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Statistical Cost Estimation in Hlgher Education:

Some Al ternatives

The need to understand cost behavior is a perennial one in higher education. The
driving force underlying the need may differ from one place to another and it certainly
changes over time. For instance, it could be the task of evaluating the cost structure of
programs at Institutlons competing for the same support dol lars, or of ascertaining the
conditions under which economies of scale might be expected to accompany enrol Iment
growth. At the present time, there is much concern about what may happen to unit costs
when enrol Iments deciine. Whatever the motivation, the cost analyst is faced with the

continuing challenge of finding new and, presumably, better ways of understanding costs.

As the extensive survey done by Adams, Hanklns, and Schroeder (1978) makes quite
clear, most of what passes for cost analysis in higher education is essential ly a cost
calculatlion of one sort or another. The ubliquitous average cost per student credit hour
is a case In point. This cost figure can be calculated dlrectly, given data on total
costs and total credit hours. But other costs, such as the cost of an addltional credit
hour, are usually not directly calculable. Instead they must be estimated, using either
statistical or accounting procedures. The statistical approach |s far more common, and
constitutes the focal point for this study. Specifically, the intent of this study is 1)
to review some recent developments in econometrics that are relevant to the task of
estimating costs in higher education, and 2) to test the relative effectiveness of
alternative statistical procedures for estimating costs. The material Included should be
useful to researchers and analysts who have need to estimate higher-education costs, and

to those who are Interested in statistical cost estimation more generally.

Statistical cost estimation involves three basic parts: a model, a data set, and an
estimation procedure. For present purposes, data-related Issues will be dealt with

summarily because these issues (for instance, the quality of financial data, the problem



of finding acceptable output measures, and so on) are generally familiar ones for the
higher-education analyst. By contrast, the thlnking among econometricians regarding the
structure of cost estimation models has undergone considerable development over the years,
and may not be as familiar. Similarly, there have been developments in estimation
procedures that have not received much attention in higher-education circles, but are
worth considering here. Of course, this paper cannot offer the broad coverage appropriate
to textbooks. The selecflon problem Is made easier, though, by the fact that econometric
thinking on models has converged somewhat, and because some of the preferred models can
lead to statistical problems which in turn make certain estimation procedures more
atfractive. To put names to these matters, the models in question are transiog cost
functions, the statistical problem is multicol Iinearity, and the estimation procedure is
ridge regression. Actual data wll| be used in assessing whether the rldge techniques
provide a viabie alternative to the more famil iar ordinary least squares (QLS) approach
within the collinear environment characteristic of translog models. The translog model
that is used for the study generates marginal cost estimates for full- and part-time

students at two-year col leges.
Cost Estimation

The behavior of costs in a parficular industry, or more generally, the production
structure of an industry, can be analyzed by estimating elther a production function or a
cost function. The procedures have been shown to be theoretlcal ly equivaient by Shepard
(1953), for the single-product firm, and by McFadden (1978), for the muliproduct firm,
When cost structure is the primary concern, estlmating a cost function is the most direct
approach. And, when the industry in question consists of multiproduct firms, as is
certainly the case with respect to higher education, estimating a joint cost function
offers the distinct advantage of making it relatively easy to model the structure of cost

without imposing a priori restrictions on the structure of production--restrictions which



are typically imposed when modeling the structure of multiproduct firms by estimating

transformation (production) functions (Brown, Caves, and Christensen 1979).

The impllcit form of a cost function can be written as
C=C(ap;t) (1)

where C Is fofal cost, q is output, p Is the Input price, and t Is a set of technological
conditions that may have some effect on the relationship between C and q (McFadden 1978).
Under theoretically ideal conditions (that is, Intent fominimize costs coupled with full
knowledge of how to do so), the cost function specifies the minimum cost for a given level
of output. Whether such conditions. ever hold enfirely Is doubtful. It is certainly
unlikely that they hold for higher education; Bowen (1980) makes this point rather
emphatical ly. (Pauly [1978] makes the same point for hospitals.) Most estimated cost
functions, then, actually represent average rather than minimizing behavior. Cohn (1979)

refers to such cost functions as "approximate,"

Developing an expiicit form for the cost function In a given situation is the essence
of the modeling problem. Preference for particular types of explicit functional forms has
changed over the years. Some of the eari les+ examples of cost functions date from D=an's
studies in the 1930s of retail trade stores (reprinted In Dean 1976). These early efforts
typically employed simple additive models at best. For Instance, Ynfemé (1940) used the

function
C=a,«+ XGF r AT (2)
to estimate marginal costs for the steel Industry,

With the advent of computers in the post WWI I era, and the growing Interest in
econometrics, functional forms gradually became more complex, and, one might say, more

thoughtful. That Is, more attention was paid to the intervening or secondary varlables



that might influence the cost-output relationship, to the form of the function
(particularly as it related to economic theory), and to the form of the variables (for
example, raw versus logarl|thmically transformed) included In the estimating equation,
Johnston's 1960 textbook on statistical cost estimatlon provides an excellent review of
developments to that point (Including criticisms of the various procedures)., A review of

the early perlod can also be found In Dean (1976) and Walters (1963).

Despite the variety of functional forms employed, virtually all cost functions up
through the early 1970s had one important feature in common. They all imposed a priori
restrictions on the cost and production structure. For example, In that simplest of forms
shown above as equation 1, one restriction imposed (apart from consideration of price and
Technical conditions) Is that marginal cost, the change in total cost (c) associated with

an additional unit of output (q), must be constant; It can only be the estimated value of

)

the parameter a’, regardless of the value of g-—or anything else for that matter. Other

functional forms were less restrictive, but it was not until the 1970s that so-called
flexible forms, which impose few If any restrictions, began to be used wlth some
frequency. Diewert (1974) reviews several of the flexible forms that are designed for
Jjoint cost functions (where more than one type of output is Involved)., Griffin (1982)
compares the approximation characteristics of three flexible forms: +the general ized
Leontief, the translog, and the general ized square-root quadratic. Of these forms, the
translog function proposed by Christensen, Jorgenson, and Lau (1971; 1973) appears to be
the most widely adopted (for example, see Brown, Caves, and Christensen (19791, Cowing and
Holtmann [1983], and Spady [19791). A variety of discussions and applications of the

translog cost function can be found in Smith (1982).

The translog joint cost function for £ Outputs, m |nputs, and n technical conditlions

can be written
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where Sij=§ji'e*°' The expression (3) has one neutral scale parameter (ao), Il +m+ n

first order parameters (ai'Bi ’Yi)' and (I1+1)(1/2) + (m1)Y(m/2) + (n+1)(n/2) + Im + In +
mn second order parameters. The only restriction Imposed In using thls form Is the
regularity conditlon that, it the function Is to be understood as a cost functlon In the
strict sense, then the functlon must exhlbit homogenel ty of degree one In factor prlces
(that Is, total cost must cnange in the same proportlon and direction as a change In
factor prices). Otherwlse there are none of the typlcal restrictions on the cost and
productlon structure of Tﬁe flrms analyzed. Indeed, what were once a priori Impositions
on structure now become testable hypotheses. The second order logarlthmic terms for the
output varlables allow for two Inflectlon polnts In the esflmafeq cost curves, thus
allowlng for economles or diseconomles of scale, while the complete set of Interaction
terms removes any separabllity assumptlions from the model. As Brown, Caves, and
Christensen (1979) have shown, imposed restrictions such as homogenelty and separabl | [ty
of output can make a signlficant difference in the results (parameter estimates) of the

analysis.

Clearly, then, In the absence of a priorl knowledge about the structure of
productlon, there Is good reason to adopt a flexible functional form, such as the translog
model shown above, that |ets the data speak for themselves. At the same tIme, models such
as the translog are prone to the estimation problem known as multicol llnearity, in which
correlation among the explanatory varlables can hide or distort thelr true relatlonship to
the dependent varlables (for example, see Cowing and Holtmann [1983]). Zero-order
correlatlions tend to be quite high (r>.95) between a value In logarithms, |ts square, and
related Interactlon terms. In estimating marglnal costs In higher educatlion, the

sltuation may be exacerbated by what one might call "natural", as opposed to




"model=~Induced" rulticollinearity. That is, the key explanatory variables one might
typically consider in estimating cost functions for colleges and universities tend to be
collinear. For example, there would be utility in being able to compare the marginal
costs of lower versus upper division students, but these two enrol Iment levels tend to
vary together (Allen and Brinkran 1983), This naturally occurring phenomenon, when
combined with the tendency of the translog model to generate highly col linear explanatory

variables, creates a situation in which multicol linearity is likely to be a serious

problem.

Thus, In considering how best to proceed in statistically estimating costs for
higher-education Institutions, the analyst is faced with a dilemma. What has emerged in
econometrics as the preferred form for the Joint cost function, a highly flexible translog
model, brings with it the threat of severe multicollinearity, capable of distorting the
very resuits whose integrity is protected by the flexibillty of the model. Before
considering the appropriateness of estimation techniques designed to get around this

dilemma, we look more closely at the problem of multicolllnearity itself.

Multicolllinearity

When explanatory variables are highly correlated, regression coefficients estimated

by applying an ordinary least squares criterion suffer from a number of problems. Thece

include

1) The precision of estimation falls so that it becomes very difficult if not
Impossible to disentangle the relative influences of the various variables. The
loss of precision has three aspects: specific estimates may have very large
errors; these errors may be highly correlated with one another; and the sampling

variances of the coefficients wil| be very iarge.



2) Investligators are sometimes led to drup a variable Incorrectly from an analysls
when [ts coefflclent Is not significantiy different from zero due to

collinearity, rather than to the absence of a relationship wivh the dependent

variable,

3) Estimates of coefflcients are very sensitive to partlcular sets of sample data;
the addition or deletion of a few observations can sometimes produce dramatic

shifts in the coefficlents.

4) Estimates of coefficients are very sensitive to the addition or deletion of a

variable In the model.

The multicolllnearity problem Is discussed extensively In the |lterature of
econometrics and statistics. These discussions may be roughly dlvided Into two broad
categories: (1) those dealing with Its nature and potential consequences (e.g., Blalock,
1963, 1964; Darlington, 1968; Goldberger, 1964; Gordon, 1968; Johnston, 1972; Kumar, 1975;
Leamer, 1973; Wichers 1975); and (2) those discussing strategles for deal ing with TheA
problem such as varlable selection (Gorman and Toman, 1966; Gunst and Mason, 1977;
Hockling, 1976), reduction to canonical form (Baranchlk, 1970; Chatter jee and Price, 1977),
and blased estimation procedures. Techniques discussed under blased estimation procedures
Include Stein estimators (Mallows, 1973; Mayer and Wilkie, 1973; Sclove, 1968), Bayeslan
estimators (Leamer, 1973; Lindley and Smith, 1972; Thell, 1963), ridge estimators
(Bulcock, Lee, and Luck, 1977; Darlington, 1979; Dempster, Schatzoff and Wermuth, 1977;
Hoer| and Kennard, 1970; Marquadt, 1970; Vinod, 1978), and general lzed lnverse or

fractional rank estimation (Hemmerle, 1975; Marquadt, 1970).

In strict mathematical terms, colllnearity Is sald to exlst If there are one or more
| Inear dependencles between predictor variables (Silvey, 1969). Less restrictive

definitions (e.g., Willan and Watts, 1973) suggest that collinearlty exlists when |inear




relationshlps hold approximately. Farrar and Glauber (1967) deflne colllnearity as a
statlstical rather than a mathematical conditlon). Vlewed from thls latter perspective,

the task becomes one of Identlfying the degree of colllnearlty and |ts ef fects.

Several Indlces are avallable for describlng both the degree of 1ll-condltloning In
the data and Its effects on estimated coeffliclents. These Include varlance Inflatlon
tactors (Marquadt, 1970), the mean squared error of the estimated coef flclent vector
(Hoer| and Kennard, 1970), the squared length of the estimated coef flcient vector (Hoerl
and Kennard, 1970), the forecasting error varlance (Johnston, 1972), and the rldge trace
of the standardized regresslon coefflclents (Hoer!| and Kennard, 1970). Statlistical tests
for the degree of Ill~conditloning In the data have also been suggested by Bartlett
(1950), Farrar and Glauber (1967), Haltovsky (1969), and Wichers (1975). Chatterjee and
Price (1977) demonstrate how the method of principle components analysis can be used to

locate col llnear relatlionshlips.

We have found two of the above Indices to be particularly useful: the varlance
Inflation factors (VIFs) suggested by Marquadt (1970), and the rldge trace developed by
Hoer| and Kennard (1970). The VIFs for a partlicular model are readlly obtalned from the
dlagonal of the Inverse of the correlatlon matrix of the predictor variables, (X'X) !,
More precisely, we can see from the equation

V(EB) = > (xX)7 (4)
that the preclslon of an estimated regression coefflclent Is measured by Its varlance
which Is proportlonal to ¥ 2, the error variance of the regression model. The constant of
proportionallty for a glven Si Is taken from the I-th term of the princlpal dlagonal of
(X*'X)~'. The constant of proportionallty Is referred to as the "varlance Inflation

factor" for %i (Marquadt 1970).

10




It Is easlly demonstrated that the VIF for a glven B; Is equal to 1/(1-R?), where R?
Is the square of the multiple correlation cceffliclent from the regression of the I-th
explanatory varlable on all other explanatory varlables In the equation. Hence as R?
tends toward 1.0, Indicating the presenca of a |lnear relatlonship between the explanatory
varlables, the VIF for Ei tends to Inflinlty as does the assoclated varlance estimate, The

estimated varlance for any speclfic coefflclent may then be written as
~ ~ -1
v(B:)=7% (1-K) (5)

It has been suggested that values for VIFs greater than 10.0 are Indlcatlons that
multicol lInearlty may be causing estimatlion problems (Chatterjee and Price, 1977; Marquadt
and Snee, 1975). A VIF of 10,0 for a partlicular explanatory variable Xi, Impl les a
multiple correlation of ,95, when X; Is regressed on the other explanatory varlables In

the model.

The second method for detectlng multicolllnearlty, the rldge trace method, flows
dlrectly out of the rldge analysls which will be employed In thls study as an alternative
to the OLS procedure. The rldge trace method will be discussed and demonstrated In the

sections that fol low.
Ridge Estimators

As previously noted, the particular class of blased estimators employed In the
present study are the rldge estlmators first proposed by Hoerl and Kennérd (1970). Rldge
estimators were chosen for three reasons. Flrst, they are deslgned to be more rellable
than the least squares estImator In the presence of an Ill~condltloned data matrix.
Second, the "rldge trace" conveys both the degree of Ill-condltlioning, and the Impreclslion
inherent In Interpreting colllnear data. Third, ridge-type solui!ons provide estimates
under varylng sample and col lInearity conditions which appear to be at least as good If

not better than avallable altrrnatives (cf., Dempster, Schatzoff and Wermuth, 1977; Hoerl,

11



Kennard and Baldwin, 1975; McDonald and Galarneau, 1975; Vinod, 1978). WIth thls In mind,

we will proceed with the development of the general class of ridge-type estlmators.

The least squares estimate of B mavy be written In a more generalized formula as

Sei) = Cxx s k2 )HY )

where "k" is a scalar. In the least squares estlmator, k=0 so the above equation reduces

to the famillar
‘o Ry -~/ /
4o XXX -
When k>0,gU¢Is a “"blased" estimator of the true unknown coefficlent vector. However,
it can be shown that by allowing a Ilttle blas Into the system, one obtains an estimator
with a smaller total mean squared error value than by using OLS procedures. This may be

stated analytically as

EFL(Bte)-6)(508)-6)]< F/(6-5) (6-5) )

Using ridge estimation, then, entalls adopting minlmum mean square error (MSE) as a

general criterion In place of the customary ordinary least squares criterion.
Procedures for Selecting k

Choosing a value for k Is critical In using a ridge estimator. Hoerl| and Kennard's
1970 article Introduclng rldge regression to the scientlfic communlty suggests that

guldel ines for selecting a particular value for k are straightforward:

1. At a certaln value of k, the system wil| stabillize and have the general character

of an orthogonal system.

10




2. Coefflcients wlll not have unreasonable absolute values with respect to factors

for whlch they represent rates of change.

3. Coefflcients with Improper signs at k=0 will| have changed to have proper slgns.
4. The residual sum of squares wll| not have been inflated to an unreasonable value.
It will ot be large relative to the minimum residual sum of squares or large

relative to what would be a reasonable variance for the process generating the

data. (p. 65)

Unfortunately, the guidel Ines are no mor= +hzn general signposts. In reality, the
optimal value of k cannot be determined with certainty (i.e., in terms of u closed-form
solution) because It depends on the unknown parameter vector B and the nnknown error
variance 02 |In practice, k must be determined subjectlively or estimated from the data
(Mayer and Wilkie, 1973; Judge et al 1980). This characteristic of k is at the root of
the difference of opinlon regarding the value of ridge estimation. Some would argue that
the reduction in mean square error gained by the Introductlon of bias into the system kas
little value because of our Inabillty to select the amount of bias in an optimal manner.
To put it another way, we cannot evaluate any galn in accuracy for a particular problem
without knowing the true values of the coefficients. Proponents of ridge techniques
counter by claiming that one can use the data in a particular problem to help select a
value of k that will produce an estimator superior to OLS. The rejoinder to that argument
is that the resulting estimates are stochastic, while OLS estimators and ridge estimators
based on a fixed k are nonstochastic. Thus It Is argued that selecting a value for k
based on sample data makes it Improper to apply standard statistical tests (such as
t~scores) in the ridge environment (Darlington 1978; Judge et al 1980). We will return to

thls important problem later.

11
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A number of specific techniques have been developed for estimating the value of k.
Each has its proponents. |In the final analysis, the choice of technique depends on the
assumptions the Investigator is willing to make. Two techniques for estimating k were
incorporated In this study: ridge trace (Hoerl and Kennard, 1970); and, the harmonic mean

(Hoerl, Kennard, and Baldwin, 1975).

The ridge trace approach was used because it provides a description of (1) the
severity of [il-conditioning in the data; (2) how collinearity conditions affect
estimation; and (3) how increasing the degree of bias Introduced Into the regression modeli
affects coefficient estimation. The approach entails introducing a speciflc amount of
bias into the model and plotting the resultant biased coefficients against the bias vaiue.
The primary drawback of the ridge trace approach is that it does not provide a point
estimate (l.e., a closed form soiution) for k. The technique requires the analyst to
visually examine the piot and make a subjective decision about where (i.e., at what value
of k) the soiution appears to stabilize. Becauss the technique makes no assumptions about
the nature of the ciosed form solution but allows the analyst to plot the consequences of
introducing all feasibie bias values, ridge trace plots can simultaneously provide and
depict the relationship between ail feasible closed form solutlons. The ridge trace

procedure s formally deveioped in Appendix |11,

The harmonic mean approach was used because (1) It provides a rejatively simple

procedure for calculating the bias parametfer, i.e.,

A= p TS5 (8)

(2) its assumptions are simple and relatively easy to understand making the procedure
readily employable by the lay analyst; and (3) the procedure provides estimated values for
k which appear to have optimal properties under varying conditions of collinearity. The

rationale for the approach is presented in Appendix |V.

12
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Ridge vs. OLS--Model for Testing

The results of numerous studies are available to the reader Interested in theoretical
comparisons of the merits of OLS versus ridge estimation procedures (Dempster, Schatzoff
and Wermuth, 1977). Our concern here is not with attempts at proving that ridge
estimators are always to be preferred when predictor varlables are highly correlated.
Arguments by Judge et al (1980) and many others ciearly demonstrate that ridge estimators
have many undesirable properties and, furthermore, lack many of the desirable properties
clalimed for them. Our Intent here Is to show how rldgé estimators can be useful in a
practical context~-for providing both insights Into the effects of muITlcoIIinearlTy and a
viable means of mitigating some of those effects. Hence, rather than set up an artificial
data set to use as a baslis for comparing the results of OLS versus ridge estimates, actual
data relating to a typical cost estimation problem In higher education are used in what
follows, The former approach has the advantage of permitting knowiedge of the true
coefficients and true varliances, around which comparisons could be made. |t seemed more
important, however, to show what working with ridge estimators is |lke under the normal

condition of uncertainty.

The cost estimation problem to be used for testling purposes has been reported on
earlier (Brinkman 1983). In that study, marginal costs for full-time and part=time
students were estimated and compared for several standard expenditure categories at public
two—~year colleges. A transiog Joint cost function was developed and subsequently
estimated by a ridge technique. For present purposes, the same model and data set will be
used to compare ridge and OLS results. Initlially, then, the testing procedure will In
effect be looking behind the scenes to show what, if anything, was gained by using ridge
regression rather than OLS. Additional comparisons will be made between OLS and ridge (at
two different values of k) using progressively smal ler samples (randomly chosen subsets of

the original full sample), multiple samples of the same (small) size, sets of coefficients

13



derlved from one sample to estlmate marglnal costs for another sample, and the
reestimation of a sample following the removal of outller cases. Slnce the true values of
the parameters are not known, the comparisons can only be suggestlve, and not definltlve.
Nonetheless, by observing the results of working with real data, the potentlal user of the

rlidge procedures may galn some useful Insights as to thelr practical utillty.

The cost function used to estimate marginal costs at two-year col leges contains the
following varlables. The dependent varlable is total Instructional expendltures (In the
orlglnal study, expendltures for student services and for educational and general purposes
were also analyzed). The Independent varlables Include: as outputs, the number of
ful |-tIme students (FTS), the number of part-time students (PTS), and the number of
non-credlt students (NCS); as Input price, the salarles pald to full~time faculty (SAL);
and as technologlical condltlons, the proportion of degree earners (DEG), the proportlon of
relatlvely hlgh-cost programs (HCP), and the system-status of the campus (CSS). The last
varlable listed was In dummy form (1 or O depending on whether the institutlion had
Independent '7us or was part of 8 system), and was not Interacted. The single price
varlable was not Interacted elther, In the absence of any substlitution possibilltles, but
was In logar|thmic forme All other varlables were logged, squared, and Interacted In

standard translog form.

The data are taken from the 1979~80 Higher Education General Informatlon Surveys,
except for the data on non-credlt enrol Iments which came from the Amerlcan Associatlon of
Commun| ty and Junlor Col leges!' dlrectory. Tae full sample consisted of all Institutlons
that had complete data and were not a branch campus, except for a handful of outliers
which were removed from the sample. The full sample conslsted of 779 Instltutlons, or

about 75 percent of all publlc two-year colleges In 1979-80.
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Results

Table 1 shows the estimated coefflcients for the full sample using OLS and two rldge
estimates. In looking at the coefflclents (B) and thelr standard errors (SE) as estimated
by OLS, one flInds remarkably |ittle outward evidence of col |lnearity. Roughly half of the
coefficlents are statistlcally signiflcant (B/SE > 1.96, as measured using OLS estimates),
and most of their signs are plauslble. One unexpected result Is the slgn on the estimated
coefficlent for FTS. Since what we know about the costs of Instruction suggests that the
number of ful[-flme students Is usually the most Important single determinant of total
costs, It Is surprising that the coefflclent on full-tIme students (FTS) should be

negative and statlstically insigniflcant, instead of belng positlive and signlflcant.

Desplte what Is suggested by the OLS coef ficlents, however, the varlables are in fact
highly collinear. The variance-inflatlon-factors (VIF) make this quite clear. Slnce a
VIF of 1 Is equlvalent to orthogonal Iy, It Is clear that only a couple of varlables, SAL
and CSS, are relatively free of colllnearlty. The high VIFs on the remalning varlables

Indicate a high degree of Imprecislon in the estimated coef flclents.

The zero-order correlations among the explanatory variables may lend insight Into
source§ of the collinearity problem. Table 2 shows the correlations for a subset of the
variables In the model. The table clearly shows the "model-induced" colllnearlty
dlscussed earller. Some varlables have more than a .99 correlation with fhelr squares,
and some interaction terms have well over a .90 correlation with one or both of the
Interacted terms. By contrast, the "natural" col linearity among the var|ables shown only
runs as high as .688 (FTS with PTS), and Is usually much less than that. Of course,
zero-order correlations typlcally will understate the degree of col llnearlty In the
system, as they reveal nothling of the colllnearlty which Is due to combinations of
variables. The VIFs do reflect the latter source of colllnearity, however, and thus

provide better inslight Into the extent and locatlon of multicolllnearlity In a glven model.
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Regression Results Using Alternative Estimators

B

-.319
.190
225

+266
.030
.029

-.072
-.010
.008

-.028
-.038
-.007

-.985
-.550
-.089

-.229

=218

-.013

~-.008
-.003
.001

.004
022
011

-.035
-.021
-.001

=E

231
.069
005

131
.047
003

016
.004
.000

NCS
+036
019
.001

«304
.144
.010

HeP
114

.066
.005

.005
.003
.000

.016
.009
.001

023
01
.001

YIE

464.76
44 .33
.24

388.62
50.77
.21

680 .40
52.03
.1

196.17
55.83
.19

205.84
46 .49
.20

143.76
47 .52
W25

194.75
55.57
.21

153 .93
46 .53
.27

180.15
40.99
<30

16

18

B

.097
.035
017

032
.019
.004

<623
.640
617

.008
.007
.002

136
.108
.001

023
.022
.007

.056
.007
.029

.002
—0001
-.000

013

-.004 -

-.000

SE

SETS2
017

.005
.000

PT2
.006

.003
.000

SAL
.063
.062
.043

ANCS)2
.001

.001
.000

{DEGI2
.033

.019
.002

.007
.006
.002

.038
.015
001

003
.002
.000

011
.007
001

562.68
39.69
#25

160.91
41.90
.31

2.04
1.94
<94

15.24
13.39
.74

100.61
33.75
31

11.77
10.35
.80

243 .48
37.16
32

83 .49
34 .70
W43

88.49
38.28
«26



OLS
K=.003
K=.200

OLS
K=.003
K=.200

-.002
-.001
-.001

.012
011
-.004

.007
.005
.000

.023
.015
.002

93 .98
39.17
33

80.61
34.68
.36

17

19

.007
005
-.000

.005
007
.018

.003
.003
.001

019
019
016

26.13
19.65
.63

1.03
1.02
.70



Table 2

Zero~0Order Correlations for a Subset of Varlables

I EIS (F18)2 EIS (PIS)2 (ETS)(PTS) HCP (ETS)(HCP)

TC 1,000

FTS 924 1.000

(FTS)2 927 997 1.000

PTS 144 .688 694 1.000

(PTS)2 .181 «723 732 990 1.000

(FTS) (PTS) .885 .880 .887 +945 961 1.000

HCP 109 .070 054 -.068 =~.064 -.023 1,000

(FTS) (HCP) 458 .449 434 +205 221 318 914 1.000
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Just how effective the YIFs are In plnpolnting multicollinearity Is a matter of

controversy (see Judge et al 1980 for a discussion).

Table 1 also shows effects of Introducing blas Into the estimating system by means of
the rldge procedure. Notlce flrst the rapld reduction In VIFs for varlables with extreme
VIF values. Also note that the regresslon coefflclents and thelr standard errors also
change, depending on the amount of bias (t+he value assigned to k) Introduced. We wlll
discuss below the Issues surrounding the cholce of the amount of blas. For now, It Is
enough to note that K=,003 is a relatively small amount and K=.2 Is a relatlvely large

amount of bias for thls particular situation, and that both values are plausible cholces.

As shown In table 1, even at K=.003, the sign on FTS has switched from negatlve to
positive, and the standard error has become small relatlve to the estimated coefflcient.
AddItlonal blas does not change these desirable new features. Not all changes Induced by
the blas are as welcome. According to the OLS estimate, the sign on (FTS)(PTS) Is
negative. Thls result is certalnly theoretically acceptable, as |t indlcates the
exlstence of economles of scope: |t is less expensive to instruct full-time and part~time
students together, l.e., at the same Institutlons, than to do so separately.
Unfortunately, one might say, the Infroduction of Increasing amounts of bias Into the
estimating procedure eventually leads to a slgn swlitch on (FTS)(PTS). Slince thls opposlte
result is also theoretically plauslible, we are left with no substantive basls for argulng
on behalf of elther result. |In other words, In the absence of a clear theoretical
direction, It Is dlfficult to feel comfortable with a sign change (especlal |y when the
standard errors are relatively small In both cases). Particular trouble with thls

varlable might have been expected as it had the hlghest VIF of any varlable In the model.
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The ridge trace procedure al lows us to "see" the effects of Introducing bias Into the
system. Figure 1 shows the trace (the value of the standardized coefficient) as a
function of the value of k for each of several variables. Figures 2 and 3 show the traces
for additional variables in the model. The traces of the coefflcients with high VIFs are
much more sensitive to the amount of blas In the system, The reason why the rldge
procedure s attractive, when colllnearity Is a problem, Is the way In which It stablllzes
or "tames" (Kennedy 1979) badly behaving coef flcients. In other words, with enough bi as,
the coefficlents of highly colllnear varlables can be made to behave as consistently as
the coefficients of non-collinear variables, In part this is accomplished by reducing the
absolute magnitude of the coefficients with respect to thelr OLS values. Interestingly,
variables that are collinear and of little consequence In model have thelr coefficients

reduced In magnitude to such an extent that they are, In effect, removed from the model.

While the behavlor of a particular coefflcient Is of some interest, marginal cost
estimates in the present context are the result of a combination of coefficlents.
Specifically, the marginal cost of an output q Is equal to the first partial derivative of
the estimated cost functlon with respect to q, multipllied by the estimated value of total
cost for a particular value of g, divided by that value of q, or

MCg = % (9)
where a. = SC /e

In the present case, where the outputs of concern are ful |~time (FTS) and part~time

(PTS) enrolIments, the respective marginal cost calculations are as follows:

MG = (@, + R FTS + a, PTS + a,bee + a, HeP + acnes). C /rrs (o
M =(b + 36 PTS + s FTS + (, Dec + by Hep + (:ZNCS>~€/P7‘S (1
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Ridge Trace
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Ridge Trace
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With respact to the concerns belng addrossed In this paper, It |s poerhaps worth
noting the obvlous: the accuracy of a marglnal cost ostImate for tho modol at hand wll|
depend on the accuracy of six estImated coefflclents. Table 3 shows the rosults of usling
these formulas with the three sets of coeffliclents shown In table 1. The calculations
have been done for four levels of output In order to contrast the respective estimated
costs across the observed range of enrollIment. The category "small Instltutlons" refers
to Institutlions lyling within the smallest flve percent of those In the sample (as measured
by enrol Iment). Data on 10 such instltutlions, randomly chosen, were averaged to create a
data set for a "typlcal" small instltutlon--284 fuil-time and 221 part~time students. In
a simliar fashlon, data for a typlcal large Instltution were created--4,665 ful |~time and
12,885 part-time students. Between these extremes, two types of mlddle-range Institutions
are also represented In table 3. Section C shows the results of using raw enrol Iment
means for the entire sample-~1645 ful|-+Ime and 2840 part-time studen --to represent one
such instltutlon, Sectlon B shows the results of uslﬁg the logarltt arolliment means
for the entlre sample--1150 full-time and 1366 part-time students--to represeni the other.
The raw data distrlbutions are positively skewed, so the means of the logarithmic data are
smaller, Fully two-thlrds of all the instltutions in the sample have enrol Iments equal to

or less than the raw mean values.

In order to evaluate warginal costs at these varlous enrol Iment levels, values for
the other Independent varlables In the model must also be selected. For the results shown
in table 3, the following conditlons were Imposed: the raw mean values for percent of
degree completion (29%) and percent of high cost programs (36.2%) were used In all
sectlons; with respect to noncredit enrol Iment, the average of actual values was used for
section A (165 students); the log mean value for section B (354 students), and the raw
mean value for sections C and D (4335), and for faculty salarles the log mean value was
used for section B ($18,215), the raw mean value for section C ($18,578), and the average

of actual values for sections A ($13,625) and D ($23,090). Nelther degree completion nor
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Table 3
Marginal Costs of Instruction
Alternative Estimates
Ful | Sample

Institutional Size Ridge Ridge
and Student Type QLS K=.003 K=.2
A. Swail
FT $1057 $1335 $1436
PT $ 349 $ 245 $ 349
FT/PT 3.03 5.45 4.11
B. Middle (Log Means)
FT $1494 $1500 $1455
PT $ 290 $ 265 $ 258
FT/PT 5.15 5.65 5.64
C. Middle (Raw Means)
FT $1431 $1542 $1575
PT $ 223 $ 208 $ 198
FT/PT 6.42 7.41 7.95
D. Llarge
FT $1871 $1941 $1809
PT $ 179 $ 194 $ 151
FT/PT 10.45 9.94 11.98
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program emphasis were correlated with full- or part-time enrol Iment levels, and thus both
could be left at thelir respective mean values. Noncredit enrol Iment to some extent and
salaries to a considerable extent were correlated with full- and part-time enrolIment
levels; thus values other than those at the mean were required to adequately represent
typical combinations of institutional characteristics across the (credit) enrol Iment

spectrume.

In terms of the underlying management finance Issues~—especlial ly tuition levels and
appropriations or allocations per FTE--both the absolute value of the marginal costs for
full- and part-time students, and the ratio between the two costs, are Important, As
table 3 shows, there are dlfferences In the results by size of institution and by type of
estimating procedure. The only result shown that appears somewhat implausible Is the OLS
estimate for full-time students at small institutlons. On theoretical grounds we would
expect that the cost curve, partlally depicted by the four "points" shown in table 3,
would be U-shaped, and there is evidence to that ef fect (Brinkman 1981). For yery smal |
institutions, estimated marginal costs would escalate rapidly according to the two ridge
procedures, but would continue to decline according to OLS (not tabled). In part, the
reason for the OLS result Iis the negative coefflcient on FTS which was mentioned earlier.
It could be argued, then, that the ridge technique "corrects" the sign on that coefficient
and thereby produces a better estimate of marginal costs, particularly for the smal ler
Iinstitutions In the sample. (For those readers perplexed by the ability of small
Institutions to have lower marginal costs than the mid-sized Institutions, as shown in
table 3, we note that the primary reason is lower facuity salaries at the small
Institutions. |f the small Institutions paid Thélr faculty at the [raw] mean rate for the
sample [$18,215], instead of $13,625, they would in fact have higher marginal costs than

the mid-sized institutions. See Brinkman [1983] for more detalls.)
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IT Is also useful to look at some statistics for the system as a whole, In order to
see what else happens beyond changes in estimated coefficlents as bias |s Introduced. As
shown in table 4, one result Is a decrease In R2, the conventional measure of "goodness of
fit." 0f course, R® must decrease since by definition OLS will always give the best fit
measured in that way. Simllarly, the increase In sums of squares (SSQ) and In the
standard error (SE) are to be expected. Notice that the changes are quite small, which
means that we can perturb this system quite considerably without losing much predictive
power, |In any case, the tradeoff Is that the mean square error (MSE) is drastically
reduced as blas Is introduced. As Judge et al (1980) emphasizes, the reduction in MSE
cannot be guarar+=:d, but obvliously there is no question that the reduction is both real

and substantial for vhe particular model estimated In this study.

Another way of comparing the OLS and ridge estimators Is to look at their respective
results for varying sample sizes. As noted earller, an abundance of data (i.e.,
cbservations) is usually a good antidote to multicollinearity. The problem, of course, is
that numerous cases are not always available, or their acquisition may be expensive, and
so on, Thus Tﬁe analyst may often have to make do with @ relatively small sample, and to
iook elsewhere, such as to an alternative estimator, for help in handling

muiticol lInearity.

Table 5 shows the marginal~cost results, at mean-(log) values of the variables, of
estimating the translog cost function for a series of decreasing sample sizes, startlng
with the full sample (N=779). The smallest of the randomly drawn subsamples, N=50,
retalns 27 degrees of freedom. Overall, the least amount of alfference among the various
samples, as measured by the range of values, is found in the estimates generated by the
ridge programs when k=.2. Thls Is particularly true for the cost estimaies for full~time
students. The ridge program at k=.2 also does the best job for sample size 50a, as the

alternative procedures, OLS and ridge at k=.003, lead to Implausibie results in the form
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Table 4

Overall Statistics for the Cost Functlon Model Using Alternative Estimators

MAX

R2 S0 SE MSE YIE

oLS .921 .081 285 333.0 680.4
Ridge (k=.003) 919 .083 288 129.9 55.8
Rldge (k=.200) .903 .100 316 7.3 9
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Table 5
Marginal Cost Estimates Using OLS and Ridge EstlImators
on Different Sample Slzes

Number of
QLS —RIDGE (,003) —RIDGE . ,2)
ET LA R i ol T FT  EL/ET 1 BT EL/PT
779 $1494  $290 J.15 $1500 $265 5.65 $1455 $258 5.64
225 $1387 $246 5.64 $1438  $209 6.88 $1435 $235 6.11
176(a) $1509 $276 5.47 $1535 $223 6.88 $1346  $261 5.16
176(b) $1218  $323 3,77 $1261  $297 4,25 $1338  $259 5.17
100 $1390 $359 3.87 $1571 $300 5.24 $1433 $247 5.80
50(a) $1716  $-64 - $1605  $-56 -~ $1385 $ 91 15.22
50(b) $1431 $266 5.38 $1317  $236 5.58 $1393 %183 7.61
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of negative marginal costs for part-time students. However, while the ustimate of
part-time marginal costs is positive at k=.2, the estimated value of $91 is only about a
third of the value estimated on the basis of the ful | sample; nonetheless, the estimate Is
certainly less misleadlng than those derived from OLS or ridge at k=,003, The same two
bias parameter values, ,003 and .2, were used for each sample simply for ease of
exposition, Normally, the selection of a value for k would be sampie spacific, as will be

discussed below.

Given the amount of col linearity in the system, we might expect considerabie
variability In the coefficients, and thus the marginal cost estimates, from one randomly
drawn smail| sample to another. Using table 5 again, we see that the marglnal cost
estimates derived from the first sample of 50 institutions (a) differ considerably from a
second sample of the same size (b). The estimates based on OLS and ridge at k=.003 vary
more than those based on ridge at k=.200; at the same time the two former estimates gave
resuits for part~time students and for FT:PT that are closest to those derived from using
the full sample. The picture is again somewhat mixed for the two samples (a and b) at
N=176, although the cross-sample stabllity of the ridge estimates at k=.200 is remarkable.
Also, even though OLS and ridge at k=.003 give good results for some of the smal{ samples,
they do so using negative coefficients on FTS (not tabled), which suggests that those
estimators might yleid Implausible results for very smal| Institutions--as opposed to

institutions with mean or larger enrol Iments.

High col linearity tends to make regression cqefflclenfs highly sensitive to the
inclusion in the sample of particular cases, especial ly outliers. Thus another way in
which OLS and ridge estimators can be compared Is their respective reaction to the removal
of cases from the sample., The more stabllity, that is, the less the change In the

coefflclients, the better.
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Table 6 shows the results of removing two cases from the sample N=100. The two cases
removed were outllers In the sense that thelr predicted total costs were furthest (about 2
standard derlivations) from thelr actual total costs among the Instltutions In the
subsample, Table 6 shows two klnds of comparisons. Panel A contalns marglnal cost
results, while Panel B contalns the estimated coefflclents for a subset of the varlables
In the model (those that are directly Involved In the calculation of the marglnal effects
of FT and PT). As can be seen'from the percentage change calculatlons, the rldge
procedure at k=.200 provides conslderably more stabllity than the OLS procedure, with
respect to both the estimated marginal costs and the underlying regression coefficlents,
The ridge procedure at k=.003 general ly ylelds more stable coefflicients than OLS, but not

In all Instances.

Variablllty among subsamples can be examined In yet another way. The estimated
coeffliclents from one sample can be used wlth the values of the varlables from a second
sample to yleld predicted total costs for the second sample. These predictlons can then
be correlated with actual total costs across the second sample, with the degree of
correlation expressed as the famlllar R*. The question for present purposes Is whether
coefflclents estimated by OLS will do better or worse than those estimated by ridge-~with
respect to the amount that R2 will shrink when the original coeffliclents are used with a
new sample., Results of such a comparison for two randomly drawn subsamples (N=100) are
shown in table 7. All three estlmators yleld high R% values for the original sample, with
the blas-related decrease In R? agaln being evident (as In table 4). The
cross=veriflcation prccedure (Danlel and Wood, 1980) shows much less shrinkage In R? for
the rldge esflmafbrs. Ridge at k=.2 |s especlally reslstent to shrinkage In this

Instance.

A sample size of 100 was chosen for thls test because the ratio between the number of

cases (N) and the number of variables in the model (P) was not extreme In elther
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Table 6
Effects of Removing Two Cases from a Small Sample (N=100)

oLS 2 Ridge (K=.003) 2 Ridge (K=.200)
N=100 N=08 Change N=100 N=98 Chapge N=100 N=98 Change
A. Marginal Cost Estimates

FT $1390 $1296 6.8% $1571 $1542 1.8% $1434 $1489 3.8%
PT $ 359 $ 319 11.1% $ 300 $ 274 8.7% $ 247 $ 252 2.0%
Ratio 3.87 4,06 4.9% 5.24 5.63 7.4% 5.81 5.91 1.7%

B. Unstandardized Regression Coefficlents

FT -1.188 ~1.469 23.7¢ -.003 -.029 866.7%F .241 «238 1.2¢
(FT)2 .097 .095 2.1 .045 044 2.2 .018 018 0.0
PT .368 <340 7.6 .136 «135 0.7 .024 .022 8.3
(PT)2 .008 .003 62.5 .010 .008 20.0 .003 .003 0.0
(FTxPT) -.019 -.003 84.2 -.006 -.004 33.3  .007 .007 0.0
(FTxDEG) -.128 -.202 57.8 -.046 ~.059 28.3 .027 .026 3.7
(FTxHCP) .304 A17  37.2 .088 .103 17.0 .019 .020 5.3
(FTxNCS) -.007 ~.007 0.0 -.003 ~.003 0.0 .001 .001 0.0
(PTXDEG) .004 021 425.0 -~.020 -.019 5.0 .000 ;000 0.0
(PTXHCP) =-.058 -.077 32.8 ~.013 -.013 0.0 .002 .002 0.0
(PTxNCS) .003 .000 87.3 .003 .003 0.0 .000 .000 0.0
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Tabie 7

Comparlson of R? Shrinkage* for Three Estlmators

R? Yalues

o3 Ridge (K=,003) Ridge (K=.2)

Origlinal Sample 944 .938 +920
(N=100)
Second Sample .842 .900 915
(N=100)
Change In R2 102 .038 .005

* When regresslon coefflclents estimated on the basis of an orliglnal sample
are used to predict total costs for Institutions Iin a second sampie,
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direction. The superlority of the ridge procedure wlth respect to R? shrinkage has been
shown to be directly related to the magnitude of the number of predlctors to the number of
cases (P/N) (Faden 1978). Whlle not extreme, the faflo In thls Instance, 22/100, Is
actually falrly low compared to some that are reported in recent |iterature. For example,
In Cowing and Holtmann (1983), the ratlo Is 107/138, whlle In Brown, Caves, and
Christensen (1979) It Is 21/67. It appears, then, that there |s some |lkel lhood of
encountering situatlons where the rldge procedure could be helpful, assuming, of course,

that malntenance of predictive power In a cross-validation sense has value.

Ihe Bias Parameter Revisited

In the prevlous sectlon, It was shown that at least In the particular situation belng
analyzed in this study, the ridge estimators offered some advantages over the conventlonal
least squares approach. The ridge estimators provided theoretlcal |y better estimates for
marginal costs at small Institutlons based on a large sample slze, more plauslible
estimates when relatlvely small samples were used, less shrinkage In R? when coefflclents
were used across samples, and more stable estimates when cases were removed from small
samples. But the ridge procedure does not provide a single alternatlve to OLS. Rather,
the procedure can generate a virtually unlImited number of alternatives (l.e., sets of
estimated coefficients), wlth each alternative being a function of the value assigned to
the bias parameter k. Unfortunately, as was polnted out earller, the selectlon of a value
for k Is anything but stralghtforward. Whlch Is not to say that there are not
stralghtforward procedﬁres, but rather that there are alternative procedures whlch lead to

different values of k and no one procedure |s acceptable to experts In the fleld.

In Illustrating the capabllities of the rldge procedure In the prevlous sectlon,
results (coefficlents and marglnal cost estimates) were shown for asslgned k values of
003 and .2. These values were chosen because they ranged from relatively small to

relatively large amounts of bias, and because they had Intultive appeal to the authors.
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That Is, they led to results (a change in slgns or In the magnitude of coefficlents) which
made sense. But what of the more rigorous methods suggested to assign a value to k? What

k values do these methods suygest for the model and data used in the present study?

We start by returning to the ridge trace procedure, which was developed early on by
the origlnators of the ridge estimator (Hoer| and Kennard 1970). One can see In figure 1
above why an analyst might elect to pick a value for k somewhere between .003 and .009.
Relatively |Ittle blas seems to accompllsh a great deal In terms of stabillzing the
coefficlents. As an alternatlve, using figure 4 which displays the trace over a greater
range of k, consider selecting a value for k of .200, which was used for some of the
estimates discussed above, or a value of .360, which |s the value one obtains on the baslis
of the harmonic mean technique (as derived In Appendix Il11). Figure 4 shows that |little
is galned in terms of stable behavlor by using a value greater than .2. For that matter
very little additional stablllity |s gained by using a value greater than .05. Are there
advantages In using the least amount of blias that gains the minimum acceptable stubl|ity?
Perhaps so, at least on an Intultive level. That Is, for the analyst who consi~: - the
Infroduction of bias as at best a necessary evil to combat multicolllinearlty, i .r. nay be
some utility In staying as close to the OLS solution as possible, although thls position
Is not Justlfled In the literature. One seeming advantage of using k=.003 for the full
sample (N=779), for example, Is that all the "t-scores" save that on FTS are of the same
sign and order of magnitude as the i-scores for 0LS. Strictly speaking, B/SE cannot be
treated as a t-score In ridge (k>0), that Is, a glven value of the ratio cannot be
assigned a level of significance, because the sampling dlstributlon for the statistic is
unknown when k Is determined from the data (Obenchalin, 1977). Practically speaking,
however, the analyst might still| be willing to use the statistic In Interpreting how well
the respecljve variables werg performing If the amount of bias were very small.
Furthermore, the smal ler the blas the less the Increase In the residual sums of squares

for the model as a whole (see table 4).
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Ridge Trace
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Flg.4. Ridge trace for -key output variables, full sample, showing extended range for K~values

38




Flgures 5 and 6 show the rlidge trace for subsample 50(a), whlch was a “dIfflcult"
sample for all three estlmators ur. i ' i ;oo yuiy (see table 5). Note that In thls
Instance coefflclent stablllty Is achieved wlth the Introductlon of somewhat more blas,
roughly .015 or so. Note that the value nf +hs coofficlent on FT contlnues to Increase
all the way out to k=.50. Yet, the harmonlc mean formulatlon suggests that k be set at
+036, an order of magnltude less than Indlcated for the full sample (N=719), For the
other very small subsample, 50(b), the harmonlc mean formulatlon suggests that k be set at
+046. The approprlate cholce for k, then, as noted earller, Is entlrely sample speclflc,
and a function of a particular method of selectlion as well. Not the stuff, In other
words, |lkely to Impress the purlst. On the other hand, |t does seem In looking at the
ridge traces that any amount of blas, withln some range of k>0, would be a better cholce
than staylng with OLS, assumlng that the stabllity of particular coeffliclents was of
greater concern than maxImizIng goodness of flt wlth respect to the predicted value of the

dependent varlable.

Discussion

The purpose of thls study was to assess whether, In the face of extreme
multicol Ilnearity In estimating cost functlons, the rldge procedure might be a useful
alternative to the conventlional least squares estlimator. Utillty wil| depend, of course,
on perspective and need, As the problem was structured In the present study, the rldge
‘procedure appeared to offer several modest advantages. The task was to estimate marglnal
costs for a multiproduct enterprise. Thus rldge Improvements In the preclslon and
stablilty of estimated coefflcients were Important--marglnal cost estimates belng a
function of a set of coefflclents. Simllarly, related matters which are often of concern
In estimating cost functlons but not pursued In the present study, such as economies of

scale and economles of scope, also depend on the value of estimated coefflclents.
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Ridge Trace
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Fig.5. Ridge trace for key output variables, subsample (50a)
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If, on the other hand, the objectlve was fo.predlcf total costs with the least amount
of error, then OLS has one immedlate advantage. For any given sample, OLS will always
prov/Ze the lowest possible residual sum of squares. Recall, though, that even when
;rovin~ing total costs, the ridge procedure has a potential advantage when col linearity Is
high. |f the coefficlients estimated for one sample are to be used to predict total costs
for the observations In another sampie, the R? shrinkage incurred by a ridge estimator |s
| Ikely to be less than that for the OLS estimator; the iesultant, shrunken RZ values for

' ridge estimators, then, may be higher than that -for the corresponding OLS estimator.

There js another matter of perspective to consider, other than the specific aims of a
cost estimation procedure. Roughly speaking, one might describe it as the difference
between a theoretical versus a practical perspective. On the basis of reviewing the
theoretically oriented |iterature, it appears as though there are serious, unresolved
problems with the ridge procedure (the best summary of these problems Is in Judge et al
198)). One might describe It simply as a sltuation In which the advantages offered by
ridge are possible, but cannot be guaranteed theoretical ly. Furthermore, the failure to
date to develop a theoretically unimpeachable way of assigning a value to the bias

parameter has weakened the case for rldge.

Locked at practically, however, the rldge procedure does seem to offer hope In the
battle agalnst multicolllinearity. In every comparison conducted for the present study,
ridge was In some pertinent sense superior to OLS. All In all, it appears that the
marglinal cost estimates generated by ridge were less risky than those generated by OLS.

From a practical perspective that may be enough to justify using the ridge procedure.

Finally, It should be apparent from thils study that at the very least ridge
regression provides a means for data and model exploration. By comparing OLS and ridge
estimates, and especlally by examining ridge traces and VIFs, the analyst can come to a

better understanding of the effects of multicol linearity In a given situation. This Is
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true whether one opts for a reduced form model, that Is, elects to elliminate some of the
colllnear Independent varlabies, or chooses to stay with a theory-driven model regardiess

of the attendant estImation probliems, as was done In this study.
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Appendix I: Properties of Ridge Estimators

The ridge estimator Is a Ilnear transformation of the least squares estimator, which Is

Just
7 XY X))
& (x'x) (12)

Rearranging terms we obtain
/ -~
(X ‘ﬂ)ﬁ? = /(I)/ (13)
Substituting In equation (6), we obtaln (14)

Bck)= (XX f,éf)—l()f")()[’? (15)

-~
For k > 0, B(k) Is the ridge estimator.

The relatlionship of the rlidge estimator of the OLS estimator ls then given By
Blb)= (XX + bT)"(xX)E
= LI+ AT 8 (6)
= 24

so that B(k) may be viewed as a |lInear transform of E.

~
If the squared length of the regression vector B Is fixed at B2 then B(k) Is the value of
B that gives a minimum sums of squares of residuals. This Is fllustrated In Figure 7 for

a two parameter problem by Marquadt and Snee (1975, p. 5) as fol lows:

~ ~
The polnt B at the center of the elllpses Is the least squares solutlon. - B the-
sum of squares of resliduals £§, achieves |fts minimum value. The small eliipse Is the
locus of polints In the B!, B plane where the sum of squares § Is constant at a value
larger than_the minImum value. The clircle about the origin is tangent to the small
elllpse at B(k). Note that the ridge estimate B(k) Is the shortest vector that will
glve a resldual sum of squares as small as the P value anywhere on the small
elllpse. Thus the ridge estimate gives the smallest regression coefflclents
consistent with a glven degree of Increase In the residual sum of squares.

Other key properties of B(k) Include:
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P)

Fig. 7. The geometry of ridge regression
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The length of E(k) Is a decreasing functlion of k.

The varlance term Is a decreasing function of k. That is,
V/Ek)] = a2 (XX + 4TV (X% ) (X' + 4T} an
r* 2 (x'x)' 2

ft

The blas term Is an Increasing function of k., That Is,

£SD = £, [V[E’Aé)jj v 8(2-1)(2-1)8

= (/am'once # (6/&3)2' '

where ESD denotes the expected squared dlstance to B.

(18)

-~
This last property points out that the mean square error of B(k) is composed of iwo
components: (1) the sum of variances of all the estimated coefflicients; and (2) the

square of the blas Introduced by substituting g(k) for B,

44

46




Appendix |1

The slgorithms reported in Table 1 require that (X'X) has been transformed to the space of

orthogonal predictor variasbles., In thls form, the model expressed In equation (1) becomes

Ve X' + e

(19)

where X=X¥P, cl =P8, P'P=pPP1=], P' (X'X)P=A , and A denotes the diagonal matrix of

elgenvalues of (X'X),
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Table 1. Closed Form Methods for Selecting k

1. Harmonic Mean (Hoerl, Kennard, and Baldwin, 1975)
/)é = Pd-z/o?/;(\‘
2. tmplrical Bayes (Lawless and Wang, 1976).
- 2 - =2
A = pT /(é.: A X

3. iterative Estimation (Hoerl and Kennard, 1970).
- ~ 4 ~
A, = Ve (X

4. Verlance Normalizatlon (Bulcocl, Lee, and Luck, 1977).

///_)Z'f: )\L'/()\i'/’té):l

L2y
5. Minimization of the Frequentist Expectation of the MSE (Dempster, Schatzoff, and

Wermuth, 1977).
P

£ (4y -G )N vs)=o0
6. RIDGM Bayesian Approach (Dempster, Schatzof#, and Wermuth, 1977).
éfp qj/(a—/l - o—/’/\é) = b
7. General Ized Rldge (Hocking, Speed, and Lynn, 1976).
o- FL A ) AR

P
&4
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Appendix Ill: Rlidge Trace

In |Inear estimation one postulates a model of the form

Y= X8+ ¢
(20)
It follows from equation (20) that the residual sums of squares can be wrltten as
D= (V-x8)(V-X8)
~ ~ / , -
= (y-y@)(V-xG)r (8-8) XX (6-8)
= .@m/'n + @ (6) 21)

The Ridge Trace can be shown to be following a path through the sums of squares surface so

that for a filxed @ a single B Is chosen which Is of minimum length. This can be stated

precisely as follows: Minimize B'B subject to,

(3-8 (xx)(8-3) =0

(22)
Thls Is graphically Il lustrated In Appendix |, Flgure 7.
As a Lagranglan problem this Is
- " — )
F=p88+(%) /[ (8-8) (xx) (6-F)~ & j
(23)

where (1/k) Is the multiplier. Then,
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DE = 28(4) Letx)p -2(xx)FT= O

p———

J4 (24)

Equation (23) reduces to
G = B k)= [xA +4ITX)

(25)

The value of k Is then chosen to satisfy the restralint Imposed by equation (22). This Is

the ridge estimator. |In practice It Is easler to choose k>=0 and then oompufeQ.
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AppendlIx IV: Harmonlc Mean Approach

The approach derlves from two assumptions. First, If X'X=I, then a minlmum mean square

error term Is obtalned If (Hoer! and Kennard, 1970)

A= pTi/es

(26)

Secondly, the general form of equation (18) Is rewrltten as
- M !
LXx'y s pap7 du)=x"7
(27)

where PkP=KIp. A minlnum mean square error must be obtalned when (Hoerl and Kennard,

1970, p. 63)

/é(' = o* /0{(’a
(28)

Hoerl, Kennard and Baldwin (1975) argue that If the K; are to be comblned to obtaln a
single value of k, one would not want to use the arlthmetic mean since very smail &; with
no predictive power would yleld very large values for k. They suggest that a more
reasonabl e épproach of averaging the ki Is to employ the harmonic mean. That Is,

calculate
)D

16 = () & (%) = ()2 (=)

(=/

A /
= < z 2 = X X = = ! *
[/Po‘)él/ = /P" PG [P s

l

The value of k Is then given by
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A ’P‘Tl/ﬁ'ﬁ (30)

The results represented by equations (29) and (30) Indlcate that a reasonable cholce for
an automatic selection of kils an estimate of (mV%VB'B). And that Is what Is used

vis=a-vis

(31)
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