates when its impasse is resolved, For example, if a tic impasse arose, it will terminate

when sufficient preferences have been created so that a single object dominates the others. When a subgoal

terminates, all augmentations and preferences created in that subgoal that are not connected, directly or

indirectly, to a prior context are removed from working memory. Those objects that are not removed

constitute the results of the subgoals.

Default knowledge exists in Soar to cope with the impasses, if no additional knowledge is available. For

some impasses this involves rejecting a prior choice in the context: for other impasses this involves searching

for knowledge to resolve the impasse. Any additional non-default knowledge about how to resolve an

impasse dominates the default knowledge and controls the problem solving in the subgoal. The different

default responses to impasses are described in more detail in Chapter 6.

In addition to general problem solving, Soar also supports a general learning mechanism called chunking.

Chunking occurs as a byproduct ::If problem solving in goals. Whenever a goal is satisfied, a chunk a

production is created that can generate the results of the goal when a similar situation recurs. The chunk's

conditions are based on the working-memory elements that existed prior to the goal that were matched by the

conditions of productions that fired during the processing of the goal. The chunk's actions are the working-

memory elements that were created in the goal that are of potential use in the suvergoal. The complete details

of chunking are given in Chapter 7.

Soar is meant to be the underlying architecture for an autonomous intelligent agent. Its behavior is

determined by the knowledge it contains, and ideally we should be able to describe and specify its behavior in

terms of the knowledge it has for implementing and controlling its behavior. However, in this manual. the

viewpoint of the user as programmer is taken. This I, iew is more standard in programming manuals, but it is

not the "true" point of view for Soaras an architecture for general intelligence.

1 0

Kok PAR:: Ist.-:5 JxCAR'

DATA REPRESENTATIONINWORKINGMEMORY 7

2. Data Representation in Working Memory
The production-system aspects of Soar are derived from Ops5, and as such, Soar inherits the basic

representational scheme of working memory and productions provided in Ops5. In this chapter. we start with

a brief review of the representation of working memory in Ops5. pointing out the differences in Soar. Next,

we describe how Soar uses this scheme to represent structures, such as goals, problem spaces, states and

operators. All information on Ops5 in this and the following chapters is based on the 0ps5 User's Manual

(Forgy, 1981).

2.1. Working Memory in Ops5

Working memory in Ops5 is a multi-set of elements, called working-memory elements. Each working-

memory element consists of a class, followed by a set of attribute-value pairs. Each attribute is prefaced by a

t. A template for a working-memory element is as follows:

(class tattribute! value! t attribute2 yokel .

For example, a blue block that is called block), weighs 200 grams, and is on a block called blockl could be

represented as

(block tname block3 tcolor blue tmass 200 tontop blockl)

Each working-memory element is represented internally in Ops5 as a single data structure. When a working-

memory element is created (added to working memory) it is assigned a unique integer, called its time-lag.

These time-tags are often displayed by the system in place of the working-memory element when describing

sets of working-memory elements to the user. The function wm prints the working-memory element given a

time-tag (see Section 10.5.6).

2.2. Working Memory in Soar

Working memory in Soar is a set and not a multi-set (a change from Ops5). There is only one copy of a

working-memory element in working memory at a time. If an action of a production tries to add an existing

element to working memory, it has no effect.

In Soar, there are two different types of data representations in working memory: objects, and preferences.

Both of these are realized in the attribute-value representation scheme of Ops5. However. the Ops5 scheme

has certain restrictions that force Soar to represent objects indirectly in another attribute-value scheme on top

of the Ops5scheme: (1) Soar must be able to reference each individual attribute of an object without

accessing the others: (2) Soar must be able to have multiple values for the same attribute of an object (a

simple representation of sets): (3) multiple productions must be able to create different attributes for an

object in parallel: and (4) Soarallows variables to match attributes. Each working-memory element inSoar is

11
\CM \ Mkt.. ;SI - ;.`.i_ X*7 ppir.

8 SOAR USER'S MANUAL.

an identifier-attribute-value triple (except for preferences which are described later). The class name of the

working-memory element in Soar always ends in -info (or is just info). These working-memory elements are

called augmentations. Each augmentation has three Ops5 attributes: /identifier. tattribute and tvalue. To

avoid confusion, wc will refer to the attributes of an Ops5 working-memory elements as fields. So, in the

following example, there are three fields: identifier, attribute and value. The identifier is B0003, the attributes

are name and color, and the values arc block3 and blue respectively.
(block-info tidentifier B0003 tattribute name tvalue block3)
(block-info tidentifier B0003 tattribute color tvalue blue)

To overcome the redundancy of this representation scheme, Soar provides many functions (essentially pre-

and post-processors) that hide the Ops5 representation by supporting a new notation called SP (for Soar

production). For example, the above two working-memory elements would be represented as follows in SP

notation:
(block B0003 tname block3 tcolor blue)

In SP notation, an object begins with a class. However, this class name is the 0ps5 class without -info (-info

lets the user know whcn he is dealing with Ops5 working-memory elements instead of SP objects). The SP

class is translated into an Ops5 class using the association list in the global variable *sp-elasses*. All classes

not occurring in the list have -info added to them. Using this list, some Ops5 classes can be represented by

many SP classes. For example, gc, goal. context, and goal-context are all translated into goal-context-info,

while object is translated into just info. Initially, there are eleven SP classes that map onto seven Ops5 classes.

These are pre-defined by the global variable *sp-classes*:
((gc . goal-context-info) (goal . goal-context-info)
(context . goal-context-info) (goal-context . goal-context-info)
(problem-space . space-info) (space . space-info)
(state . state-info) (operator . op-info) (desired , desired-info)

(evaluation . eval-info) (object . info))

Following the class is the identifier (B0003 above). In SP notation, the identifier must not be prewded by

the attribute tidentifier because a working-memory element with attribute tidentifier is assumed w be in

Ops5 format. The identifier should always be a gensymed symbol, such as G0023. Following the identifier

are the attribute-value pairs. Each of these pairs is an augmentation, a separate Ops5 working-memory

element. Thus, no single working-memory element defines all of the features of an object. Instead, the object

takes its definition from the augmentations that contain its identifier.

In Soar. the identifier is just an arbitrary gensym. If a meaningful label is desired flY:' an object, it should be

the value of the name attribute. The tracing facilities will use the atom in the value field of a name

augmentation when displaying information. This makes the traces much more readable. For example:
(op-info tidentifier S0012 tattribute name tvalue configure-oackplane)

12
ERO ISI :5 I \NL'A.R. :44)

DATA REPRESiMATION IN WORKING MEMORY 9

This would be printed by the tracing facility as configure-backplane.

2.3. Goal-contexts

Problem solving in Soar is controlled by goal-con lexis. There is a strict goal hierarchy: a subgoal is only

created in response to an impasse in problem solving for an active goal. Each individual context contains four

roles: goal, problem space. state and operator. Ihe combination of a role and a context defines a unique slot.

The object occupying the goal role in a context is the current goal for that context: the object occupying the

problem-space role is the current problem space for that context, and so on. A goal-context is represented in

working memory by three augmentations of the goal identifier, one for each of the non-goal slots. These

augmentations are of class goal-context-info. (In SP format. the class can be goal-context. goal. context or

gc.) The identifier field contains the identifier of the goal, the attribute field contains the appropriate role.

The value field contains the identifier of the object that is current for that slot. The value of a slot is undecided

if no object has been selected for it. There is one and only one goal-context-info working-memory element

for each slot. Only the decision procedure (to be defined later) modifies. adds, or removes these working-

memory elements. Productions cannot create working-memory elements of the goal-context-info class that

have attribute problem-space, state or operator.

Below is an example of the working-memory elements that define a goal-context in SP format.
(gc G0001 'problem-space G0034 'state G0047 *operator G0033)

This is expanded internally to three working-memory elements.
(goal-context-info 'identifier G0001 tattribute problem-space

'value G0034)
(goal-context-info 'identifier G0001 tattribute state 'value G0047)
(goal-context-info 'identifier G0001 'attribute operator 'value G0033)

2.4. Preferences

Preferences are a special type of data structure in Soar. A preference is an assertion of the relative or

absolute worth of an object for a context slot. Each preference is a single working-memory element that is of

class preference (it i,a single working-memory element in Ops5 notation and also SP notation, and in both its

class is preference). Preferences are created by productions, and they are used by the decision procedure to

replace an object in a slot. The processing of preferences by the decision procedure is discussed in Chapter 4.

The fields of a preference are:

object This is the identifier of the object that the preference will affect. (In SP notation, the
tobject preceding the identifier is optional as long as it is the first field following the
class.)

13
X!}10\ 14.%P.0 is1.:! \\ ARN

SOAR USERS MANUAL

role This is the name of the role that the object will play in the context: problem-space,

state or operator.

value The value is a relative or absolute evaluation of the object in the object field. These
evaluations are only relevant when the goal, problem-space, state and operator fields

correctly match !he current context. Two of the values (acceptable and reject)
determine whether an object will be considered. Three of the values (Mter.
indifferent, and worse) provide a comparison of an object to another object (the
reference object). The remaining values equate an object to a hypothetical ideal (best.

indifferent. worst). There is another value, parallel, which nermits parallel execution

(see Section 9.2). The exact semantics of these values are given in Section4.

reference The identifier that is compared to the object field, only when the value field is
indifferent, better, worse, or parallel.

goal, problem-space, state, and operator
These fields define the relevant context for the preference. A preference is only used

when the current context corresponds to the context defined by these fields. If the
value of one of these fields is not nil, it is compared to the value in the corresponding

slot of a context. If all of the non-nil context fields of the preference match the

identifiers in the corresponding siOLS of a contett the preference will be used in
determining new valtles for the context.

The following preference is for an operator (x33) that has been determined to be worse than another

operator (x32). Since the operator field is not specified. it becomes nil and the operator slot is not tested when

determining the relevance of the preference.
(preference tobject x33 trole operator tvalue worse treference x32

tgoal g14 tproblem-space p34 tstate s10)

An object is selected for a role in a context only if there exists an acceptable-preference for that object.

Thus, the acceptable-preferences for previously selected objects provide a partial history of changes to the

context. Below is a short list of some of the information that is accessible via acceptabie-prefcrences.

prior state The acceptable-preference for the current state contains the prior state in the state

field.

prior operator The acceptable-preference for the current state contains the prior operator in the
operato, field. The prior operator is the operator used to create the current state.

result An acceptable-preference for the state role that contains the results of applying the
object in the operator field to the object in the state field (which must not be
undecided). If the operator field is nil or undecided, then it is not a result, but probably

a prior state.

initial state An acceptable-preference for the state role that contains undecided in the state field.

contains the initial states of the problem space.

P \Rt.. INI ',5 I \1_ A,RY :ct
14

PRODLCHONS 11

3. Productions
The operation of Soar consists of a sequence of decisions with each resulting in a change to the goal-context

stack. A decision consists of the elaboration phase followed by the decision procedure. During the

elaboration phase, all satisfied productions fire in parallel (simulated). This continues until no more

productions are satisfied. Tne decision procedure examines preferences and modifies the context-stack.

Processing continues by returning to the elaboration phase. The details of the decision procedure arc

described in Section 4.

The productions in Soarcan be written exactly like Ops5 productions. A production Lonsists of (1) an open

parenthesis. (2) the symbol p, (3) the name of the production any symbol except nil). (4) a set of conditions.

(5) the symbol >. (6) a set of actions. and (7) a close parenthesis. This production format is called P (since

these productions all start with P). For example. a very simple P format production is shown below.

(p joe-production
(goal-context-info ?identifier <g> *attribute state *value <s>)
(state-info ?identifier <s> tattribute hole-shape *value <x>)
(state-info ?identifier <s> tattribute peg-shape *value <> <x>)

(make state-info *identifier <s> *attribute fits? *value no))

Productions can also be written in SP format. which makes them much more concise. For example. the above

production would be written in SP format as follows:
(sp joe-production

(gc <g> *state <s>)
(state <s> thole-shape <x> *peg-shape <> (x>)
-->
(state <s> tfits? no))

3.1. Production Conditions

The conditions of a P format production arc patterns to be matched against the elements in working

memory. Each condition is a form for matching a working-memory element. In Soar a condition is a list.

starting with a class name, followed by a set of attribute-% alue pairs. The attributes must be constants. while

the class name must be a constant or a variable. The values can be one of a number of patterns. A condition

is satisfied if all of its components (class and fields) can be consistently matched against a working-memory

element. A production is satisfied if all of its conditions are satisfied with a consistent binding for all of the

variables that appear in the conditions. A production Instantiation is the set of working-memory elements

that satisfy the production.

To simplify the matching of preferences that are relevant to a context. there is a special case for matching

conditions that describe preferences. A preference is relevant to a context either if the values in its context

RO\ P k(tNi

12 SOAR USERS MANUAL

fields match the values of the appropriate slots or are nil. Therefore, a preference condition will match a

preference in working memory if the values of the context fields of the working-memory element either

match the values bound to the variables in the preference or are nil (nil fields arc not show in working-

memory elements). For example:
(sp x

(gc <g) tproblem-space <p> tstate <s>)
(preference <x> trole operator tvalue acceptable

tgoal <g> tproblem-space <p) tstate <s>)
-->
(action ...)

willmatch

(gc g0001 tproblem-space p0003 tstate s0050)
(preference 00044 trole operator ?value acceptable

tproblem-space p0003)

All of the conditions of a production should be linked, via augmentations and preferences. to one of the

goal-context-infos of the production. Augmentations are one-way links, from the the identifier to the ,alue.

Preferences arc one-way links, from the context fields (all must be present or nil) to the object. If all

conditions are not linked, a warning is printed when the production is compiled.

2:..1 .1. Variables

A variable is a symbol that begins with a <, ends with a >, and contains an alphanumeric symbol inbetween.

For a production to be satisfied, all ocCurrences of the same variable must match the same symbol or number.

Two different variables can match the same symbol unless there is an explicit test that they are not equal

(using <>).

3.1.2. Disjunctions of constants

If a set of values are contained with the symbols << and >>, the condition will match a working-memory

element with any of those symbols. Variables cannot occur within a disjunction. nor can a disjunction appear

in a negated condition. There must be spaces separating both << and >> from the symbols in betWeen them.

<< red blue >>

would match either red or blue.

3.1.3. Predicates

There are six predicates that can precede constant or variable: 0. <=>, <, <=, > =, >. For example: < >

<a>. <> means not equal and will match anything except the constant or variable immediately following it.

<=> means same type and will match any symbol that is the same type (numeric or symbolic) as the constant

or variable immediately following it. Similarly, < is less than. < = is less than or equal. > = is greater than or

16
FROX PARC. 1SL -iS k 1R1 ,k,hh

PRODUCTIONS 13

equal. and > is greater than.

3.1.4. Conjunction

To signify conjunctive combinations of tests for a single field, the tests are contained within { and }. For a

ronch to occur, all tests within the brackets must succeed.
< 50 > 20 0 < x> <y> }

In this example, a match would occur only if the value is less than 50. greater than 20. not equal to the value

of <x> in other conditions and equal to <y> in other conditions.

3.1.5. Negated conditions

In addition to the positive tests for elements in working memory. conditions can also test for the absence of

patterns. A condition preceded by "-" is called a negated condition and will be satisfied only if there does not

exist a working-memory element consistent with its tests and variable bindings. A ncgated condition can not

include a disjunction. such as < < a b c > >.

3.2. Production Actions and Functions

If all of the conditions of a production are satisfied (with consistent variable bindings), the actions of the

production will be performed. One significant change from Ops5 is that a variable that appears only in the

action of a production will automatically be bound to a new gensymed symbol (starting with the first letter of

the variable, e.g., <s> might be bound to s1375). This symbol will be used for all occurrences of the variable

in the action. This convention eliminates the need for most calls to the bind action.

Productions create preferences and augmentations of current objects by creating new working-memory

elements. Logically, all creations occur in parallel and all satisfied productions fire in parallel, with the new

working-memory elements being added during the same production cycle. The only ordering of actions is

between multiple writes and accepts within a single production. Productions cannot remove or modify

working-memory elements. A production should not create a working-memory element that will lead to a

new instantiation of that same production because this will lead to an infinite loop. A production should only

create working-memory elements that are linked via the identifier for augmentations, and the context fields

for preferences to identifiers bound to variables in the conditions of the production. If this is not so, a

warning is printed when the production is compiled.

Below arc the available production actions. In the function definitions. arg* means that any number of

arguments (including zero) can be given.

Hind argl arg2 Binds the value for arg2 to are. 'ire must be a variable. Arg2 can be a previously

1 7
XEROX PARC 1It't liSt)

14 SOAR USER'S MANUAL

bound variable, a constant or an action-function such as compute or accept.

(bind cinput> (accept))

Ca 112 Farg* Applies function F to arguments arg*. F and arg* can be variables, bound to
appropriate values. This is provided so that the actions of productions caii control
some of the top-level user functions such as watch, user-select, decide-trace, and learn.

(cal I 2 watch 2)

Halt Stops the execution of Soar.

(halt)

Make Adds to working memory the instantiated pattern that follows it.
(make state-info tidentifier <s> tattribute color

tvalue blue)

Tabstop argl Binds the current tabstop being used by watch 0 to the variable argl.

(tabstop <tab>)
(writel (tabto <tab>) <o> lx1)

If<tab> is bound to 3 and <o> is bound to 4, the result is:

4 x

Writel arg* Writes its arguments with blanks in between.

(writel (tabto <tab>) <o> lx1)

If <tab> is bound to 3 and <o> is bound to 4, the result is:

4 x

Writel arg* Performs the same function as write except that spaces are not automatically inserted
between atoms.

(wri te2 (tabto <tab>) <o> l xi)
If <tab> is bound to 3 and <o> is bound to 4, the result is:

4x

Below are the functions that can be called within the actions.

Accept

Compute

Suspends Soar as it waits for the user to type in an atom. The result is that atom.

(state tidentifier <s> tattribute input
tvalue (accept))

Evaluates arithmetic expressions using the following five operators: + (addition). -
(subtraction), * (multiplication). I/ (division), and \\ (modulus). Only numbers and
variables bound to numbers can be used in expressions. The expressions are evaluated
using standard infix notation. but there is no operator precedence. The operators are
evaluated right to left. exccpt when merridden by parentheses.

(state tidentifier <s> rattribute sum
*value (compute <x> + <y>))

(state tidentifier <s> rattribute product-sum
tvalue (compute (<v> + <w>) * (<x> + <y>)))

XEROX P RC Isi [AM:AR': Mk
18

Cr If

Tabto

3.3. SP Format

PRODUCTIONS 15

A special function that can be called within any of the write actions. It takes no
arguments and forces a new line at its position in the write action.

(writel <x> (crlf) <y>)

A special function that can be called within any of the write actions. It takes one
argument that is a column number, either a number, or a variable bound to a number.
It modifies the write so that it begins printing at the column given as its argument.

(writel <x> (tabto <col>) <y>)

The SP production format provides a set of mechanisms that allow more concise definitions, and automatic

optimization of Soar producdons. SP is a preprocessor, so (1) it does not fundamentally change what can and

cannot be represented in Ops5 productions, and (2) there is no problem with mixing together traditional

productions (in Ops5 format) and SP productions.

SP provides the ability to match a context in either the traditional way or by a single SP condition. A

context such as
(goal-context-info ?identifier <g> ?attribute problem-space tvalue <p>)
(goal-context-info ?identifier <g> ?attribute state tvalue <s>)

can be given as is or shortened to
(gbal-context <g> tproblem-space <p> tstate <s>)

SP provides the ability to specify the information about an object as either a set of separate conditions or as

a single condition. A set of augmentations about an object such as
(state-info tidentifier <s> ?attribute color

?value (<< red green >> <c>))
(state-info ?identifier <s> ?attribute depth ?value > 10)

-(state-info ?identifier <s> ?attribute weight ?value <> 30)
(state-info tidentifier <s> ?attribute leg *value <legl>)
(state-info tidentifier <s> ?attribute leg ?value <leg2>)
(state-info tidentifier <s> ?attribute name)
(state-info tidentifier <s> tattribute << height width >>

tvalue small)

can be given as is or shortened to
(state <s> *color (<< red green >> <c>1 tdepth > 10 -tweight <> 30

tleg <legl> <leg2> tname t<< height width >> small)

Four aspects are of note. (1) It is possible to mix the two representations within the same production. (2)

Whereas the final Ops5 production can not have variable or disjunctive attributes, both are possible for

attributes in SP, since each augmentation is a separate working-memory element where the SP attribute is

actually a value in the Ops5 representation. (3) Negations usually appear in front of the attribute, but can

appear in front of the whole object if there is only one auribute in the object. (4) If there are multiple values

for an attribute, a separate working-memory element ic created for each value, giving a simple set notation.

19
XEROX PARC i

16 SOAR USERS MANUAL

If the first symbol after the class name is not t, then the condition is assumed to be in SP foomat. If the first

symbol is a t, then it is assumed that it is in Ops5 format. Prefereoces are always in Ops5 format, but the

?object is optional if the object identifier directly follows the class; so
(goal-context-info tidentifier <g> tattribute impasse ?value <d>)

(preference ?object <s> trole state ?value acceptable ?goal <g>)

can be shortened to
(goal <g> ?impasse <d>)
(preference <s> trole state ?value acceptable ?goal <g>)

The same format can be used for both conditions and actions. In the actions, the placement of a make at the

front of the object (of either format) is optional. There is a global list (in variable *ops5-actions*) which is

used to determine whether an action is a primitive action or a make.

The same format can also be used for makes at the top-level of LISP that initialize working memory. For

exarmAe
(make space-info ?identifier p tattribute operator tvalue opl)
(make space-info ?identifier p ?attribute operator ?value op2)

can begiven as
(smake space p ?operator opl ?operator op2)

SP provides automatic condition ordering to yield more efficient productions. The following two

productions show a single production in its SP form and its ordered P (Ops5) form.

(sp eight*create-new-state
(gc <g> tproblem-space <p> ?state <s> ?operator <o>)
(problem-space <p> tname eight-puzzle)
(state <s> tblank-binding <bl> tbinding <b2>)
(operator <o> tcell <c2>)
(binding <b2> tcell <c2> ttile <t2>)
(binding 01> tcell <cl> ttile <tl>)
-->
(preference <$2> trole state tvalue acceptable

tgoal <g> tproblem-space <p> ?state <s> ?operator <0>)
(state <s2> tswapped <bl> <b2> tbinding <b3> <b4>

?blank-binding <b4>)
(binding <b3> ttile <t2> tcell <cl>)
(binding <b4> ttile <tl> tcell <c2>))

20

kEROX PARC. ISL15 %NU:NM I9g6

PRODUCTIONS 17

(p eight'create-new-state
(goal-context-info tidentifier <g> *attribute problem-3pace

tvalue <p>)
!space-info tidentifier <p> tattribute name tvalue eight-puzzle)
(goal-context-info tidentifier <g> tattribute state *value <s>)
(goal-context-info tidentifier <g> tattribute operator tvalue <o>)
(state-info tidentifier <s> tattribute blank-binding tvalue <bl>)
(binding-info tidentifier <bl> tattribute cell *value <cl>)
(op-info tidentifier <o> tattribute cell tvalue <c2>)
(state-info tidentifier <s> tattribute binding *value <b2>)
(binding-info *identifier <b2> tattribute cell *value <c2>)
(binding-info *identifier <b1> tattribute tile *value <t1>)
(binding-info *identifier <b2> tattribute tile tvalue <t2>)
- >

(make preference *object <s2> trole state tvalue acceptable
tgoal <g> tproblem-space <p> *state <s> toperator <o>)

(make state-info *identifier <s2> tattribute swapped alue <bl>)
(make state-info *identifier <s2> tattribute swapped *value <b2>)

(make state-info tidentifier <s2> tattribute binding tvalue <b3>)

(make state-info *identifier <s2> tattribute binding tvalue 04>)
(make state-info tidentifier <s2> tattribute blank-binding

tvaiue <b4>)
(make binding-info *identifier <b3> *attribute tile *value <t2>)

(make binding-info *identifier <b3> tattribute cell tvalue <cl>)

(make binding-info tidentifier <b4> tattribute tile *value <t1>)

(make binding-info *identifier <b4> tattribute cell tvalue <c2>))

In addition to ordering conditions, SP also modifies a variable in the role of a goal-context-info if that

variable is not used in any other conditions. The modification is to replace the variable, say <v> with <>

undecided <v> 1. This prevents the condition from matching if the role has value undecided.

3.4. Conjunctive Negations

The distributed representation of objects as multiple working-memory elements makes it difficult to test for

the absence of an object with a set of specific features. For example, if the user wants to test if there is not an

object in working memory that has blue toes and a blue nose, the following c3nditions would not make the

right test.
(sp notreallycold

context tests and other conditions
-(state <y> ttoes blue tnose blue)
-->

.)

Assuming that <y> is unconstrained by the other conditions of the production. these conditions would be

satisfied only if there are no objects that have blue toes and no objects that have a blue nose, while the desired

behavior is to have them be satisfied only if there are no objects that have both blue toes and a blue nose.

One solution to this problem requires using three productions. Production pl tests for the co-occurrence ot'

271
XEROX P \RC. IAN!. Ain 4)

18 SOAR USER'S MANUAL

positive instances of the negated conditions and produces a single working-memory element that encodes the

fact that both exist. Production pl tests tbr the context when the original production would fire except for the

negative conditions and produces a unique symbol. Finally, productinn p's tests for the absence of the

encoded workinb-rnemory element produced by pl and for the presence of the one generated by p2.

(sp p 1
context tests and other conditions
(state <y> ttoes blue tnose blue)
-->
(state <y> ttoesandnose blue))

(sp p2
context tests and other conditions
-->
(state <y> tspecialattribute value))

(sp p3
(state <y> tspecialattribute va1.:4e)

-(state <y> ttoesandnose blue)
-->

)

A simpler and more correct solution to this problem awaits a revised implementation of the Ops5 matcher

used in Soar

22

M.ROX PARC. ISI.-15 JA LAP. :.)81)

DECISION PROCEDURE 19

4. Decision Procedure
The purpose of the decision procedure is to make a change to the goal-context-stack based on the

preferences in working memory. The change is either the replacement of the current value of one role of an

existing context, or the creation of a new context because of an impasse.

The decision procedure processes the goal-context-stack from oldest goal to newest goal (ie., from the

highest supergoal to the lowest subgoal). Each role of a context is considered. starting with the problem-space

and continuing through the state and operator in order. For a given slot, all preferences relevant to that slot

are collected. A preference is relevant to a slot if all of its non-nil context fields (goal. problem-space. state

and operator) have the same identifiers as the corresponding roles in the context and the role of the

preference is the same as the role of the MOE. Using these preferences, the different objects competing for a

slot are compared. The decision procedure computes a final-choice for a slot according to the semantics of

acceptability, rejection and the desirability ordering. Thc semantics of these concepts is given in Figure 4-1.

To determine the final-choice, the set of considered-choices is first determined. These are objects that are

acceptable (there are relevant acceptable-preferences for them) and are not. rejected (there are no relevant

reject-preferences for them). Consider applying the decision procedure to the operator slot given the context

and preferences in Figure 4-2. This example includes many preferences which may not arise in the normal

course of problem solving, but they help exemplify the details of the decision process.

The objects with relevant acceptable-preferences are o0001, 00002, o0004. These acceptable-preferences

differ in which fields they specify, but all of the specified fields appear in the context. Object o0003 has an

acceptable-preference, but it is not relevant to the current context since it requires that state s0006 be selected.

Even though there is a best-preference for o0003 that is relevant, it is not a considered-choice because there is

no relevant acceptable-preference. Although o0004 is acceptable, it is also rejected, so the set of considered-

choices is only o0001, o0002. From this set, the dominant, maximal choice must be determined.

Dominance is determined by the best, better, indifference, worst, and worse-preferences. An object

dominates another if it is better than the other (or the other is worse) and the latter object is not also better

than the former object (which is possible because conflicts are possible). A best object dominates all other

non-best objects, except those that are better than it through a better-preference or worse-preference. A worst

object is dominated by all other non-worst objects. except those that it is better than through a better or worse

preference. The maximal-choices are those that are not dominated by any other objects. Consider our

example. 0001 is a best object. but 00002 is better than o0001. o0002 becomes the maximal-choice because

it directly dominates o0001 through a better-preference. If o0002 were not better than o0001. o0001 would be

23
\ PROX PARC ISI fANLARN

20 SOAR USER'S MANUM.

Primitive predicates and functions on objects, x, y. z.

current The object that currently occupies the slot

acceptable(x) x is acceptable

reject(x) x is rejected
(x > y) x is better than y
(x < y) x is worse than y (same as y) x)

(x y) x is indifferent to y
(x >> y) x dominates y = (x > y) and -,(y > x)

Reference anchors
ifidifferent(x) .* Vy [indifferent(y) (x y)]

best(x) == Vy Dest(y) (x y)] A [-Ibest(y) A -1(y > x) =* (x > y)]

worst(x) = Vy [woest(y) (x y)] A [-nworst(y) A --1(y < x) (x < y)]

Basic properties
Desirability (x) y) is transitive, but mil complete or antisymmetric

Indifference is an equivalence relationship and substitutes over >

(x > y) and (y z) implies (x > z)
Indifference does not substitute in acceptable, reject, best, and worst

acceptable(x) and (x y) does not imply acceptable(y),
reject(x) and (x y) does n2/ imply reject(y), etc.

Default assumption
All preference statements that are not explicitly mentioned and

not implied by transitivity or substitution are not assumed to be true

Intermediate definitions
considered-choices = (xEobjects 1

acceptable(x) A -Ireject(x)}

maximal(X) = (xEX 1 Vy -1(y >> x)}

maximal-choices = maximal(considered-choices)
empty(X) = --13xEX
mutually-indifferent(X) Vx.yEX Y)
random(Xi) = choose one element of X randomly
select(X) = if current0 then current else user-select(X)

Final choice
empty(maximal-choices) A -Ireject(current) final-choice(current)
mutually-indifferent(maximal-choices) A -lempty(maximal-choices)

=* final-choice(select(maximal-choices))

Impasse
empty(maximal-choices) A reject(current) rejection-impasse()

-Imutually-indifferent(maximal-choices) impasse(maximal-choices)

Figure 4-1: The semantics of preferences.

the maximal-choice. If there were neither the better-preference nor the best-preference. the maximal-choice

would consist of both objects.

Once the maximal-choice for a slot is computed. the decision procedure determines whether there is a final

choice or an impasse for the slot using the rules at the bottom of Figure 4-1. These rules are mutually

exclusive and complete. The current object acts as a default so that a given slot will change only if the current

24
ISI.-:5. RN 'cot,

DEUSIONPROCEDURE 21

(gc g0001 tproblem-space p0003 tstate s0004 toperator 00007)

(preference 00001 trole operator tvalue acceptable
tgoal g0001 tproblem-space p0003)

(preference 00001 trole operator tvalue best
tgoal g0001 tproblem-space p0003)

(preference 00002 trole operator tvalue acceptable
tgoal g0001 tproblem-space p0003 tstate s0004 toperator 00007)

(preference 00002 trole operator tvalue better treference 00001
tgoal g0001 tproblem-space p0003 tstate s0004 toperator 00007)

(preference 00003 trole operator tvalue acceptable
tgoal g0001 tproblem-space p0003 tstate s0006)

(preference o0003 trole operator tvalue best
tgoal g0001 tproblem-space p0003 tstate s0004)

(preference 00004 trole operator tvalue acceptable
tproblem-space p0003)

(preference 00004 trole operator tvalue reject
tgoal g0001 tproblem-space p0003 tstate s0004
toperator undecided)

Figure 4-2: An example goal-context with preferences for operator selection.

object is displaced by another object. Whenever there is no maximal-choice for a slot, the current object is

maintained, unless the current object is rejected, in which case a rdection impasse arises. If the current object

is one of the maximal-choices and it is indifferent to the other maximal-choices (or it is the only maxiinal-

choice), then the current object is maintained, since indifferem signifies that either object is appropriate. If

the current object is not a maximal-choice, and the maximal-choices are mutually indifferent, the current

object is displaced by one of the maximal-choices. A set of objects are mutually indifferent if all pairs in that

set are indifferent. Two objects are indifferent if either there exists a binary indifferent-preference, there is a

transitive set of binary indifferent-preferences containing both of them, they are both in unary indifferent-

preferences, they are both in best-preferences or they are both in worst-preferences. In the current example,

there is only a single maximal-choice, o0002, which would displace o0007. If all of the maximal-choices are

mutually indifferent, user-select is tested to determine how to select between the objects. This can be either

randomly, deterministically, or by the user. See Section 10.3.7 for more details.

If the current object is to be displaced by the maximal-choice, and there is not a single object (or set of

indifferent objects) that dominates, then either a tie or conflict impasse arises. A conflict impasse arises if the

obiects have conflicting better and worse Preferences. A tie impasse arises if thgre are no dominance relations

between the maximal-choice obiecp. A no-change impasses arises if a context ha5 been processed and none of

the slots has been changed. If the current object is not displaced, or if a pre-existing impasse still exists. the

decision procedure then processes the next slot, either in the current context or the next lower context if the

operator slot was just processed. If a new impasse is encountered, all subgoals are terminated, a new subgoal

25
\EP.OX PARC rS1..:5.1 N 1. AR": :44

22 SOAR USER'S MANLAI

is created and the elaboration phase of the next decision cycle ensues. (A tie or conflict impasse is considered

to be equivalent to a previous tie or conflict impasse if the objects involved in the new impasse are a subset of

those in the existing impasse.)

With appropriate preferences from the elaboration phase, it is possible for a single object to result from the

decision procedure. i.e.. the maximal-choice set contains exactly one object. or a set of indifferent object from

which a single object is chosen as describe in Section 10.3.7. When there is a single object, the change is

installed, all unconsidered slots of the current context set to undefined, all unconsidered contexts terrninawd.

and the elaboration phase of the next decision cycle ensues.

2 6

XEROX PARC. Pil.-I3. I \(..NRN"

SUI300ALS 23

5. Subgoals
All subgoals in Soarare created automatically by the architecture when a new impasse arises in the decision

procedure. There are currently four types of impasses. leading to four types of subgoals.

A tie impasse arises if the preferences for a slot do not distinguish between competing objects.

A conflict impasse arises if at least two objects have conflicting preferences (such as A is better
than B and B is better than A) for a slot.

A no-change impasse arises if none of the slots change value during the decision procedure.

A rejection impasse arises if all objects with acceptable-preferences for a role also have
reject-preferences.

The first two impasses. tie and conflict, are muhi-choice impasses, because more than one object remains

following the decision procedure. The last two impasses. no-change and rejection are no-choice impasscs.

because there are no objects available from which to choose. The four impasses are mutually exclusive and

exhaustive.

When a new impasse is detected. Soarcreates a gensymed goal symbol and an associated goal-context which

includes the problem space, state and operator for the goal, as well as a set of augmentations that help define

the goal. Below are the nine goal-context-info augmentations that can be created.

problem-space This contains the identifier of the current problem-space for the goal: undecided.

state This contains u..-iidentiBer of the current state for the goal: undecided.

operator This contains the identifier of the current operator for the goal: undecided.

impass... This contains the type of impasse: tie, conflict, no-change, rejection.

choices This contains either multiple, for tie and conflict impasses, and none, for no-change
and rejection impasses.

role For multi-choice impasses (tie and conflict), this contains the role that the choices
were competing for (problem-space, state, operator). For no-change impasses, this
contains the role of the last slot that is not undefined (goal, problem-space. state,
operator). For rejection impasses. this contains the role of the slot just above the slot
where the rejection occurred (goal. problem-space. state). Rejection is defined in this
way so that both no-change and rejection impasses have the same role for a, similar

difficulty.

item If the impasse has multiple choices. each acceptable object for the slot, that was either
tied or conflicted, is included as an individual item augmentation.

27
LRCA PARC. JANUAR': :91i6

24 SOAR USER'S MANUAL

supergoal This contains the identifier of the supergoal.

superoperator This contains the identifier of the superoperator. This is necessary for the subgoals

that arise from parallel operators so that each subgoal is for a different parallel
superoperator (see Section 9.2).

Here is an example of a goal-context that is created for a tie between three operators:

(gc G0012 ?impasse tie tchoices multiple ?role operator

rsupergoal G0003 tsuperoperator undecided
rproblem-space undecided tstate undecided toperator undecided

ritem 00009 titem 00010 titem 00011)

A subgoal terminates when its impasse is eliminated by the addition of preferences that change the results

of the decision procedure for a supergoal. For example. if there is a tie subgoal between two objects. it will

automatically tenninate when a new preference is added to working memory that rejects one of the choices.

makes (...;ne a best choice, makes one better than another, makes one a worst cheice. or makes them both

indifferent. If there is a tie between three objects. the tie will be broken when one of the objects (or a set of

indifferent objects) dominates the others, So the subgoal will terminate if a best-preference is created for one

of the objects. if one object is made better than the other two, and so on.

When a subgoal is terminated, many of the working-memory elements that were created in the subgoal are

automatically removed from working memory. All working-memory elements created in the subgoal (and .

those created in its subgoals) that are linked, directly or indirectly, to any supergoal, will be retained. The

determination of which working-memory elements to remove is done by a mark-and-sweep garbage-

collection scheme. When a subgoal terminates, all working-memory elements that were created in the

subgoal (and its subgoals) are collected together. All augmentations (but not preferences) whose identifier

appears in one of the working-memory elements that existed prior to the subgoal are saved. This recurs by

saving those elements whose identifiers appear in a saved element until no additional elements are saved.

Preferences are saved if their context objects (identifiers in the goal, problem space, state, and operator fields)

are nil or existed before the subgoal was created. All working-memory elements that were created in the

subgoal, but not saved, are removed from working memory. All saved elements are considered fo have been

created in the supergoal for all future garbage collections.

28

XI:ROX P %RC NI ;5. !AMMO 'is?)

DEFAULT SEARCH CONTROL 25

6. Default Search Control
This chapter describes the default knowledge in Soar. This is encoded in a set of 51 productions that are

always loaded in with a task. These productions are listed in Appendix I. The majority of this knowledge

provides default responses to the impasses that can arise during problem solving. Soar provides default

processing for every subgoal that can arise. This chapLer starts with default knowledge that is applicable in all

subgoals. This is followed by the default responses co the different impasses. which includes the selection

problem space, evaluation subgoals and operator subgoaling.

6.1. Common Search-Control Productions

o defaulemake-all-operators-acceptable: If the current problem space is augmented with an
operator (the operator is the value of a toperator attribute), make an acceptable-preference for the
operator with the current problem space in the problem space field. and nil in all other context
fields.

defauIeno-operator-retry: If there is an acceptable-preference for the current state, create a
reject-preference for the operator in the /operator field using the context fields for goal, problem
space and state from the acceptable-preference for the current state (assuming that the operator is
not undecided or nil).

default*backup-if-failed-state: If there is a reject-preference for the current state. make an
acceptable-preference for the state that was used tz; create it.

6.2. Default Knowledge for Impasses

6.2.1. Multi-choice impasses

If a subgoal is created for a tie or conflict impasse, an acceptable-preference and a worst-preference are

created for the selection problem space. The selection problem space is used by default for all tie and conflict

impasses. See Section 6.3 for more information. As backup to the selection problem space, there are

adlitional productions that apply if a multi-choice impasse is followed by a no-choice impasse for the goal,

which would arise if the selection space was rejected. If the impasse was a tie, worst-preferences are created

lb: the items that tied by defaultsproblem-space-tie. defaulestate-tie. and defauleoperaturtie. If the impasse

was a conflict, reject-preferences are created for the items that conflicted by default*problem-space-cufliet.

defaulestate-confliet, and defaultsoperator-confliet.

29
\ I RCA Pkt. Ni:

26 SOAR USER'S MANUAL

6.2.2. No-choice impasses - goal

The impasses where tchoices is none and trole is goal arc used as a signal that no progress was possible for

the next higher impasse. That is. only whcn there is no knowledge about how to eliminate an impasse (no

acceptable problem spaces are suggested. or they arc all rejected) do these impasses arise. Such an impasse

leads to the rejection of the last defined object in the super-context. If there is a no-choice impasse for the top

goal. defaulegoal-no-choices halts Soar.

6.2.3. No-choice impasses - problem space, state and operator

If no problem space is selected to handle one of these subguals (signalled by the creation of a no-choice

impasse for the eoal), this implies that there is no knowledee available to resolve the no-choice impasse. The

default response is to reject the lowest object in the goal-context that is not undecided. This has the effect of

allowing another choice to replace the rejected choice so that another path can be attempted. or of further

rejecting a higher-choice if the rejected object was the only candidate for its slot. This is implemented by

p roductions defau lepro blem-space-no-cho ices. defaul estate-no-cho ices. and de fau Irso perator-no-cho ices.

6.2.4. No-change impasses - operator

If a no-change subgoal is created for the operator role. there arc three possible reasons: (1) the conditions

of the operator were not satisfied: (2) the operator is incompletely specified (needs to be instantiated): (3) the

operator is COO complex to be performed by productions and must be implemented in a subgoal in its own

problem space. For the first option, the appropriate response is to use the same problem space and search for

a state where the operator will apply (operator subgoaling). For the others, task-specific problem spaces must

be available to perform the necessary computations. Because task-specific knowledge is required for the last

two cases, we assume that the first is the default action: that is, an acceptable-preference and a worst-

preference are created for the sUper-problem-space. These will be overridden by any acceptable-preferences

for other problem spaces. See Section 6.5 for more details. If operator subgoaling fails. and all problem

spaces for the subgoal are rejected. default*operator-no-choices Will then reject the operator that led to the

impasse.

6.3. Selection Problem Space

Whenever a multi-choice impasse is encountered, an acceptable-preference is made for the selection

problem space. There is also a worst-preference created for it. so that any user provided problem space will

be selected in its place. Both of these are created by select*selection-space. The states of the selection

problem space may have evaluations of the tieing objects as augmentations. An initial, empty state is created

by select*create-state. There is one operator prov ided with the selection space: evaluate-object.

3 0
\; P.° \ PARC. N .1' 1%\(_\10 1 iqh

DEFAULT SEARCH CONTROL 27

6.3,1 . The e-valsm ate-object operator

Evaluate-abject is meant to mate evaluations for the tieing or conflicting objects so that preferences can be

created by comparing the evaluations of the different objects. Production eval*select-evaluatc creates an

operator instance f*T" each object that is an titem augmentation of the goal. These operators are named

evaluate-object. When they are created. acceptable and indifferent-preferences are also created for them, so

that there will be no tie between them (however, by using the user-select function, the user can choose which

evaluate-object operator to apply first). The uscr can also have evaluate-object operators applied in parallel

by loading in production eval*parallel-evaluate which resides in default.soar. but is currently commented out.

See Section 9.2 for more on parallelism.

Each evaluate-object operator is created with the following three augmentations.

tstate: the current state of the selection subgoal.

tname: evaluate-object.

tobject: the identifier of the object to be evaluated.

Once an evaluate-object operator is selected as the current operator, it is augmented with further information.

This information is only necessary if the operator is going to be applied, therefore it is more efficient to

generate it only if the operator is selected.

trole: the role in the context for which the object is tied or conflicted (problem-space, state, or
operator).

tevaluation: the identifier of an newly created object that will hold the evaluation. This is
described in more detail in Section 6.3.2.

tdesired: the desired of the supergoal (the one in which the impasse arose). The desired of a goal
contains the identifier of an object that describes the desired state of the goal.

fglpergoal: the identifier of the supergoal.

tsuperproblemspace: the identifier of the problem space selected in the supergoal.

tsuperstate: the identifier of the state selected in the supergoal.

These augmentadons provide easy access to information required for computing evaluations.

6.3.2. Evaluation objects

As mentioned above, a new object of class evaluation is created when an evaluate-object operator is

selected. It has the following augmentations.

tobject: the identifier of the tied or conflicted object to be evaluated.

31
\ RUX 111 t. (SI 1N .srt

28 SOAR USER'S MASCAI

tstate: the current state of the multi-choice subgoal.

tdesired: the desired of the supergoal (the one in which the impasse arose). The desired of a goal

contains the identifier of an object that describes the desired state of the goal.

toperator: the identifier of the euluate-object operator of which this evaluation is an

augmentation.

The evaluation object is used to hold the ealuation computed by the operator. For two-player games (such

as Tic-Tac-Toe) the evaluation can also hold the side of the player to move. See Section 6.3.7 for more

information.

Currently, there is default knowledge tbr two types of evaluations: numeric and symbolic. They are

distinguished by the augmentation that is added to the evaluation object when they are computed. Numeric

evaluations, such as a number between 1 and 10. are added as augmentations of the tnumeric-value attribute.

For example, if an evaluation is computed to be 10, it might appear in working memory as:

(evaluation E0004 tobject 00044 ?state S0034 ?desired E3330

toperator 05555 tnumeric-value 10)

Symbolic evaluations, such as success. failure, win, lose, or draw are added as augmentations of the

tsymbolie-value attribute. For example, the same evaluation as above with success would be:

(evaluation E0004 ?object 00044 ?state S0034 ?desired E3330
toperator 05555 tsymbolic-value success)

6.3.3. Applying the evaluate-object operator

A specific instance of evaluate-object can, but often will not have any productions that directly implement

it. The production eval*applyevaluate will apply, but only to fulk. instantiate the operator. Therefore, an

operator no-change impasse will arise: and a subgoal will be created to compute the evaluation. This is

discussed in Section 6.4. Once subgoals have been used to compute evaluations, chunks that have been built

from the subgoals can directly compute the evaluations. Users are free to create their own productions that

directly compute evaluations.

6.3.4. Terminating the evaluate-object operator

Evaluate-object is terminated by production eval*reject-evaluate-finished, which detects if the current

evaluate-object operator is augmented with an evaluation object that has an evaluation with either a

?numeric-value or ?symbolic-value augmentation. In either case, a reject-preference is created for the

evaluate-object operator. if the evaluation does not lead to the termination of the multi-choice subgoal. the

reject-preference will lead to the selection of another evaluate-object operator or the failure of the problem

space.

32

\ FRO \ \Pc I k t,n

DEFAULT SEARCH CONTROL 19

6.3.5. Comparing numeric evaluations

Once evaluations are created for tieing objects. they can be compared and preferences can be created that

break the impasse. For numeric evaluations (evaluations with a tnumeric-value augmentation) users can write

their own productions to compare the evaluations. If the objects being evaluated are operators (almost always

the case) Soar provides some help. If the object in the tdesired augmentation of the supergoal (which is

usually the desired state) is of class evaluation and is augmented with *better higher or tbetter lower

(depending on whether a higher or lower evaluation is better), then productions eval*prefer-higher-evaluation

and eval*prefer-lower-evaluation detect the appropriate tbetter augmentations and create preferences when

one evaluation is numerically greater loan another. Production eval*equal-eval-indifferent-preference creates

indifferent-preferences for objects that have evaluations that are numerically equal, independent of a tbetter

augmentation.

6.3.6. Comparing symbolic evaluations

If an evaluation has tsymbolic-value success. production eval*success-becomes-best creates a best-

preference for the object that was being evaluated. This should break the tie and allow problem solving to

continue. An evaluation should be marked with tsymbolic-value success only if it is known to be on the path

to the goal, either because the goal was reached when evaluating the object or because an intermediate state

was achieved that was known from prior experience (i.e., chunks) to be on the path to the goal. We will see in

Section 6.4 that Soar has productions that will propagate success up a subgoal hierarchy. when it is

appropriate.

If an evaluation has tsymbolic-value failure, production eval*failure-becomes-worst creates a worst-

preference for the object that was being evaluated. This may or may not break the tie and allow problem

solving to continue. An evaluation should be marked with tsymbolic-value failure only if it is known not to

be on a path to the goal.

6.3.7. Evaluations tor two-player games

For two-player games, there are additional productions that process symbolic values win, lose, and draw.

These depend on the state having two augmentations: tside and toside. The value of the side augmentation

should be a symbol, number or identifier that represents the player that is to move next in the current state.

The value of the toside (other side) augmentation should represent the player that just moved. The values of

win, lose, or draw are in relation to the player that just moved, that is, the one that is in toside. Therefore.

when an evaluation object is augmented with a symbolic value of win. lose, or draw, the evaluation must also

be augmented with tside which contains the value from toside in the state. If the state is augmented with

twin, tlose, or tdraw, as described in Section 6.4.3. then production eval*move-side-to-eval will copy the side

33

*.:1.RO\ PARC. ii I \\WAR':

K.; SOAR USER'S MANUA!

correctly. Once an evaluation of win. lose, or draw has been created, it is translated into a preference by

eval*winning-values. evalswinning-values2. evaliosing-values. eva1*losing-values2 and eval*draw-values. A

win for the side on move or a lose for the side that just moved becomes a best-preference. a lose for the side

on move or a win for the side that just moved becomes a worst-preference. and a draw becomes an indifferent-

preference.

6.4. Evaluation Su bgoal

If an evaluate-object operator has been selected and no productions create evaluation values for it. an

operator no-change impasse will arise and a subgoal will be created. In this subgoal. the context that led to

the tie will be re-established and the tieing object that is an augmentation of the evaluate-object operator will

be selected. This allows the problem solving to continue so that an evaluation of the success of that object can

be made. For different types of objects, different amounts of the coniext have to be re-established. The

production evaltselectroleproblem-space is used for tied problem spaces. and it augments the current goal

with the old desired and makes an acceptable-preference for the problem space attached to the evaluate-

object operator in the object augmentation. The production eval*select-role-state is used tbr tied states. It

augments the goal with the desired-state description (*desired). creates an acceptable-preference for the

super-super-problem-space (which is in the super-problem-space augmentation of the evaluate-object

operator) and creates acceptable and best-preferences for the state in the object augmentation of the evaluate-

object operator. Similarly. eval*seleet-role-operator re-establishes the old desired-state, problem space and

state and then creates an acceptable-preferences for the operator in the object augmentation of the evaluate-

object operator. The production evarreject-non-slot-operator rejects all of the other operators that compete

for the operator slot. This is necessary because new operator instantiations may be created in the subgoal that

will compete (and possibly receive best-preferences) for the operator slot. Following this, problem solving is

expected to continue until an evaluation is produccd (of course, there may be many subgoals along the way to

an evaluation). Once the evaluation is produced. the evaluate-object operator is rejected as described above.

6.4.1. Default evaluations

In four cases. the evaluations can be determined based on preferences created in the subgoals and not on

any features of the states or operators.

1. If an operator is being evaluated and that operator is rejected for the initial state of the evaluation

subgoal. production eval*failure-if-reject-evaling-operator will augment the evaluation with
*symbolic-value failure.

2. Van operator is being evaluated and the state that is created from applying that operator to the

initial state of the evaluation subgoal is rejected. production eval*failure-if-reject-state will

augment the evaluation with *symbolic-value failure.

3 4

\ERO\ P \RC !SI 1%.\ f

DEFAULTSEAROICONTROL 31

3. If an object is being evaluated below a selection problem space. there can be a tie impasse with a
second selection problem space in the search for an evaluation. If during the problem solving in
the second selection problem space an evaluation of *symbolic-value success is produced relative
to the same desired state as the original object. evnl*pass-back-success will assign an evaluation of
?symbolic-value success to that original object.

4. If an operator is being evaluated below a selection problem space for a two-player game. there can
be a tic impasse with a second selection problem space in the search for an evaluation. If during
the problem solving in the second selection problem space an evaluation of rsymbolic-value win is
produced for the same side as the original operator, evai*pass-back-win and eval*pass-back-win2
will augment its evaluation with *symbolic-value win.

6.4.2. Computing numeric evaluations

Numeric evaluations can be computed by a single production. a SCE of productions. or a subgoal. All of

these methods MUSE create the right augmentation of the correct object so that the rest of the productions can

use it ICI terminate the evaluate-object operator and create preferences for the tieing objects by comparing
.

evaluations. The corrcct action IS Eo augment the evaluation object (which is the value of the revaluation

augmentation of the evaluate-object operator) with *numeric-value number. For example. your production

would contain at least the following:

(sp your-production-name
(gc <g> *problem-space <p> *state (<> <ss> <s> }

*superoperator <so>)
(problem-space <p> *name your-task-problem-space-name)
(operator <so> tname evaluate-object *evaluation <e>

*superstate <ss>)
conditions that match features of state <s>

-->
(evaluation <e> *numeric-value your-evaluation))

Numeric evaluations are useful when features of a state correspond to the distance from the state to the goal

and can be mapped onto either the integer or the real numbers. The value computed for each state can then

be compared to the value computed for another state and a preference can be created based on the ordering

of the numeric values. Complex combinations of numbers for a numeric evaluation of a state is possible using

the compute action. For example, your-evaluation could be the addition of two other numbers: (compute

<numl> + <num2>). See Section 3.2 for a further description ofcompute.

6.4.3. Computing symbolic evaluations

The same approach that was used in numeric evaluations can also be used in symbolic evaluations, except

that the correct augmentation for the evaluation object is *symbolic-value instead of *numeric-value. A

simpler approach is also available so that the user does not have to even deal with evaluation objects. Instead

of augmenting the evaluation object, the user can augment the current state of the subgoal with one of the

following five attributes: rsuccess. *failure. two.,*draw.*lose. The value of these augmentations must be the

35
\i'ku\ iS1 . \L.%1?. 1.46b

32 SOAR USFR'S MANUAL

*desired augmentation of the goal. A default production then converts these state augmentations to the

corresponding symbolic-value augmentations tbr the evaluation object. For example, use a production like

the following:

(sp your-production-name
(gc <g> *problem-space (p> estate <s> *desired <desired>)
conditions that detect subgoal success.

-->
(state (s> *success (desired>))

The production involved in the conversion is: eval*state-to-symbolk-evAation.

6.4.4. Detecting success and failure

If a state for the top goal in Soar is marked with *success, *win. or *lose. one of the following productions

will cause Soar to halt: eval*detect-success, eval*detect-win, eval*detect-lost. If a state for the top goal in

Soar is marked with *failure, it will be rejected by eval*detect-failure.

6.5. Operator Subgoaling

If an operator has been selected but cannot be applied to the current state, a useful strategy is to create a

subgoal to find a state where the operator can be applied. This strategy is called oPerator subgoaling (also

precondition satisfaction) and is a common AI technique dating back to GPS. In Soar, operator subgoaling is.

appropriate when an operator has been selected and a no-change impasse arises. In such a situation.

acceptable and worst-preferences are created for the super-problem-space for the subgoal by

opsub*try-operator-subgoaling. If no other problem spaces are suggested for the goal, the problem space of

the supergoal will be selected, allowing a search to be performed in the same problem space as the supergoal.

but with a new goal applying the currently selected operator. The presumption is that the selected operator

could not apply to the current state, so another state must be found. The default productions are adequate to

implement operator subgoaling, so that no additional productions must be added by the user.

Once the super-problem-space has been selected, the goal is named operatorsubgoal and augmented with

the superoperator as its *desired by opsub*go-for-it. This establishes a convention that when the desired

augmentation of a goal is an operator. then the object of the goal is to achieve a state in which the operator

can be applied. Opsub*go-forit also creates an acceptable-preference for the superstate. Once the superstate

is selected, a reject-preference is.created for the superoperator with the initial state in the state context field,

by opsub*reject-opsub*operator. since it is known that it will not apply to it. Other operators must be

available to create a new state. For every state created following the initial state, a best-preference is created

for the superoperator by opsub*select-opsub*operator to tr) Aiut the operator that led to the subgoal. If it

generates a new state without going into another subgoal. an acceptable-preference for that state is created

3 6
Ao\pvc . \ \ R

DITACI T SIARCI I CONIROI. 33

that will be appropriate to the supercontext by opsub*detect-direct-opsub-success or

opsub*deteet-indireet-opsub-success. This will terminate the subgoal. If the operator leads to another subgoal.

it is rejected by opsub*reject-double-op-sub,

37

\FRO\ vARA. ha..5. IA\ 1 Aks.,

CHUNKING 35

7. Chunking
Learning in Soar is based on building productions that permanently cache the processing done in a subgoal.

The actions of the production are based on the working-memory elements that are the results of the subgoal.

The conditions of the productions are based on the working-memory elements that were present when the

subgoal was created and then used in the subgoal to create the results.

A number of factors determine whether or not a chunk is created when a subgoal is terminated. A chunk is

built unless one of the following conditions is true:

1. Learning is off.

2. The chunk would have no actions. (This attempts to guarantee that a chunk is not built for a
subgoal that produces no results. Such a situation can arise when a supergoal terminates without
the termination of all intermediate subgoals.)

3. The name of the current problem space of the subgoal is in *chunk-free-problem-spaces*.
(*Chunk-free-problem-spaces* lets the user control which problem spaces should not be chunked.
It is initially empty. so that all problem spaces will be chunked. One strategy is only to learn
search-control knowledge by including all task problem spaces in *chunk-free-problem-spaces*.)

4. None of the conditions of the chunk have a class in *chunk-classes*. *Chunk-classes* is set
initially to (problem-space state operator). This prevents the creation of chunks that do not test
any of the objects that existed before the subgoal was created. These chunks are usually very
overgeneral.

5. Learning is bottom-up and a chunk was built for a subgoal of the current subgoal (possibly not the
immediate subgoal).

6. The chunk is a duplicate of a chunk that is being built at the same time. The detection of
duplicate chunks is done at a syntactic level, so sometimes chunks that are semantically equivalent
to previous chunks will be built.

7.1. Determining Conditions and Actions

The determination of the conditions and actions of a chunk-producdon depends on the creation and

reference of working-memory elements in a subgoal. This information is maintained automatically by Soar

for each working-memory element in every goal. When a production fires, a trace of the production the

working-memory elements matched by its conditions and created by its actions is saved on the

production-trace property of the appropriate goal. The appropriate goal is the most recently created goal

(lowest in the subgoal hierarchy) that occurs in the working-memory elements matched by the production.

Only productions that actually add something to working memory have their traces saved. Therefore.

productions that just monitor the state (have only write statements) will not affect the learning. If a

38
\ LRUX PARC N

36 SOAR USER'S MANLAI.

production tries to add working-mcmoo. .diat already exist, it will not affect the learning (although

see *chunk-all-paths* for an altirmithc).

Chunking is complicated by the fact that contcxt slots and subgoal augmentations are created by the

architecture and not by productions, le thcsr structures are tested, there arc no associated conditions.

Therefore. Soar associates with them those working-memory elements that are responsible for their creation.

Below is the list of goal-context augmentations and their associated pseudo-conditions.

Problem space, state, or operator roles. The acceptable-preference for the object in the role. The
other preferences are not included in the production trace.

Item (for tie and conflict impasses). The acceptable-preference for the object in the item.

Superoperator. The goal-context-info for the operator of the supergoal.

Impasse rejection. All the reject-preferences that led to the impasse.

Impasse no-change. The goal-context-info for the next slot, with undecided as the value. (This is
not used for operator no-change, since there is no next role.)

Choices none. If this is a rejection impasse, all the reject-preferences that led to the impasse. If
this is a no-change impasse

Negated conditions of productions that fire in a subgoal are included in a trace as follows. When a

production fires, its negated conditions are fully instantiated with the appropriate values for its variables

based on the rest of the data that matched the production's positive conditions. If the identifier used to

instantiate the identifier field of the condition was created before the subgoal, then the instantiated negated

condition is added to the trace (as a negated condition): otherwise it is ignored.

The actions of the chunk for a subgoal are taken to be those working-memory elements created in the

subgoal (or its subgoals) that are accessible from the supergoal. An augmeritation is accessible if its identifier

existed before the subgoal was created or is in another result. A preference is accessible if all of its non-nil

context objects (goal. problem space, state and operator) existed before the subgoal was created or is in

another result. Once the total set of results is determined, it is split into subgroups such that no two

subgroups share objects that were created in the subgoal. These results are logically separate and can be

generated in the future by separate productions

Once the actions of a chunk have been determined, a dependency analysis of the production traces is used

to determine exactly those working-memory elements that existed prior to the creation of the subgoal that

were tested in creating the actions. Not all working-memory elements tested in a subgoal become conditions

in a chunk, only those responsible for the actions. Specifically. those prodiactions that created non-acceptable-

3 9
\I RON l'IC. IS! .13. 1AM. \R't .e4t:t1

CHUNKING 37

preferences will usually not be included (unless the preferences are results of the subgoal) in the dependency

analysis because they contribute only to the decision scheme. For the decision scheme, only acceptable-

preferences are saved in production traces.1

7.2. Replacing Identifiers with Variables

The working-memory elements that are used to create the conditions and actions have the identifiers of

specific objects in their identifier fields. When building productions. all object identifiers are replaced by

variables. All occurrences of an identifier are replaced with the same variable. This sometimes leads to a

slightly overspecific chunk (two objccts that did not have to be the same in the subgoal, but just happened to

be the same, must be the same for the chunk to apply).

7.3. Removing Extraneous Conditions

Soar removes conditions where the identifier in the value field does not occur in any other condition or

action of the production. This process recurs, so that a long linked-list of conditions (connected by value and

identifier attributes) will be removed if the final one in the list has a value that is unique to that condition.

These conditions provide little or no constraint on the match and greatly increase the number of

instantiations.

7.4. Splitting Chunks Based on Duplicate Conditions

Following the removal of unnecessary conditions, it is possible that many conditions will match exactly the

same working-memory elements. This is most serious when substructures are copied from one state to

another. To eliminate these duplicate conditions (which cause combinatorial processing in the matcher), the

production is split into multiple productions. Two (or more) conditions are duplicates if they are exactly the

s:ime except that they differ in the tvalue field. In addition, the identifiers in both of those fields must not be

referenced by any other condition and must be referenced by actions. It is assumed that these conditions are

used for copying structures and do not really test an important aspect. One of these conditions is saved along

with the actions that share the identifier in its tvalue field. All of the other duplicate conditions and the

actions that share the identifiers of their tvalue field are eliminated. More than one set of duplicates can

occur for a single production. and a list is maintained of the representative condition and acdons for each set

of duplicates.

From these lists, productions will be created. The first production built does everything the subgoal did

except for processing the duplicates. This production does not contain any of the conditions or actions that

'This may lead to overgeneral chunks. We are currently re-examining this design choice and may modify it in the future.

4 0
\ IRO \ PAPX. II If JAN1. \it 4 ;93r)

38 SOAR USER'S MANUAL

were duplicates. Additional productions are built for each set of duplicates. The conditions of these

productions contain:(1) all of the conditions of the first production; (2) all actions of the first production (so it

won't fire until after the first and can bind to all identifiers created in the first production): and (3) the one

instancc of a duplicate condition saved away. Thc actions of the pruduction arc only those actions that wcrc

saved with the duplicate condition. Therefore. for one subgoal. many productions may be built.

7.5. Ordering Conditions

The efficiency of the Rete matchcr used in Soar is heavily dcpendcnt on the ordcr of thc conditions in the

productions. Therefore. Soar orders the conditions in an attempt to make the matching process more

efficient. Thc ordcring algorithm is implemented by trying to determine. at each stage. which eligible

condition. if placed next. will have thc fewest number of instantiations when thc production is used. The

details of the ordering algorithm arc given in the fioar Technical Manual.

7.6. Making Different Variables Distinct

When variables were assigncd to conditions. all identical identifiers were replaced by thc same variable.

However, the resulting production could match the same identifier to different variables. so that the semantics

of the productions are incorrect. Sincc variables in Ops5 do not have to match distinct identifiers. Soar

explicitly modifies the production so that no two variables can match the same identifier. Soar also

automatically modifies any goal-context-info with attributc tproblem-space. *state. or toperator that has a

variable in its value field that does not appear in any other condition (but does appear in an action). The

modification is to replace the variable. say <p>. with { 0 undecided <p> }.

7.7. Refractory Inhibition of Chunks

When a production is built as a part of a chunk, it may be able to fire immediately on those working-

memory elements that were used to create it. If the actions of the production include thc creation of ncw

objecm the production will immediately fire and create anothcr object. in addition to thc object that was the

original result of the subgoal. To avoid this. each production that is built during chunking is refracted so that

it will not fire on the working-memory elements used to creatc it. This does not prey cwly learned

production from firing on othcr working-memory elements that arc present.

7.8. Over-generalization

Chunking in Soar can lead to over-generalization in three ways. First. when there is special-case knowledge

that is not used in solving a subgoal. This knowledge is encodcd in productions tbr which most but not all of

the conditions were satisfied during a problem-solving episode. [hose that wcrc not satistied ckher tested for

41
\ 1.1+0X p ISL:s vist,

CHUNKING

the alnence of something that is available in the subgoal (using a negated condition) or for the presence of

something missing in the subgoal. The chunk that is built for the subgoal may be over-general because it does

not include the inverses of these conditions. During a later episode, when all of the conditions of a special-

case production would be ratisfied in a subgoal. the chunk learned in the first trial bypasses the subgoal. If

the speciaFcase production would lead to a different result for the goal. the chunk is over-general and

produces afi incorrect result.

Overly general chunks can also be learned when there are negated conditions of productions in a subgoal

that test for the absence of a working-memory element that would be created in the subgoal. If the creation of

that working-memory element was directly related to the existence of a working-memory element that existed

before the subgoal, then the test for the absence of the working-memory element local to the subgoal should

be replaced by a test for the absence of the working-memory element that existed before the subgoal.

Chunking is currently unable to perform such an analysis and include tests for the absence of working-

memory elements unless they are explicitly made in a production. This inability can lead to overly general

chunks.

When determining the conditions of a chunk via the dependency analysis, the conditions of productions

that created non-acceptable preferences are included only if they were results of the subgoal. or the resu!ts

were produced based on them. They are not included if the preferences only influenced the decisions during

the problem solving. The theory is that these productions influence the efficiency of the search. but do not

change its validity. That is the theory, but in practice, problem spaces can be implemented that depend on

productions that create non-acceptable preferences. Instead of applying all tests for success (the goal test) to

each state in the problem space, it is possible to move some of the goal test to productions that reject

intermediate state (or operators) that do not satisfy some of the goal constraints. This allows the final goal test

to be much simpler, since any state it tests is guaranteed to satisfy some of the constraints already. In these

cases, the productions created by chunking are overly general because they do not include all the conditions

they should since only the final goal test is included in the chunk, and not the implicit tests made during the

search that guaranteed that a valid state was always chosen.

42
\ F.P.O PAW . .:5 11NLARY .4ah

ENCODING A TASK 41

8. Encoding a Task

This chapter describes how to represent goals, problem spaces. states, operators and search control for a

task. The Eight Puzzle will serve as an example. All of the productions will be in SP format, and these

productions will actually perform the task. The productions will be given in lower-cay!, which is appropriate

for all systems except Interlisp.

8.1. Problem Space Decomposition

The first step in encoding a task in Soar is to decompose it into a set of problem spaces. This is a difficult

step and corresponds to structuring the task. However, only a single problem space is necessary to represent

and solve the Eight Puzzle. This problem space consists of states that have different configurations of eight

numbered tiles in a 3x3 frame and operators that move tiles adjacent to the blank space into the blank space.

In contrast. RI-Soar has a hierarchy of up to ten different problem spaces. Such a hierarchy arises when the

operators of one problem space require a second problem space for their implementation. The operators of

the high-level problem spaces are not implemented directly by productions, but insteadare implemented by

other operators in other problem spaces. At some point the hierarchy bottoms out, and the operators are

implemented directly by productions.

As of yet, there are no hard and fast rules for decomposing a problem into multiple problem spaces. it is

never necessary to decompose a task into separate problem spaces because every hierarchy of problem spaces

can be represented as a single problem space, with search-control knowledge that simulates the control

achieved through decomposition into separate problem spaces. With decomposition, it is often possible to

represent a task as a set of problem spaces with little or no search control. Problem space decomposition is

possible when different aspects of the state of the task can be modified independently of otherparts of the

state, or when different sets of operators are selected together. independently of other operators. The sets of

operators that act independently can then be grouped into separate problem spaces. These problem spaces are

then selected in response to no-change impasses for a high-level operator that represents the problem solving

that will occur in the subgoal.

8.2. States

As in a standard programming language, the next step in designing and implementing a task is deciding on

a representation of the data being manipulated. in Soar, this involves defining the representation of the states

of the problem spaces. Given the available attribute-value scheme. many different representations are

possible for a given task. One structural restriction is that aic :,!bstructure of a state must be linked to the

state, either directly (through a single augmentation), or indirectly (through a chain of augmentations). Me

4 3
\LROX PAM.. NL \i< 14N6

42 SOAR 1:SFR'S MANUAl.

augmentations then form a directed lattice. where the identifier of the state is thc root.

The representation of the states has a large impact on thc efficiency and thc generality of problem solving

and learning. From our experience. efficiency and generality is maximized if thc implementations of

operators and search control arc able to test and crcatc only those aspects of the problem that are necessary to

perform the required functions. Thcrc are two general rules for implementing this principle.

1. Every piece of information that is relevant to thc problem solving should bc represented
explicitly, either as an object. as the augmentation of an object. or in thc structure of a set of
augmentations. This removes the need for complex condition predicates that can detect implicit
information, such as comparing two absolute positions given in a coordinate system and dctecting
that thcy arc adjacent. If a piece of information is not represented explicitly, thc testing or
crcation of that information will involve testing or creating othcr information. (If only thc
absolute positions arc explicitly represented. thc absolute positions must be tested to determine
adjaccncy.)

2. Dynamic and static information should be represented separately, minimizing the amount of
information that is dynamic. Dynamic information (data that can be changed by operators) should
be rcprcscnted by augmentations of the state. If the static information is tied directly to thc state.
it must bc explicitly copied from state to state. Whcn possible. static information (data that is not
changed by operators) should bc represented by augmentations of dynamic information. By

making this separation, the static information is unchanged by operator application, minimizing
the amount of processing required to apply an operator. If the static information is tied directly to
the state, it must be explicitly copicd from state to statc.

Let's apply these two principles to the Eight Puzzle. In this example, there is only a single problem space.

When there are multiple problem spaces that share the same data structures. the application of these rules is

more problematic because information that is static in one problem space may be dynamic in another.

In determining an appropriate representation. the operators of a problem space must be considered because

they determine what information is necessary to solve the problem and whether the information is dynamic or

static. Consider the Eight Puzzle, which consists of a 3x3 frame with eight tiles. ..1 1-8. and a blank

space. The nine positions that. contain the tiles are called cells. The operators of the k.'oblem space move a

tile in a cell adjacent to the blank space into the cell with the blak A problem is to start at some initial

configuration and. through a series of tile movements, obtain some desired configuration. Figure 8-0 contains

an example initial and desired state.

To derive a representation that obcys both of the representational rules. wc first determine the information

that is used in solving the problem and thcrcforc must bc explicitly represented. Two typcs of knowledge arc

a necessary part of problem solving: (I) operator-implementation knowledge. and (2) goal-test knowledge.

Each of these test different aspects of the state. Below is a list of the information required to implement the

4 4

XI PDX PARC. ISL-I5, INN!. \ RY i'tsf)

Initial State
..

2

_

3 1

8 4
7

7

,
6 5

FNUOIG A CASK
Desired State

1 2 3

8 4

7 6 5

Figure 8-1: Eieht Puu. le initial and desired states.

task.

1. The relathe positions of the tiles and the blank. These are needed to determine if a tile is next to
the blank so that the tile can be rritA ed: opzrator-implementation knowledge.

2. The absolute positions of the tiles and the blank. These are needed to determine if the tiles are in
the same cells as those in the desired state: goal-test knowledge.

3. The numbers on the tiles. these are needed to determine if the tiles are in the same position as
those in the desired state: eoal-test knowledge.

43

The next issue is to minimize the amount of dynamic data that must be modified when an operator applies.

When an operator is applied, it changes neither the tile, nor the cell that it occupied. All it changes is the

relationship between the tile and two cells on the board (the cell where it was and the cell that it now

occupies). We can reify that relationship and represent it as an object. Once the relationship is an object, the

operator:4 need only manipulate the relationship and not the other objects. Let's call the relationship a

binding, since it represents a binding of the tile to a specific cell. Therefore, a state consists of a set of nine

bindings one for each of the tile and cell combinations. Each binding has an augmentation for a tile and a cell.

Each tile is augmented with the number on it, while each cell is augmented with its7absolute position. To

represent the relative positions of the cells (so that the relative position of the tiles can be determined), the

cells are also augmented with their adjacent cells. All the dynamic information is encoded as bindings, while

all of the static information is encoded in the tile and cell objects. The operators will only manipulate

bindings, and never modify the tile or cell objects. To improve the efficiency of some of the matches, the state

is also augmented directly with the binding for the blank (tblank-binding) and the binding of the tile that was

just moved (tmoved-tile-binding). Below arc a set of actions that create a state in this format.

4 5

\FRO\ PARC' Is: \\CAW(,,fin

44 SOARUWWSMANUAL

(state <s> tblank-bi
<bb4> <bb5>

(binding <bbO> tcel
(cell <cll> tname
(tile <t2> tname 2
(binding <bbl> tcel
(cell <c12> tname
(tile <tl> tname 1

(binding <bb2> tcel
(cell (c13> tname
(tile <t7> tname 7

nding <bb5> tbinding <bbO> <bbl> <bb2> <bb3>
<bb6> <bb7> <bb8> tblank <c23>)
1 <cll> ttile <t2>)
11 tcell <c12> tcell <c21>)

1 <c12> ttile <tl>)
12 tcell <cll> tcell <c13> tcell <c22>)

1 <c13> ttile <t7>)
13 tcell <c12> tcell <c23>)

in addition to the two rules stated earlier, there are three special cases of them that should be kept in mind

when creating state representations.

1. A constant can be tested in two different ways by the productions used in solving a problem.

First, a production may test that a constant is a specific value, in which case the constant would

appear in the conditions of the productkm. In this case, the problem solving is dependent on that

specific value, and any chunk built to summarize the problem solving would correctly contain that

constant. In the second case, a production may test if two different objects have the same constant

(an equality test). This test is performed by matching both constants by the same variable. In this

case. the problem solving is independent of the specific values of the constants. being dependent

only on the fact that they are equal (or not equal). A chunk would nevertheless include the

specific constants because the constant is being functionally overloaded, with its specific value.

and its equality relation to other constants. The solution to this problem is to have indirect

pointers to constants when they will be used in equality tests. In our example, the tile numbers

were not contained in the binding augmentations of the state but were represented indirectly in
the tile objects. The tile-object identifiers can then be compared for equality, without referencing'
the enct values of the tile names. One useful convention is that constants should appear as values

only in tname augmentations. All other augmentations should be the identifier of another object

that has a further description.

2. All functionally independent uses of a concept should be represented as separate objects. Do not

overload an attribute or value with many different uses. Each use should be represented
separately. For example, if the state contains the description of an algebra problem, it might have

the concept left used in two different contexts. to represent expressions on the left sidc of equals

sign and to represent terms on the lett side of another operator, such as plus. These two lefts are

functionally independent. However, if both of these are tested in a problem solving episode. the
resulting chunks will contam tests making them dependent. hat is, any tests concerning the sides
of the equation will be dependent on tests of sides of the operator. This arises because chunking

assumes that if the same identifier is used in multiple places (in this casc. the identifier of the
object named left), then a chunk must test that it is the same. even though in this example it did

not have to be the same.

3. If a disjunction is used in a condition of a production. say for the names or two problem spaces

(such as problem-space-one problem-space-two >>). a chunk that included a tiring of that
production would include a test for only one of the Iwo names. !MI both. this would make the

chunk less general than iwcessary. l*o sok e this problem. reify the disjunction and create another
augmentation for both problem spaces and then test for that augmentation. l'his is exacdy the

4 6

\H<Ok PARC ISI

INCODINGATASK 45

reason that there is a *choices augmentation for goats. Many producdons used to test for
*impasse (< tie conflict >> or *impasse (< no-change rejection >> and the chunks built for the
subgoals would be over-specific. By addihe the *choices augmentation, a single augmentation can
be tested that embodies the disjunction: and the disjunction is then included in the chunks.

8.3. Operator Creation

Once a representation for the states has been designed. the problem-space operators should be defined. For

a given problem. many different sets of operators may be possible for essentially the same problem space. For

the Eight Puzzle. there could be twenty-four operators. one for each possible movement from each cell to an

adjacent cell. In such an implementation. all operators could be made acceptable for each state and then all of

those that cannot apply because the blank is not in the appropriate place would be rejected. A convention in

Soar is that if a problem space is augmented with an operawr (such as (problem-space p0003 toperator

00002)). an acceptable-preference for that operator will automatically be made so that the operator will be

considered for c$,ery state in the problem space (by production default*make-all-operators-acceptable).

Alternatively. only those operators that are applicable to a state could be made acceptable. which we will

dcscribe in our example below. Another implementation could have four operators. one for each direction

that tiles can be moved into the blank, up. down, left. and right. Those operators that do not apply to a state

(because no tile exists that can be moved in that direction) could be rejected.

In our implementation of tis', .'.(ght Puzzle, there is a single general operator. which moves a tile adjacent to

the blank into the blank. For a given state, instantiations of this operator are created for each of the adjacent

tiles. To create the operator instantiations requires a single production, shown below. Each operator has

three fields: *name contains the name of the operator, which is always move-tile: tblank-cell for the cell that

contains the blank: and ttile-cell for the cell that contains the tile that will be moved into the cell with the

blank. At thc same timc that an operator is created, an acceptable-preference is created, so that the operator

can be selected to be the currcnt operator for the context containing the eight-puzzle problem space and dig,

state with which the operator was instantiated. Since operators are created only if they can apply, no

additional production is required to reject inapplicable operators.
(sp eightacceptable
(gc <g> tproblem-space <p> tstate <s>)
(problem-space <p> tname eight-puzzle)
(state <s> tblank-binding <blank>)
(binding <blank> tcell <cl>)
(cell <cl> tccil <c2>)

-(preference trole operator tvalue acceptable
tgoal <g> tproblem-space <p> tstate (s>)

(operator <o> tname move-tile ttile-cell <c2> tblank-cell <cl>)
(preference <o> trole operator *value acceptable

*goal <g> tproblem-space q:1> *state (s>))

4 7
\1140\ Mitt .\\Lk, .

46 SOAR USERS MANUAL

8.4. Operator Application

An operator of a problem space is applied whcn it is selected by thc decision procedure. i.e., when its

identifier replaces the existing symbol in the role of an operator. 'Mat is, whatever happens while a given

identifier occupies an operator role comprises the attempt to apply that operator. Selecting an operator and

installing its identifier in the operator role produces a context in which productions associated with the

operator can execute (they contain a condition that tests that the operator is selected). Operator productions

are just elaboration productions, uscd for operator application rather than for search control.

When a nonmonotonic operator (an operator that modifies the current state) is successfully applied, it must

create a preference for the new state it creates. That preference includes the current goal. problem space, state

and operator. Based on this preference, thc ncw state can bc selected; and the operator will not be re-applied

to the state (defauleno-operatorr-retry will reject the operator). If the operator is monotonic (only adds

information to the state) or fails to apply. it should creatc a new preference for thc current state, which t:ien

leads to the operator's rejection (by defauleno-operatorretry).

To apply an instantiated operator in the Eight Punk requires the two productions shown below. When the

identifier of a move-tile operator is selected as an operator in the eight-puzzle problem space, production

eightsereate-new-state will apply and create a new state with the moved tile and the blank in their new

positions. It detects that there is an operator in the operator role and matches the binding ((10) for the

blank tile (01>) and its cell ((el >). It also matches the cell that is connected to <cl> via thc operator (<a>)

and matches the tile in that cell (02>). The actions of the production arc to create a new state symbol (<s2>).

a preference for that state (with the current context in its context fields), and then swap the bindings of cell

<et> and <a>. It marks in the state the bindings that were swapped (tsurapped) and the bindings that were

just created, distinguishing the old and new positions of the moved tile (thlankhinding, tmoved.tile-binding).

These latter augmentations will be used by search control.

(sp eight.create-new-state
(gc <g> ?problem-space <p> ?state <s> ?operator (o>)

(problem-space <p> ?name eight-puzzle)
(state <s> ?binding <bl> ?binding <b2> ?blank-binding (b1>)

(binding <bl> ?tile <tl> ?cell <ct>)
(binding <b2> ?tile <t2> ?cell (c2>)
(operator <o> ?name move-tile ?blank-cell <cl> ?tile-cell (c2>)

-->
(preference <32> ?role state ?value acceptable

?goal <g> tproblem-space <p) tstatia <s> ?operator <0)
(state <s2> ?swapped <bl> ?swapped <b2> Valank-binding <b3)

moved-tile-binding (b4> ?binding <b3> ?binding <b4>)
(binding <b3) ?tile <t2> ?cell <cl>)
(binding <b4> ?tile KU> ?cell <c2)))

A second production. eight*copy-unchanged. copies over all of the bindings that did not have to bc swapped.

4 8

\ I PDX IS! I \

ENCODING A TASK 47

It applies after the previous production.by testing for the creation of the preference for the new state (created

by eight*create-new-state). The test of the preference must include tests that the state and operator are not

equal to nil, because even though <s> and <o> were previously bound in the first conditions, the preference

will match if its context fields match exactly or match nil (so that it is easy to match those preferences that are

relevant to a context).
(sp eightcopy-unChanged
(gc <g> tproblem-space <p> *state <s> toperator (co>)
(problem-space <p> tname eight-puzzle)
(preference <n> trole state tvalue acceptable

tproblem-space <p> tstate { <> nil (s>)
toperator [<> nil <o>})

(state <s> tbinding (b>)
(operator (o> tname move-tile)
(state <n> -tswapped <b))
->

(state <n> tbinding (b>))

This production and the previous one are typical of the types of productions used to implement simple

operators in Soar. One production makes the changes and creates a new state, while another (or possibly

others) copies those aspects of the state unaffected by the operator. This shows how to implement an operator

that changes or adds new augmentations to a state. If an operator is to delete some aspect of a state, the

productions that implement it should create a new state and copy only those augmentations that are to be

retained.

8.5. Goal Detection

All subgoals are terminated by the architecture, which detects the resolution of an impasse through the

creation of new preferences. So, in one sense, goal detection is done automatically. However, for many

subgoals (and usually the top-level goal), the decision to create a preference that resolves the impasse becomes

equivalent to a goal test. In addition, when an evaluation subgoal is used, it is useful to be able to signify that

a state created in the subgoal will achieve a higher-level goal. Therefore, there is default knowledge in Soar

that detects when a state is augmented with success or failure with respect to a given desired state. These rules

create the appropriate preferences if it is a subgoal. or terminates problem solving if it is in the top-level goal

(see Section 6.4).

In detecting that a state achiews a goal, the actual test can be represented either explicitly or implicitly.

Sometimes the desired states are represented explicitly as an augmentation of the goal. This augmentation

would usually be created after the problem space has been selected. Alternatively, the desired states may not

be explicitly represented: and instead there may be a production, a set of productions, or an operator that

recognize when a given state satisfies the goal without comparing it to an explicit description. There can be

any level of explicit or implicit representation in between where parts of the desired state are explicitly

49
EROX PARL (SI I t LARY OM

48 SOAR USER'S MANUAL

represented. and parts of the goal test are embedded in productions. However, the satisfaction of a goal

should be detected by a test of a state (including its augmentations) and the information tied to the goal. If

other information is tested (such as aspects of the problem space or the operator), then that information

belongs either in the goal or in the state. Whenever the goal is augmented with additional information to be

used in the goal test. it should be encoded as an object that is the value of the fdesired augmentation of the

goal.

Although Soar allows the detection of desired states through recognition by a production (without

comparison to an explicitly represented desired state), it is not the recommended practice because it leads to

the learning of ovtIly specific chunks. The production that tests for the desired state must include conditions

that test for the actual values of the constants in the state. In the Eight Puzzle this would mean testing that a

specific cell had a specific tile. Any chunk built to summarize the subgoal in which the test applied would be

specific to the exact desired state. Instead, a comparison can be done between an explicitly represented

desired state and the current state. In this case, only the equality of the identifiers that are augmented with

the constants need be tested, and not the constants themselves.2 The resulting chunk is sensitive to the

relative values of the desired state and the states in the problem space Sad not the exact values of the constants

in the state.

For the Eight Puzzle, the desired state is explicitly represented in working memory as a state. The desired

state (<d>) is in filesired augmentations of the goal. The following production detects that the desired state

has been achieved.

2This assumes that it is possible to coordinate the states and the desired state in the problem space so that they share the same
identifiers for the constants. This is not always possible.

g:HICA Isl. :5 1 N1.N12v

ENCODING A TASK 49

(sp eightscletect-goal
(gc <g> *problem-space <p> *state <s> *desired <d>)
(space <p> *name eight-puzzle)
(state <s> *binding <xll> <x12> <x13> <x21> <x22> <x23>

<x31) (x32> <x33>)
(binding <xll> *cell <ell> *tile <oll>)
(binding <x12> *cell <c12> *tile <012>)
(binding <x13> *cell <c13> *tile <o13>)
(binding <x21> *cell <c21) *tile <021>)
(binding <x22> *cell <c22> *tile <022>)
(binding <x23> *cell <c23> *tile <023>)
(binding <x31> *cell <c31> *tile <031>)
(binding <x32> *cell <c32> *tile <032>)
(binding <x33> *cell <c33> *tile (o33>)
(cell <cll> tname 11) (cell <c12> *name 12)
(cell <c13> tname 13) (cell <c21> *name 21)
(cell <c22> *name 22) (cell <c23> *name 23)
(cell <c31> *name 31) (cell <c32> *name 32)
(cell <c33> *name 33)
(desired <d> *binding <dll> <d12> <d13> (d21> <d22> <d23>

<d31> <d32> <d33>)
(binding <dll> *cell <cll> *ti3c! <oll>)
(binding <d12> *cell <c12> tti <012>)
(binding <d13> *cell <c13> '3>)
(binding <d21> *cell <c21> rtilc
(binding <d22> *cell <c22> *tile
(binding <d23> *cell <c23> *tile <o23>)
(binding <d31> *cell <c31> *tile <031>)
(binding <d32> *cell <c32> *tile <032>)
(binding <d33> *cell <c33> *tile <033>)
-->

(state <s> tsuccess <d>))

The action is to augment the state with *success and the value of tdesired. By including the desired. this

guarantees that only those goals that share the same desired state will be terminated. Default productions

handle tsuccess, so that if a top-goal is detected in a subgoal (and labeled with tsuccess), evaluations and

selection subgoals are handled correctly. See Section 6.4 for more information on evaluations.

In this example, the test was performed with a single. very large production. Other options are possible: '.1)

test each of the bindings of a state independently in parallel. and then combine the results of those tests: or (2)

test the initial state and then incrementally update the comparison based on the changes made to the state.

For many problems. the generality of chunks learned by Soar is maximized if the goal test is done
incrementally. An incremental goal test involves keeping track of the differences between a state and the
desired state. When a new state is created, its differences are computed based on the differences in the state it

was created from and any changes to the prior state that were necessary to create the new state. When there

are no differences between a state and the desired state, the goal is achieved. This improves the generality of

51
\ I.ROX xR.t. ;Si :$ I .4.1

50 SOAR USEWS MANUAL

the conditions of a chunk built for the goal because the detection of goal achievement is based only on the

parts of a state that changed, and not on the complete state. When non-incremental goal tests are used, the

complete state must be tested, not just the aspects that changed. Not all goals can be tested incrementally,

although any goal that has a conjunction of conditions can be. In the Eight Puzzle, the position of each tile in

its desired cell can be detected independently and an incremental goal test can be used. When the initial state

is selected, it is augmented with a difference that is the number oftiles that are out of place. Whenever a new

state is created, its difference would be computed modifying the difference of its prior state to reflect the

changes in the new state (a tile is moved into or out of its desired cell).

8.6. Initialization

In addition to defining the operator selection, operator application and goal detection rules, working

memory must be initialized to an appropriate goal, problem space and initial state, so that problem solving

can begin. Following a call to init-soar, working memory is empty. When Soar starts with an empty working

memory, a context is created that has all of the slots set to undecided, ibis context does not have a supergoal.

One way to get a task started (as in eighestart below), is to use a production that detects a goal without a

supergoal, and creates a preference for a new problem space, in this case, one named eight-puzzle. Since the

variable <p> only appears in the action, it will be bound to a newly generated symbol, starting with the first

letter of the variable (something like P0034). The second occurrence of <p> (in the preference) will use this

same symbol. The goal is augmented with a name that can be tested by later productions.

(sp eight*start
(gc <g> tproblem-space undecided -tsupergoal)
-->
(gc <g> ?impasse none tname solve-eight-puzzle)
(problem-space <p> tname eight-plAzzle)
(preference <p> trole problem-space tvalue acceptable

tgoal <g>))

The preference created to select a problem space is only sensitive to the current goal.

Another type of initialization is available using the init-context function, which allows the user to set the

values of the top context (see Section 10.2.3).

Production eigheinitial-desired-states creates the initial and desired state as well as a preference for the

initial state. The acceptable-preference for the initial state f(s>) has undecided in the state field so that this

state will be selected only at the beginning of problem solving. If the state field were unspecified (or nil), the

acceptable-preference would make the state a candidate at all times during problem solving in goal <g> and

problem space <p>, since a preference is used whenever all of its non-nil context fields match the roles of a

context.

52
FRO PARC. [SC.- .5 1.1 \ UNR i9q6

ENCODING A TASK 51

(sp eight*initial-desired-states
(gc <g> tproblem-space <p> ?state undecided

tname solve-eight-puzzle)
(problem-space <p> tname eight-puzzle)

(gc <g> tdesired <d>)
(preference <s> trole state ?value acceptable

tgoal <g> ?problem-space <p> ?state undecided)
(state <s> tbinding <bb0> <bbl> <bb2> <bb3>

<bb4> <bb5> <bb6> <bb7> <bb8> tblank-binding <bb5>)
(binding <bb0> ?cell <OA> ttile <t2>)
(binding <bbl> tcell <c12> ?tile <tl>)
(binding <bb2> tcell <c13> ttile <t7>)
(binding <bb3> tcell <c21> ?tile <t8>)
(binding <bb4> ?cell <c22> ttile <t6>)
(binding <bb5> tcell <c23> ttile <tO>)
(binding <bb6> tcell <c31> ttile <t3>)
(binding <bb7> ?cell <c32> ttile <t4>)
(binding <bb8) tell <c33> ttile <t5>)
(desired <d> ?binding <dO> <dl> <d2> <d3) <d4>

<d5> <d6> <d7> <d8>)
(evaluation <d> ?better higher)
(binding <dl> tcell Xcll> ?tile <tl>)
(binding <d2> tcell <c12> ?tile <t8>)
(binding <d3> tcell <c13> ?tile <t7>)
(binding <d8> ?cell <c21> ttile <t2>)
(binding <dO> tcell <c22> ?tile <tO>)
(binding <d4> tcell <c23> ?tile <t6>)
(binding <d7> tcell <c31> ttile <t3>)
(binding <d6> tcell <c32> ?tile <t4>)
(binding <d5> tcell <c33> ttile <t5>)
(cell <cll.> tname 11 tcell <c12> tcell <c21>)
(cell <c12> tname 12 tcell <c11> tcell <c13> tcell <c22>)
(cell <c13) tname 13 tcell <c12> tcell <c23>)
(cell <c21> tname 21 tcell <cll> tcell <c31> tcell <c22>)
(cell <c22> tname 22 tcell <c21> ?cell <c12> tcell <c23> tcell <c:12>)
(cell <c23> tname 23 tcell <c22> tcell <c33> tcell <c13>)
(cell <c31> tname 31 tcell <c32> tcell <c21>)
(cell <c32> tname 32 tcell <c31> tcell <c22> tcell <c33>)
(cell <c33> tname 33 tcell <c32> tcell <c23>)
(tile <tO> tname 0) (tile <tl> tname 1) (tile <t2> tname 2)
(tile <t3> tname 3) (tile <t4> tname 4) (tile <t5> tname 5)
(tile <t6> tname 6) (tile <t7> tname 7) (tile <t8> tname 8))

The desired state is augmented with ?better higher, so that evaluations with higher values will be translated

into better-preferences by evalsprefer-higherevaluation. Notice that the bindings of the desired state share

the same cell and tile structure as the initial state. This allows the goal test to check only the equality of these

augmentations and not the equality of the names of the cells and the tiles. This improves the generality of

chunking, but it is not always possible, especially when the desired and initial states are created at different

times.

53

\EROX ISI .15 i

52 SOAR USERS MANUAL

8.7. Monitoring States

Monitoring of states makes traces much easier to read and does not impact chunking when done with no

changes to working memory. However it may require productions that are costly to match because the

complete structure of the state must be matched. Another option is to use the function trace-attributes which

enables automatic tracing (see below and Section 10.4.1). Here is a monitor production for the Eight Puzzle

that will trace a state after it is generated but before it is selected. Tabstop binds its argument (<tab>) to the

current tabstop. By using tabto with the current tabstop in a write statement, the monitoring will.line up with

the trace. Write2 is used in the first write command because it does not insert blanks between the atoms it

prints.
(sp eight*monitor

(gc <g> tproblem-space <p> ?state <s> toperator <o>)
(problem-space <p> tname eight-puzzle)
(preference <n> trole state tvalue acceptable

tproblem-space <p> ?state <s> toperator C 0 nil <0> })
(operator <o> tcell <name>)
(state <n> tbinding <x11> <x12> <x13> <x21> <x22> <x23>

<x31> <x32> <x33>)
(binding <xll> tcell <cll> ttile <oil>)
(cell <cll> tname 11) (tile <oil> tname <v11>)
(binding <x12> tcell <c12> ttile <012>)
(cell <c12> tname 12) (tile <012> tname <v12>)
(binding <x13> tcell <c13> ttile <013>)
(cell <c13> tname 13) (tile <013> tname <v13>)
(binding <x21> tcell <c21> ttile <on>)
(cell (c21> tRame 21) (tile (021> tname <v21>)
(binding <x22> ?cell <c22> ttile <orgi:N
(cell <c22> tname 22) c,;;ile <022> <v22>)
(binding <x23> tcell ttile
(cell <c23> tname 23) (tile <023> li:4:;36*T. <v23>)
(binding <x31> tcell <c31> ttile
(cell <c31> tname 31) (tile <031> <v31>)
(binding <x32> tcell <c32> ttile <032>)
(cell <c32> tname 32) (tile <032> tname (v32>)
(binding <x33> tcell <c33> ttile <033>)
(cell <c33> tname 33) (tile <033>.tname <v33>)
-->
(tabstop <tab>)
(write2 (crlf) (tabto <tab>) <name> "(" <s> ") --> " <n> (crlf))
(writel (tabto <tab>) " " (crlf))
(writel (tabto <tab)) " I" <v11> "I" <v21> "I" <v31> "I" (crlf))
(writel (tabto <tab>) " 1---1---1---I" (crlf))
(writel (tabto <tab>) " I" <v12> "I" <v22> "I" <v32> "I" (crlf))
(writel (tabto <tab>) " 1---1---1---1" (crlf))
(write1 (tabto <tab>) " I" <v13> "I" <v23> "(" <v33> "I" (crlf))
(writel (tabto <tab>) " " (crlf)))

5 4

\LRO\ P.\Pt. 1M :5 IANt. AR\ ;ca8b

ENCODING A TASK 53

8.8. Set-up

Once all the productions and the representations have been defined, a few house-keeping operations need

to be performed. These should be included at the beginning of the file that contains the productionc that

define the task.

8.8.1. Multi-attributes

To improve the ordering of productions, the function multi-attributes is called with a list of those classes

that have attributes with more than one occurrence Per object and, if known, the number of occurrems. In

this implementation of the EightPuzzle. states and desired states have multiple bindings, and ce;l7 At.lf links

to other cells.
(multi-attributes '((state binding 9) (desired binding 9)

(cell cell 4)))

8.8.2. Trace-attributes

The user can improve the readability of a trace by providing a list of attributes to be traced for different

classes. In the Eight Puzzle, the operators do not have distinguishing names, so the only way to obtain 3

meaningful trace of the problem solving is to include the cell oc the operator in trace-attributes. The cell of

the operator contains the position of the tile that is moved into the blank.
(trace-attributes '((operator tile-cell)))

8.9. Search Cont rol

Besides defining the task (the goal and the problem space), additional search control can be introductd to

make problem solving more efficient.

8.9.1. Simple Search Control

Eight*worst-undo creates a worst-preference for the Imnse of the operator that created the current state.

This type of search control is common and many tasks will have productions similar to this one. Thc key part

of the production is the determination of the inverse of an operator. rn the Eight Puzzle, the inverse of the

prior operator is determined by finding the operator that will move the tile that was moved by the prior

operator.

55

\I.KO\ 14 1St \ Nyt t :cots

54 SOAR USER'S MANUAL

(sp eight*worst-undo
(gc <g> tproblem-space <p> *state <s))
(problem-space <p> tname eight-puzzle)
(state (s> tmoved-tile-binding <mtb>)
(binding <mtb> *cell <cmtb>)
(preference <o> -*role operator tvalue acceptable

tproblem-space <p) *state <s>)
(operator <o> ttile-cell <cmtb>)
-->
(preference <o> trole operator ?value worst

coal <g) tprnblem-space <p> *state <s>))

8.2.2. Using State Evaluations

State evaluations are a standard way of controlling search. A production that computes the evaluation

should look like thc following. (Everything in bold should be left alone. Everything in regular font should be

replaced for the specific task.)

(sp production-name
(g c <g> tproblem-space <p> tstate <ss> <s>)

tsuperoperatnr <so>)
(problem-space <p> tname task-problem-space-name)
(operator <so> tname evaluate-object tevaluation <e>

*superstate <ss> *desired <d>)
: Conditions that compute the evaluation based on state <s> and
desired state <d>. <d> will point to the dewed state
defined at the beginning of the task and attached to the

: desired and desired roles of the top goal.
-->

(evaluation <e> tnumeric-value your-evaluation))

The default productions take care of the rest, testing the supergoal and comparing the evaluations (if <d> is

augmented with tbetter higher/lower). A complete evaluation production for Eight Puzzle is below. It gives

an evaluation of 1 if the operator that created the state mod a tile into its desired position. A second

production gives an evaluation of -1 if a tile is moved out of position. and a third production gives an

evaluation of 0, if neither of these occur.

(sp eight*eval-state-plus-one
(gc <g> rproblem-space <p> tstate <> <ss> (s>)

tsuperoperator <so>)
(problem-space <p> tname eight-puzzle)
(operator <so> *name evaluate-object tevaluation <e>

tsuperstate <ss) *desired <d>)
(state <s> tmoved-tile-binding <bl>)
(binding <bl> *cell <cl> *tile <vl>)
(desired <d) tbinding <b2>)
(binding <b2> *cell <el> *tile <v1>)
-->
(evaluation <e> *numeric-value 1))

5 6

.! \ 11.11(:. ISI : As%

FM 'MING A !ASK 55

8.10. Example Trace

After loading all of thc Eight Puzzle productions into Soar. it is ready to run. Below is a trace of the

problem solving and learning for the Fight Puzzle. MI output is shown in boldface. (The trace of the initial

and desired states at the heginnine was not produced hy the program.) All comments arc prefaced by a

semi-coion (:).

(soarload 'eieht.soar)
(learn on full-trace)
(d 12)
learn status: on always print full-trace
0 g : g 0001

initial state desired state

1 2 1 8 1 3 1 1 1 1 2 1 3 1

1- --1---1- --I 1---1---1---1
1 1 1 6 1 4 1 1 8 1 1 4 1

1- --1---1- --I 1---1---1---1
1 7 1 1 5 1 1 7 1 6 1 5 1

1 p: p0004 eight-puzzle
2 s : s0005
3 ==>g: g0002 (tie operator undecided)
4 p: p0051 selection
5 s: s0053
6 o: 00058 evaluate-object(move-tile(13))
7 ==>g: g0045 (no-change operator evaluate-object(move-tile(13)))
8 p: p0004 eight-puzzle
9 s: s0005
10 o: o0042 move-tile(13)

1 2 1 8 1 3 1

1- -1 ---1---1
1 1 1 6 1 4 1

1 1 7 1 5 1

11 s: s0058
; An evaluation of -1 is created for s0058 because the 7 was
; moved out of its desircd position. Ibis evaluation leads to
the termination of goal g0045 and will he followed by the
evaluation of another eight-puzzle operator.

Since learning is on. a chunk will be built. Below is a trace of
the production being built. This trace is produced because of

: full-trace learning.

5

\ KU \ I' %Ate. :Y. NM_ Alt 140)

56 SOAR USIRS MANUAL

backtracing to determine conditions
working-memory elements that will become actions:
(evaluation e0057 tnumeric-value -1)
productions antt conditions traced through:
eightseval-state-minus-one
decision-procedure

eval*select-r3le-operator
(gc g0002 toperator 00056)
(operator o0056 tname evaluate-object)
(operator o0056 trole operator)
decision-procedure
(operator 'o0056 tobject 00042)
(operator o0056 tsuperproblem-space p0004)
(operator o0056 tsuperstate $0005)
(operator o0056 tdesired d0003)

(problem-space p0004 tname eight-puzzle)
decision-procedure

eight-create-new-state
decision-procedure
decision-procedure
(state s0005 tblank-binding b0025)
(operator o0042 ttile-cell c0020)
(operator o0042 tname move-tile)
(state s0005 tbinding
(binding b0019 tcell
(state s0005
(binding b0025 tcell cO1;i6)
(binding b0025 ttile t0006)
(binding b0019 ttile t0013)

(cell c0020 tcell c0026)
(desired d0003 tbinding d0035)
(hinding d0035 tcell c0020)
(Uinding d0035 ttile t0013)
(operator o0056 revaluation e0057)

conditions that are tersed out: (binding <bl> ttile <t2>)

build:p0086
12 o: o0054 evaluate-object(move-tile(22))
ssbreak"*
(last-chunk)

Print out the production that was just built.

(sp p0086
(gc <gl> toperator OD)
(operator <01) rrole operator tname evaluate-object

tsuperproblem-space <pl> tobject <01> tsuperstate (31>
rdesired <d2> revaluation <el>)

(problem-space <pl> tname eight-puzzle)
(state <sl> rblank-binding <bl> tbinding <b2>

tbinding { <> <b2> cbl> })
(operator 01) rname move-tile ttile-cell <cl>)
(cell <cl> tcell <c2>)
(binding <b2> tcell <cl> ttile <tl>)
(binding <bl> tcell <c2>)
(desired <d2> tbinding cdl>)

58

\ HO \ l'ARL N 7' 1 \ Lott

A rAsK 57

(binding <dl> *tile <tl> tcel 1 <cl>)

(evaluation (el> tnumeric-value -1))
n i 1

(learn trace)

learn status: on always print trace t
; Disable thc trace of the production construction.

(run 7 d)

13 ==>g: g0046 (nn-change operator evaluate-object(move-tile(22)))
14 p: p0004 eight-puzzle
15 s: s0005
16 o: 00044 move-tile(22)

1 2 1 8 .1 3 1

1 1 1 1 4 1

I---I--
1 7 1 6 1 5 I

17 s: s0065
build:p0087
: This has an evaluation of 1 because the 6 was moved into
; its desired cell.
18 0 : o0055 evaluate-object(move-tile(33))
18:42 p0086
; The chunk built for the first subgoal applies and computes an
: evaluation of -I because the 5 tile will be moved out of its desired
; cell by operator o0043.

: Once all the evaluations arc computed. preferences are created
: that compare the different operators based on their evaluations.
; Two of the evaluations are thc !WM. SO indifferent preferences
: arc created between operators o0043 and o0042. Roth of these
; arc worsc than 00044. so worse-preferences arc 460 .4:reated.
; These preferences arc the results of g0002, the soal with thc
; tie impasse.
; Since the problem solving to create the two wcm-preferences
; was identical, two identical chunt:s could have been built.
: The duplication is detected (although it is not ahvays detected)
: and only onc production k built. Duplicate chunks arc also built
; because of the symmetry in the productions that create thc
; indifferent-preferences.
: The producticns arc refracted so that they do not tire
; on thc data that was used to create them.

duplicate chunk
build:p0088
duplicate chunk
build:p0090

19 o: o0044 move-tile(22)
break***

59

Xi liO\ i R INI ; \:t% 1st)

58 SOAR CSERli .4ANCAL

(last-chunk)

(sp p0090
(gc <gl> tdesired (d3> tstate (sl> tproblem-space <pl>)
(problem-space <pl> tname eight-puzzle)
(state <si> tblank-binding <b2> tbinding <b2>

tbinding (<> <b2> <bl> tbinding (<> <bl> (> <b2> <b3>))
(binding <b2> tcell (c3>)
(binding 01) tcell (<> <c3) (cl> ttile <t2>)
(cell <cl> tcell <c3>)
(desired <d3> tbinding <dl> tbinding (<> <dl> <d2>))
(binding <dl> tcell <cl> ttile <t2>)
(binding <b3> tcell (<> <cl> <) <c3> <c2>)

ttile (<> <t2> (t3>))
(cell <c2> tcell <c3>)
(binding <d2> tcell <c2> ttile <t3>)
(preference <o2> trole operator tvalue acceptable

tgoal (gl> tproblem-space <pl.> tstate <sl>)
(operator <02> tname move-tile ttile-cell <c2>)
(preference <01> trole operator tvalue acceptable

tgoal <gl> tproblem-space <pl> tstate <sl>)
(operator tcell <cl>)

-->
(preference <o2> trole operator tvalue indifferent treference <col>

tgoal <gl> tproblem-space (pl> tstate <sl>))
nil

75:(run)

20 s: s0078

21:48 p0090
21:48 p0090
; Chunk p0090 detects that moving thc 4 and moving the 6
; are indifferent because they both move a tile out of its
; desired cell. This does not determine the next operator
; so a tie impasse is created.
21 ==>g: g0047 (tie operator undecided)
22 p: p0085 selection

This continues until the problem is solved.

0

p i)(' ;5

ADVANCEDTOPKS 59

9. Advanced Topics

9.1. Operato. cprnentation Goal Tests

If an operalor requires a subgoal to implement it and some test exists to determine if a state is a valid result.

recent work suggests unusual way to structure the subgoal. The advantage of this scheme is that even if

over-general chunks are learned. they will not screw things up. The disadvantage is that the chunks will often

return multiple states. In the subeoal for implementing the operator (call it Opp. there should he a

production (call it detect-candidate) that detects that a state is a candidate result. A candidate result is a state

that might be a valid result of the subgoal although the final test has not been made. It is possible that all

states in the subgoal are candidate results. It is also possible that the candidate result is not a state in the

subgoal. but only a subobject (or whatever). The action of detect-candidate is to augment the superstate (the

superstate is the state that Opl is being applied to) with an object of class result. The result will be augmented

with the operator (0p1) and the candidate result. For examp/c. detectcandidate might be:
(sp detect-candidate
(gc <g> tproblem-space <p) tstate <s)

tsupergoal <sg> tsuperoperator <so>)
(problem-space (p> tname implement-opi)
(state (s> ?candidate yes) :some test that it is a candidate
(operator <so> tname opl)
(gc <sg> tstate <ss>)
-->

(state (ss> tresult <r>)
(result <r> toperator <so) tcandidate (s>))

In most Soar programs, this production would have just created the preference for the state in the

supercontext and the subgoal would terminate. In this scheme, a second production, call it

detect-opl-suecess, will create the preference. This preference will fire u..:.tide the subgoal so that it will not

be included in the chunk. For example:
(sp detect-opl-success

(gc <q> tproblem-space <p> tstate <s> toperator <0)
(problem-space (p> *name rymy)
(state <s) ?result <r>)
(operator Co> tname opl)
(result <r) *operator <o> tcandidate <c>))
(state <c> tatribute value) :some test that it is a valid state

- >
(preference <c> -*role state *value acceptable

tgoal <g> tproblem-space <p) *state <s> toperator <0))

This production will fire whenever a candidate Ito been suggested that passes the final test. When chunking

is used, the chunk will have as Us actiori5)Lavs that were candidates (hut no preferences).

Detect-op l-success will select out the corred Nst,t4 cm,),:=:i: prefercnce. If the chunk applies incorrectly.

detect-opl-succ:ss will not tW and thc t!,t.

31

\ "RON A."1,t4 ,N4 ' 'f

60 SOAR USER'S MANUAL

9.2. Operator Parallelism

The parallel-preference allows the user to specify that two or more operators can be performed in parallel.

In the decision procedure, if the result is a set of operators that are mutually parallel (there exist parallel

preferences between them), the current goal-context-info for the operator role is removed; and new operator

goal-context-infos are created for each of the parallel operators. Whenever a parallel operator is rejected, its

goal-context-info is removed from working memory. The parallel structure is maintained until a new

preference causes a change in a higher-order object or all but one of the parallel operators is rejected. Each

parallel operator is independent and each can cause productions to fire innependendy of the others. If a

parallel operator does not lead to the creation of a preference that will change the context, a no-change

impasse will arise. To distinguish the subgoals, each has a tsuperoperator augmentation that contains the

identifier of one of the parallel e-i.Trators. When the operators have subgoals, they will run in parallel. These

subgoals can also have parallel operators, giving rise to exponential blowups in the number of subgoals being

pursued (making the goal-context-stack really a tree). The parallelism is only simulated in the present

implementation. All of the parallel operator su5goals are synchronized on the decision cycle. The function

pgs will print the parallel structure and make a little more sense of it than the trace (see Section 10.5.2).

This simple parallel structure gives AND, OR and hybrid AND-OR parallelism. If all of the operators are

non-monotonic (they all create new states), we have OR parallelism where all of the parallel operators are

racing to succeed first. If two (or more) parallel operators finish on the same decision cycle, there will be two

(or more) acceptable-preferences for the states, and this will lead to a tie impasse if no other preferences are

added. Eventually one of these ,willed be picked after going into the selection problem space .

If all of the operators are monotonic and just add information to the current state until enough information

is available to make a new decision, we have AND parallelism. A good example of this is when parallelism is

applied to the evaluate-object operators in the selection problem space (see Section 6.3). In parallel, all

objects will be evaluated until enough evaluations and preferences are created to break the tie that created the

selection subgoal. If there is a combination of monotodie and non-monotonic operators, we get a hybrid

AND-OR parallelism, where the monotonic operators augment the current state until a non-monotonic

operator terminates.

Since all parallel operators are running in the same working memory it is possible for them to share

information and to communicate partial results. One way to achieve this is to have the operators attach partial

results to the state they are applying to and examine the state for information created by other operators.

62

\FRO\ FARC ISI.-If. 1 M.ARY :.)86

TOP-LEVEL VARIARLES AND FUNCTIONS 61

10. Top-level Variables and Functions
This chapter consists of the global variables. properties. and functions that are used to control Soar. Some

of these are Ops5 commands that have been modified to provide more functionality. The Backup feature of

Ops5 does not work in Sowlbut see pop-goal for a reasonable alternative). The functions names are followed

by a list of their arguments. Arguments in square brackets (1]) are optional. An argument ending in * signifies

that any number of arguments may follow.

10.1. Global Variables

The following global variables are used to control certain aspects of Soar Many of these are also referred to

in sections on functions that they affect. All global variables in Soar begin and end with an asterisk (9.

chunk-all-paths

chunk-classes

UT, then when the exact same subgoal result is produced by two or more
production firings. chunks will be built based on each of the production
firings. *Chunk-all-paths* is initially nil.

A list of SP class names for which at least one must occur in the conditions
of a chunk for it to be built. This helps eliminate chunks that are overly
general. *Chunk-classes* is initially (problem-space state operator).

*chunk-free-problem-spaces*A list of problem-space names for which chunking should not be used. If
the current problem space in a subgoal has its name in the list, and the
subgoal is terminated, no chunk will be built for that subeoal.

chunks

max-chunk-conditions

max-elaborations

max-recurse

sp-classes

A list of the names of all of the productions that have been learned.

No production will be built that has a greater number of conditions than
max-chunk-eonditions. *Max-chunk-conditions* is initially 200.

If the elaboration phase runs more that *max-elaborations* then the
elaboration phase is terminated and the decision procedure is executed.
The default value of *max-elaborations* is 100.

The maximum recursive depth that the ordering algorithm will use in
breaking ties between competing conditions. By increasing the depth, the
ordered productions can sometimes be more efficient, although loading in
the productions will take longer. *Max-recurse* is initially 2.

A list of dotted pairs where the first element of each dotted pair is the SP
class name and the second element is the P class name. When translating
from SP tbrmat. Soar uses *sp-classes* to replace SP classes with P classes.
Users should not haw to add pairs to *sp-classes* . since this is done
automaticall by Soar. The first time a SP class is encountered. it. along
with its name concatenated with -info is added to *sp-classes*. 'The user
should add pairs w *sp-classes* if he wants to have more than one SP class

63
\I KO\ PAR(..Isi \\LARY :9Nn

62

spo-defaultdepth

subgoal-tabs

*warnings

SOAR USER'S MANUAL

translated into the same P class (gc. goal-context, context, and goal all
translate into goal-context-info).

The default depth of objects that spo prints out. The value of
sspo-default-depths is initially 1.

If T. watch and pgs will indent during the tracing or printing of the
context stack. If nil watch and pgs will not indent, but instead will print
the subgoal depth as a number. The value of ssubgoal-tabs* is initially T.

If T, warnings are printed. If nil. warnings are not printed. The value of
warning is initially T.

watch-free-problem-spaces Contains a list of problem-space names that will not bc traced with watch
0. The value of *watch-free-problem-spaces* is initially nil.

10.2. Initialization

10.2.1. Init-soar

While running Soar, the user may wish to empty working memory and restart a run using the same core

image. The function init-soar empties working memory. It should be called whenever the user wishes to

restart without reloading productions. After it has been called, new productions can be added, either

manually or by reading a file. Old productions (including chunks), that haven't been replaced. will still be

available.

(i nit-soar)

10.2.2. Restart-soar

While running Soar, the user may wish to replace all of the productions, but still maintain the same Lisp

core image. The restart-soar function is a Soar function that re-initializes the system, removes all productions.

including chunks, empties working memory and resets all global Variables to their initial (default) values.

(restart-soar)

10.2.3. Init-context idl 1d2 1d3

The init-context function first calls init-soar to clear working memory. and then creates the context in

working memory. If it is not called, the initial context, except for the goal, is all undecided: (gc g0001

tproblem-space undecided tstate undecided toperator undecided). There are three arguments. The first is the

identifier of the initial problem-space. the second is the identifier of the initial state and the third is the

identifier of the initial operator. The function gensyms a goal identifier, which is returned as the result.
(init-context 'problem-spacel 'statel 'do-eight-puzzle)

6 4

XER.0 \ P.\P.C. IS1.- :5. \ \R': 11%

TOMENTIVARMBLUANDFCNCHONS 63

10.3. Loading, Running, and Breaking

10.3.1. Soar load file

The soarload function will load in (-defile. It must be used in place of load on Xerox 1)-machines for files

containing productions, but its use is optional for all other implementations ofSoar.
(soarload 'eight.soar)

10.3.2. Multi-attributes L

'Me multi-attributes function takes a list of two- or three-element lists as its argument. Tly.! first element of

each sublist is a SP class name, the second element is a SP attribute (not an 0ps5 attribute. !.:,ut the attributes

that show up in SP format), and the third (optional) element is a number. The function declares that the

attribute for the SP class will appear multiple times for a given object. This Usually happens when an object

has a set of subobjects. The third argument is the expected number of occurrences of the attribute for a given

object of that class. The default is 5. When this information is provided, the ordering algorithm can produce

more efficient P format productions and greatly speed up the execution of a system.

10.3.3. Run N [Di

The run function executes the production system with the current working memory for the number of

cycles given by N. If D is missing, N gives the number of produclion cycles to be executed. In Soar, during

the elaboration phase, many productions may fire in parallel on the same production cycle. This is one

production cycle. However, the elaboration phase may last many production cycles, and each cycle is counted

toward the total. Each decision phase is also counted as one production cycle. If D is d (no other values are

legal), then N is the number of decision cycles that are executed before halting. En this case Soar halts just

after the decision procedure of the Nth decision cycle. If N is an object identifier or object name, Soar halts

when an object with that identifier or name is selected as the current value of a role in a context. If N is a

SP-form working-memory element. Soar halts when that working-memory element is created. If a run is done

following iMt-soar, it automatically initializes working memory with all non-goal roles in a goal-context being

undecided.

(run 100 d)

10.3.4. D N

(D N) is equivalent w (Run ND).

65

:FRO':' PARC. ISL.- .

64 SOAR USER'S MANUAL

10.3.5. Pbreak C

Pbreak allows the user to give a set of names of productions, and break on the production cycle after they

fire. It has been expanded in Soar to allow the user to break after an object with a specific name is selected

for a context role. L can either be the name of a production to break after, or it can be a name or identifier of

the object the user wishes to break on. Soar will break following the decision procedure when an object with

that name or identifier is selected as current. If L is nil. all break points are listed.
(pbreak selection evaluate-object)
(pbreak initial ize-rl-problem-space reject-worse)

Unpbreak C

Unpbreak removes breaks set by pbreak. To remove a break, use the same argument in unpbreak as was

used in pbreak, If L is nil, all breaks are removed.
(unpbreak nil)
(unpbreak initialize-ri-problem-space reject-worse)

10.3.7. User.select X

IT X is T, then ',,,,[ienever Soar is going to make a choice between indifferent objects, the user will be asked

to make 42.i.t.IWN--.!:nn. If X is nil, Soar will make the selection randomly. If X is 'first, Soar will always select

the first one ;:ftikv.1. This is a deterministic selection. If X is a list, then the list should contain numbers or

atoms. Fcir each seiection, the first element of the list is stripped off and used to select an object. If it is a

number, it will be used to index into the list of objnts to be selected (1 for the first). If the number is less

than 1, or greater than the total number of choices, the user is asked. If it is a symbol, the objects are

examined, and the first one that has the symbol as a name or the value of a trace-attribute is selected. If the

symbol does not match any of the choices, the user is asked. When the list is exhausted, userselect is called

automatically with the value of 4'default-user-select*, which is initially T. The original value for user-select is

(user-select t)

6 6

LkOX PARC. ISI.15 JANLAin 1986

TOP-LEVELVARIABLESANDEUNCTIONS 65

10.4. Tracing

10.4.1. Trace-attributes L

race-attributes takes a list of two-element lists as its argument. he first element of each sublist should be

a SP class and the second clement should bc a SP attribute. A ftcr trace-attributes is called, a watch trace of

level 0-2 (and PGS) will print out the value of the specified attributes when an object is selected to a context

role. If the value is an identifier with a tname attributc, then the name of the identifier is printed. The

tracing is recursive, so that if the value is an identifier that appears in an augmentation with another class in

troce-attributes, its attributes will be traced, and so on. *lhe recursion stops whenever a previously traced

identifier, or one that has no trace-attributes, is encountered. race-attributes is initialized with ((goal role)

(goal impasse) (goal superoperator) (operator instance) (operator object)). The tname attribute is handled

specially for all classes, so it should not be included in trace-attributes. All calls to trace-attributes merely add

pairs to the list.
(trace-attributes ' ((state backplane) (operator module) (module size))

10.4.2. Watch N

As in Ops5. N is a parameter that determines the amount of tracc information produced by the system.

Soar expands the available values and expands the different levels of trace information.

No tracing.

Object tracing. Changes to a goal-context arc listed. No production or working
memory tracing. The object tracing includes the current decision cycle number, the
role being changed, the identifier of the object, the name and any attributes declared
with trace-attributes (see above). Objects are indented (3 * the subgoal depth).
Indenting can be turned off by setting the global variable *subgoaPtabs* to nil. When
there is no indenting, the subgoal depth is printed at the beginning of each line.
Subgoals are prefaced by "= =>" so they are easy to pick out.

1 ==>g: g0001 (no-change goal)
2 p: p0003 eight-puzzle
3 s: s0012
4 ==>g: g0031 (tie.operator)
5 p: p0032 selection
6 s: s0033
7 o0036 evaluate-object(up)

.5 Same as 1, except no trace of the time-tags of working-memory elements that match
the conditions of the productions. or arc created by productions or are auto-removed.

Adds trace of the productions that fire. In Soar. the trace starts with the decision cycle
number followed by the product ion cycle number (the number of production cycies
where many productions can fire in parallel on one production cycle since thc: last
init-soar). [hese numbcrs are followed by the name of the production dui iired,

67
\EKOX P.%Rt .1st .i5. I.>

66 SOAR USER'S MANUAL

When the decision procedure is executed. the role and the name of the selected object
are traced. If there is an impasse in the decision procedure, the type of impasse and
the name of the newly created subgoal is printed. Following this information is a list
of the data that was matched by the production (given by time-tags) followed by the
data that was created by the production (given by time-tags). These working-memory
elements are Ops5 working-memory elements and will not be in SP format if printed
out directly using the v.m function. For example:

73:174 decide operator s0415
o: up 1466

74:175 create-newstate 1443 1456 17 1463 1466 23 --> 1467

The first line is a trace of a decision occurring during the 73rd decision cycle. It is the
174th production cycle and operator S0415 ialso called up) is selected. 1466 is the
time-tag of the working-memory element for the current operator. On the following
production cycle, production ereate-newstate fires using the six working-memory
elements listed to create 1467. On the return from subgoals. the wolfing-memory
elements that were garbage-collected arc listed following "<--.".

1.5 Just like 1. except that the actual working-memory elements added to and removed
from working memory are printed.

2

Default = 0.

Example:
(watch 1)

Prints out the time-tags of the working-memory elements matched by the conditions
of the production and the actual working-memory elements added to and removed
from working memory.

10.4.3. Decide-trace X

If X is T. decide-trace is enabled. If X is nil, decide-vace is disabled. The default is nil. When decide-trace

is enabled, a trace of the decision procedure is displayed.
(decide-trace nil)

10.4.4. Ptrace

If X is a production name, it will be traced whenever it fires. If X is an SP-form working-memory element.

that working-memory element is traced when it is created or matched by a firing production. If X is an object

name or identifier. all working-memory elements that augment that object are traced when they are created or

matched by a firing production. Tracing of chunks is also controlled by the trace option of lenn.
(ptrace create-new-state)

68

FI(OX PARC SL A NI..% 19%

VARIAB1 ES AM) FUNCMONS

10.4.5. Unptrace

Removes 1--4ccs set by ptrace.
(urrtrace)

10.5. Displaying Informatiou

10.5.1. CS

67

The cs function produces 4 listing of the productions that are in the conflict set. In Soar. these arc the

productions that will fire on the next prodoction cycle. If the next cycle is an elaboration phase. the

elaboration productions that will fire arc displayed. If the next production cycle is a decision, the number of

instantiations of deeisionligather-preferences is displayed. Decision*gather-preferences matches all of the

preferences relevant to the context stack. Note: some elaboration productionS may be in the conflict set but

not change working memory because the elements they create are already in working memory.
(c s)

10.5.2. PGS

This prints out the goal-eontext stack, indented at each subgoal, followed by the decision cycle number. If

itsubgoal-tabs* is nil, the indentation will be replaced by numbered depth counts. For parallel operators. the

goal stack is printed out depth-first. with a space between the end of one parallel operators subgoal tree and

the beginning of the next parallel operator. This is a great function tbr finding out where you are in problem

solving.

(pgs)

10.5.3. SPR X*

he spr function is the generic sr fler for all types of objects. It takes any number of arguments which

can be time-tags, object identifiers. r lAiat descriptions or production names. It then prints the associated

working memory elements or productions appropriately. If no argument is given, it calls pgs.
(spr (operator tname evaluate-object))

10.5.4. PPWM X*

Without any arguments, ppwm prints out all of working memory. Arguments to ppwm provide a paitiat

description of working-memory elements in p-format: a class and attribute-value pairs. These arguments act

as a filter, so that only those working-memory elements that match are printed. In the example. the second

call will print out only acceptable-preferences for goals.

(plum)
(ppwm preference trole goal tvalue acceptable)

69
I.RO\ PARC. Isl IANIAlo ,14ry

68 SOAR LSFRS MANUAL

10.5.5. SPPWM X.

The sppwm function is an SP version of ppwm. Its input is a partial description of an object in SP format.

It finds all objects matching that description and prints them in SP format.
(sppwm operator *name evaluateobject)

10.5.6. WM Ns

he wm function takes any number of time-tags as its argument, and prints out the working-memory

elements with those time-tags. The time-tags of working-memoi.x objects are listed when they are created

during watch 1 and 2.
(wm 45 54)

10.5.7. SWM /14.

The swm function takes any number of time-tags as its argument. and prints out the objects with the

identifiers of working-memory elements with those time-tags. The time-tags of working memory objects are

listed when they are created during watch and 2.

(swm 45 54)

10.5.8. PO I

The po function will print out the augmentations of the object with identifier I (it only accepts one

argument at a time). This will print out preferences and augmentations where the object is in the identifier

field. It will not print out your own weird data structures if identifier is not in the identifier field.

(po S0003)

10.5.9. SPO 1 (Di

he spo faction is an expanded SP version of po. It prints out the augmentations of the identifiers in SP

tbrmat. It does not print out preferences. It has an optional final argument: depth. If depth is giyen, spo will

print out a depth-arst expanson of the objects and subobjects to depth D. It will only print the

augmentations of ei%il object once. The default depth (for when no second argument is provided) is held in

global variable *spo-d0.,ult-dr,pth*. which is initially I.
(spo S0003 2)

7 0

RlYi ;SI -!5 I \ R ;q9.

TOP-1.11/FI. I. ARUM IS AND FUNCTIONS 69

10.5.10. SPOP f [D]

The spop function will print out the preferences of the identifiers in SP format. It does not print out

augmentations. It has an optional final argument: D. If D is given. spo will print out a depth-first expansion

of the preferences of objects in Vrie context fields of preferences of each object once. The default depth (for

when no second argument is provided is held in global variable *spo-default-depths. which is initially 1.
(spop S0003 2)

10.5.11. PM Pa

The pm function prints out production Pin P format.
(pm eightcreate-new-state)

10.5.12. SPM

The spm function prints out production P in SP format.
(spm eightcreate-new-state)

10.5.13. Matches Pa.

The matches function lists the time-tags for all of the working-memory elements that match the conditions

of production P. It also prints all of the partial instantiationsof production P (with time-tags).
(matches eightcreate-new-state)

10.5.1 4. Smatches

The smatches function takes the name of a production as its argument (unquoted). It prints out the most

complete match for the production given the current working memory (as time-tags) followed by a listing of

the production with a pointer to the condition where the match failed. Each condition in the production. is

prefaced by the number of partial instantiations active at that point. This function subsumes most of the

interesting aspects of matches.
(smatches eightcreate-new-state)

10.5.1 5. Back-trace [i] [G]

The back-trac function lists all the productions uscd in goal G to prod:ize Lrte. working-memory elements

described by I. It also prints out the working-memory elements that were matchcd by those productions that

would be ineiuded in a chunk if it were to be built with las its actions. If 6 is not provided, the most recent

subgoal is used. / can be either a time-tag of a working-memory element, an object identifici lin which case

all augmemations of the object are used). or a SP pattern that includes at least one attribute (in which case all

71
\FPO\ PUtt.

70 SOAR USER'S MANUAL

working-memory ,21.4.:m.nts rnatching the SP pag.f.-in arc used). If / is not included, back-trace will use the

actions for goal G (if there arc no actions at this firr .. rlothing will be printed).

Beginning with the working-memory elements descrili:d by I. the productions that created / arc found.

their names are printed, and the working-memory elements ti:at matched their conditions are collected. If the

working-memory element was created in a suhgoal. the working-rmmory elemeiu.s that would be usc-Al as

conditions for a chunk for that subgoal are collected, and the identifier 'of the 1:abgoa1 is printed. Printing

from then on is indented until all the collected working-memory elements have been pro.:essed. If a working-

memory element is the same as a working-memory element that has already been processed. it is ignored. If a

collected working-memory element was created before G. it is printed because it will be the basis of a

condition a chunk built for G. If a collected working-memory clement was created by anot: . production

tiring in the subgoal, or by a subgoal. or by the decision procedure. then the process recurscs. If a collected

working-memory clement was created by the decision procedure (either a context slot or a goal augmentation)

decision-procedure is printed and the working-memory clement associated with that creation act is hack-

traced (see Section 7.1 for more information).
(back-trace 00034)
(back-trace (evaluation e0021 tnumeric-value -1) g0032)

10.5.16. PI /3 [NJ

The pi function prints out the working-memory elements that form the Nth partial instantiation for

production P. lf N is missing, the first partial instantiation is listed.

(pi eightscreate-new-state)

10.5.17. Print-stats

The print-stats function lists a summary of statistics for the runs of Soar since start-up or the last call to

init-soar. Most of the statistics concern a set of events, such as production firings, decision cycles. etc. Pi,:

total number of each type of event is given, along with the number of events per second.

Number of productions: The is the total number of productions in the system, includirg all chunks
built during problem soNing.

Number of nodes, with sharing/without sharing: The first number is the number of nodes actually
used in the netwo:k. The second number is the number of nodes that would be required if there
were no sharing.

Elapsed time: On a Vax or D-machine. this is CPU time. On the 3600 this is elapsed real-time
while running.

44 Number of decision cycles: This is thr total number of decision cycles.

72

Rox \Rc !si .; I \

rOP.I.EvELVARIABLESANDFUNCTIONS 71

Number of pmduclion cycles: his is the total number of production eyelet', that were executed.
which include the number of decision cycles and elaboration cycles. This is not the total number
of production firings, since elaborations fire in parallel.

3 Nurnber of elaboralion cycles per decision cycle: his is the average number of elaboration cycles
executed during a decision cycle. This is computed by computing the total number of elaboration
cycles (production cycles decision cycles) and dividing by the number of decision cycles.

Number of production firings: This is the total number of productions that were fired. Each
decision cycle is countcd as one and only one production firing.

Number of elaboraliwi producliwis firhig in parallel: This is computed by dividing the number of
elaboration production firings (total production firings - decision cycles) by the number of
elaboration cycles.

Number of wawa: This is the total number of actions. This includes all additions and deletions
from working memory.

Working memory size: This gives the average, total, and current number of working-memory
elements.

Token memory size This gives the average. towl, and current number of tokens used to represent
the working-memory elements in thc WYE network. When this number is large, the system
tends to slow down.

Below is an example from running the Eight Puzzle.
(print-stats)

Run Statistics
69 Productions (1034 // 3329 Nodes)
21 Seconds Elapsed
22 Decision Cycies (1.047619 per sec.)
47 Prod Cycles (2.238095 per sec.)

(1.136364 E cycles/ D cycle)
112 Prod Firings (5.333334 per sec.)

(3.6 Elab. prod. in parallel)
498 RHS Actions (23.71429 Per Sec.)
191 Mean working memory size (260 Maximum 222 Current)
419 Mean token memory size (651 Maximum 521 Current)

10.6. Changing Working Memory and Production Memory

10.6.1. Make

The make function adds to workiag-memory the P-format working-memory element that follows it in the

function call.
(make state-info "identifier S4404 'attribute name "value cleveland)

73
\I KO\ I' 114(, i`li : \(.. \RI

72 SOAR USER'S MANUAL

10.6.2. Smake

The smake function adds to working-memory the SP-format working-memory elements that follow it in the

function call.

(smake state S4404 fname cleveland)

10.6.3. S remove hi

The srernove function removes from working memory the element with time-tag N. This can be used only

at the top-level to remove working-memory elements and can not be included in production actions. In most

Ops5 implementations, this is just remove, however to avoid confusion with some Lisp commands, we call it

sremove.

(sremove 45)

10.6.4. Pop-goal Va]

The pop-goal function removes the goal A', all its subgoals, and all working-memory elements created in it

or its subgoals. No chunks are created when the goal is popped. If A' is not specified, the last subgoal created

is popped. It takes any numbcr of subgoals as arguments, and will pop all of them, however, this is only

useful when parallelism is being used. This function allows a limited form of back up in Soar. After pop-goal

has been executed, Soar is in an elaboration phase, and unless the user adds productions or working-memory

elements, Soar will create a new subgoal in the next decision that is just like the one that was popped.
(pop-goal g0043)

P

The p function creates a P format production. If this replaces a previously created production (same n.:me,

different body) the old production is excised and the name of the excised production is printed.
(p eight*create-new-state elaborate

(goal-context-info tidentifier <g> tattribute state tvalue <s))
(goal-context-info tidentifier <g> tattribute operator

tvalue <o>)
(op-info tidentifier <o> tattribute name tvalue up)

(make state-info tidentifier <n> tattribute name tvalue down))

10.6.6. SP ...

The sp function creates a SP format production. If this replaces a previously created production (same

name, different body) the old production is excised and the name of the excised production is printed.

74
I.ROX P.112(1St .1: I ?NI. %in 0'41

INEI. vARIABI Fs AND 11:NCTIONS 73

(sp eightscreate-new-state
(gc (g> tstate <s> toperator cl)>)
(operator <o> tname up)
-->
(state en> tname down))

10.6.7. Excise P*

The excise function removes production P from productiou memory. If a production is excised, a "#" is

displayed.

(excise eight*create-new-state)

10.7. Chunking

10.7.1. Learn, [Al

11:!MtiOTI is called to modify or examine a number of flags that control chunking. Thc arguments arc

not evaluated. If no arguments are included, altof the flags arc displayed. Below is the list of argument pairs.

the first one (underlined) is the default.

pever/on/off
On turps learning on, off turns learning off. Never turns learning off and learning can not be used
before init-soar is called. If learning is off. but not never, it can be turned on (and off) at anytime
during a run. With never, Soar does not maintain he extra information required by the learning
mechanism. Never runs about 8% faster than off, which runs about 25% faster than on. These
figures depend upon the complexity of the objects in working memory zild the frequency of
subgoal creation and termination.

always/bottom-up
With always, productions are built whenever a suhgoal terminates. With bottom-up, productions
arc only built for terminal subgoals (subgoals that do not have any subgoals).

print/noprint/full-print
With print, production names arc printed as they are created. With noprint, nothing is printed.
With full-print, the full production is printed when it is created.

tracq/untrace/full-trace
With trace, every time a production is chunked, it is added to a list. When a production on that
iist fires, it is traced at Watch level 1. With full-trace, the building of the production is also traced.

(learn on bottom-up full-print)

1.14 \ t ls I \ \ I \Ry ;yht,

74 SOAR USER'S MANUAL

10.7.2. Last-gthunk

This will print, in SP format, the last production created by the chunking mechanism.
(last-chunk)

10.7.3. Excise-chunks

This will excise all productions that have been chunked since starting up Soar (either through starting Soar

or calling restart-soar). The names of all chunked productions are held in *chunks*. The function uses

chunks to remove the chunked productions and then sers *el _is* to nil.
(excise-chunks)

10.7.4. List-chunks

This will print all productions with names in *chunks* (whenever a chunk is created, it is automatically

added to *chunks*) in SP format. The chunks are listed in the order they were created.
(1 ist-chu:nks)

V.kLA PARC !SI 1 \ .9Sn

FRRORS. WARNINGS. AND RF.COVERY IIINTS 75

11. Errors, Warnings, and Recovery Hints

11.1. Errors

Illegal production name: The name of the production was a list.

Illegal production type: The type of the production was neither missing. nor elaborate nor decide.

No in production: was not found in the production. This usually arises when there is an
extra T in the condition elements.

Attempt to negate a compound object: A negation was placed before an SP object that had more
than one attribute. This will create a separ'e working-memory element for each attribute which
is not always the desired effect (see Section 3.4). If that is the desired effect, place a negation
before each attribute.

Didn't find terminator: A terminator (either >> or }) to match a previously encountered << or
was missing from a condition of the production.

Missing >>: A << is missing a closing >>.

Missing 1: A { is missing a closing }.

Didn't find a t when expected: A was not followed by a t.

Atomic conditions are not allowed: A condition must be a list.

Non-numeric constant after numeric predicate.

Wrong context for 1: A } can occur only following a 1.

Unrecognized symbol.

Not a legal function name.

Condition is too long: The condition has too many fields. This shwild never happen.

Tab must be a number: A unknown P-format field name was encountered.

11.2. Warnings

Miscellaneous

Illegal multi-attribute value: A multi-attribute can only have a range between 0 and 100.

Exceeded *max-elaborations*. Proceeding to decision procedure.

Production syntax

77
,i:Ror, mkt- ..5 i4h6

76 SOAR USFR'S MANUAI

Illegal index after t.

Constant identifier field in: An identifier field of an augmentation in a condition must be a
variable.

Identifier field not constant or vari:ble in: An identifier field of an augmentation in an action
must be a constant or variable.

Constant object field in: An object field of a preference in a condition must not be a constant.

Object field not constant or variable in: An object field of a preference in an action must be a
constant or variable.

CoiJition not linked to previous conditions: The conditions of a production must all be linked to
the goal-contexts, either through augmentations or preferences.

Actions

Atomic Action: Actions must be lists.

Illegal Action.

Unconnected actions in production: All variables in the actions of a production must either
appear in the conditions or be linked to the conditions through other actions.

Illegal decide in production type: The decide action can only be used in productions of type
decide.

Illegal make in production type: The make action can oniy be used in productions of type
elaborate.

Illegal remove in Soar production: The remove action can not be used in productions.

Illegal modify in Soar production: The modify action can not be used in productions.

Arguments missing from make action.

Wrong number of arguments for Tabstop.

Illegal argument for Tabstop.

Cannot be called at top level: CAI.I.2.

TABSTOP can not be called at the top level.

Write cannot be called at the top level.

Write: nothing to print.

Writei cannot be called at the top level.

78
MAO \ PNR(!if .; i o. ;mit,

RORS. WARNINGS. AM) RF.COVIAY tuNiS 77

Write!: nothing to print.

Write2: nothing to print.

Writel cannot be called at the top level.

(S)PPWM does not take variables.

Cannot be called at top level: BIND.

Bind: Wrong number of arguments to.

Bind: illegal argument.

CRLF: Does not take arguments.

RJUST: Wrong number of arguments.

RJUST: Illegal value foi geld width.

TABTO: Wrong number of arguments.

TABTO: Illeg

Chunking

al column number.

No chunk was built because there %ere no actions.

No chunk was built because *max-chunk-conditions* was exceeded.

No chunk %as built because no conditions had a class in *chunk-classes*.

7 9

FRON : IANL 1R .')41

78 SOARLSMSMANUAL

11.3. Recovery Hints

Symptom Probable cause Remedy

A Soar rule won't load; Certain syntax errors
it just sits there send the loader into an

infinite loop; other times
the loader just balks.

While loading in rules, There is an extra close
Lisp tries to evaluate parenthesis.
a condition.

Two goals are generated
followed by a message
that Soar must
terminate.

Many of the productions
just loaded do not fire
when they should.

Soar uses up the *max-
elaborations* number of
elaboration cycles.

Try reloading the
rule; also check for
syntax errors, such as
missing spaces inside
curly brackets.

Remove the extra
parenthesis.

1. There are no non-default 1. Load in productions
productions.

2. The initialization 2. Make sure it tests
production did not fire. (gc <g> -tsupergoal)

Load was used in Interlisp. Reload using Soarload.

A rule may be producing a
wm element which enables
the rule to match in a new
way, and then produce a new
wm element, etc.

A rule matches, but is The rule is prevented from
not in the conflict set. firing by refractory

inhibition.

There is an unexpected
tie between the new
next state and the
initial state.

There is an unexpected
tie between the new
next state and the
state aftt?r the initial
state.

The preference for the
initial state included
just the goal and problem
space; thus it applies
regardless of th,-2. state.

The preferences from the
supergoal are interfering
with the subgoal.

\FROX ?VC !SI .:5 RY

Modify the rule so
that none of its
conditions will match
any of its actions.

A good (but not
perfect) indicator of
refractory inhibition
is when (pi) does not
print any wm elements,
but just returns a
number one greater
than tne number of
conditions in the rule

Add tstate undecided
to the preference
for the initial
state.

Make state preferences
sensitive to the goal.

INSTALIING SOAR

12. Installing Soar

79

All files for Soar are available on h.cs.cmu.edu in account /usriscac. Lisf didect has a separate
directory that contains all of the files necessary to run Soar. Common Lisp= csoar. Franz-Lisp= fscar.

Intedisp= isoar. and Zeta-Lisp= 7.soar. F2ch of these directories include the following files:

read.me A file that describes how to run this dialect of Soar and an index of all the files in this
directory.

default.soar The default productions.

eight.suar The Eight Puzzle productions.

soar.load A load file that will load in all files necessary to run Soar except the user files. (This is
not necessary for Franz-Lisp.)

To obtain the files via the ARPA-net. send mail either to soar@h.cs.cmu.edu or John Laird. Xerox PARC.

3333 Coyote Hill Road. Palo MO. CA. 94304. The information needed to FIP the files will be sent tO you.

The current method is to login to h.cs.cmu.edu under account ftpguest with password cmunix. However, this

procedure is only temporary and may not be supported for very long.

In all systems, the first step in executing Soar is either loading in files (3600. D-machines. and Suns),

executing a core image (Franz-Lisp). or executing Lisp with a suspend file. (Common Lisp on a Vax).
Following this, the default productions and then the ta s. productions should be loaded. In the Interlisp

version, soarload should be used in place of load when loading Soar files. At the top-level all systems use the

same commands like run, watch, ppwm and print-stats. In the Symbolics 3600. TI Explorer. and Xerox

D-machine implementations. hitting any character while Soar is running will cause it to break at the next
production cycle.

81

LROX PARL. ;SL k \ I...AR% fiS()

PERFORMANCE COMPARISON 81

13. Performance Comparison
Below is a corliparison of the time required to solve a simple problem in the Eight Puzzle on different Lisp

systems in Veibior. 4, release 1. Without learning for the Eight Puzzle it took 143 decisions, 346 production

cycles, 660 production firings and 3117 right-hand side actions. All runs were done with a freshly created

virtual memory. MI times are in seconds. The systems are listed in order of increasing elapsed time. No

system specific optimizations were used except that the hunz-Lisp runs were done with debugging
information disabled (although Soar was developed under Inter lisp so it is more tuned for the Xerox
machines). Global variables were declared in all systems. None of the additional declarations that are

available in Comnwn Lisp to enhance efficiency were used. The Sun (run on December 18, 1985) and IBM

RTPC (run on January 24, 1986) runs used preliminary compilers. All entries of ?? mean that either the

statistic was unavailable or not recorded at the time of the run.

Machine Software Physical Elapsed 3600 CPU QC Load
Memory Time Ratio 11._en Lae Eaeur

Xerox 1132 Interfisp 8 Mbytes 127 1.08 127 off
Symbolics 3600 Zeta-Lisp 4 Mbytes 137 1.0 137 off
Xerox 1132 Interlisp 8 Mbytes 149 .92 131 18
Symbolics 3600 Zeta-Lisp 4 Mbytes 153 .90 137 16
Sun 3 Common Lisp 8 Mbytes 176 .78 171 none
IBM RTPC Common Lisp 4 Mbytes 210 .65 210 ?? 1

Vax 785-Unix Franz-Lisp 8 Mbytes 215 .64 182 none
T1 Explorer Common Lisp 8 Mbytes 228 .60 228 none
TI Explorer Zeta-Lisp 8 Mbytes 230 .60 230 none
Xerox 1186 Interlisp 3.5 Mb_les 348 .39 348 off
Vax 780-Unix Franz-Lisp 4 Mbytes 365 .38 298 ?? 1

Xerox 1109 Inter-lisp 3.5 Mbytes 397 .35 397 off
Xerox 1186 Interfisp 3.5 Mbytes 409 .33 366 43
Xerox 111)9 Interlisp 3.5 Mbytes 445 .31 402 43
Vax 785-Unix Franz-Lisp 8 Mbytes 470 .29 182 ?? 3
Dec-2060 Common Lisp 8 Mbytes 660 .21 196 ?? ??
Vax 750-Uniy: Franz-Lisp 4 Mbytes 676 .20 495 ?? 1

The fraction following the elapsed time is the elapsed time for the given machine divided bY the elapsed time

of the 3600. The performance of these :ems may be !nt for other programs and even for other tasks
in Scar that have different runtime ch :teristics than the Eight Puzzle. The Eight Puzzle task is CPU

intensive. spending most of its time matching productions to working memory using a modified version of the

OpsS Rete matcher. This uses simple symbolic computations. such as equality tests. function calls, application

of functions (apply), and list manipulation. There is no number-crunching of integers or reals. A trace of the
problem solving is printed to the terminal or console. but that is nut a significant factor in any of the runs.

There is no tile input or output and all of the systems had enough memory so there was no within-process
swapping.

'iEROX. PM:C. . \l<

eg.sq

82 SOAR USER'S MANUAL

All of the single-user workstations had sufficient virtual memory so that garbage collection was unnecessary.

This is onc of the biggcst weaknesses of this benchmark because different types of garbage collectors arc used

by the different systems. with different overheads. For very long runs. garbage collection can become an

important factor in performance. The Xerox machines have reference garbage collectors while the 3600 has

an ephemeral garbage collector, both which are used incrementally (they do not wait for mcmory to get low

before they run), so runs with their garbage collectors enabled wcrc included. The elapsed time for the Xerox

machincs with ?heir garbage collmors disabled is less than their CPU times using garbage collectionbecause

the CPU time includes some of thc overhead associated with garbage collection (such as updating reference

counts).

83
\I 1(0\ MRC. !SI .4 iSh

SOAR BIBLIOGRAPHY 83

14. Soar Bibliography
Overview

Laird, J. E., !'si7.well. A.. & Rosenbloom. P. S. Soar: An Architecture for General Intelligence. 1986. In
preparati._ n.

:Icomprehensive scientific description ofSoar(Soar 4) and the major research results.

u. J. E.. Newell. A.. & Rosenbloom. P. S. Proposal for Research on Soar An Architecture tbr General
intelligence and Learning. 1985.

This proposal provides a description of the research approach, a review of the principal research IT.SWIS. a
survey of related research, and proposed research for the period 1985-1988.

Major Components

Problem Spaces

Newell, A. Reasoning, problem solving and decision processes: The problem space as a fundamental category.
In R. Nickerson (Ed.). A (iention and Perfbnnance VIII. Hillsdale, N.J.: Erlbaum. 1980. (Also available
as CM U CSD Technical Report, Aug 79).

This paper lays out the foundations behind the use of problem spaces for all goal-oriented beiia% ior.

Universal Weak Method

Laird. J. E., and Newell. A. fi Universai Weak Method (Tech. Rep. #83-141), Carnegie-Mellon Unis ersity
Computer Science Deparunent, June 1983.

Discusses the weak methods, the problem-space hypothesis. Soarl, what a universal weak method is, a
particular universal weak method, and a demonstration of it involving the use of many methods on many
tasks in Soarl. fSnarl difErs significantly from /.1%-; version of Soardescribed in this manual.)

Laird. J. E., and Newell. A. A universal weak method: Summary of results. In Preceedings of the Eighth
IJCAL 1983.

A summary of the longer universal weak method paper.

Universal Subgoaling

Laird, J. E. Universal Subgoaling. Doctoral dissertation. Carnegie-Mellon University, 1983. (Available as
Carnegie-Mellon University Computer Science Tech. Rep. #84.129).

Discusses the concept of unive;sal subgoaling. updatcf, the universal weak method to use univen:;i
subgoaling, presents Soarl and some demonstraticas of it.(Soar2 differs significandy from the version of Soar
described in this manual.)

Chunking

Rosenbloom. P. S.. and Newell. A. The chunking of eoal hierarchies: A generalized model of practice. In
R. S. Michalski. J. G. Carbonell. & T. M. Mitchell (Eds.), llochine Learning: .4n Artificial Intelligence
Approach. Volume II, Los Alto, Morgan Kaufmann Publishers. Inc.. 1986.

Ibis paper lays out the foundations ioi goal-based chunking (in the context of the Xapsiarchitecture).

Laird. J. E., Rosenbloom. P. S.. & Newed. A. Towards chunking as a general learning mechanism. In

%I.RO\ mt. hi
8 4

: I 14

84 SOAR USER'S MANUAL.

Proceedings of AA Al-84. National Conference on ArtiJkial Intelligence. American Association for
Artificial Intelligence. 1984. Available in Two Soar Studies. (Tech. Rep. #85-110). Carnegie-Mellon
University Computer Science Department. January 1985.

This paper presents the first results from implementing e---.riking in Soar. s-trategy acquisition. normal
practice speed-ups. within-trial transfer. across-task transfer, and knowledge acquisition.

Rosenbloom, P. S.. Laird. J. E., Newell. A.. Goldine. A.. Unruh. A. Current research on learning in Soar. In
Proceedings ofthe Third International Machine Learning Workshop. 1985, Skytop. PA.

This paper reviews the state of research on chunking in Soar as of July. [985. It includes short discussions of

work on analogy and generalization, simple abstraction planning, macro-operator acquisition. and problem

space creation.

Laird. J. E.. Rosenbloom. P. S., & Newell. A. Cloaking in Soar: The anatomy of a general learning
mechanism. In Machine Learning. 1986 1(1) 11-44.

This paper presents the details of chunking in Soar. It includes a demonstration of chunking based on Korf s

Mac:-T. Problem Solver_

Manuals

Laird. J. E. Soar User's Manual. Version 4. 1986.
The manual is the main reference for using Soar 4.

Laird. J.E. Soar Technical Manual. 1985. In preparation.
he manual is the main reference for the Soar software.

Forgy. C. L. Ops5 Manual. Computer Science Department. Carnegie-Mellon University. 1981.
Soo is implemented on top of Ops5. and thus inherits many aspects of it.

Applications

Rosenbloom, P. S.. Laird, J. E., McDermott. J., Newell, A., & Orciuch. E. RI-Soar: An experiment in
knowledge-intensive programming in a problem-solving architecture. In IEEE Transactions on Pattern
Anal_vsis and Machine Intelligence. 1985 7(5) 561-569. This also appeared in Proceedings of the IEEE
Workshop on Principles of Knowledge-Based Systems. IEEE Computer Society, 1984. Available in Two
Soar Studies. (Tech. Rep. #85-110). Carnegie-Mellon University Computer Science Department.
January 1985.

This paper presents the first attempt at expert systems in Soar, a partial reimplementation of Rl. It shows
how problem soiving and expertise can be integrated, and how chunking can acquire expertise from problem
solving.

85

":140 P R(. I \ \ R

DITALI:r SEARCII-CONTROL NU:MI.:C[10M 85

Appendix
Default Search-Control Productions

Below are the default productions in default.soar.

(comment common search-control productiens

(comment all operator augmentations of the problem space have
acceptable-preferences created for them)

(sp defaultomake-all-operators-acceptable
(gc <g) *problem-space <p>)
(problem-space <p> *operator <x>)

-(preference <x> *role operator *value acceptable *proelem-space <p>)
->

(preference <x> *role operator *value acceptable
tproblem-space <p)):

(comment if an operator has just been applied to a state. which is
detected by using the preference created for that state.
reject the operator for that state tlo it will not be reapplied
in the future)

(sp lefault'no-operator-retry
(gc <g> *problem-space <p> *state <s2))
(preference *object <s2> *role state *value acceptabl.4

*goal <g> *problem-space <p> *state <s:,
*operator [<> undecided <> nil (o>))

-->

(preference <o> *role operator *value reject
*goal <g> *problem-space <o> *state (s)))

(comment if there is a reject-preferonce for the current state.
make an acceptable-preference for the pri-ir stats so problem
solving can backup)

(sp defaultebackup-if-failed-state
(gc <g> tproblem-space <p> *state (s>)
(preference <s> *role state *value rejeC

*goal <g> *problem-space <o;
(preference <s> *role state *value acceptable

tgoal <g> tproblem-space <p> istate <> undecided (> nil <n> }
*operator <> undecided)

(preference <n> *role state *value acceptable
*goal <g> *problem-space <p> *state <s>))

86
\i.ROX Rt. :0+6

86 SOAR USER'S MANUAL

(comment derv:It knowledge for tie ;mpasses

(comment if the problem space for handliftg the subgoal fails.
signified by the choices none ir,passe below it.
make a worst-preference for each tied object)

(sp defeolt*prohlem-space-tie
(gc (0> tro?:v goal *choices none tsupergoal <V>)
(gc <g2> troli problem-space t!mpasse tie *supergoal <gl>

titem <p))

-->
(preference <p> probtem-space tval:Je worst

*goal .91>;)

(sp defaultostate-tie
(gc <g3> *role goal *choices none *supergoal <g2>)
(gc <g2) *role state timpasse tie *supergoal <gl> *item <s>)
(gc <gl> *problem-space <p>)
-->

(preference <s> *role state tvalue worst
*goal (gl>))

(sp defeultooperator-tie
(gc <g3> *role goal *choices none *supergoal <g2>l
(gc <g2> *role operator *impasse tie *supergoal <gl> titem <o))
(gc <gl> tproblem-space <p> *state <s>)
-->

(preference <o> *role voblem-space *value worst
*goal <91> tproblem-space <p>))

(comment conflict impasses O.PIS*0)

(comment if the problem space for handling thc subgoal fails.
signified by the choices none impasse below it.
make a reject-preference for each conflicted object)

(sp default"1::,'sm-spae-conflici
(gc <g3> goal *choices none *supernoal cg2>)
(gc <g2> 'i,t)t* problem-space timpas*e con:lIct *..roergoal <gl>

titem <p>)

-->
(preference <p> *role problem-space tvalue reject

*goal <gl)))

(sp default'state-conflict
(gc <93) *role goal *choices none tsupurgoal <g2>)
(gc <g2) *role state *impasse conflict

tsupergoal igl> *item (s>)
(gc (91> *problem-space <p>)
-->

(preference <s> *role state *value reject
*goal <gl) tproblem-space <p>))

(sp default'operator-conflict
(gc <g3> trole goal tchoices none tsupergoal (g2>)
(gc <92> *role operator *impasse conflict tsupergoal <0>

*item Co>)
(gc <gl> tproblem-space <p> *state <s>)
-->

(preference <o> *role operator *value reject
*goal <gl> tprcblem-space <p> *state ,s>))

\i POh P %RC. 1St %NA :

DEFAULT SEARCII-CONTROL PRODUCTIONS 87

(comment 4""4`'° nc-choise impasses

(comment if no problem spaces are available for the top goal.
terminate the problem solving session with halt)

(sp defaultgoal-no-choices
(gc (g3> trole goal 'choices none tsuperg.-Al <g2>)

-(gc (g2> tsupergoal)
-->

(writel (crlf) "no problem space can be selected for top goal.")
(writel (crlf) "soar must terminate.")
(halt))

(comment if no states are available for a problem space.
and there is no problem space to find more.
reject that problem space)

(sp defaultsproblem-space-no-choices
(gc <g3> trole goal 'choices none *supergoal g2>)
(gc <g2) trole problem-space *choices none *supergoal <gi>)
(gc <gl> 'problem-space <p>)
-->

(preference <p> "role problem-space 'value reject 'goal <OM

(comment if no operators are available for a st,te.
and there is no problem space to find more.
reject that state)

;sp defaultstate-no-choices
(gc <g3> trole goal "choices none tsupergoe (g2>)
(gc <g2) trole state "choices none tsupergoal (gl>)
(gc <gl> 'problem-space <p> *state <s>)
-->

(preference <s> trole state *value reject
*goal <gl> 'problem-space <p)))

(comment if no changes for an operator.
and there is no problem space to find lit'
reject that operator)

(sp defaultoperator-no-choices
(gc <g3> trole goal tchoices none tsupergoal
(gc <g2> trole operator *impasse no-change *s.Jper.,0al <gl>)
(gc 'problem-space <p> *state <s> *operator (o>)
-->

(prer.iiice <o> trole operator *value reject
*goal <gl> 'problem-space <p> "state <s>))

8 8
Ai\

J.
%ru:

88 SOAR USER'S MANUAL

(comment select:on problom space

(comment use the selection problem space for all choice multiple
impasses, make it worst so that any other will dominate)

(sp selectoselection-space elaborate
(gc Cg> 'choices multiple)
--)
(preference CO trole problem-space tvalue acceptable ?pal CV)
(preference 0> trole problem-space 'value worst tgoal Cv)
(problem-space <p> tname selection))

(comment the state of the selecLion problem space is empty)

(sp selectocreate-state
(gc Cg> tproblem-space Cp> tstate undecided)
(space 0) tname selection)
-->

(preference <s) trole state tvalue acceptable
tgoal Cg> tproblem-space <p> tstate undecidad))

(comment evaluate-object operator))

(connect create an evaluate-object operator for each tying item
in selection problem space. These are all inJifferent
so there will be no tie between them.)

(sp evaleselect-evaluate
(ge Cg) tproblem-space tp> tstate Cs) tsupergoal <g2) titem 00)
(problem-space CO tname selection)

(operator co> tstate <s) tname evaluate-object tobject Cx>)
(preference 0> trole operator tvalue indifferent

tgoal <g) tproblem-space <p> 'state)

(preference <o> trole operator tvalue acceptable
tgoai tproblem-space tstate <s>))

(comment for parallel evaluation
remove this comment if you want parallel evaluation of
the alternatives.

(sp evaloparallel-evaluate
(gc <g> tproblem-space <p> 'state Cs> ?role operator tsupergoal <g2>)
(problem-space 0> tname selection)
(preference Col> trole operator tvalue acceptable

tgoal Cg) tproblem-space tstate Cs>)
(preference 02> trole operator tvalue acceptable

tgoal Cg) tproblem-space Cp> tstate (s>)
(operator Col) "'object <y>)
(operator 02) tobject C 0 Cy> Cx>))
-->
(preference Col> 'role operator tvalue parallel

rgoal <0 tproblem-space tstate <s> frhference cob)))

83
MAO \ PARC. ;NI c),t,

DEFAULTSEARCH-CONTROL PRODUCTIONS 89

(comment create evaluation once the Oval operator is selected)

(sp evalapply-evaluate
(gc <g> rproblem-space <p> *state <s> .roperator <o)

*role (role) *supergoal (0))
(problem-space <p) *name selection)
(gc <g2> rproblem-space <p2> rstate.(s2> rdesired <d>)
(operator <o) *name evaluate-object *object (x>)
--)

(state <s) *evaluation <e>)
(evaluation (e> 'object <x) *state <s) *operator Co> *desired (d>)
(operator Co> *role <role> revaluatibn <e> *desired <d>

*supergoal <g2> *superproblem-space (p2) *superstate (s2>))

(comment reject evaluate-object after it finished in selection space)

(sp evaloreject-evaluate-finished
(gc <g> tproblem-space <p> *state (s, *operator (c>)
(problem-space (p> *name selection)
(operator (o) *name evaluate-object *evaluation (e>)
(evaluation <e> r ((numeric-value symbolic-value >>)

(preference <o> *role operator *value reject *goal <gs
rproblem-space (p> *state <0))

9 0

\FRU\ PARI... \t. %V

90 SOAR USF.R'S ANCAL

(comment if two objects have equal evaluations they are indifferent)

(sp eval'equal-eval-indifferent-preference
(gc <g) *problem-space <p) *State <s> *role <role> *supergoal (g2>)
(problem-space <p) *name selection)
(state <s) *evaluation <ell *evaluation (<el) <02>))

(gc <g2) *problem-space <p2) *state <52) *dSired (d))
(evaluation <el> *object <x> *numeric-value <v> *desired <0)
(evaluation <en *object <y) rnumeric-value <v) *desired <0)
-->
(preference <x> *role <role) *value indifferent *reference <y>

?goal <g2) rproblem-space <p2> *state <52)))

(comment generate operator preferences based on their evaluations and info
as to whether higher or lower evaluations are better.)

(sp evalaprefer-higher-evaluation
(gc <g) tproblem-space <p> *state <s> *role <role> *supergoal <g2>)
(problem-space (p> 'name selection)
(gc <g2) *problem-space <on *state <52) *desired (d>)
(state <s) ?evaluation <el> *evaluation (<> <el) ce2>))
(evaluation <d) *better higher)
(evaluation <el) *object Col> *numeric-value <v> *desired (01
(evaluation <e2) *object <on *numeric-value < <v> *desired <d>)

-->
(preference <02) *role <role) 'value worse *reference 01>

?goal (g2) 'problem-space <p2) *state <s2)))

(sp evalsprefer-lower-evaluation
(gc <g> *problem-space <p> *state (s) *role <role> *supergoal <g2))

(problem-space <p) *name swloOion)
(gc <g2) *problem-space <p2) *state ($2> *desired <0)
(state <s) *evaluation <el) *evaluation (<> <ei> (e2>))
(evaluation <0 *better lower)
(evaluation <el) *object OD *numeric-velue Or' 'desired <d>)
(evaluation <e2) *object <02> *numeric-value <v> *desired <d>)

-)

(preference <02> 'role operator 'value worse 'reference <01)
*goal <g2) *problem-spece <p2) *state (s2>))

91

\IRO\ Mkt.. ISI 1 %: 1,

DEFAULT SEARCH-CONTROL PRODUCTIONS 91

(comment t productions for the evaluation subgeal

(comment copy down the desired and create the appropriate context,
given the role of the object being evaluated)

(sp evaloselect-role-problem-space
(gc <g> rproblem-space undecided *supergoal <g2> *superoperator (02>)
(gc <g2> 'operator (02>)
(operator <02> rname evaluate-nbject *role problem-space *object (p> *desired <d>)
-->

(gc <g> *desired (d>)
(preference (p> rrole problam-space *value acceptable *goal (g>))

(sp evaloselect-role-state
(gc <g> *problem-space undecided *supergoal <g2> rsuperoperator (02>)
(gc <g2> roperator
(operator <02> rname evaluate-object *role state *object <s>

*superproblem-space (p> *desired <d>)
-->

(gc (g> *desired <d>)
(preference <p> *role problem-space rvalue acceptable *goal (g>)
(preference <s> *role state 'value acceptable

*goal (g> *problem-space <p> *state undecided)
(preference <s. rrole state rvalue bit

*goal <g> *;.,roblem-space (p> *state undecidel))

(sp evaloselect-role-operator
(gc <g> *problem-space undecided *supergoal <g2> rsuperoperator <o2>1
(gc <g2> *operator (o2>)
(operator Co2> *name evaluate-object *role operator *object <o>

*superproblem-space <p> *superstate <s> *desired (d>)
-->
(gc (g> rdesired <d>)
(preference <p> trolG problem-space rvalue acceptable *goal (g>)
(preference <s> *role state rvalue acceptable

*goal <g> ?problem-space (p> *state undecided)
(preference <o> *role operator *value acceptable

rgoal <g> *problem-space <p> *state (s>))

(comment reject those operators that are not being evaluated in *his subgoal)

(sp evalsreject-non-slol'-oparator
(gc <g> *problem-ILWA <p> *state <s> *supergoal <g2) *superoperator (02>)
(operator <02> Incmt eveluate-lbject *role operator robject (o>

*supersts.te (s>)
(preference (<o> <o3>) rrole operator rvalue acceptable

*gozl (g) t'problem-space <p> *state <s>)
-->
(preference <03> rrole operator tveluo reject

rgoal <g> ?problem-space <p> *state <s>))

92

XEROX PARC. ISI.- 5. IAN:LAI-Cr' iish

92 SOAR USER'S MANUA!.

(comment give symbol-value failure to an operator that has been rejected
during evaluation and did not create a new :tate and reject the eval-operator)

(sp evalfailure-if-reject-evaling-operator
(gc <g> *problem-space <p> *state <s> *operator <o>

rsupergoal <g2> *superoperator <02))
(gc <92> *problem-space <p2) *state <s2>)
(operator <02> :name evaluate-object *role operator

*object <o> *superstate <s> *evaluation <e2>)
(preference <o> *role operator *value reject

*goal <g> *problem-space <p> *state <s> *operator (0>)
-(preference *role state *value acceptable

tgoal <g> *problem-space <p> *state <s> *operator co))

(evaluation <e2> *symbolic-value failure))

(comment give symbol-value failure to an operator
that produces a state that gets rejected in the subgoal)

(sp evalsfailure-if-reject-state
(gc <g> *problem-space <p> *state <s)

*supergoal <g2> *superoperator <02>)
(gc <g2> *problem-space <p2> *state <s2>)
(operator <02> *name evaluate-object revaluation <e2))
(preference <s> *role state *value reject

*goal <g> *problem-space <p>)
-->

(evaluation (e2> *symbolic-value failure))

(comment if an operator leads to success and it is being
tried out in a subgoal to evaluate another operator.
give that second operator a success evaluation also)

(sp evalopass-back-success
(gc <g> *problem-spaca <p> *state <s> toperztor <o> tsupergoal (g2>)
(problem-space <p> mname selection)
(operator <o> *name evaluate-object revaluation <el> *desired (eb>)
(evaluation (el> tsymbolic-value success)
(gc <92> *suoaroperator Co3))
(operator Co3> *name evaluate-object revaluation <432> 'desired <eb))
-->

(evaluation (e2> *symholic-value success))

9 3

\I.ROt N Ea

DEFAULT SEARCH-CONTROL PRODUCTIONS 93

(comment if an operator is evaluated to be lose or failure for
the same desired as the supergoal.
create a worst-preference for it)

(sp eval4failure-becomes-worst
(gc 4g) tproblem-space (I)) *state Cs> *operator Co> tsupergoal Cg2>)
(problem-space (p> *name selection)
(gc Cg2> tproblem-space Cp2> *state (s2> *desired Cd>)
(operator Co> 'name evaluate-object *evaluation (el) *desired CO

Jrole (role) *object Col>)
(evaluation (el) tsymbolic-value CC lose failure >>)
-->
(preference Col> 'role operator 'value worst

*goal <92> 'problem-space Cp2> *state Cs2>))

(comment if an operator is evaluated to be success for
the same desired as the supergoal.
create a best-preference for it)

(sp evalosuccess-becomes-best
(gc Cg> *problem-space Cp> 'state (s> *operator Co> *supergoal Cg2>)
(problem-space (I>) *name selection)
(gc C92> *pr'ablem-space Cp2> *state Cs2> *desired Cd>)
(operator Co> 'name evaluate-object *evaluation (el)

*desired <d> *object Col> trole <role>)
(evaluation <el) tsymbolic-valuo success)
-->

(preference Col> *role <role) *value best
*goal Cg2> 'problem-space Cp2> *state Cs2>))

9 4

\ 17.ROX PIu. I \\I. io ;,:rtn

94 SOAR USERS MANUAL

(comment convert state augmentations into evaluatioW

(sp evalstate-to-symbolic-evaluation
(gc <g> *problem-space <p> *state <s> *superoperator <so>)
(operator <so> tname evaluate-object

*evaluation <e> *desired <eb>)
(state <s> t(((success failure win draw lose) <svalue> <eb>

-->
(evaluar.ion <e) tsymbolic-value (svalee>))

(comment handle state augmentations dealing with goal
termination for the top-level goal)

(sp evalmdetect-success
(gc (g) *state <s> *name <name> tdesired <eb> -tsupergoal)
(state <s> *success <eb>)

(writel (crlf) "goal" <name> "achieved")
(halt))

(sp evalodetect-win
(gc <g> *state <s> tname <name> -*supergoal ?desired <eb>)
(state <s) *win <eb>)
->

(writel (crlf) "game" <name> "won")
(halt))

(sp evalodetect-failure
(gc <g> *state <s> *name <name> -*supergoal *desired <eb>)
(state (s> *failure Cab>)
-->
(preference <s> *role state *value reject

?goal <g> rproblem-space <p>))

(sp evalsdetect-lose
(gc <g> *state <s> *name <name> -*supergoal *desired (eb>)
(state <s> *lose <eb))
-->
(writel (crlf) "game" <name> "lost")
(halt))

95

\I.ROX PARC. ISI,15 ; NN:

DEFAULT SEARCII-CONTROL PRODUCTIONS 95

(comment two player games - win side oside lose)

(sp eval8move-side-to-eval
(gc Cg> *state Cs> *supereperator (so>)
(state Cs> toside <side> t CC lose win >>)
(operator <so> *name evaluate-object *evaluation Ce>)

(evaluation (0 *side <side>))

(sp evalowinning-values
(gc <g> Tpreblem-space <p> l'state (s> tsupergoal Cgl> *operator Co>)
(problem-space (13> tname selsction)
(gc <gl> tproblem-space Cpt) 'state (SD)
(state (Si> *side <side>)
(operator Co> *name evaluate-object *evaluation CO *object (ol> *role <role>)
(evaluation (0 *symbolic-value win *side <side>)
->

(preference Col> *role <role> 'value best
tgoal <0> tproblem-space Cpl> *state <sl>))

(sp ovalswinning-values2
(gc <g> tproblem-space (p> *state <s> tsupergoal tgl> *operator <o>)
(problem-space (p> *name selection)
(gc Cgl> tproblem-space Cpl> *state (SD)
(state <sl> toside <side>)
(operator Co> tname evaluate-object *evaluation (e> *object <01> *role <role>)
(evaluation (0 tsymbolic-value lose tside <side>)
-->

(preference Col> trole <role> *value best
tgoal (O> tproblem-space <131> *state (sl>))

(sp evaledraw-values

(gc <g> ?problem-space <p> *state Cs> tsupergoal <gl> toperator <o>)
(problem-space <13> tname selection)
(gc Cgl> tproblem-space <131> *state <sl>)

(operator Co> tname evaluate-object *evaluation CO *object Col> trole (role>)
(ev.:!uation <e> tsymbolic-value draw)
-->

(preference Col> trole <role> ?value indifferent
*goal Cgl> *problem-space Cpl> *state <SIM

9 6
PDX P.Rt. 1St I > \ I. .

96 SOAR USER'S MANUAL

(sp evalolosing-values
fgc <g> *problem-space (p> *state <s> *supergoal <gl> *operator Co>)
(problem-space <p> *name seloction)
(gc <gl> *problem-space <pl.> *state <sl))
(state <sl> *oside <side>)
(operator <o> *name evaluate-object *evaluation <e> *object Col> *role (role>)
(evaluation <e> *symbolic-value win *side <side>)

-->
(preference (ol> *role (role> *value worst

rgoAl <gl> *problem-space <pl> *state <sl>))

(sp evallosing-values2
(gc <g> *problem-space <p> *state <s> tsupergoal <gl> *operator <0>)
(problem-space <p> *name selection)
(gc <gl> *problem-space <pl> *state <sl>)
(state <sl> *side (side>)
(operator <o> *name evaluate-object *evaluation <e> *object 01> *role <role>)
(evaluation <e> *symbolic-value lose *side <side>)

(preference 01> *role <role> *value worst
*goal <gl> *problem-space <pl> *state <sl>))

(sp evalpass-back-win
(gc <g> *problem-space <p> *state <s> *supergoal (g2>
(problem-space <p) *name selection)
(operator <o> *name evaluate-object *evaluation <el>
(evaluation <el> *symbolic-value win *side <side>)
(ge <g2> tsuperoperator 03>)
(operator 03> *name evaluate-object *evaluation <82)

*superstate <s4>)
(stata cs4> toside <side>)
-->
(evaluation <e2> *symbolic-value win *side <side>))

*operator Co>)

*desired (ebi)

*desired <eb>

(sp evalopass-back-win2
(gc <g> *problem-space <p> *state <s> tsupergoal (g2) *operator 0>)
(problem-space <p> *name selection)
(operator <o> *name evaluate-object *evaluation <el> *desired <eb>)
(evaluation <el> *symbolic-value lose *side <side>)
(gc <g2> *superoperator 03>)
(operator 03> *name evaluate-object *evaluation <e2> *desired <eb!

'superstate <s4>)

(state <s4> *side <side>)
-->
(evaluation 02> *symbolic-value win *side <side>))

9 7

NFRO \ P %At: - 5 J %R:

DITAULT SEA RCIICONTROI. PRODUCTIONS 97

(comment operator subgoaling
there are two ways to do operator subgoal
just pass down most recent operator, or pass down all of them
this implementation passes down just the super operator as the
desired - uncomment opsubogo-for-1t2 if you want all supergoals
to be included)

(comment make the super-problem space the default
when there is a no-change for the operator)

(sp opsubstry-operator-subgoaling
(gc (g> *impasse no-change *role operator

*problem-space undecided *supergoal <g2))
(gc <92) *problem-space <p2))
--)

(preference <p2) *goal <g) *role problem-space *value acceptable)
(preference <p2) *goal <g) *role problem-space *value worst))

(comment if the superproblem-space is selected as the
current problem space then operator subgoaling
is being used so select the superstate -
the superoperator becomes the desired)

(sp opsubsgo-for-it
(gc <g) *problem-space <p) *state undecided

*impasse no-change *role operator *supergoal <g2))
(gc <g2) *problem-space <I)) *state <s) *operator <0)

(gc <g) *name operator-subgoal *desired <0))
(preference <s> *role state *value acceptable

*goal <g) *problem-space <p) *state undecided))

:comment pass down all super operator subgoals as well
(sp opsubgo-for-1t2

(gc <g) *problem-space <I)) *state undecided
*impasse no-change *role operator *supergoal (g2))

(gc <g2) *problem-space <p) *state <s) *desired <0))
--)
(gc <g> *desired (0))))

(comment don't select the operator for the initial state that we are
subgoaling on)

(sp opsubsreject-opsuboperator
(gc <g> *name operator-subgoal *problem-space <p> *state (s) *desired <0)
(preference <s> *role state *value acceptable

*goal <g) *problem-space <p) 'state undecided)
-->
(preference <o> *role operator *value reject

*goal <g) tproblem-space <1) *state (s>))

9 8

\i_RUX P.NAL :Si

98 SOAR USER'S MANUAL.

(comment select superOperator for all new states)

(sp opsubselect-opsub4operator
(gc <91> tname operator-subgoal tproblem-space <p> 'state <s> 'desired <co>)

->

(preference <o> trole operator 'value acceptable
tgoal <91) tproblem-space <p> tstate <s>)

(preference <o> trole operator tvalue best
'goal <91) tproblem-space <p> 'state <s>))

(comment if superpperator applied to a state then success
we make a preferencs for the state it created)

(sp opsubdetect-direct-opsub-success
(gc (g0) 'problem-space <p> tstate <s> "yperator <o>

tsopergoal <gt> tname operator-subgoal)
(gc <gl> tproblem-space <p> "state (32> 'operator <o>)
(preference <ns> trole state tvalue acceptable

'goal <90) tproblem-space <p> tstate <s> toperator <o>)
-->
(preference <ns> trole state tvalue acceptably

'goal <gl> tproblem-space (p> 'state <s2> *operator (0>))

(comment if there is an evaluation subgoal within
an operator subgoal and the operator being
subgoaled on is applici - success)

(sp opsubodetect-indirect-opsub-success
(gc <gl> 'name operator-subgoal tsupergoal <g2))
(gc <92> tproblem-spece <p> "state (32> toperstor <0))
(gc <gO> tproblem-space <p> tstate <s> 'operator <o>

'desired <o> tsuperoperator <so>)
(operator <so) tname evaluate-object)
(preference <ns> trole state 'value acceplable

tgoal <gO) 'problem-space <p> 'state <s>_ 'operator <o>)

(state <s> 'success <0>))

(comment if the operator being subgoaled on is the current
operator snd a no-change subgoal is created for it

then reject it in the subgoal)

(sp opsubreject-double-op-sub
(gc <gl> tname operator-subgoal 'desired <o>)
(gc (<) <gl> <g3> *name operator-subgoal)
(gc <g3> tsupergoal <0;)
(gc <94> 'problem-space <p> 'state <s> 'operator <4!-)

-(gc tsupergoal <g3>)
-->
(preference <o> 'role operator tvalue reject

tgoal <g4) 'prvblem-space <p> 'state <On

99

tFIWY. PARC.

SUMMARY OF FUNCMONS AND VA11tA BLEs 99

Appendix II
Summary of Functions and Variables

chunkall-paths*
chunkclassess
chunlefree-problem-spaces°
'chunks*
*max-chunkconditions
max-elaboretions
'max-recluse'
Ssp-classess
*spo-default-depths
ssubgoal-tabs*
*warning'
swatch-free-problere-..;,aces

back-trace
cs

decide-trace
excise
excise-chunks
init-context
init-soar
last-chunk
learn
list-chunks
make
matches
multi-attributes

pbreak
pi
pgs
Pm

Po Ploal
ppwm
print-stats
ptrace
restart-soar
MO
SMake
smatches
soarload
sP
spm
SpO

SPOP
Spr
sppWal
sremove
SWM

trace-attrinutes
unpbreak
nnptrace
userselect
watch
wm

Controls multiple chunks from different paths: nil
SP classes that must appear in a chunk for it to be built: (state)
Names of problem space not to chunk: 0
Names of chunks built: 0
The maximum number of conditions allowed in a chunk: 200
The maximum number of elaboration cycles before a decision: 100
Depth of look ahead used by ordering scheme: 2
Association list of SP and P classes: (tgc . goal-context-info) ... I
Default depth that spo prints: 1
VT. Watch 0 uace will tab in subgoals: .1*
If nil. warnings will not be pnnted:
List of problem space names not to trace: ()

Print out those conditions and productions that lead to the action: (back-trar:e 00034)
Print the conflict set: tes)
Run N decision cycles: (d 5)
Trace the decision procedure. E or nil: (decide-trace nil)
Remove a production from production memory" (excise eight"create-state)
Excise all chunks: (erinmt-chunks)
Initialize the top context: (init-centext 'pl 's1 'ol)
Clear out working memory: (init-soar)
Print out most recently built chunk in SP format: (last-chunk)
Control chunking: (learn off always print)
Pnnt out chunks in SP format: (list-chunk)
Add element to working memory: (make state-info ridentifier s02)

Show aU working-memory elements that match a production: (matches eightscreate-state)
Declare some attributes of some classes to be sets: (multi-attributes ((state binding 9)))
Define a production: (p eightcreate-state (goal-context-info ridentitier <g> ...) ...)
Break after production fires or context change:(pbreak evaluate-object eight"create-state)
Print the Nth partial instantiation of a production: (pi eightcreate-state 3)
Print the goal-context stack: (pgs)
Print production in P format: (pm eightcreate-state)
Print all augmentations of object: ipo 00033)
Terminate all goal and its subgoals: (pop-goal g0045)
Prettyprint working-memory elements: (ppwm state-info)
Print statistics from a run: (print-stats)
Trace a production. object or working-memory elemec.t: (ptrace eightcreate-state)
Clear out production memory and working memory: (restart-soar)
Run Nprocluctions cycles: (run 100)
Add element in SP format to working memory: (smake state s02 rav 3)
Display pert of production that matches: (smatches eightscreate-state)
Load in productions. especially for D-machines: (soarload 'defaultsoar)
Define a production in SP format: (sp eightcreate-state (gc <g> ...) ...)
Print production in SP format: (spm eight*create-state)
Print all augmentations of objects in SP format to given depth: (spo 60003 2)
Print all preferences of objects in SP format to given depth: (spop 00003 2)
Print in SP format of whatever is Oven as an argument: (spr 00003)
Prettyprint working-memory elements in SP format: (ppwm state-info)
Remove working-memory element with given time-tag: (sremove 33)
SP print the object in the identifier field of the element with the ume-tag: tswm 454)
Will trace the attributes of the classes: (trace-attributes ((operator module)))
Remove a breakpoint_ nil removes all breaks: (unpbreak selection?
Removes all traces set by pErace: iunptrace)
Change how indifferent-preferences are handled. "first. nil= random. T= user. (3 selection 1)
Control tracing, -1. 0..5. L 1.5. 2 ihigher= more): (watch 0)
Print working-memory elements with given time-tags: (wrn 434455)

100
XEROX P tkt. - I

Index

*chunk-all-paths° 61
'chunk-classes 35. 61

chunk-free-problem-spaces° 35. 61
'chunks' 61. 74

'max-chunk-conditions' 61
'4Max-elabotztions 61
I'max-recurse 61
'ops5-actions° 16

*sp-classee 8. 61
'spa-default-depth' 62. 68. 69

subgoal-tabs -62. 65. 67
*tracep-list° 66
'warning' 62
watch-free-problem4spates 62

< 12

<< 12

<< >> 45
< = 12

<> 12
0 undeaded 17. 38

= 12

tannbute 8
*better 29. 51. 54
*desired 27. 28. 29. 30.48. 49
tdraw 32
revaluation 27, 31
t failure 32
t identifier 8
tlose 32
tname 27. 44
tnumeric-value 28. 31
tobject 27
toperator 28
t role 27
tstate 27. 28
tsuccess 32, 49
tsupergoal 27
tsuperproblem-space 27
*superstate 27
tsymbolic-value 28. 31
tsymbolic-value failure 29. 30
tsymbolic-value success 29. 31
tsymbolic-value win 31

r value 8
twin 32

Accept 14
Acceptable-preference 10. 25
Always 73
Attribute 8

INDIA

101
PARC. \\LAF.. -2,S6

101

102 SOAR USER'S MANUAL

Augmentations 8

Back-uace 69
Best-preference 29
Bind 13
Bottom-up 73
Bottom-up chunking 35

Call2 14

Candidate results 59
Chunk conditions 35
Chunking 35
Class 7
Common Lisp 79
Compute 14. 31
Conflict 23
Conflict impaze 22
Conflict impasses 25
Conjunctions 13

Conjunctive negations 17

Crlf 15
CS 67

D 63
Decide 11
Decide-trace 66
Decision 11
Decision procedure U. 19
Decisiongather-preferences 67
DefaultThackup-if-failed-stabe 25. 85
Defaultgoal-no-choices 26. 87
Defaultmake-all-operawrs-acceptable 25. 45. 85
Default*no-operator-retry 25. 85
Defaultoperator-contlict 25. 86
DefauMperator-no-choices 26. 87
Defaultoperatortie 25. 86
Defaitsproblem-spact-conflict 25. 86
Defaultproblem-sitace-no-choices 26. 87

Defaultproblem-spacrtie 25. 86
Defaultstate-conflict 25. 86
Defaultstate-no-choices 26. 87
Defauft'state-tie 25. 86

Defaultsoar 27. 79
Desired 23
Desired state 48
Detect-candidate 59
Detect-op1-success 59
Disjunction 12, 45

Draw 28
Duplicate conditions 37

Eight Puzzle 41
Eight*acceptable 45
Eightcopy-unchanged 47
Eightcreate-new-state 46
Eightdetect-success 48
Eighteval-state-plus-one 54
Eightimual-destred-states 50
Eightstart 50
Eightworst-undo 53

1 0 2

XEROX PARC. 1SL-::

Eightsoar 79
Elaborate 11
Elaborate-once II
Elaboration 11

Errors 75
Eval'apply-evaluate 28. 89
Evardetect-failure 32. 94

Evaldetect-lose 32, 94
Evardetect-success 32. 94
Evardetect-win 32. 94
Evaldraw-values 30. 95

Evalequaleval-indifterent-preference 29. 90

Evalfailu re-becomes-worst 29. 93

Evalfailu re-i f-reject-evaling-operator 30. 92
Evarfailure-if-reject-state 30. 92

Evallosing-values 30. 96

Evalktsing-values2 30. 96
Evalmoveside-to-eval 30. 95
Eval*paralIel-maluate 27. 88
Evalpass-bact-success 31. 92
Evalpass-back-win 31. 96
EvaPpass-back-win2 .31. 96
Evalspreferhigher-evaluadon 29. 51. 90
Evalprefer-lower-evaluation 29. 90
Evalrejectevaluate-fimshed 28. 89
Eval*reject-non-slot-operator 30. 91
Evalselect-evaluate 27. 88
Eval*selectrole-operator 30. 91
Evalselectrole-problem-space 30. 91
Evalselecaole-state 30. 91
Evalgate-to-symbolic-evaluation 32. 94

Evalsuccess-becornes-best 29. 93
Evalwinning-values 30. 95
Evalwinning-values2 30. 95
Evaluate-object 26. 27. 28. 30
Evaluation 27. 30. 54
Excise 73
Excise-chunks 74
Extraneous conditions 37

Failure 28
Fields 8
Franz-Lisp 79

Garbage collection 24

Goal detection 47
Goal terminauon 24
Goal-context 9.62, 63
Goal-context-info 8. 9. 23. 38. 60
Goal-context-stack 19. 22. 60

H.es.cmu.edu 79
Halt 14
Help 78
Hints 78

Identifier 8
Impasse 23
Info 8
Init-context 50. 62

IN I)EX 103

103
XEROX PAPA. \ Y Fitt

104 SOAR t SPR'S MANLAI

lnit-soar SO, 62. 61

Initial state 10

Interlisp 79

Item 23

I ast-chunk 74

I earn 73
I ist-chunks 74
I oic 28

Make 14. 71

Matches 69
slaW 52

.tortic operator 46

.4t111-attributes 53. 63

,Malb.choicc iinpasses

Name 8
Negated conditions 13, 17, 36

Never n
No-change 23
No-change impasse 60
No-change impasses 26
No-choice impasses 26
Non-monotonic operator 46
Noprint 73
Nots 38
Numcric evaluation 28. 31

Object 7. 8

Off 73
On 73
Operator application 46
Operator creation 45
Operator implementation 59
Operator instantiation 26
Operator suhgoaling 26, 32
Ops5 7. 15

Opsubstietect-direct-opsub-success 33. 98

Opsuhscletect-indirect-opsub-success 33. 98

Opsubsgo-for-it 32. 97

Opsubsgo-for-it2 97
Opsubsreject-double-op-sub 33. 98

Opsub*reject-opsub*operator 32. 97

Opsulf'sdect-opsubsoperator 32. 98

Opsubstry-operator-subgoaling 32. 97
Ordering conditions 38
Over-generalintion 38

P I I. 72

Parallel operators 10. 27. h0

Parallel-preferenc:: h0
I'brcak 64
PGS h0. 65. t)7
PI 70
PM 69
PO t)li
I'op-goal 72

PPWM t)7
Preference 7. 9. 19

194
%.1 \ IS! I I \

Print 73
PrInt-stats 70

Prior operator 10

Prior state 10

Production 11

Production actions 13
Production conditions 1L

Production functions 13

Production instantiation 11

Ptrace 66

Rcad.me 79
Reference 10

Refractory inhibition 38

Reject-preference 25
Rejection 23

Rejection impasses 26
Restart-soar 62
Rete network 38
Role 9. 10. 23
Run 63

Search control 25. 53
Selectcreate-state 26. 88
Selectsselection-space 26. 88

Selection problem space 25. 26
Smake 15. 72
Smatches 69
Soar.load 79
Soarload 63
SP 8. 11. 15.72
SPM 69
SPO 68
SPOP 69
SPPWM 68
SPR 67
Sremove 72
States 41
Subgoal creation 23
Subgoals 23
Success 28
Supergoal 24
Superoperator 24. 60
SWM 68
Symbolic tvaluation 28. 31
Symbolics 3600 79

Tabstop 14. 52

Tabto 15. 52
Tic-Tac-Toe 28
Tie 23. 31
Tie impasse 22
Tie impasses 25
Time-tags 7. 65. 68. 69
Trace 66. 100
Trace-attributes 53. 65
Tracing 55
Two-player games 28. 29

Undecided 9

INDEX

105

XLROXPAK ISL :5.1.NALMO

105

106

Unpbreak 64
Unptrace 67
Untrace 100
User-select 27. 64

Value 8
Variables 12. 37

Warnings 75
Watch 65
Win 28
WM 7. 68
Working memory 7
Working memory element 7
Worst-preference 29
Wntel 14

Write?. 14. 52

Xerox 1)-machines

/.eta-Lisp 79

SOAR USFR'S IANCAl.

106
X1 ifO\Plit N 7 '1 \; l'elh

1985/10/11

Xerox PARC/J.S. Brown

Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
Minneapolis, MN 55455

Personnel Analysis Division,
AF/MPXA

5C360, The Pentagon
Washington, DC 20330

Air Force Human Resources Lab
AFHRL/MPD
Brooks AFB, TX 78235

AFOSR,
Life Sciences Directorate

Bolling Air Force Base
Washington, DC 20332

Dr. Robert Ahlers
Code N711
Human Factors Laboratory
NAVTRAEQUIPCEN
Orlando, FL 32813

Dr. Ed Aiken
Navy Personnel R&D Center
San Diego, CA 92152.

Dr. James Anderson
Brown University
Center for Neural Science
Providence, RI 02912

Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Nancy S. Anderson
Department of Psychology
University of Maryland
College Park, MD 20742

Dr. Steve Andriole
Perceptronics, Inc.
21111 Erwin Street
Woodland Hills, CA 91367-3713

Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

Dr. Patricia Baggett
University of Colorado
Department of Psychology
Box 345
Boulder, CO 80309

Dr. Gautam Biswas
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. John Black
Yale University
Box 11A, Yale Station
New Haven, CT 06520

Arthur S. Blaiwes
Code N711
Naval Training Equipment Center
Orlando, FL 32813

Dr. Jeff Bonar
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Gordon H. Bower
Department of Psychology
Stanford University
Stanford, CA 94306

Dr. Robert Breaux
Code N-095R
NAVTRAEQUIPCEN
Orlando, FL 32813

Dr. John S. Brown
XEROX Palo Alto Research

Center
3333 Coyote Road
Palo Alto, CA 94304

Dr. Bruce Buchanan
Computer Science Department
Stanford University
Stanford, CA 94305

2

1985/10/11

Xerox PARC/J.S. Brown

Dr. Jaime Carbonell
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

Chair, Department of
Computer Science

College of Arts and Sciences
Catholic University of
Sciences

America
Washington, DC 20064

Dr. Fred Chang
Navy Personnel R&D Center
Code 51
San Diego, CA 92152

Dr. Eugene Charniak
Brown University
Computer Science Department
Providence, RI 02912

Dr. Michelene Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Mr. Raymond E. Christal
AFHRL/MOE
Brooks AFB, TX 78235

Dr. Yee-Yeen Chu
Perceptronics, Inc.
21111 Erwin Street
Woodland Hills, CA 91367-3713

Dr. William Clancey
Computer Science DepArtment
Stanford University
Stanford, CA 94306

Dr. Allan M. Collins
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Sfreet
Arlington, VA 22217-5000

Dr. Natalie Dehn
Department of Computer and

Information Science
University of Oregon
Eugene, OR 97403

Dr. R. K. Dismukes
Associate Director for Life

AFOSR
Bolling AFB
Washington, DC 20332

Defense Technical
Information Center

Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copies)

ERIC Facility-Acquisitions
4833 Rugby Avenue
Bethesda, MD 20014

Dr. K. Anders Ericsson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Pat Federico
Code 511
NPRDC
San Diego, CA 92152

Dr. Jerome A. Feldmao
University of Rochester
Computer Science Department
Rochester, NY 14627

Dr. Paul Feltovich
Southern Illinois University
School of Medicine
Medical Education Department
P.O. Box 2926
Springfield, IL 62708

108

1983/10/11

Xerox PARC/J.S. Brown

Mr. Wallace Feurzeig
Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

Dr. Craig I. Fields
ARPA
1400 Wilson Blvd.
Arlington, VA 22209

Dr. GeNiard Fischer
University of Colorado
Department of Computer Science
Boulder, CO 80309

Dr. Kenneth 0. Forbus
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Dr. Carl H. Frederiksen
McGill University
3700 McTavish Street
Montreal, Quebec H3A 1Y2
CANADA

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024.

Dr. Michael Genesereth
Stanford University
CompuXer Science Department
Stanford, CA 94305

Dr. Dedre Gentner
University of Illinois
Department'of Psychology
603 E. Daniel St.
Champaign, IL 61820

Chair, Department of
Computer Science

George Mason University
Fairfax, VA 22030

Dr. Robert Glaser
Learning Research

& Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Joseph Goguen
Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFB, TX 78235

Dr. Richard H. Granger
Department of Computer Science
University of California, Irvine
Irvine, CA 92717

Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

Dr. James G. Greeno
University of California
Berkeley, CA 94720.

Chair, Department of
Computer Sand Information
Systems

The George Washington.
University

Washington, DC 20052

Dr. Henry M. Halff
Halff Resources, Inc.
4918 33rd Road, North
Arlington, VA 22207

Dr. Barbara Hayes-Roth
Department of Computer Science
Stanford University
Stanford, CA 95305

109

3

4

1985/10/11

Dr. Frederick Hayes-Roth
Teknowledge
525 University Ave.
Palo Alto, CA 94301

Dr. Geoffrey Hinton
Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Jim Hollan
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
UCSD
La Jolla, CA 92093

Dr. John Holland
University of Michigen
2313 East Engineering
Ann Arbor, MI 48109

Dr. Keith Holyoak
University of Michigan
Human Performance Center
330 Packard Road
Ann Arbor, MI 48109

Dr. Earl Hunt
Department of Psychology
University of Washington
Seattle, WA 98105

Dr. Ed Hutchins
Intelligent Systems Group
Institute for

.Cognitive Science (C-015)
UCSD
La Jolla, CA 92093

Dr. Dillon Inouye
WICAT Education Institute
Provo, UT 84057

Dr. Marcel Just
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Xerox PARC/J.S. Brown

Dr. Thomas Kehler
TEKNOWLEDGE
525 University Avenue
Palo Alto, CA 94301

Dr. Dennis Kibler
University of California
Department of Information

and Computer Science
Irvine, CA 92717

Dr. David Kieras
University of Michigan
Technical Communication
College of Engineering
1223 E. Engineering Building
Ann Arbor, MI 48109

Dr. Janet L. Kolodner
Georgia Institute of Technology
S,:hool of Information

& Computer Science
Atlanta, GA 30332

Dr. Kenneth Kotovsky
Department of Psychology
Community College of

Allegheny County
eoo Allegheny Avenue
Pittsburgh, PA 15233

Dr. Benjamin Kuipers
Department of Mathematics
Tufts University
Medford, MA 02165

Dr. Pat Langley
University of California
Department of Information

and Computer Science
Irvine, CA 92717

Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 16213

Dr. Robert Lawler
Information Sciences, FRL
GTE Laboratories, Inc.
40 Sylvan Road
Waltham, MA 02254

1985/10/11

Xerox PARC/J.S. Brown

Dr. Paul E. Lehner
PAR Technology Corp.
7926 Jones Branch Drive
Suite 170
McLean, VA 22102

Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

Dr. Clayton Lewis
University of Colorado
Department of Computer Science
Campus Box 430
Boulder, CO 80309

Science and Technology Division
Library of Congress
Washington, DC 20540

Dr. Don Lyon
P. 0. Box 44
Higley, AZ 85236

Dr. Sandra P. Marshall
Dept. of Psychology
San Diego State University
San Diegu, CA 92182

Dr. Manton M. Matthews
Department of Computer Science
University of South Carolina
Columbia, SC 29208

Dr. Kathleen McKeown
Columbia University
Department of Computer Science
New York, NY 10027

Dr. Al Meyrowitz
Office of Naval Research
Code 1133
800 N. Quincy
Arlington, VA 22217-5000

Dr. Ryszard S. Michalski
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Prof. D. Michie
The Turing Institute
36 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

Dr. George A. Miller
Department of Psychology
Green Hall
Princeton University
Princeton, NJ 08540

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152

Dr. Tom Moran
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Chair, Department of
Computer Science

Morgan State University
Baltimore, MD 21239

Dr. Allen Munro
Behavioral Technology

Laboratories - USC
1845 S. Elena Ave., 4th Floor
Redondo Beach, CA 90277

Chair, Department of
Computer Science

U.S. Naval Academy
Annapolis, MD 21402

Dr. David Navon
Institute for Cognitive Science
University of California
La Jolla, CA 92093

Dr. Allen Newell
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

br. T. Niblett
The Turing Institute
36 North Hanover Street
Glasgow G1 2AD, Scotland
UNITED KINGDOM

111

5

6

1985/10/11

Xerox PARC/J.S. Brown

Dr. Donald A. Norman
Institute for Cognitive Science
University of California
La Jolla, CA 92093

Library, NPRDC
Code P201L
San Diego, CA 92152

Commanding Officer,
Naval Research Laboratory

Code 2627
Washington, DC 20390

Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Office of Naval Research,
Code 1133 .

800 N. Quincy Street
Arlington, VA 22217-5000

Office of Naval Research,
Code 1142

800 N. Quincy St.
Arlington, VA 22217-5000

Office of Naval Research,
Code 1142PT

800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

Dr. Nancy Pennington .

University of Chicago
Graduate School of Business
1101 E. 58th St.*
Chicaso, IL 60637

Department of Operations Research,
Naval Postgraduate School

Monterey, CA 93940

Department of Computer Science,
Naval Postgraduate School

Monterey, CA 93940

Dr. Martha Polson
Department of Psychology
Campus Box 346
University of Colorado
Boulder, CO 80309

Dr. Peter Polson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Steven E. Poltrock
MCC
.c;430 Research Blvd.
Echelon Bldg #1
Austin, TX 78759-6509

Dr. Harry E. Pople
University of Pittsburgh
Decision Systems Laboratory
1360 Scaife Hall
Pittsburgh, PA 15261

Dr. Joseph Psotka
ATTN: PERI-1C
Army Research Institute
5001 Eisenhower Ave.
Alexandria, VA 22333

Dr. Lynne Reder
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. James A. Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

1985/10/11

Xerox PARC/J.S. Brown

Dr. Mary S. Riley
Program in Cognitive Science
Center for Human Information

Processing
University of California
La Jolla, CA 92093

Dr. William B. Rouse
Georgia Institute of Technology
School of Industrial & Systems

Engineering
Atlanta, GA 30332

Dr. David Rumelhart
Center for Human

Information Processing
Univ. of California
La Jolla, CA 92093

Dr. Roger Schank
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

Dr. Walter Schneider
Learning R&D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Judah L. Schwartz
MIT
20C-120
Cambridge, MA 02139

Dr. Michael G. Shafto
ONR Code 1142PT
800 N. Quincy Street
Arlington, VA 22217-5000

Dr. Sylvia A. S. Shafto
National Institute of Education
1200 19th Street
Mail Stop 1806
Washington, DC 20208

Dr. T. B. Sherfdan
Dept. of Mechanical Engineering
MIT
Cambridge, MA 02139

113

Dr. Ted Shortliffe
Computer Science Department
Stanford University
Stanford, CA 94305

Dr. Randall Shuniaker
Naval Research Laboratory
Code 7510
4556 Overlook Avenue, S.W.
Washington, DC 20375-5000

Dr. Herbert A. Simon
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

Dr. Derek Sleeman
Stanford University
School of Education
Stanford, CA 94305

Dr. Edward E. Smith
Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238

Dr. Paul J. Sticha
Senior Staff Scientist
Training Research Division
HumRRO
1100 S. Washington
Alexandria, VA 22314

7

8

1985/10/11

Xerox PARC/J.S. Brown

Dr. Patrick Suppes
Stanford University
Institute for Mathematical

Studies in the Social Sciences
Stanford, CA 94305

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka
CERL
252 Engineering Research

Laboratory
Urbana, IL 61801

Dr. Perry W. Thorndyke
FMC Corporation
Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 9505:7!

Dr. Douglas Towne
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

Chair, Department of
Computer Science

Towson State University
Towson, MD 21204

Chair, Department of
Computer Science

University of Maryland,
Baltimore County

Baltimore. MD 21228

Chair, Department of
Computer Science

University of Maryland.
College Park

College Park, MD 20742

Dr. Kurt Van Lehn
Xerox PARC
3333 Coyote Hill Road
Palo Alto, CA 94304

Dr. Keith T. Wescourt
FMC Corporation
Central Engineering Labs
1185 Coleman Ave., Box 580
Santa Clara, CA 96062

Dr. Barbara White
Bolt Beranek & Newman, Inc.
10 Moulton Street
Cambridge, MA 02238

Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Masoud Yazdani
Dept. of Computer Science
University of Exeter
Exeter EX4 401
Devon, ENGLAND

Mr. Carl York
System Development Foundation
181 Lytton Avenue
Suite 210
Palo Alto, CA 94301

Dr. Michael J. Zyda
Naval Postgraduate School
Code 62CK
Monterey, CA 93943

