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Statistical Cost Estimation in Higher Education:

Some Alternatives

The need to understand cost behavior is a perennial one in higher education. The

driving force underlying the need may differ from one place to another and it certainly

changes over time. For instance, it could be the task of evaluating the cost structure of

programs at institutions competing for the same support dollars, or of ascertaining the

conditions under which economies of scale might be expected to accompany enrollment

growth. At the present time, there is much concern about what may happen to unit costs

when enrollments decline. Whatever the motivation, the cost analyst is faced with the

clntinuing challenge of finding new and, presumably, better ways of understanding costs.

As the extensive survey done by Adams, Hankins, and Schroeder (1978) makes quite

clear, most of what passes for cost analysis in higher education is essentially a cost

calculation of one sort or another. The ubiquitous average cost per student credit hour

is a case in point. This cost figure can be calculated directly, given data on total

costs and total credit hours. But other costs, such as the cost of an additional credit

hour, are usually not directly calculable. Instead they must be estimated, using either

statistical or accounting procedures. The statistical approach Is far more common, and

constitutes the focal point for this study. Specifically, the intent of this study is 1)

to review some recent developments in econometrics that are relevant to the task of

estimating costs in higher education, and 2) to test the relative effectiveness of

alternative statistical procedures for estimating costs. The material included should be

useful to researchers and analysts who have need to estimate highereducation costs, and

to those who are interested in statistical cost estimation more generally.

Statistical cost estimation involves three basic parts: a model, a data set, and an

estimation procedure. For present purposes, datarelated issues will be dealt with

summarily because these issues (for instance, the quality of financial data, the problem
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of finding acceptable output measures, and so on) are generally familiar ones for the

higher-education analyst. By contrast, the thinking among econometricians regarding the

structure of cost estimation models has undergone considerable development over the years,

and may not be as familiar. Similarly, there have been developments in estimation

procedures that have not received much attention in higher-education circles, but are

worth considering here. Of course, this paper cannot offer the broad coverage appropriate

to textbooks. The selection problem is made easier, though, by the fact that econometric

thinking on models has converged somewhat, and because some of the preferred models can

lead to statistical problems which in turn make certain estimation procedures more

attractive. To put names to these matters, the models in question are transiog cost

functions, the statistical problem is multicollinearity, and the estimation procedure is

ridge regression. Actual data will be used in assessing whether the ridge techniques

provide a viable alternative to the more familiar ordinary least squares (OLS) approach

within the collinear environment characteristic of translog models. The transiog model

that is used for the study generates marginal cost estimates for full- and part-time

students at two-year colleges.

Cost Estimation

The behavior of costs in a particular industry, or more generally, the production

structure of an industry, can be analyzed by estimating either a production function or a

cost function. The procedures have been shown to be theoretically equivalent by Shepard

(1953), for the single-product firm, and by McFadden (1978), for the multiproduct firm.

When cost structure is the primary concern, estimating a cost function is the most direct

approach. And, when the industry in question consists of multiproduct firms, as is

certainly the case with respect to higher education, estimating a joint cost function

offers the distinct advantage of making it relatively easy to model the structure of cost

without imposing a priori restrictions on the structure of production--restrictions which
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are typically imposed when modeling the structure of multiproduct firms by estimating

transformation (production) functions (Brown, Caves, and Christensen 1979).

The implicit form of a cost function can be written as

(1)

where C Is total cost, q is output, p Is the input price, and t is a set of technological

conditions that may have some effect on the relationship between C and q (McFadden 1978).

Under theoretically ideal conditions (that is, intent to minimize costs coupled with full

knowledge of how to do so), the cost function specifies the minimum cost for a given level

of output. Whether such conditions ever hold entirely is doubtful. It is certainly

unlikely that they hold for higher education; Bowen (1980) makes this point rather

emphatically. (Pauly [1978] makes the same point for hospitals.) Most estimated cost

functions, then, actually represent average rather than minimizing behavior. Cohn (1979)

refers to such cost functions as "approximate."

Developing an explicit form for the cost function in a given situation is the essence

of the modeling problem. Preference for particular types of explicit functional forms has

changed over the years. Some of the earliest examples of cost functions date from Ilaants

studies in the 1930s of retail trade stores (reprinted in Dean 1976). These early efforts

typicaliy employed simple additive models at best. For instance, Yntema (1940) used the

function

C = ct ctiT clavl-

to estimate marginal costs for the steel industry.

With the advent of computers in the post WWII era, and the growing interest in

econometrics, functional forms gradually became more complex, and, one might say, more

thoughtful. That is, more attention was paid to the intervening or secondary variables
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that might influence the cost-output relationship, to the form of the function

(particularly as it related to economic theory), and to the form of the variables (for

example, raw versus logarithmically transformed) included In the estimating equation.

Johnston's 1960 textbook on statistical cost estimation provides an excellent review of

developments to that point (including criticisms of the various procedures). A review of

the early period can also be found in Dean (1976) and Walters (1963).

Despite the variety of functional forms employed, virtually all cost functions up

through the early 1970s had one important feature in common. They all imposed a priori

restrictions on the cost and production structure. For example, in that simplest of forms

shown above as equation 1, one restriction imposed (apart from consideration of price and

technical conditions) is that marginal cost, the change in total cost (c) associated with

an additional unit of output (q), must be constant; It can only be the estimated value of

the parameter al, regardless of the value of q--or anything else for that matter. Other

functional forms were less restrictive, but it was not until the 1970s that so,called

flexible forms, which impose few if any restrictions, began to be used with some

frequency. Diewert (1974) reviews several of the flexible forms that are designed for

joint cost functions (where more than one type of output is involved). Griffin (1982)

compares the approximation characteristics of three flexible forms: the generalized

Leontief, the transiog, and the generalized square-root quadratic. Of these forms, the

transiog function proposed by Christensen, Jorgenson, and Lau (1971; 1973) appears to be

the most widely adopted (for example, see Brown, Caves, and Christensen [1979], Cowing and

Hoitmann [1983], and Spady [1979]). A variety of discussions and applications of the

transiog cost function can be found in Smith (1982).

The translog Joint cost function for 11 outputs, m Inputs, and n technical conditions

can be written

c-P
vr- 4to
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where sirsji,etc. The expression (3) has one neutral scale parameter (a

o
), 1 + m + n

first order parameters (a1,5i ,yi), and (1+1)(1/2) + (m+1)(m/2) + (n+1)(n/2) + 1m + In +

mn second order parameters. The only restriction imposed In using this form Is the

regularity condition that, if the function is to be understood as a cost function in the

strict sense, then the function must exhibit homogeneity of degree one In factor prices

(that Is, total cost must cnange in the same proportion and direction as a change In

factor prices). Otherwise there are none of the typical restrictions on the cost and

production structure of the firms analyzed. Indeed, what were once a priori impositions

on structure now become testable hypotheses. The second order logarithmic terms for the

output variables allow for two inflection points In the estlmated cost curves, thus

allowlng for economies or diseconomies of scale, while the complete set of interaction

terms removes any separability assumptions from the model. As Brown, Caves, and

Christensen (1979) have shown, imposed restrictions such as homogeneity and separability

of output can make a significant difference in the results (parameter estimates) of the

analysis.

Clearly, then, In the absence of a priori knowledge about the structure of

production, there Is good reason to adopt a flexible functional form, such as the translog

model shown above, that lets the data speak for themselves. At the same time, models such

as the translog are prone to the estimation problem known as multicollinearity, in which

correlation among the explanatory variables can hide or distort their true relationship to

the dependent variables (for example, see Cowing and Holtmann E1983]). Zero-order

correlations tend to be quite high (r>.95) between a value In logarithms, Its square, and

related Interaction terms. In estimating marginal costs in higher education, the

situation may be exacerbated by what one might call "natural", as opposed to
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"modelInduced" multicollinearity. That is, the key explanatory variables one might

typically consider in estimating cost functions for colleges and universities tend to be

collinear. For example, there would be utility in being able to compare the marginal

costs of lower versus upper division students, but these two enrollment levels tend to

vary together (Allen and Brinkman 1983). This naturally occurring phenomenon, when

combined with the tendency of the translog model to generate highly collinear explanatory

variables, creates a situation in which multicollinearity is likely to be a serious

problem.

Thus, in considering how bast to proceed in statistically estimating costs for

highereducation institutions, the analyst is faced with a dilemma. What has emerged in

econometrics as the preferred form for the Joint cost function, a highly flexible translog

model, brings with it the threat of severe multicollinearity, capable of distorting the

very results whose integrity is protected by the flexibillty of the model. Before

considering the appropriateness of estimation techniques designed to get around this

dilemma, we look more closely at the problem of multicollInearity

Multicollinearity

When explanatory variables are highly correlated, regression coefficients estimated

by applying an ordinary least squares criterion suffer from a number of problems. These

include

1) The precision of estimation falls so that it becomes very difficult if not

impossible to disentangle the relative influences of the various variables. The

loss of precision has three aspects: specific estimates may have very large

errors; these errors may be highly correlated with one another; and the sampling

variances of the coefficients will be very large.
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2) Investigators are sometimes led to drop a variable incorrectly from an analysis

when its coefficient is not significantly different from zero due to

collinearity, rather than to the absence of a relationship with the dependent

variable.

3) Estimates of coefficients are very sensitive to particular sets of sample data;

the addition or deletion of a few observations can sometimes produce dramatic

shifts in the coefficients.

4) Estimates of coefficients are very sensitive to the addition or deletion of a

variable In the model.

The multicollInearity problem Is discussed extensively In the literature of

econometrics and statistics. These discussions may be roughly divided into two broad

categories: (1) those dealing with its nature and potential consequences (e.g., Blalock,

1963, 1964; Darlington, 1968; Goldberger, 1964; Gordon, 1968; Johnston, 1972; Kumar, 1975;

Leamer, 1973; Wichers 1975); and (2) those discussing strategies for dealing with the

problem such as variable selection (Gorman and Toman, 1966; Gunst and Mason, 1977;

Hocking, 1976), reduction to canonical form (Baranchlk, 1970; Chatterjee and Price, 1977),

and biased estimation procedures. Techniques discussed under biased estimation procedures

include Stein estimators (Mallows, 1973; Mayer and Wilkie, 1973; Sciove, 1968), Bayesian

estimators (Leaner, 1973; Lindley and Smith, 1972; Theil, 1963), ridge estimators

(Buicock, Lee, and Luck, 1977; Darlington, 1979; Dempster, Schatzoff and Wermuth, 1977;

Hcerl and Kennard, 1970; Marquadt, 1970; Vinod, 1978), and generalized inverse or

fractional rank estimation (Hemmerle, 1975; Marquadt, 1970).

In strict mathematical terms, collinearity Is said to exist If there are one or more

linear dependencies between predictor variables (Slivey, 1969). Less restrictive

definitions (e.g., Willan and Watts, 1973) suggest that collinearity exists when linear
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relationships hold approximately. Farrar and Glauber (1967) define collinearity as a

statistical rather than a mathematical condition). Viewed from this latter perspective,

the task becomes one of identifying the degree of collinearity and Its effects.

Several indices are available for describing both the degree of Ill-conditioning in

the data and its effects on estimated coefficients. These include variance InflatIon

factors (Marquadt, 1970), the mean squared error of the estimated coefficient vector

(Hoerl and Kennard, 1970), the squared length of the estimated coefficient vector (Hoerl

and Kennard, 1970), the forecasting error variance (Johnston, 1972), and the ridge trace

of the standardized regression coefficients (Hoerl and Kennard, 1970). Statistical tests

for the degree of ill-conditioning in the data have also been suggested by Bartlett

(1950), Farrar and Glauber (1967), Haltovsky (1969), and Wichers (1975). Chatterjee and

Prlce (1977) demonstrate how the method of principle components analysis can be used to

locate collinear relationships.

We have found two of the above indlces to be particularly useful: the variance

Inflation factors (ViFs) suggested by Marquadt (1970), and the ridge trace developed by

Hcerl and Kennard (1970). The VIFs for a particular model are readily obtained from the

diagonal of the inverse of the correlation matrix of the predictor variables, (X1X)-1.

More precisely, we can see from the equation

V ( s) = or. "4 (.{"X)-1 (4)

that the precision of an estimated regression coefficient Is measured by its variance

which is proportional to 2jf 2, the error variance of the regression model. The constant of

proportionality for a given (Ti Is taken from the l-th term of the principal diagonal of

(X1X)-1. The constant of proportionality is referred to as the "varlance inflation

factor" for W. (Marquadt 1970).

8
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It is easily demonstrated that the VIF for a given Bi is equal to 1/(1-R2), where R2

is the square of the multiple correlation coefficient from the regression of the l-th

explanatory variable on all other explanatory variables in the equation. Hence as

tends toward 1.0, indicating the presence of a linear relationship between the explanatory

variables, the VIF for Wi tends to Infinity as does the associated variance estimate. The

estimated variance for any specific coefficient may then be written as

v Cdsc = J2 ( )-- ( 5)

It has been suggested that values for VIFs greater than 10.0 are Indications that

multicollinearity may be causing estimation problems (Chatterjee and Price, 1977; Marquadt

and Snee, 1975). A VIF of 10.0 for a particular explanatory variable Xi, implies a

multiple correlation of .95, when Xi is regressed on the other explanatory variables in

the model.

The second method for detecting multicollinearity, the ridge trace method, flows

directly out of the ridge analysis which will be employed in thls study as an alternative

to the OLS procedure. The ridge trace method will be discussed and demonstrated in the

sections that follow.

laclae_istimators

As previously noted, the particular class of biased estimators employed in the

present study are the ridge estimators first proposed by Hoerl and Kennard (1970). Ridge

estimators were chosen for three reasons. First, they are designed to be more reliable

than the least squares estimator in the presence of an ill-conditioned data matrix.

Second, the "ridge trace" conveys both the degree of ill-conditioning, and the imprecision

inherent in interpreting collinear data. Third, ridge-type solut!ons provide estimates

under varying sample and collinearity conditions which appear to be at least as good if

not better than available altrrnatives (cf., Dempster, Schatzoff and Wermuth, 1977; Hoerl,

9
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Kennard and Baldwin, 1975; McDonald and Galarneau, 1975; Vinod, 1978). With this in mind,

we will proceed with the development of the general ciass of ridge-type estlmators.

The least squares estimate of B may be written in a more generalized formula as

(6)

where "k" is a scalar. In the least squares estimator, k=0 so the above equation reduces

to the familiar

(7)

When k>0,WMis a "biased" estimator of the true unknown coefficient vector. However,

it can be shown that by allowing a Ilttle bias into the system, one obtains an estimator

with a smaller total mean squared error value than by using OLS procedures. This may be

stated analytically asti (ii(xi)-d)'(3N)-(3)J (S-(-)J

Using ridge estimation, then, entails adopting minimum mean square error (MSE) as a

general criterion in place of the customary ordinary least squares criterion.

Procedures for Selecting k

Choosing a value for k is critical in using a ridge estimator. Hoerl and Kennardls

1970 article introducing ridge regression to the scientific community suggests that

guidelines for selecting a particular value for k are straightforward:

1. At a certain value of k, the system will stabilize and have the general character

of an orthogonal system.
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2. Coefficients will not have unreasonable absolute values with respect to factors

for which they represent rates of change.

3. Coefficients with improper signs at k=0 will have changed to have proper signs.

4. The residu&I sum of squares will not have been inflated to an unreasonable value.

It will :lot be large relative to the minimum residual sum of squares or large

relative to what would be a reasonable variance for the process generating the

data. (p. 65)

Unfortunately, the guidelines are no mor ?. then general signposts. In reality, the

optimal value of k cannot be determined with certainty (i.e., in terms of closed-form

solution) because It depends on the unknown parameter vector B and the lAnknown error

variance CY: In practice, k must be determined subjectively or estimated from the data

(Mayer and Wilkie, 1973; Judge et al 1980). This characteristic of k Is at the root of

the difference of opinion regarding the value of ridge estimation. Some would argue that

the reduction In mean square error gained by the introduction of bias into the system .:(3s

little value because of our Inability to select the amount of bias In an optimal manner.

To put it another way, we cannot evaluate any gain In accuracy for a particular problem

without knowing the true values of the coefficients. Proponents of ridge techniques

counter by claiming that one can use the data In a particular problem to help select a

value of k that will produce an estimator superior to OLS. The rejoinder to that argument

Is that the resulting estimates are stochastic, while OLS estimators and ridge estimators

based on a fixed k aro nonstochastic. Thus It Is argued that selecting a value for k

based on sample data makes it improper to apply standard statistical tests (such as

t-scores) In the ridge environment (Darlington 1978; Judge et al 1980). We will return to

this important problem later.
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A number of specific techniques have been developed for estimating the value of k.

Each has its proponents. In the final analysis, the choice of technique depends on the

assumptions the investigator Is willing to make. Two techniques for estimating k were

incorrrated In this study: ridge trace (Hcerl and Kennard, 1970); and, the harmonic mean

(Hoerl, Kennard, and Baldwin, 1975).

The ridge trace approach was used because it provides a description of (1) the

severity of illconditioning In the data; (2) how collinearity conditions affect

estimation; and (3) how increasing the degree of bias introduced into the regression model

affects coefficient estimation. The approach entails introducing a specific amount of

bias into the model and plotting the resultant biased coefficients against the bias value.

The primary drawback of the ridge trace approach Is that it does not provide a point

estimate (i.e., a closed form solution) for k. The technique requires the analyst to

visually examine the plot and make a subjective decision about where (i.e., at what value .

of k) the solution appears to stabilize. Because the technique makes no assumptions about

the nature of the closed form solution but allows the analyst to plot the consequences of

introducing all feasible bias values, ridge trace plots can simultaneously provide and

depict the relationship between all feasible closed form solutions. The ridge trace

procedure Is formally developed In Appendix Ill.

The harmonic mean approach was used because (1) it provides a relatively simple

procedure for calculating the bias parameter, i.e.,

(5-,

(8)

(2) its assumptions are simple and relatively easy to understand making the procedure

readily employable by the lay analyst; and (3) the procedure provides estimated values for

k which appear to have optimal properties under varying conditions of collinearity. The

rationale for the approach Is presented In Appendix IV.
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Ridge vs. OLS--Model for Testing

The results of numerous studies are available to the reader interested in theoretical

comparisons of the merits of OLS versus ridge estimation procedures (Dempster, Schatzoff

and Wermuth, 1977). Our concern here is not with attempts at proving that ridge

estimators are always to be preferred when predictor variables are highly correlated.

Arguments by Judge et al (1980) and many others clearly demonstrate that ridge estimators

have many undesirable properties and, furthermore, lack many of the desirable properties

claimed for them. Our intent here is to show how ridge estimators can be useful in a

practical context--for providing both insights into the effects of multicollinearity and a

viable means of mitigating some of those effects. Hence, rather than set up an artificial

data set to use as a basis for comparing the results of OLS versus ridge estimates, actual

data relating to a typical cost estimation problem In higher education are used In what

follows. The former approach has the advantage of permitting knowledge of the true

coefficients and true variances, around which comparisons could be made. It seemed more

important, however, to show what working with ridge estimators is like under the normal

condition of uncertainty.

The cost estimation problem to be used for testing purposes has been reported on

earlier (Brinkman 1983). In that study, marginal costs for full-time and part-time

students were estimated and compared for several standard expenditure categories at public

two-year colleges. A transiog Joint cost function was developed and subsequently

estimated by a ridge technique. For present purposes, the same model and data set will be

used to compare ridge and OLS results. Initially, then, the testing procedure will In

effect be looking behind the scenes to show what, If anything, was gained by using ridge

regression rather than OLS. Additional comparisons will be made between OLS and ridge (at

two different values of k) using progressively smaller samples (randomly chosen subsets of

the original full sample), multiple samples of the same (small) size, sets of coefficients

13



derived from one sample to estimate marginal costs for another sample, and the

reestimation of a sample following the removal of outlier cases. Since the true values of

the parameters are not known, the comparisons can only be suggestive, and not definitive.

Nonetheless, by observing the results of working with real data, the potential user of the

ridge procedures may gain some useful insights as to their practical utility.

The cost function used to estimate marginal costs at two-year colleges contains the

following variables. The dependent variable is total instructional expenditures (in the

original study, expenditures for student services and for educational and general purposes

were also analyzed). The independent variables include: as outputs, the number of

full-time students (PIS), the number of part-time students (PTS), and the number of

non-credit students (NCS); as input price, the salaries paid to full-time faculty (SAL);

and as technological conditions, the proportion of degree earners (DEG), the proportion of

relatively high-cost programs (HCP), and the system-status of the campus (CSS). The last

variable listed was in dummy form (1 or 0 depending on whether the institution had

independent ;ais or was part of a system), and was not interacted. The single price

variable was not interacted either, in the absence of any substitution possibilities, but

was in logarithmic form. All other variables were logged, squared, and interacted in

standard transiog form.

The data are taken from the 1979-80 Higher Education General information Surveys,

except for the data on non-credit enrollments which came from the American Association of

Community and Junior Colleges' directory. Toe full sample consisted of all institutions

that had complete data and were not a branch campus, except fcr a handful of outliers

which were removed from the sample. The full sample consisted of 779 institutions, or

about 75 percent of all public two-year colleges in 1979-80.
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Results

Table 1 shows the estimated coefficients for the full sample using OLS and two ridge

estimates. In looking at the coefficients (8) and their standard errors (SE) as estimated

by OLS, one finds remarkably little outward evidence of collinearity. Roughly half of the

coefficients are statistically significant (B/SE > 1.96, as measured using OLS estimates),

and most of their signs are plausible. One unexpected result is the sign on the estimated

coefficient for FTS. Since what we know about the costs of instruction suggests that the

number of full-time students Is usually the most Important single determinant of total

costs, it is surprising that the coefficient on full-tIme students (FTS) should be

negative and statistically insignificant, instead of being positive and significant.

Despite what is suggested by the OLS coefficients, however, the variables are in fact

highly collinear. The variance-inflation-factors (V1F) make this quite clear. Since a

VIF of 1 Is equivalent to orthogonaliTy, It is clear that only a couple of variables, SAL

and CSS, are relatively free of collinearity. The high VIFs on the remaining variables

indicate a high degree of imprecision in the estimated coefficients.

The zero-order correlations among the explanatory variables may lend insight Into

sources of the collinearity problem. Table 2 shows the correlations for a subset of the

variables In the model. The table clearly shows the "model-induced" collinearity

dlscussed earlier. Some variables have more than a .99 correlation with their squares,

and some interaction terms have well over a .90 correlation with one or both of the

Interacted terms. By contrast, the "natural" coilinearity among the variables shown only

runs as high as .688 (FTS with PTS), and Is usually much less than that. Of course,

zero-order correlations typically will understate the degree of collInearity In the

system, as they reveal nothing of the collinearity which Is due to combinations of

variables. The ViFs do reflect the latter source of collinearity, however, and thus

provide better insight Into the extent and location of multicollinearity In a given model.
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Table 1

Regression Results Using Alternative Estimators

II 15

ELI

.5E.

(FTS)2
OLS -.319 .231 464.76 .097 .017 562.68

K=.003 .190 .069 44.33 .035 .005 39.69

K=.200 .225 .005 .24 .017 .000 .25

EL (PIS)2
OLS .266 .131 388.62 .032 .006 160.91

K=.003 .030 .047 50.77 .019 .003 41.90

K=.200 .029 .003 .21 .004 .000 .31

(FTS)Se15)
OLS -.072 .016 680.40 .623 .063 2.04

K=.003 -.010 .004 52.03 .640 .062 1.94

K=.200 .008 .000 .11 .617 .043 .94

(NCS)2
OLS -.028 .036 196.17 .008 .001 15.24

K=.003 -.038 .019 55.83 .007 .001 13.39

K=.200 -.007 .001 .19 .002 .000 .74

DEa MEG)2
OLS -.985 .304 206.84 .136 .033 100.61

K=.003 -.550 .144 46.49 .108 .019 33.75

K=.200 -.089 .010 .20 .001 .002 .31

EgE (kqP)2
OLS -.229 .114 143.76 .023 .007 11.77

K=.003 -.218 .066 47.52 .022 .006 10.35

K=.200 -.013 .005 .25 .007 .002 .80

(FTWNCS) (FTS)(DEG)

OLS -.008 .005 194.75 .056 .038 243.48

K=.003 -.003 .003 55.57 .007 .015 37.16

K=.200 .001 .000 .21 .029 .001 .32

(FTWHCP) (PTWN0S/
OLS .004 .016 153.93 .002 .003 83.49

K=.003 .022 .009 46.53 -.001 .002 34.70

K=.200 .011 .001 .27 -.000 .000 .43

(PTS) (DEG) CPW(80e)
OLS -.035 .023 180.15 .013 .011 88.49

K=.003 -.021 .011 40.99 -.004 .007 38.28

K=.200 -.001 .001 .30 -.000 .001 .26
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(NCZ) DU) (j'S) (fICP)
OLS -.002 .007 93.98 .007 .003 26.13
K=.003 -.001 .005 39.17 .005 .003 19.65
K=.200 -.001 .000 .33 -.000 .001 .63

(11EQ) (HCP) CS_S

OLS .012 .023 80.61 .005 .019 1.03
K=.003 .011 .015 34.68 .007 .019 1.02
K=.200 -.004 .002 .36 .018 .016 .70
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Table 2

Zero-Order Correlations for a Subset of Variables

TC
FTS
(FTS)2
PTS
(PTS)2
(FTS)(PTS)
HCP
(FTS)(HCP)

IQ

1.000
.924

.927

.744

.781

.885

.109

.458

EL,/

1.000
.997

.688

.723

.880

.070

.449

(F15)2 EL.

1.000
.990

.945
-.068
.205

FTS)2 (FTS)(PTU HCE

1.000

.914

(FIS)SBCP)

1.000
.694

.732

.887

.054

.434

1.000
.961

-.064
.221

1.000
-.023
.318 1.000
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Just how effective the ViFs are In pinpointing multicollInearlty is a matter of

controversy (see Judge et al 1980 for a discussion).

Table 1 also shows effects of introducIng bias Into he estimating system by means of

the ridge procedure. Notice first the rapld reduction in ViFs for variables with extreme

VIF values. Also note that the regression coefficients and their standard errors also

change, depending on the amount of bias (the value assigned to k) introduced. We will

discuss below the Issues surrounding the choice of the amount of bias. For now, it is

enough to note that K=.003 is a relatively small amount and 1(=.2 is a relatively large

amount of bias for thls particular situation, and that both values are plausible choices.

As shown in table 1, even at 1(=.003, the sign on FTS has switched from negative to

positive, and the standard error has become small relative to the estimated coefficient.

Additional bias does not change these desirable new features. Not all changes Induced by

the bias are as welcome. According to the OLS estimate, the sign on (FTS)(PTS) is

negative. This result is certainly theoretically acceptable, as It Indicates the

existence of economies of scope: It Is less expensive to Instruct full-tIme and part-time

students together, I.e., at the same Institutions, than to do so separately.

Unfortunately, one might say, the introduction of increasing amounts of bias into the

estimating procedure eventually leads to a sign switch on (FTS)(PTS). Since this opposite

result Is also theoretically plausible, we are left with no substantive basis for.arguing

on behalf of either result. In other words, in the absence of a clear theoretical

direction, it is difficult to feel comfortable with a sign change (especially when the

standard errors are relatively small in both cases). Particular trouble with thls

variable might have been expected as It had the highest VIF of any variable in the model.
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The ridge trace procedure allows us to "see" the effects of introducing bias into the

system. Figure 1 shows the trace (the value of the standardized coefficient) as a

function of the value of k for each of several variables. Figures 2 and 3 show the traces

for additional variables in the model. The traces of the coefficients with high ViFs are

much more sensitive to the amount of bias In the system. The reason why the ridge

procedure is attractive, when collinearity is a problem, Is the way In which it stabilizes

or otames" (Kennedy 1979) badly behaving coefficients. In other words, with enough bias,

the coefficients of highly collinear variables can be made to behave as consistently as

the coefficients of non-collinear variables. In part this is accomplished by reducing the

absolute magnitude of the coefficients with respect to their OLS values. Interestingly,

variables that are collinear and of little consequence In model have their coefficients

reduced in magnitude to such an extent that they are, in effect, removed from the model.

While the behavior of a particular coefficient is of some interest, marginal cost

estimates in the present context are the result of a combination of coefficients.

Specifically, the marginal cost of an output q is equal to the first partial derivative of

the estimated cost function with respect to q, multiplied by the estimated value of total

cost for a particular value of q, divided by that value of q, or

(9)3 ,
where a- 4)

In the present case, where the outputs of concern are full-time (FTS) and part-time

(PTS) enrollments, the respective marginal cost calculations are as follows:

m C,4 (c2,0 g cLi F TS PT'S + 0..? DEG- czy ccs- Nes). (10)

MC/2 = (frO Prs + p rs Mc s) a/p-rs (11)
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With respect to the concerns being addressed In thls paper, It Is perhaps worth

noting tho obvioust tho accuracy of a marginal cost estimato for tho model at hand will

depend on the accuracy of six estimated coefficients. Table 3 shows the results of using

these formulas with the three sets of coefficients shown In table 1. The calculations

have been done for four levels of output In order to contrast the respective estimated

costs across the observed range of enrollment. The category "small Institutions" refers

to institutions lying within the smallest flve percent of those in the sample (as measured

by enrollment). Data on 10 such institutions, randomly chosen, were averaged to create a

data set for a "typical" small Institution--284 full-time and 221 part-time students. In

a similar fashion, data for a typical large Institution were created--4,665 full-time and

12,885 part-time students. Between these extremes, two types of middle-range institutions

are also represented In table 3. Section C shows the results of usinp raw enrollment

means for the entire sample-1645 full-time and 2840 part-tlme studen --to represent one

such Institution. Section B shows the results of using the logariti nrollment means

for the entire sample--1150 full-time and 1366 part-time studentsto represera the other.

The raw data distributIons are posltively skewed, so the means of the logarithmic data are

smaller. Fully two-thlrds of all the Institutions in the sample have enrollments equal to

or less than the raw mean values.

In Order to evaluate marginal costs at these various enrollment levels, values for

the other independent variables in the model must also be selected. For the results shown

in table 3, the following conditions were imposed: the raw mean values for percent of

degree completion (29%) and percent of high cost programs (36.2%) were used in all

sections; with respect to noncredit enrollment, the average of actual values was used for

section A (165 students); the log mean value for section B (354 students), and the raw

mean value for sections C and D (4335), and for faculty salaries the log mean value was

used for section B ($18,215), the raw mean value for section C ($18,578), and the average

of actual values for sections A ($13,625) and D ($23,090). Nelther degree completion nor
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Table 3
Marginal Costs of Instruction

Alternative Estimates
Full Sample

A.

Institutional Size
and Student Type S21.3.

Ridge
K=.003

Ridge

.15z12.

Smail
FT $1057 $1335 $1436

PT $ 349 $ 245 $ 349

FT/PT 3.03 5.45 4.11

B. Middle (Log Means)
FT $1494 $1500 $1455

PT $ 290 $ 265 $ 258

FT/PT 5.15 5.65 5.64

C. Middle (Raw Means)
FT $1431 $1542 $1575

PT $ 223 $ 208 $ 198

FT/PT 6.42 7.41 7.95

D. Large
FT $1871 $1941 $1809

PT $ 179 $ 194 $ 151

FT/PT 10.45 9.94 11.98



program emphasis were correlated with full- or part-time enrollment levels, and thus both

could be left at their respective mean values. Noncredit enrollment to some extent and

salaries to a considerable extent were correlated with full- and part-time enrollment

levels; thus values other than those at the mean were required to adequately represent

typical combinations of institutional characteristics across the (credit) enrollment

spectrum.

In terms of the underlying management finance issues--especially tuition levels and

appropriations or allocations per FTE--both the absolute value of the marginal costs for

full- and part-time students, and the ratio between the two costs, are important. As

table 3 shows, there are differences in the results by size of institution and by type of

estimating procedure, The only result shown that appears somewhat implausible is the OLS

estimate for full-time students at small institutions. On theoretical grounds we would

expect that the cost curve, partially depicted by the four "points" shown in table 3,

would be U-shaped, and there is evidence to that effect (Brinkman 1981). For very small

institutions, estimated marginal costs would escalate rapidly according to the two ridge

procedures, but would continue to decline according to OLS (not tabled). In part, the

reason for the OLS result is the negative coeffIcient on FTS which was mentioned earlier.

It could be argued, then, that the ridge technique "corrects" the sign on that coefficient

and thereby produces a better estimate of marginal costs, particularly for the smaller

institutions in the sample. (For those readers perplexed by the ability of small

Institutions to have lower marginal costs than the mid-sized Institutions, as shown in

table 3, we note that the primary reason is lower faculty salaries at the small

institutions. If the small institutions paid their faculty at the [raw] mean rate for the

sample [$18,215], instead of $13,625, they would in fact have higher marginal costs than

the mid-sized institutions. See Brinkman [1983] for more details.)



It is also useful to look at some statistics for the system as a whole, in order to

see what else happens beyond changes in estimated coefficients as bias Is introduced. As

shown in table 4, one result is a decrease in R2, the conventional measure of "goodness of

fit." Of course, R2 must decrease since by definition OLS will always give the best fit

measured in that way. Similarly, the increase in sums of squares (SSQ) and in the

standard error (SE) are to be expected. Notice that the changes are quite small, which

means that we can perturb this system quite considerably without losing much predictive

power. In any case, the tradeoff is that the mean square error (MSE) is drastically

reduced as bias is introduced. As Judge et al (1980) emphasizes, the reduction in MSE

cannot be gliarand, but obviously there is no question that the reduction is both real

and substantial for the particular model estimated In this study.

Another way of comparing the OLS and ridge estimators is to look at their respective

results for varying sample sizes. As noted earlier, an abundance of data (i.e.,

cbservations) is .usually a good antidote to multicollinearity. The problem, of course, is

that numerous cases are not always available, or their acquisition may be expensive, and

so on. Thus the analyst may often have to make do with a relatively small sample, and to

look elsewhere, such as to an alternative estimator, for help in handling

multicollinearity.

Table 5 shows the marginal-cost results, at mean (log) values of the variables, of

estimating the translog cost function for a series of decreasing sample sizes, starting

with the full sample (N=779). The smallest of the randomly drawn subsamples, N=513,

retains 27 degrees of freedom. Overall, the least amount of difference among the various

samples, as measured by the range of values, is found in the estimates generated by the

ridge programs when k=.2. This is particularly true for the cost estimates for full-time

students. The ridge program at k=.2 also does the best job for sample size 508, as the

alternative procedures, OLS and ridge at k=.003, lead to implausible results in the form
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Table 4

Overall Statistics for the Cost Function Model Using Alternative Estimators

MAX

1: 51.4 ..S.E ki5E. .Y.E

OLS .921 .081 .285 333.0 680,4

Ridge (k=.003) .919 .083 .288 129.9 55.8

Ridge (k=.200) .903 .100 .316 7.3 .9
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Number of

Table
Marginal Cost Estimates Using OLS and Ridge Estimators

on Different Sample Sizes

OLS RIDGE (..,003) RIQQE

El a L. El PI fILEI fi. .EL FT/yr

779 $1494 $290 3.15 $1500 $265 5.65 $1455 $258 5.64

325 $1387 $246 5.64 $1438 $209 6.88 $1435 $235 6.11

176(a) $1509 $276 5.47 $1535 $223 6.88 $1346 $261 5.16

176(b) $1218 $323 3.77 $1261 $297 4.25 $1338 $259 5.17

100 $1390 $359 3.87 $1571 $300 5.24 $1433 $247 5.80

50(a) $1716 $-64 $1605 $-56 $1385 $ 91 15.22

50(b) $1431 $266 5.38 $1317 $236 5.58 $1393 $183 7.61



of negative marginal costs for part-time students. However, while the ostimate of

part-time marginal costs is positive at R=.2, the estimated value of $91 is only about a

third of the value estimated on the basis of the full sample; nonetheless, the estimate is

certainly less misleading than those derived from OLS or ridge at k=.003. The same two

bias parameter values, .003 and .2, were used for each sample simply for ease of

exposition. Normally, the selection of a value for k would be sample specific, as will be

discussed below.

Given the amount of collinearity in the system, we mloht expect considerable

variability in the coefficients, and thus the marginal cost estimates, from one randomly

drawn small sample to another. Using table 5 again, we see that the marginal cost

estimates derived from the first sample of 50 institutions (a) differ considerably from a

second sample of the same size (b). The estimates based on OLS and ridge at k=.003 vary

more than those based on ridge at k=.200; at the same time the two former estimates gave

results for part-time students and for FT:PT that are closest to those derived from using

the full sample. The picture is again somewhat mixed for the two samples (a and b) at

N=176, although the cross-sample stability of the ridge estimates at k=.200 is remarkable.

Also, even though OLS and ridge at k=.003 give good results for some of the small samples,

they do so using negative coefficients on FTS (not tabled), which suggests that those

estimators might yield implausible results for very small institutions--as opposed to

institutions with mean or larger enrollments.

High collinearity tends to make regression coefficients highly sensitive to the

inclusion in the sample of particular cases, especially outliers. Thus another way in

which OLS and ridge estimators can be compared is their respective reaction to the removal

of cases from the sample. The more stability, that is, the less the change In the

coefficients, the better.
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Table 6 shows the results of removing two cases from the sample N=100. The two cases

removed were outliers in the sense that their predicted total costs were furthest (about 2

standard derivations) from their actual total costs among the institutions In the

subsample. Table 6 shows two kinds of comparisons. Panel A contains marginal cost

results, while Panel B contains the estimated coefficients for a subset of the variables

in the model (those that are directly involved in the calculation of the marginal effects

of FT and PT). As can be seen from the percentage change calculations, the ridge

procedure at k=.200 provides considerably more stability than the OLS procedure, with

respect to both the estimated marginal costs and the underlying regression coefficients.

The ridge procedure at k=.003 generally yields more stable coefficients than OLS, but not

in all instances.

Variability among subsamples can be examined In yet another way. The estimated

coefficients from one sample can be used with the values of the variables from a second

sample to yield predicted total costs for the second sample. These predictions can then

be correlated with actual total costs across the second sample, with the degree of

correlation expressed as the familiar R2. The question for present purposes Is whether

coefficients estimated by OLS will do better or worse than those estimated by ridge--with

respect to the amount that R2 will shrink when the original coefficients are used with a

new sample. Results of such a comparison for two randomly drawn subsamples (N=100) are

shown In table 7. All three estimators yield high R2 values for the original sample, with

tho biasrelated decrease In R2 again being evident (as In table 4). The

crossverification prccedure (Daniel and Wood, 1980) shows much less shrinkage in R2 for

the ridge estimators. Ridge at k=.2 Is especially resistent to shrinkage In this

instance.

A sample size of 100 was chosen for this test because the ratio between the number of

cases (N) and the number of variables in the model (P) was not extreme In either
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Table 6
Effects of Removing Two Cases from a Small Sample (N=100)

015 Al_dge (1(=,(103) RIde (K=L.200)

N=I00 N=18 Chonge N=1Q9 14=913 Ghana N=190 jt98 Chan=

A. Marginal Cost Estimates

FT

PT

Ratio

$1390 $1296 6.8% $1571 $1542 1.8% $1434 $1489 3.8%

$ 359 $ 319 11.1% $ 300 $ 274 8.7% $ 247 $ 252 2.0%

3.87 4.06 4.9% 5.24 5.63 7.4% 5.81 5.91 1.7%

B. Unstandardized Regression Coefficients

FT -1.188 -1.469 23.7% -.003 -.029 866.7% .241 .238 1.2%

(FT)2 .097 .095 2.1 .045 .044 2.2 .018 .018 0.0

PT .368 .340 7.6 .136 .135 0.7 .024 .022 8.3

(PT)2 .008 .003 62.5 .010 .008 20.0 .003 .003 0.0

(FTxPT) -.019 -.003 84.2 -.006 -.004 33.3 .007 .007 0.0

(FTxDEG) -.128 -.202 57.8 -.046 -.059 28.3 .027 .026 3.7

(FTxHCP) .304 .417 37.2 .088 .103 17.0 .019 .020 5.3

(FTxNCS) -.007 -.007 0.0 -.003 -.003 0.0 .001 .001 0.0

(PTxDEG) .004 .021 425.0 -.020 -.019 5.0 .000 .000 0.0

(PTxHCP) -.058 -.077 32.8 -.013 -.013 0.0 .002 .002 0.0

(PTxNCS) .003 .000 87.3 .003 .003 0.0 .000 .000 0.0
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Table 7

Comparison of R2 Shrinkage* for Three Estimators

R2, Values

((!--QQ,3) Ridge JK.....2)

Original Sample .944 .938 .920

(N.100)

Second Sample .842 .900 .915
(W100)

Change in R2 .102 .038 .005

* When regression coefficients estimated on the basis of an original sample
are used to predict total costs for institutions In a second sample.



direction. The superiority of the ridge procedure with respect to R2 shrinkage has been

shown to be directly related to the magnitude of the number of predictors to the number of

cases (P/N) (Paden 1978). While not extreme, the ratio In this instance, 22/100, is

actually fairly low compared to some that are reported in recent literature. For example,

In Cowing and Hoitmann (1983), the ratio is 107/138, while In Brown, Caves, and

Christensen (1979) It Is 21/67. It appears, then, that there Is some likelihood of

encountering situations where the ridge procedure could be helpful, assuming, of course,

that maintenance of predictive power In a cross-validation sense has value.

he_ Bias Par aragfer Bey atad

In the previous section, it was shown that at least In the particular situation being

analyzed In this study, the ridge estimators offered some advantages over the conventional

least squares approach. The ridge estimators provided theoretically better estimates for

marginal costs at small institutions based on a large sample size, more plausible

estimates when relatively small samples were used, less shrinkage in R2 when coefficients

were used across samples, and more stable estimates when cases were removed from small

samples. But the ridge procedure does not provide a single alternative to OLS. Rather,

the procedure can generate a virtually unlimited number of alternatives (i.e., sets of

estimated coefficients), with each alternative being a function of the value assigned to

the bias parameter k. Unfortunately, as was pointed out earlier, the selection of a value

for k Is anything but straightforward. Which is not to say that there are not

straightforward procedures, but rather that there are alternative procedures which lead to

different values of k and no one procedure Is acceptable to experts In the field.

In illustrating the capabilities of the ridge procedure In the previous section,

results (coefficients and marginal cost estimates) were shown for assigned k values of

.003 and .2. These values were chosen because they ranged from relatively small to

relatively large amounts of bias, and because they had intuitive appeal to the authors.
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That Is, they led to results (a change in signs or in the magnitude of coefficients) which

made sense. But what of the more rigorous methods suggested to assign a value to k? What

k values do these methods suygest for the model and data used in the present study?

We start by returning to the ridge trace procedure, which was developed early on by

the originators of the ridge estimator (Hoerl and Kennard 1970). One can see in figure 1

above why an analyst might elect to pick a value for k somewhere between .003 and .009.

Relatively little bias seems to accomplish a great deal in terms of stabilizing the

coefficients. As an alternative, using figure 4 which displays the trace over a greater

range of k, consider selecting a value for k of .200, which was used for some of the

estimates discussed above, or a value of .360, whirA Is the value one obtains on the basis

of the harmonic mean technique (as derived In Appendix III). Figure 4 shows that little

Is gained in terms of stable behavior by using a value greater than .2. For that matter

very little additional stability Is gained by using a value greater than .05. Are there

advantages in using the least amount of bias that gains the minimum acceptable stability?

Perhaps so, at least on an intuitive level. That is, for the analyst who the

introduction of bias as at best a necessary evil to combat multicollinearity, _.r.,. nay be

some utility In staying as close to the OLS solution as possible, although this position

is not Justified In the literature. One seeming advantage of using k=.003 for the full

sample (N=779), for example, is that all the "tscores" save that on FTS are of the same

sign and order of magnitude as the iscores for OLS. Strictly speaking, B/SE cannot be

treated as a tscore In ridge (k>0), that is, a given value of the ratio cannot be

assigned a level of significance, because the sampling distribution for the statistic is

unknown when k is determined from the data (Obenchain, 1977). Practically speaking,

however, the analyst might still be willing to use the statistic in interpreting how well

the respect1ve variables were performing if the amount of bias were very small.

Furthermore, the smaller the bias the less the increase in the residual sums of squares

for the model as a whole (see table 4).
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Figures 5 and 6 show the ridge trace for subsemple 50(e), which was a Ildifficult"

sample for all three estimators ur, fm$ table 5). Note that In this

Instance coefficient stability Is achieved with the introduction of somewhat more bias,

roughly .015 or so. Note that the value of tho c,,nfficlent on FT continues to increase

all the way out to k=.50. Yet, the harmonic mean formulation suggests that k be set at

.036, an order of magnitude less than indicated for the full sample (N=719). For the

other very small subsample, 50(b), the harmonic mean formulation suggests that k be set at

.046. The appropriate choice for k, then, as noted earlier, Is entirely sample specific,

and a function of a particular method of selection as well. Not the stuff, In other

words, likely to impress the purist. On the other hand, It does seem In looking at the

ridge traces that any amount of bias, within some range of k>0, would be a better choice

than staying with OLS, assuming that the stability of particular coefficients was of

greater concern than maximizing goodness of fit with respect to the predicted value of the

dependent variable.

Disussioq

The purpose of this study was to assess whether, In the face of extreme

multicollinearity In estimating cost functions, the ridge procedure might be a useful

alternative to the conventional least squares estimator. Utility will depend, of course,

on perspective and need. As the problem was structured In the present study, the ridge

procedure appeared to offer several modest advantages. The task vm to estimate marginal

costs for a multiproduct enterprise. Thus ridge improvements In the precision and

stability of estimated coefficients were importantmarginal cost estimates being a

function of a set of coefficients. Similarly, related matters which are often of concern

in estimating cost functions but not pursued In the present study, such as economies of

scale and economies of scope, also depend on the value of estimated coefficients.
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lf, on the other hand, the objective was to predict total costs with the least amount

of error, then OLS has one immediate advantage. For any given sample, OLS will always

provile the lowest possible residual sum of squares. Recall, though, that even when

total costs, the ridge procedure has a potential advantage when collinearity is

high. If the coefficionts estimated for one sample are to be used to predict total costs

for the observation in another sample, the R2 shrinkage incurred by a ridge estimator Is

likely to be less than that for the OLS estimator; the resultant, shrunken R2 values for

ridge estimators, then, may be higher than that .for the corresponding OLS estimator.

There is another matter of perspective to consider, other than the specific aims of a

cost estimation procedure. Roughly speaking, one might describe it as the difference

between a theoretical versus a practical perspective. On the basis of reviewing the

theoretically oriented literature, it appears as though there are serious, unresolved

problems with the ridge procedure (the best summary of these problems is in Judge et al

193). One might describe It simpiy as a situation in which the advantages offered by

ridge are possible, but cannot be guaranteed theoretically. Furthermore, the failure to

date to develop a theoretically unimpeachable way of assigning a value to the bias

parameter has weakened the case for ridge.

Locked at practically, however, the ridge procedure does seem to offer hope in the

battle against multicollInearity. In every comparison conducted for the present study,

ridge was in some pertinent sense superior to OLS. All in all, it appears that the

marginal cost estimates generated by ridge were less risky than those generated by OLS.

From a practical perspective that may be enough to justify using the ridge procedure.

Finally, it should be apparent from this study that at the very lest ridge

regression provides a means for data and model exploration. By comparing OLS and ridge

estimates, and especially by examining ridge traces and VIFs, the analyst can come to a

better understanding of the effects of multicollinearity In a given situation. This is
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true whether one opts for a reduced form model, that Is, elects to eliminate some of the

collinear independent variables, or chooses to stay with a theory-driven model regardless

of the attendant estimation problems, as was done In this study.
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Appendix I: Properties of Ridge Estimators

The ridge estimator is a linear transformation of the least squares estimator, which Is

Just

Rearranging terms we obtain

,r/

( 12 )

(13 )

Substituting in equation (6), we obtain (14)

For k > 0, B(k) is the ridge estimator.

The relationship of the ridge estimator of the OLS estimator is then given by

(_A)=- (A/CV *4 .1-)-1 (00 g
C + ..h (x '20
2 o

so that B(k) may be viewed as a linear transform of W.

( 1 5 )

(16)

If the squared length of the regression vector B Is fixed at B2, then B(k) is the value of

B that gives a minimum sums of squares of residuals. This is illustrated in Figure 7 for

a two parameter problem by Marquadt and Snee (1975, p. 5) as follows:

The point g at the center of the ellipses Is the least squares solution. r g the.
sum of squares of residuals achieves its minimum value. The small eliipse Is the
locus of points In the B1, 18.4 plane where the sum of squarest is constant at a value
larger than the minimum value. The circle about the origin ie tangent to the small
ellipse ati!(k). Note that the rid9e estimate B(k) is the shortest vector that will
give a residual sum of squares as small as the value anywhere on the small
ellipse. Thus the ridge estimate gives the smallest regression coefficients
consistent with a given degree of increase In the residual sum of squares.

Other.key properties of B(k) Include:
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Fig. 7. The geometny of ridge regression
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The length of 13(k) Is a decreasing function of k.

The variance term Is a decreasing function of k. That is,

fCAI

z 2 ( irx

The bias term Is an increasing function of k. That Is,

1/67r/O4ce (6 /QS )2'

where ESD denotes the expected squared distance to B.

(17)

(18)

This last property points out that the mean square error of B(k) Is composed of two

components: (1) the sum of variances of all the estimated coefficients; and (2) the

square of the bias introduced by substituting t(k) for B.
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Appendix II

The algorithms reported In Table 1 require that (XIX) has been transformed to the space of

orthogonal predictor variables. In thls form, the model expressed In equation (1) becomes

(19)

where X=X*P, c(=P8, PIP=PPI=.1., PI (XIX)P=6., and.A. denotes the diagonal matrix of

eigenvalues of (XIX).
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Table 1. Closed Form Methods for Selecting k

1. Harmonic Mean (Hoer!, Kennard, and Baldwin, 1975)

2. Empirical Bayes (Lawless and Wang, 1976).

44

3. Iterative Estimation (Hoerl and Kennard, 1970).

( )' (0 z4 _

4. Variance Normalization (Bulcoci-., Lee, and Luck, 1977).

5. Minimization of the Frequentlst Expectation of the MSE (Dempster, Schatzoff, and

Wermuth, 1977).

(/
L.-

c

6. RIDGM Bayesian Approach (Dempster, Schatzoff, and Wermuth, 1977).

-v
Gc

(r 1

7. Generalized Ridge (Hocking, Speed, and Lynn, 1976).
z 2 v

cr A ' o(L (:)(,
C
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Appendix III: Ridge Trace

In linear estimation one postulates a model of the form

= /14 -t e

It follows from equation (20) that the residual sums of squares can be written as

(Y-xle)/
(Y-X1) (16-e)' x'x (-ä)

15,7) gT(0)

(20)

(21)

The Ridge Trace can be shown to be following a path through the sums of squares surface so

that for a fixed a single B is chosen which Is of minimum length. This can be stated

precisely as follows: Minimize BIB subject to,

Thls Is graphically illustrated in Appendix 1, Figure 7.

As a Lagrangian problem this Is

F = (1%) /(3- a)/ (v/r) (g -g)

where (1/k) Is the multiplier. Then,
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Equation (23) reduces to

4 z /67A)-- L-v)( IT' X7

(24)

(25)

The value of k is then chosen to satisfy the restraint imposed by equation (22). This is

the ridge estimator. In practice it Is easier to choose k>=0 and then compute/.
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Appendix IV: Harmonic Mean Approach

The approach derives from two assumptions. First, If XIX=I, then a minimum mean square

error term Is obtained if (Hoeri and Kennard, 1970)

= p 0-2/41,d

Secondly, the general form of equation (18) Is rewritten as

x',1/ ?'A .7-1 a-4(A) =

(26)

(27)

where PkP=KIp. A minimum mean square error must be obtained when (Hoeri and Kennard,

1970, p. 63)

=

(28)

Hoeri, Kennard and Baldwin (1975) argue that if the KL are to be combined to obtain a

single value of k, one would not want to use the arithmetic mean since very small 0(1. with

no predictive power would yield very large values for k. They suggest that a more

reasonable approach of averaging the 1(1 Is to employ the harmonic mean. That is,

calculate

-1/A (14) (14,.)

/3

( 1/p Cr ) C;
4 .r

The value of k Is then given by

(-14, ) oc7,2.)
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(30)

The results represented by equations (29) and (30) Indicate that a reasonable choice for

an automatic selection of kis an estimate of (parl./BIB). And that Is what Is used

vls-a-vls

= p
(31)
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