DOCUMENT RESIME

ED 273 654 ‘I 86D 503
AUTHOR Sarvela, Paul D.
TITLE Discrimination Indices Commonly Used in Military

Training Environments: Effects of Departures from
Normal Distributions.

PUB DATE Apr B6

NOTE 36p.; Paper presented at the Asmual lleetxng of the
American Educational Research Associatios (§7th, San
Francisco, CA, April 16-20, 1986).

PUB TYPE 5peeches/Conference Papers (150) — Reports -
Research/Technical (143)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS Comparative Analysis; *Criterios Referemced Tests;
*Item Analysis; *Mastery Tests; *Military Trainiag;
Postsecondary Education; Raw Scores; Scores;
Simulation; Statistical Analysis; *Statistical
Distributions; Statistical Studies; Testing Problems;
Test Items; Test Theory

IDENT1# ERS ’(‘Discr%mination Indices; *Item Discrimination
Tests

ABSTRACT

Four discrimination indices were compared, msiag
score distributions which were normal, bimodal, and segatively
skewed. The score distributions were systematically varied to
represent the common circumstances of a military traianiag situations
using criterion-referenced mastery tests. Three 20-item tests were
administered to 110 simulated subjects. The cutting score oa each
test was 10 items correct. Three databases were comstructed for
normal, bimogal, and skewed score distributions. Five item amalysis
statistics were calculated: the p statistic, two versioas of the
upper—lower group statistics, the phi coefficiest, and the
point-biserial correlation. Analysis of variamce and t-tests were
used to estimate differences between the discrimination index values.
With normal data, the second upper-lower statistic produced the
largest discrimination values, point~biserial mext, amd
coefficient and the first upper-lower. produced ideatical, least
discriminating values. Similar results were obtained for the bimodal
discrimination indices. The skewed distributioan amalysis was slightly
different, with the first upper~lower results larger tham the phi
coefficients. The second upper-lower method was not sigmificaatiy
different from the point-biserial correlation. (Suggestioms for
choosing a method are summarized in a matrix amd a Sacision tree).

(GbC)

EEEERERARAXRR A A RR R R A RERX XX AR A AR XA RE TR A AR AR SR AR SRR SR SRR SRR R ERELS

* Reproductions supplied by EDRS are the best that cas be made *
* from the original document. *

N S T T e s - + ¢ 1

Ak Akhkhkkhkhkkhkhkkkhrkdkhhkhkihikdttdkihrttttaanas




Discrimination Indices Commonly Used in Military Training Environments:

Effects of Departures from Normal Distributions

FD27365%

Paul D. Sarvela, Ph.D.

Ford Aerospace and Commnications Corporation
Kestern Develorment Leboratories Division

7100 Standard Drive

“PERMISSION TO REPROCUCE THIS
US. oF
Oftce of Egucanonal Bewcer CUCATION Hancver. MD 21076 MATERIAL HAS BEEN GRANTED BY
EDUCATIONAL RE : ’
t BESQUACES INFORMATION ? D Sas vela
/bhus document has been reproduced as

receved trom the person ur organization
onginating it

T" Minor changes have been made 1o improve
reproduction quaiity

® Points of view Of OpINIONS stated in this docu- T0 THE EDUCATIONAL HESOURCES
ment do not necessanly represent oft~al INFORMATION CENTER (ERIC)."
OERi position or policy

Paper Presented at

The Annual Meeting of the American Educational Research Association

San Francisco, 1986.

* Paul Sarvela is now with the Dept. of Health Education, College of
Education; Southern I1linois University, Carbondale.

3
Y
Q
5
S

2




Military Test Analysis
2
Abstract

The unique nature of testing in military training environments (e.g.,
criterion-referenced testing, bimodal ana skewed distributions of test scores)
creates special problems in the selection of discrimination statistics used to
evaluate test items. This paper describes the findings of a study which
compared the results obtained from four discrimiration indices when test score
distributions were systematically varied (normal, bimodal, and negatively
skewed) to represent common military test score distributions. A summary
matrix is presented outlining the advantages and disadvantages of each
statistic. In addition, a flow chart is included to assist test evaluators
make decisions concerning the selection of a discrimination index. The paper
concludes with a discussion concerning the practical benefits of each
statistic, as well as their relative costs and "ease of use" to the

statistically unsophisticated test evaluator.
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Discrimination Indices Commonly Used in Military Training Environments:

Effects of Departures from Normal Distributions

Introduction

The statistical procedures commonly called item analysis are one way
measurement specialists appraise and improve the quality of tests. Of the
many forms of item analysis, item difficulty and discrimination indices are
most often computed. These statistics provide valuable information concerning
the difficulty of the test, as well as the degree to which the test items
differentiate between varying achievement levels of students. These data can
then be used to increase the reliability of the test (Guilford, 1954).

Although psychometricians working in military training environments
recognize the importange of item analysis, they often use criterion-referenced
tests (CRTs) to measure student achievement, which frequently produce score
distributions that are either bimodal or negatively skewed. Consequently,
they work with test score frequency distributions which violate the assumption
of normality, an assumption commonly held by many of the "classical” item
analysis statistics, such as the upper-lower indices and the point-biserial
correlation coefficient. In addition, the small sample size (N = 15 or less)
and variability in student achievement found in many military training
pilot-study scenarios preclude the application of more sophistizated item
analysis strategies, such as the Rasch technique.]

Several researchers (e.g., Berk, 1984; Popham, 1981: and Roid &

Haladyna, 1982) note that several niew CRT-specific item analysis techniques,

]see haladyna and Roid (1979) for a discussion concerning Rasch analysis

and CRT.
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or instructional-sensitivity indices, as described by Haladyna and Roid
{19&1), have been proposed to address the problems associated with item
analysis in CkT testing situations. For example, the pre-to-post difference
index (PPDI) introduced by Cox and Vargas (1966) and the percentage of
possible gain (PPG) developed by Brennan and Stolurow (1971) were both
developed to produce item sensitivity indices more appropriate for
criterion-referenced testing situations. These indices are excellent methods
for obtaining information concerning the quality of CRT items. Unfortunately,
they require the test to be administered to students before and after
instruction.Z Often, the military test designer does not have this luxury.
Another CRT approach uses two different groups of students, one group
exposed to instruction, while the other group serves as the control (Eilis &
Wulfeck, 1982; Popham, 1981). P values are calculated for each group, and the
p results from the uninstructed group are subtracted from the instructed group
p results, resulting in the discrimination index Duigd' Although this
strategy provides solid information conzerning the instructional sensitivity
of the items, its major disadvantage is that two groups of students are
needed, a requirement not always easy to meet in a military testing
environment. 1ln addition, the two groups tested must be identical with the
exception of treatment, otherwise, variance in the difficulty indices might be
attributed to confounding factors outside of the instruction (e.g., one group
might be inherently more intelligent than the other group). The problem of

ranaomly assigning stuaents to treatment and control groups might be beyond

‘Popham (1961) notes that an additional disadvantage to these indices is
that the pretests might be reactive, and therefore sensitize studercs to

certain items on the pretest
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the control of the test specialist, making this method difficult to im;lement
as well.

It is often difficult, if not impossible for the military test
specialist to obtain pretest scores, or randomly assign two groups of
examinees to instruction or control groups. Therefore, the tast
designer/evaluator is faced with the problem of maximizing the amount of data
concerning test quality that can be gathered from one administration of the
test.

One strategy which appears to share the characteristics of both
classical techniques and the CRT item sensitivity measures is the Brenmnan
index (Brennan, 1972). This scale s implemented by setting a cut score for
mastery on the test, and then dividing the test results into two groups
(masters and nonmasters). To obtain BI, the difficulty indices for the
nonmasters are subtracted from the indices for the masters (by item). This
method is conceptually similar to the upper and lower groups comparison used
in classical item analysis (see, for example, Kelley, 1939). The two methods
differ in interpretaticn, however, since one cannot be certain that those in
the upper group are truly masters, while those in the lower group are
nonmasters. (It should be noted that this same criticism can be applied to
the Brennan's technique if the cut score is determined capriciously rather
than in a systematic and logical manner.)

When clear-cut mastery or non-mastery cannot be determined (or is to
be determined later in the test development process by comparing student
performance in the field with their test scores) test specialists must rely on
the traditional discrimination indices, despite less than optimum data
analysis conditions. Although these statistics and their use have been

described in detail by earlier researchers (e.g., Cureton, 1957; Ebel, 1954;

)
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Englehart, 1965; Johnson, 1951) the effects of the violations of the
assumption of normality, which comnonly occurs in CRT training environments,
must be studied in more detail. The purpose of this paper is to describe the
findings of a study which compared the results obtained from four different
“classical" discrimination indices (two versions of the upper-lower index,
Fpbs @Na phi), when test score distributions were sys:esmatically varied
(normal, bimodal, and negatively skewed) to represent test scores frequentl:’
occurring in military testing situations. The paper discusses the practical
benefits of each statistic, as well as their “ease of use" to the

statistically unsophisticated test evaluator.

Methoda

Sample and Instrumentation A set of 110 simulated subjccts (Ss) were

created to represent students enrolled in a military training program. The Ss
were “aaministered" three 20 item tests, scored in a dichotomous manner, with
one point assigned to a correct response, and O assigned to an incorrect
answer. The'KR-21 internal consistency reliability index for the normal
distridution test was 0.77. The bimodal distribution test KR-21 was 0.87, and
the KR-21 coefficient for the skeved test was 0.78. The cut score on each of
the tests was set at 10 points.

Procedures Three data bases (normal, bimodal, and skewed) were
constructed by varying the distributions of the three zets of simulated test
scores. The frequencies ¢f items correct for each S were determined first,
dependent on the desired shape of each data base. Next, the item(s) each S
answered correctly (1-20) were randomly selected. This randomization produced

medn p values of 0.5z for both the normal and bimodal curves. As expected,



Military Test Analysis
7
the mean p for the skewed distribution was higher (0.74), because more
subjects were assigned higher test scores.

The normal curve test score distribution was designed to represent
the “control,” for which the statistics could be compared, since the majority
of psychometric measures commonly used by evaluators require the criterion
score variables to be normally distributed. In addition, it represented a
common frequency distribution for achievement or aptitude tests used in
military settings. In terms of the descriptive statistical properties of the
normal distribution data base, the mean was 10.5, with a standard deviation of
4.24. There was a 0.0 value for the skewness coefficient.

The second data base corstrucied was bimodally distributed. This
form of a score distribution is often found in testing situations where there
are a group of masters and nonmasters. It alsc .ccurs in situations where one
group of students receives instruction, while another group does not. This
method of studying test items is recommended by E11is and Wulfeck (1982) in

their Handbook for Testing in Navy Schools. The mean score for the bimodal

simulation was 10.25. The standard deviation was 5.38, while the skewness

coefficient was 0.02.

The third data set (skewed distribution) represented a mastery
learning situation. The negatively skewed distribution is commonly found in
military environments, where a majority of the students pass the test. These
simulation data had a mean of 14.9, and a standard deviation of 3.86. The
coefficient of skewness was found to be -0.84, indicating a moderately

negatively skewed distritution of the test scnres.

JThe L.52 p value was ideal for the simulation since most authoriiies

recommend a G.50 p value to study item characteristics (e.g., Kelley, 1939).

8
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A summary of the statistics describing each data base {normal, bimodal,

skewea) appears as Tablc 1.

insert Vable 1 about here

Statistical Analyses Five item analysis statistics wrre calculated

in this study: the p statistic, two versions of the upper-lcwer group
statistics (D1 and L2), the phi coefficient, and the point-biserial

correlation (rpb).

The difficult index, p, was calculated using the standard formula

appearing as equation one:

number of correct item responses

total number of item responses

D1 was obtained by separating those Ss who mastered the learmming
(masters) from those who failed the test {nonmasters) as suggested by Brennan
(1972).4 (A similar strategy is also used when groups of instructed znd
uninstructed Ss are available for studying test item characteristics. In this
case, one simply substitutes those Ss who received instruction for the
masters, and those Ss who did not receive inctruction for nonmasters.) In the
Cases of the normally and bimodally distributed test scores, this strategy was

also equivaleat to the upper and lower half strategy, because in this study,

4inaster:y was determined by being assigned a test score of 10 or greater

3
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the mastery test score wsS a]so the median score for the two data bases. A p

value was calculated for €ach group, and the resulting proportions were

subtractea from each other. This statistic is shown as equation two:

MNC NC
N 2—— - — (2)
M N
where:

MC = masters who answered correctly

M = +0ta) nymber of masters

NC = nonmysters who answered item correctly

N = total number of non masters

Lz was calculated inh a manner similar to D1, however, only the upper
and lower 27% test scores wehe ysed for the comparisons. An early study by
Kelly (1939) demonstrateq that this strategy was the most desirable method for
studying the effectiveness of items. The method for cbtaining D2 appears as

equation 3:

uc L
®w = - - (3)
] L

10
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where:
UC = Ss in upper 27% answering corvectly
U = total number of Ss in Upper 27%
LC = Ss in lower 27% answering correctly
L = total number of Ss in Lower 27%

Both U1 and Lz have two major assumptions associated with their use:
(1) a normal distribution of criterion scores
(2) equality of mean standard errors of measurement
in the upper and lower groups

See Cureton (1957) for a discussion concerning these two assumptions.

The phi coefficient was the third discrimination index used to
evaluate the data. In terms of the statistical assumptions associated with
the use of the phi coefficient, phi "can be used in any situation in which a
measure of the association between two dichotomous variables is desired”
(Allen & Yen, p.37, 1979). 1In this study, the variables were dichotomized by
comparing frequencies on each item (pass/fail) with frequencies of test
performance ‘pass/fail). The formula used to obtain the phi values was as

follows:

¢ - — (@)

11
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where:

number of Ss

n

k
2
2 -
X = zg: (f, FE)
FP

where: f, = observed frequency

F, = predicted frequency

The point-biserial correlation was the final discrimination statistic

usea in the study. This statistic was obtained by employing the formula shown

in equation 5:

n)yX v - LXLY

(5)

r'p b=

V e e

where: X = test item score (0 or 1)

]

Y = total test score (0 to 20)

sample size

N

There two assumptions most commonly applied to the use of the
point-biserial:
(1) a normal distribution of criterion scores should be present

(2) variables should be measured using interval or ratio scales

Analysis of variance (ANOVA) was chosen to estimate significant

differences between the various discrimination index values optained in the
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item analysis. The two key assumptions regarding the proper use of ANOVA are

(Kachigan, 1982):

(1) Tne scores in each population are normally distributed

(¢) The k population variances are equal (homogeneity of variance)
Upon rejecting the null hypothesis (that the mean values of the item
discrimination indices are equal) the paired t-test was applied to the two
indices producing tiie largest average value, to determine if there was a
significant difference between the results. The two assumptions for the use
of the t-test are:

(1) the scores are normally distributed.

(2) The data are interval in nature

Tne assumption of normality shared by all tests (with the exception
of phi, which is a "distribution free" statistic) was obviously met in the
normal distribution data base (see Table 1). Just as obvious, was that the
bimodal and skewed data bases violated this assumpticn. This is not a
problem, however, since the central focus of the study was to assess the
impact of violations of this assumption.

A1l data were measured using an interval rating scale. Therefore,
the assumption of interval data for analysis was held during the simulation as
well.

In terms of the equality of mean standard errors of measurement in
the upper and lower groups, since the items correct for each S were randomly
assigned, it was concluded that the upper and lower groups would have equal
errors of measurement.

With regard to the ANOVA assumptions, the discrimination index values
analyzed were somewhat normally distributed, with a slight degree of skewness

in the data sets. The skewness coefficients shown in the data are not of

13
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major concern, however, since most authorities agree {see, for example, Czmes
& Klare, 1967) that ANOVA (as well as the T-test) is a robust statistic with
regard to violations of the assumption of normality. In.tenms of the equality
of population variances, there do not appear to be significant differences
between the item indices studies, therefore, the second assumption was clearly

satisfied.

Tne descriptive characteristics of the variables studied during the

ANCGVA and t-tests appear as Appendix A.

Results

Tne results of the analyses for each item appear as Table 2. As
expected, the discrimination indices produced different values for different

score distributions.
insert Table 2 about here

The normal distribution average p value was 0.52. The mean value for
each of the statistics showed clearly that Dz (upper-lower 27%) produced the
laryest discrimination values, rpb the second largest values, and phi and Dl
(upper-lower 50%) produced the least discriminating values. Interestingly,
pni and D1 values were identical. ANOVA results suggested that the
differences between the discrimination indices were statistically significant
be*ween the groups F(3,76) = 10.5947, p «.01. In addition, the t-test applied
to D2 and r p Showed that the differences between these two indices were

p
significant t(19) = 6.92, p<.0l.

insert Table 3 about here

14
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Analysis of the bimodal discrimination indices produces similar
results. The average difficulty (p) was 0.52. In addition, D2 produced the
largest values, followed by rpb, then phi and D1. Agaiﬁ, the values
obtained using phi and D1 were identical. The results of the ANOVA appear as
Table 4, showing a significant difference between the 4 groups of indices
F(3,70) = 16.5137, p < .01. The t-test demonstrated that D2 was again
superior to r,, for the bimodally distributed test scores t(19) = 9.88, p <

P
IO].

insert Table 4 about here

The skewed distribution analyses suggested a slightly different
pattern. The mean p value for these data was U.74, clearly showing that more
Ss got the items correct than the other two test distributions, an expected
finding for a simulation designed to represent a CRT situation. D2 again
produced tne largest values, followed by rpb. However, in this case, DI
results were larger than those indices obtained using phi. ANOVA results
(Table 5) show that there were significant differences between the groups
F(3,76) = 5.4117, p<.01, however, there were no significant differences

between D¢ and rpb, as suggested by the t-test; t(19) = 1.04, p = ns.

insert Table 5 about here

Discussion

The data strongly suggest that the distributions of scores influence
the values obtained from the various indices. Clearly, military evaluators
should consider the frequency distributions of their test scores when

selecting item discrimination indices.

Rt
Y
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One of the most interesting findings of the study was that the phi
coefficient and D1 statistics produced identical values when the test data
were bimodally an& normally distributed These data suggest that if evaluators
are faced with analyzing data with these distributional characteristics,
simply calculating the 5U% upper-lower index will produce values identical to
the phi (provided the cut score happens to be at the median). The evaluator
can then use a Pearson r table to estimate the significanrne of the index,
since phi is a special case of r. This strategy can save the evaluator vime,
because phi is much more difficult to compute than D1.

Another interesting finding was that in the case of the skewed
distribution, there were no significant differences between the values
produced by Dz and rpb. These results suggest that either method can be
used in a skewed distribution setting to obtain essentially the same
discrimination values. Therefore, if limited statistical analysis resources
are available, the evaluator can use that statistic most easily computed.

Based on the results of this study and the review of the literature,
the flow chart appearing as Figure 1 was constructed. Test evaluators can use
this flow chart to select that item discrimination statistic most appropriate
for their own unique testing situation. The chart begins with the most
desirable method for obtaining item instructional sensitivity data. If the
conditions cannot be met for the use of this statistic, then, the second most
effective statistic is recommended, and so on. (The method of ranking the
desiravility of the statistics was based on the internal and external threats
to validity associated with their use.)

It is important to note that each statistic must be interpreted in
its own unique way. An acceptable value for phi might be totally unacceptable

for r since each index produces a range of values specific to itself.

pb’

16
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For this reason, if quality assurance requirements are placed in the test
development product standards, both the statistic and the gensral level of
acceptance should be specified. The problems associated with the violations
of the assumptions of normality should also be discussed, outlining which
statistic is preferred under a given set of circumstances. This will
safeguard both the evaluator and test developer from making inappropriate
interpretations of the discrimination statistic values. This recommendation
is supported by Englehart (1965) who suggests that critical values for
accepting cn item's discrimination power are a function of the difficulty of
the item.

In terms of the ease of use, costs, and practical benefits of each
stetistic, the availability of computer resources is a major determiining
factor in the selection of an item discrimination statistic. Test designers
and evaluators who have computer facilities with item analysis programs
available can generally disregard the “difficulty" of using various statistics
since they are automatically calculated by the computer. However, when
dealing with small Ns, where it is not cost-efficient to code and develop a
cata base, and finally analyze the data, or, where adequate computer
facilities are not available, the ease of computation is very important.
Undoubtedly, D1 is the easiest of item discrimination indices to obtain. The
evaluator must simply rank order the results, divide into upper and lower
groups, and compute the results. This method has the added advantage, in the
case of normal and bimodal distributions, of being a good estimate of phi.
Therefore the significance levels of the indices can be estimated easily.
Next easiest is the upper lower 27%. However, a large N should be made
available (at least 12 Ss in both the upper and lower groups) otherwise the

simple 0% split should be used. Computation of both phi and rop are more

ERIC 17
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difficult, and in large N situations, should be employcd only through the use
of a computer. The statistically unsophisticated evaluator would clearly have
more difficulty using these formulae than the simple upper lower groups
discrimination index. Table 6 provides a summary matrix of the assumptions,

Timitations, and ease of use of the statistics described in this study.

insert Table 6 about here

Recommendations for Future Research

Several problems shoula be investigated in the future to further the
knowledge base concerning the use of ¢lassical item analysis in CRT settings.
One interesting question would be to determine the point where skewness begins
to effect the values produced by the discrimination indices. The present
Study has demonstrated that a moderately skewed distribution produces
differences between the statistics that are not found in bimodal and norma’ly
distributed test score distributions. A study examining diffaring degrees of
skewness may be needed to help evaluators and researchers select the statistic
most appropriate for that levei of skewness.

This study employed items with very little variance in p values, by
randomly selecting correct responses for each item. Although these results
are typical for CRT environments (in that most students get most items correct
resulting in a small degree of variance) a study using data with items of
differing item variances may reveal different results. This may be an
important issue to examine in the future because it is sometimes desirable to
use items of differing 4ifficulty values, even in CRT situations.

Finally, the mathematical reasoning behind the equal values for phi

18
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and D1 should be explored, to determine whether the results of this study are
a special case of these two statistics (when median and cut scores fall at the
same value, and data are normally or bimodally distributed) or whether the
mathematical short-cuts derived from the study can be generalized to other

data sets as well,
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TLE1:  DESCRIPTIVL STATISTICS: SIMULATED TEST SCURt OISTRIBUT [Uky
Number Mean Variance Std Day Std Lrror Skewnass Kurtosis
Normal  11) 10,5000 18.4174 4,2916 U.409¢ 0.0900u 0. 3834¢
Bimdal 110 10,2545 78,907 5.370% 05176 0.0204y 159813
Skewed 110 14.9000 14,8982 3.8598 0.3680 -0.3410b 3. 10768
nn
[
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TABLE 2:
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h =110

stribyt jan ften ‘;:
torna) 12'3455789lonlzlmqlswumlgzoﬂsu
S R L T 1 N B SOV R TRy
S LS L LS B B SR RO BT R SR S
oSS B T30 53 60 6 6 T 6 66 0 A A5 s
O I/ B R T TR TN TR P N
o B LA S0 5 8 A0 65 A 8 ) g
Bimodal
S I L I S T I A I R R S T A
B 500 40 40 09 55 53 8 8 6 B 5y
S L N L SO (R TR S T R,
L L L O O T T I B TR R R R T
I A I O I I O R VR R SV
“eweq
S RIS S PR SARTAN AN
L L L L I T B R TR B P S R
L L < B O R LTI N S PRV
U I A B A I A R R R I I
LI K 1 7 A 7 TR S R T VR

2 2




Military Test Analysis
23

TABLE 3;

ANOVA: NORMAL DISTRIBUTION

Source of Variation | OF SS. MS F-Stat

Among Groups ool 0|0 | 0.5

Within Groups 16 10195 | 0,003

Total 19 1.4459

Group Statistics

broup N Sum 550 Nean L.V, 5.0, S0 (0V)
Noradl | 20 6.9400 2.6386 03400 | e | oo 55001 |
Nora2 | 20 | 10.5000 5,9084 0.5250 | 20492 | 00443 4,664
Normphi | 20 6.9400 2.6306 0.3 | e | oo 55001
forscore | 20 | 840 | 30 | o | oo | ouoms 3.6263

26
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TABLE 4: ANOVA: BIMOUAL DISTRISUTION

Source of Variation | OF 5§ HS F-Stat

Anong Groups ] - 0.3106 0.107% | 16.5137

Within Grour 76 0.4765 (.0063

| Total 19 0.781

Group Statistics
Group N Sum U-S5¢ Hean C.V. 5.0, 5.t (CV)
BimodD] 20 9, 8000 4.9222 0,490y 16,2323 0.079% 2.6333
Bimod)? 20 12,8500 8,404 0.6425 13.735% 0.0883 2.2124
Bimodphi | 20 9,8000 4,922 0,4900 16,2323 0,074 £.6333 |
Rimadcorr | 20 10,7000 5.8126 0.5350 12.7219 0,068 2.0448
2 2
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TABLE5:  ANUVA: NEGATIVELY SKEWED OISTRIBUTTON
Source of Variation | OF 59 MS F-Stat
Mong Groups 3 0.1719 0.0573 5.4173
Nithin Groyps 16 0.8039 0.0106
Total 19 (9758
roup Statistics
Giroup N Sum U-55( Mear, C.V. 5.0. 5., {0V)
SkewD! 20 8.2600 3.6488 0.41% 21,0665 0. 111 4,584
SkewD? 20 9,1800 4.4338 0.4590 23.4531 0.1076 3.9069
Skewphi 7 20 6.7700 2.475] 0.3385 29,0762 0.09¢4 §.9709
Skewcorr | 20 8.8700 1,000} - 0.4435 20.8367 ) 0.0924 3.4346
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THBLE §;  SUMMARY MATRIXD

Measire Conditiang and Assumptiong Calculations Limitations
P I, pre & post test Sg "easy by nang" must be able t¢
.2 N 12 (both groups) pre and post test
0 PP I, pre & post test S "easy by hand" must be able to
2. N 12 (both qroups) pre ang post test
] . 1. master/nonmaster srores "easy by hynd" ' mist be avle to
2. N 12 (toth groups) identify masters
and nonmgsters
Duigd Vo inst/uninst group sessions “easy bv hang" mist be able to
2. N 12 (bath groups) randomly assign Ss
to both groups
0l I, norm distribution "easy by hany" I, assumptions
2. = Mean std errors Z. upper group
LN 12 may not be masters
02 1. nom distributiog "easy by hang" 1. assumptions
2, = Mean std errors 2. upper qroup
LN 12 may not ve masters
ob L. norm distribution nead computer L assumptions
2, interval scale 2. upper group
3N 12 may not be masters
phi ' dichatrmous variahles naed computer cut score for pass
fail must be set

correctly

5 gon fork (1984) for an excellent discussion on the statistical serits of these statistics,
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Fiqure 1: DISCRIMINATION INDEX SELECTION DECISION TREE

START

Can
Ss be randomly (1) D {E1is
ssigne¢ to inst/uninst YES Lu:ugfeck
groups Nej2/ea. 1582)
group?

1) PPDI (Cox &
YES : vargas, 1966)
() FPP5 (Brennan &
Stulurow, 1971)

Can \\\\\\\‘\\L .
<:”f::ue‘ cut score be YES (1) 81 ;ﬁrennan
\\‘~\::::i:::::::»”/¢" o

NO
{1) p2
VES (2) r (or o
{3) D1/Phi
(1) D2
Yes 2y (2) rlorry)
[ (3) Dl/PM

A YES (Drlor ryy) or B2
< data sr:md’ ’ 210
~‘\\-\\‘ ";”,f" 3) pni

*Yhen N 15 Yess than 12, Phi shouls be used.

Can
group be pre- and
post-tessed?

Are
deta normally
distributed?

Are
data bimodally
distributed?

*~Aﬂ,__.~.7
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"PERDIX A
DESCRIPTIVE STATISTICS: [TEM ANALYSIS TaDICES

v

v —

"g? Numhar . Megn Variance Std Doy Std Error Skewness Kurtosis

;m Nerm 70 0.5235 0.0022 0.0470 0.0105 0.0511 2.26648

v

; SornD! il 0.3470 00120 0.101 0.0246 046208 2,40361

_:,f Nnrmb? 20 0.5250 0.0208 0.1443 0.0323 0.55717 2.65613

;;: NormPhi 20 0.347C 0.0121 0.1101 | 0.0246 0.46208 ¢.40461
NoraCorr 20 0.4275 0.0086 0.0926 0.0207 U, 35805 2.5159%
Binod 20 0.5125 0.000% 0.0269 0,0060 0.1255] 1,56193
Bimodl} 20 0.4900 0.0063 0.0795 0.0178 -0.31293 2.80421
Bimodl2 20 0.6425 0.0078 0.0883 0.0197 0.61979 2,23168
BizodPhi 20 0.4900 0.0003 0.0795 0.0170 -0.31293 2,824
BimodCorr 20 0,535 0.0046 0.0681 0.0152 0.2124] 2.41453
Mead 2 0.7435 1 0.0013 0.0365 0.008: -0.29532 2.00885 |
Skeull 20 AL 0.0125 0.1118 00250 0.79739 - .99%0
Sl 20 0.4590) 0.5116 0.1076 0.0241 0.48193 | 3.62075
SkewPhi 20 0.3385 0.0097 0.0384 0.0220 0.83852 - 314578
YauCorr 29 0,443 0.0085 0.0924 0.0207 | 0.35557 £, 53345

S




