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1. INTRODUCTION AND NOTATION

Holland (1985) proposed the use of the Mantel-Haenszel procedure as a prac-

tical and powerful way to detect test items thaz function di:ferently in two

groups of examinees. In this paper we show how this use of the Mantel-Haenszel

(MH) procedure is a natural outgrowth of the previously suggested chi-square

procedures of Scheuneman (1979), Marascuilo and Slaughter (1981), Mellenberg

(1982), and others and we show how the MH procedure relates to methods based on

item response theory, Lord (1980).

The study of items that function differently for two groups of examinees

has a long history. Originally called "item bias" research, modern approaches

focus on the fact that different groups of examinees may react differently to

the same test question. These differences are worth exploring since they may

shed light both on the test question and on the experiences and backgrounds of

the different groups of examinees. We prefer the more neutral terms, differen-

tial item performance or differential item functioning, (i.e., dif), to item

bias since in many examples of items that exhibit dif the term "bias" does not

accurately describe the situation.

Early work at ETS on dif began with Cardall and Coffman (1964) and Angoff

and Ford (1973). The book by Berk (1982) summarizes research to 1980.

The following notational scheme and terminology is used in the rest of this

paper. We will always be comparing two groups of examinees, of which the per-

formance of oae, the focal group, F, is of primary interest. The performance of

the other groap, the reference group, R, is taken as a standard against which we

will compare the performance of the focal group. For example, the focal group

might be alJ black examinees while the reference group might consist of the

white examinees. Typically, all test items in a given testing instrument will
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be analysed for evidence of dif, and this will be done one item at a time. We

will refer to the item that is being examined for evidence of dif in a given

analysis as the studied item.

Basic.. to all modern approaches to the study of dif is the notion of com-

paring only comparable members of F and R in attempting to identify i.,:ems that

exhibit dif. Comparability means identity in those measured characteristics in

which examinees may differ and that are strongly related to performance on the

studied item. Important among the criteria used to define comparability are (a)

measures of the ability for which the item is designed, (b) schooling or other

measures of relevant experience, and (c) membership in other groups. In prac-

tice, the matching criteria will usually include test scores since these are

available, eccurately measured, and usually measure the same ability as the

studied item.

If both examinee ability and item characteristics av confo-Inded by simply

measuring the difference in the performance on an item between unmatched

reference and focal group members, the result is a measure of impact rather than

of differential item performance. For example, comparing the proportion of

reference and focal group members who give correct answers to a given item is a

measure of the item's impact on the focal group relative to the reference group.

In this paper we do not discuss impact, since the confounding of differences in

examinee ability with characteristics of items is of little utililty in

attempting to identify items that may truely disadvantage some subpopulations of

examinees.

Suppose that criteria for matching have been selected, then the data for

the studied item for the examinees in R and F may be arranged into a series of

2x2 tables; one such table for each matched set of reference and focal group

members. The data for the performance of tha

4

nth matched set on the studied
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item is displayed below

Score on Studied Item

1 0 Total

R Aj B
J nRj

Group F ci Di nFj

Total mlj mOj Ti

Table 1: Data for the jth matched set of members of R and F.

In Table 1, Tj is the total number of reference and focal group members in

the jIll matched set; nRj is the number of these who are in R; and of these Aj

answered the studied item correctly. The other entries in Table 1 have similar

definitions.

In order to state statistical hypotheses precisely, it is necessary to have

a sampling model for the data in Table I. It is customary to act as though the

values of the marginal totals, nRj and nFj, are fixed and to regard the data for

R and F as having arisen as random samples of size nRj and nFj from large

matched pools of reference and focal group members. It follows that Aj and Cj

are independent binomirl variates with parameters (nRj, PRj) and (nFj, PFj),

respectively. These population values can be arranged as a 2)(2 table that is

parallel to Table 1; i.e.,

Group

Score on Studied Item

1 0 Total

R PRj gRj I

F PFj qFj 1

Table 2: Population parameters for data from the j.9.2 matched set.

5



iii hypothesis of no dif c-ollespuild to the Rilli hypothesis.

Ho : PRj = PFj for all j.

The hypothesis, H0, is also the hypothesis of conditional independence of

group membership and the score on the studied item given the matching variable

(Bishop, Fienberg, and Holland, 1975).

Under H0, the "expected values" foe the cell entries of Table 1 are well-

knowr to be obtained by the "product of margins over total" rule and are sum-

marized below

E(Aj) = nRj mij/Tj

E(Bj) = nRj moj/Tj

2. PREVIOUS CHI-SQUARE PROCEDURES

E(Cj) = nFj mij/Tj

E(Dj) = nFj m0j /Tj. (1)

4

Scheuneman (1979) proposed a procedure to test the hypothesis, H0,

ulilizing a specific type of matching criterion. Let S denote a score on a cri-

terion test e.g., an operational test score that may or may not include the

studied item. The values of S are categorized into a few intervals --

Scheuneman suggests that three to five intervals are satisfactory The matched

groups are defined by the categorized values of S so that members of R and F are

considered matched if their scores on S fall into the same score interval. In

terms of the notation of section 1, the test statistic proposed by Scheuneman is

given by

K

=

(A. E(A.))2 (C . -E( C . ))2
SCHEUN =

jI 1 E(Aj)
+

E(Ci )
(2)

which is algebraically equal to

K

SCHEUN = y F (Ai E(Ai))2 I

j=1 nRj nFj m1j/Tj

6
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It was originally thought that SC} 11N had an apprnyimate chi-square distri-

bution on K-1 degrees of freedom when Ho is true, Schueneman (1979). This is

not correct as discussed in Barker (1981) and Scheuneman (1981). For example,

under H0, the expectation of SCHEUN, conditional on the four marginal values

nRj, nFj, mlj, and m0j in each 2x2 table, is given by

K

E(SCHEUN) = I

m
0

--I)
j=1

(Tj

(3)

This value is sensitive to the total nmber of incorrect responses in each 2x2

table and can range from 0 up to K. Tf SCHEUN had an approximate chi-square

distribution on K-1 degrees of freedom then the expected value in (3) would be

approximately K-1 for any set of values of moj. Fortunately, a small correction

to (2) does give the resulting statistic an approximate chi-square distribution

under H0. The corrected statistic is

CHISQ-P =
K

E

j=1

T.

--1
m()j

(A. E(A.))2
J

(C.
J

- E(C.))2
(4)

E(Aj) E(Cj)

which can be shown to be algebraically identical to

K (A. - E(A.)) 2

CHISQ-P = y

j=1 nRi nFj mOj mlj/T] 1 (5)

This is well-known to be the Pearson chi-square test statistic for testing Ho

and the propel degrees of freedom equals the number of matched groups, K, if the

Tj are all large, Bishop, Fienberg, and Holland (1975). It is also called the

"full" chi-square by some to distinguish it from SCHEUN.

The K 2)(2 tables may be regarded as a single 2x2xK table and the standard

theory of log-linear models for three-way tables may be used to test H0. This

7
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leads to the suggestion of Marascuilo and Slaughter (1981) and Mellenberg (1982)

to use the likelihood ratio chi-square statistics to test Ho instead of (5).

The alternative hypothesis against which Ho is tested by CHISQ-P (and its

likelihood-ratio versions) is simply the negation of Ho, i.e.,

H0 : pRj # pFj for some j.

This is why CHISQ-P is a multi-degree of freedom chi-square test. It is not

powerful against specific alternatives to Ho, but it will detect any such depar-

ture if the Tj are large enough. This fact leads to a trade-off between bias

and statistica: power that is not well made, in our opinion, by procedures like

Scheuneman's or "methods 1, 2, 4, 5, and 6" of Marascuilo and Slaughter (1981).

The trade-off arises by the desire to increase the values of Tj in order to

increase the power of the test. This degrades the quality of the matching

(i.e., lumps together examinees whose scores are not equal) in order to increase

the sample sizes in the matched groups, i.e., Tj. This is necessary in these

procedures because of the goal of being able to detect an type of departure

from Ho. An alternative approach, and one that we favor, is to reduce the typs

of alternatives to Ho against which the test has good power and to concentrate

this power into a few degrees of freedom that actually occur in test data. This

occurs in Method 3 of Marascuilo and Slaughter (1981). Mellenberg (1982) has

moved in this direction by distinguishing "uniform" from "non-uniform bias."

The M-H procedure does this by concentrating on Mellenberg's uniform bias and

yet it does not degrade the quality of the matching. We will discuss this in

the next section.

A separate problem with the chi-square procedures is that they are only

tests of Ho and do not produce a parametric measure of the amount of dif

exhibited by the studied item. As is well-known, tests will always reject the
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null hypothesis provided that the relevant sample sizes are large enough. It is

more informative to have a measure of the size of the departure of the data from

H0. The M-H procedure provides such a measure.

3. THE MANTEL - HAENSZEL PROCEDURE

In their seminal paper, Mantel and Haenszel (1959) introduced a new proce-

dure for the study of matched groups. The data are in the form of K 2x2 tables

as in Table 1. They developed a chi-square test of Ho against the specific

alternative hypothesis

PRj
H1 :

qRj

PFj
= a

clFj
j= 1,...,K

for a*]. Note that a=1 corresponds to Ho, which can also be expressed as:

PRj PFj
H0 = j = 1,...,K.

clRj ciFj

(6)

(7)

The parameter a is called the common odds-ratio in the K 2x2 table because under

H1. the value of a is the odds ratio

P P P c1F'a = / _El = R3 J for all j = 1,...,K.
clRj clFj PFj clRj

The Mantel-Haenszel chi-square test statistic is based on

(1 (A. E(A.)))2

where E(Aj) is defined in (1) and

Var(A)
T2(T.-1)

The statistic in (9) is usually given a continuity connection to improve the

Var(Aj)

nRj nFj mlj moj

(8)

(9)

(10)

9
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accuracy of the chi-square percentage points as approximations to the observed

significance levels. This has the form

(11 A - 1 E(A.)I f)2

MH-CHISQ
ii i J

1 Var(Aj)
j

It may be shown, for example Birch (1964) or Cox (1970), that a test based

on MH-CHISQ is the uniformly most powerful unbiased test of Ho versus H1. Hence

no other test can have higher power somewhere in H1 than the one based on

MH-CHISQ unless the other test violates the size constraint on the null hypothe-

sis or has lower power than the test's size somewhere else on H1. Under Ho,

MH-CHISQ has an approximate chi-square distribution with one degree of freedom.

It corresponds to the single degree of freedom chi-square test given by

Mellenberg (1982) for testing no "bias" against the hypothesis or "uniform

bias." It Is not identical to the test proposed by Mellenberg but in many prac-

tical situations they give virtually identical results even though Mellenberg's

proposal involves an iterative log-linear model fitting process. The MH pro-

cedure .s not iterative.

Mantel and Haenszel also provide an estimate of a, the common odds-ratio

across the 2x2 tables. Their estimator is given by

1 Aj D./T.

64H y B. cj./Tj
J J, i

The odds-ratio is on the scale of 0 to with a=1 playing the role of a

null value of no dif. It is convenient to take logs of am to put it into a

symmetric scale in which 0 is the null value. Thus we have proposed that

(12)

'I'MH =

4

1.7
ln(amli) = -2.35 ln(Emi)

10

(13)
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be used as a measure of the amount of dii. AhH has the interpretation of being

a measure of dif in the scale of differences in item difficulty as measured in

the ETS "delta scale," (Holland and Thayer, 1985).

When using echH or 4/H it is useful to have a simple interpretation of these

values. The value of EchH is the average factor by which the odds that a member

of R is correct on the studied item exceeds the corresponding odds for a com-

parable member of F. Values of elm that exceed 1 correspond to items on which

the reference group performed better on average than did comparable members of

the focal group. The value of IhH is the average amount more difficult that a

member of R found the studied item than did comparable members of F. Values of

AhH that are negative correspond to items that the reference group found easier

on average than did comparable focal group members. The parameters, a and

ln(a), are also called "partial association" parameters because they are

analogous to the partial correlations used with continuous data. The matching

variable is "partialled out" of the association between group membership and

performance on the studied item, (Birch, 1964).

Mantel and Haenszel proposed both the test statistic MH-CHISQ and the para-

meter estimate EhH. Since that initial work many authors have contributed to

the study of these procedures; the main results are as follows.

(a) The effect of the continuity correction is to improve the calculation of

the observed significance levels using the chi-square table rather than to

make the size of the test equal to the nominal value. Hence simulation

studies routinely find that the actual size of a test based on MH-CHISQ is

smaller than the nominal value. However, the observed significance level

of a large value of MH-CHISQ is better approximated by referring MH-CHISQ

to the chi-square tables than by referring the expression it (8) to these

11
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tables. The continuity correction is simply to improve the approximation

of a discrete distribution (i.e., MH-CHISQ) by a continuous distribution

(i.e., one degree-of-freedom chi-square).

(b) etmll is a consistent estimator of the a in (8) and the variability of (imm is

1
nearly optimal over the range

3
- < a < 3 which anslates into -2.6 < A < 2.6

under the log transformation in (13). Outside this range etmli or Am are

still reasonably efficient, but very large (or small) values of a are not

as accurately estimated by etmH as they are by maximum likelihood. Since

larger values of a are easy to detect using MH-CHISQ, this is not an impor-

tant limitation.

(c) Standard error formulas for etmH and imH that work in a variety of cir-

cumstances have taken a long time to develop. Important contributions have

been Hauck (1979), Breslow and Laing (1982), and Flanders (1985). Recent

joint work with A. Phillips suggests that the following approximate

variance formula for ln(&jj) is valid whenever the numerator and denomina-

tor of &j are both large:

Var(ln(eLmH)) = 202 I [TT2(Aj Dj + Cemm Bj Cj)(Aj + Dj + CemH(Bj + Cj))1, (14)

where

= E A. D./T..;JJJ

This approximate variance formula agrees with well-known variance estimates

for ln(&j) in the few cases in which these are available. It is discussed more

extensively in Phillips and Holland (1986).

It is sometimes helpful to show how kilt is expressed as a weighted average

of the sample cross-product ratios in each of the K 2x2 tables. These are the

values

12
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- l_1a

i

Hence

E w. d.
___1__.1.

nrill
-

1 wj

where

(15)

(16)

11

wj = Bj Cj/Tj.

In their discuss!on of chi-square techniques, Marascuilo and Slaughter consider

Cochran's (1954) test. In this test, instead of using the odds-ratio in each

table as a measure of dif in the jth matched group, the difference in proportion

is used,

A. C.
1._ _ I_

nRj nFj.

These are averaged together with the weights,

(17)

nRj nFj/Tj,

to get an overall agerage difference across all matched groups. More recently,

Dorans and Kulick (1986) have suggested applying the weights nFj to the dif-

ference in (17) to get an overall standardized measure of dif for the item.

Dorans and Kulick do not develop a test based on their measures, but it is evi-

dent that such a test, similar to Cochran's test, could be developed. Since

Dorans and Kulick are primarily interested in a good descriptive measure of dif

-heir choice of weights does not correspond to a statistically optimal test of

Ho.

In summary, the Mantel-Haenszel procedure fs a natural extension of the

ideas behind the chi-square procedures of Scheuneman and others. It intovides a

single degree-of-freedom chi-square test that is powerful against realistic

13



alternatives to H0, it allows detailed and careful matching on relevant

criteria, and it T. ovides a single summary measure of the magnitude of the

departure from H0 exhibited by the stucLed item.

4. THE KH PROCEDURE AND IRT MODELS

It is generally believed that there is, at best, only a rough correspondence

between the "chi-square" types of procedures for studying dif and the more

"theoretically preferred" methods based on item response theory (IRT). For

examples of this view see Scheuneman (1979), Marascuilo and Slaughter (1981) and

Shepard, Camilli, and Williams (1984). In this section we show that the MH pro-

cedure highlights a close connection between these two important classes of pro-

cedures. Our observations on this point are stongly influenced by the work of

our colleague, Paul Rosenbaum see Rosenbaum (1985, 1986).

We adopt th^ notation and terminology for discussing IRT models given in

Holland (1981), Cressie and Holland (1983), Rosenbaum (1984), and Holland and

Rosenbaum (1986). Thus xk is the 0/1 indicator of a correct response in item k,

k=1,..., J, and x = (x1, xj) denotes a generic response vector there are

2K poss4ble values of x. In any population of examinees we let p(x) denote the

proportion of them who would produce the response vector x if tested. Then

p(x) a 0, I p(x) = 1.
x

An IRT model assumes that the value of p(x) is specified by an equation Jf

the form

J xk 1-xk

p(x) = f II Pk(0) Qk(0) dG(0).

k=1

In (18), Pk(0) = 1 Qk(0) is the item characteristic curve (ICC) for item k and

G(0) is the distribution function of the latent ability, 0, across the popula-

tion of examinees.

14
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it is customary to restrict the ICCs and 0 in various ways. For example, B

is usually a scaler (not a vector) and the Pk are assumed to be monotone

increasing functions of O. Holland and Rosenbaum (1986) point out that without

some restriction to this type 1RT models are vacuous. Parametric assumptions

such as the 1-, 2-, or 3-parameter logistic form for Pk(0) may also be imposed.

If there are two subpopulations of examinees, R and F, then there are

corresponding values pR(x) and pF(x). In general, Pach subpopulation will have

its own ICCs, i.e.

PkR(8) and PkF(0) k=1,...,J

as well as its own ability distribution,

GR(0) and GF(0).

Lord (1980) states the hypothesis of no dif in terms of an IRT model. For

item k it is

HO(IRT) : 2kR(8) = PkF(8) = Pk(8) for all O.

Thus, if H0(IRT) holds for all k then pR(x) and pF(x) have the representations:

J xlc 1-xk

PR(x) = 4 II Pk(0) Qk(0) dGR(0)

k=1

(19)

J xk
1-xkPF(x) = f II Pk(e) Qk(0)dGF(0).

k=1

Rosenbaum (1985) considers tests of the hypothesis that a representation like

(19) exists for pR(x) and L(x) in which R has a "hi:her" distribution of 0 than

does F.

The integrals in (18) and (19) are not easy to work with except in one

special case, i.e., the Rasch model. For this model Pk(0) has the logistic form

15



A-h,_
A-h,_

Pk(e) = e /(1 + e ). (20)

If (20) is inserted into (18) they dolland and Cressie (1983) show that

p(x) may be expressed as

where

and p(t) = E(Ut) t=0,1,...,J. (23)

J xk
p(x) = p(0)[ II fk p(x+) (21)

k=1

-bk

fk = e ,

x+ = 2 xk
k

(22)

14

In (23), U is a positive random variable whose distribution depends on the ICCs

and on the ability distribution G(0). Hence if we apply (21) to pR(x) and pF(x)

without assuming Ho (IRT) we get

and

J xk
PR(x) = PR(0) II fkR tIR(x+)

k=1

' J xk

pF(x) = PF(0){ n fkF tIF(x+).
k=1

(24)

(25)

Now suppose that we wish to apply the MH procedure in this situation and

that we take as the matching variable the total score on the test X. If item 1

is the studied item then the relevant population probabilities for R are of the

form

PRj = P(X1 = 11X+ = j,R).

Using (24) this can be expressed as

P(X1 = 1, X+ = j) _
f S
1R J-1,j-1 (e)R

PRj = P(X+ = i) Sj,j (ER)

16
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where

and

fR = = (fiR, fR)

J

Sj,j(f) = E Ill fk

x : x+=j k=1

(i.e., the symmetric function of J-variables of degree j).

Similarly,

S .(f*)
-

(112j
SJ,j(fR)

Hence the odds for success on item 1 in R in the j.11 matched set are:

=

f.r*N

_LI "J-1,j-lkiR)
fiR

(1Rj
c oj_i,j(fp

Similar equations hold for pFj and qFj and the corresponding odds are

S . (e)
J-1,3-1 F

!II = flF
(IFj

Sj_i,j(fp

Now suppose that for items 2 through J there is no dif, i.e.,

so that

fkF = fkR k=2,...,J,

*
f*
F

= fR

Then the population odds-ratio in each 2x2 table is

P P fRj 1R = ebit? - b1R

(112j '

_El

(IFj flF

(27)

(28)

(29)

(30)

15

blF b1R
Equation (30) is a statement of H1 in (6) with a = e , so that for

the Rasch model the hypothesis for which the Iii procedure was developed holds

exactly in the population under the following conditions.

17
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(a) The items 2, 3, ..., J exhibit no dif, but the studied item may

exhibit dif,

(b) the criterion for matching, X+, includes the studied item,

(c) the data are random samples from R and F.

This result is a little surprising since the inclusion of the studied item

in the criterion seems to go against the traditional uses of the MH procedures

in medical applications. However, it can be shown that if the studied item is

excluded from the criterion then the null hypothesis H0 is not satisfied even

though Ho( IRT) is satisfied for every item.

For example, when the criterion for matching is X* = 7 Xk and item 1 is
1(2:2

the studied item, the relevant population probabilities are

PRj = P(X1 = 1 I X* = j,R)

and

PFj = P(X1 = 1 I X* = j,F).

It is easy to show that the equations that corresponds to (28) and (29) are

p (j+1)

R= flR
PR(j)

and

pp.
f
1F

It (j+1)

F Pr(j)

Hence the odds-ratio in the jt matched set is

aj ai =
fiR 1R(j+1) Pr(j+l)

fir PR(i) ' Pr(i)

(31)

(32)

(33)

Thus the . are not constant across the 2x2 tables. The ratio of moments inaj

(33) is related to order relatiomhips between the distributions of the random
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variable U, from (23), in R and F. For example, if the distribution of U for F

is "lower" than that for R then we will have

p
R
(j+1) p

F
(j+1)

/

PRO) PF(j)
1, for all j = 1, 2, .

This an, 'ysis raises the issue of whether the studied item should be

included or not in the matching criterion. If it is not included, then the MH

procedure will not behave correctly when there is no dif according to an IRT

model. However the Rasch model analysis suggests that the inclusion of the

studied item in the matching criterion does not mask the existence of dif,

rather it is the inclusion of other items exhibiting dif in the criterion that

could lead to the finding that no dif exists for the studied item when in fact

it does. This idea leads to two steps.

Step 1: Purify the matching criterion by eliminating items based on a

preliminary dif or impact analysis (Kok et al, 1985, make a simi-

lar suggestion).

Step 2: Use as the matching criterion the total score on all items left in

the purified criterion plus the studied item even if it is then

omitted from the criterion of all other items when they are

studied in turned.

It is possible that we have drawn too heavily on the analysis cf the Rasch

model and a good deal of simulation work may be necessary before we know for

sure if our suggestions hold in greater generality. We have begun some of that

work and will report on it later. However, to date the results of the simula-

tion study corraborates our proposal regarding the inclusion or exclusion of the

studied item in the criterion.
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Tle issue of including ana excluding an item from the criterion shows the

need for making these adjustments in the computational formulas for CcmH and

MH-CHISQ. These are as follows.

If the K 2x2 tables have been assembled for a number right score S as the

matching criterion that does not include the studied item and we wish to include

it in the score, then the 2x2 tables need to be altered to these.

Score on Studied Item

R

F

1 0 Total

Aki Bj
1112 j

Cj_i Dj ni,j

mlj_1 mOj T:
J

The values of MH-CHISQ and ectffl are then computed from these tables.

Similarly, if S contains the score of the studied item and we wish to eli-

minate it this is done by using these 2x2 tables.

Score on Studied Item

R

F

1 0 Total

Aj+1 Bj n""
Rj

C.i.f.]. Di
liFj

mlj+1 mOj T:i

Thus it is a simple matter to compute either (111H or MH-CHISQ including or

excluding the studied item from a number-right-score matching criterion. If the

matching criterion is a formula-score or a grouped, number-right-score then it

is not easy to adjust for the inclusion of the studied item into the criterion,
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without recalculat.1g the entire set of 2x2 tables.

5. DISCUSSION

There are many procedures that have been proposed for the study of dif over

the last twenty years, and the introduction of a new one, associated with names

that are unfamiliar to psychometricians, is likely to oe regarded skeptically.

However, we have tried to show that the MH procedure, drawn from the field of

biostatistics, fits squarely into the network of ideas developed by previous

workers in the field of "item bias". In addition, standard statistical con-

cepts, such as tests, hypotheses, error of type I and II, estimates, and stan-

dard errors all fit neatly into the package. Connections between chi-square

methods and IRT based methods are made evident by studying the Mantel-Haenszel

procedure.

We believe that the view that IRT based approaches to dif are

"theoretically preferred" over chi-square based procedures is not a very precise

way of describing the situation. It is certainly true that likelihood ratio

tests of HO(IRT) in the context of specific parametric IRT models (i.e., 3PL

ICCs and Normal 0-distributions) are statistically optimal (or very nearly so)

in the sense of power and etficiency when these models actually hold. If the

data really are generated by such models, as they would be in a simulation, then

no other test of the equality of two ICCs for the same item, at the given signi-

ficance level can have larger power than these likelihood ratio tests. However,

it is only the procedures based on marginal maximum likelihood, as advocated by

Bock and Aitkin (1981), that can yield true likelihood ratio tests (e.g., see

Thissqn, Wainer, and Steinberg (1985).) IRT-based procedures that depend on

multiile LOGIST calibrations do not automatically result in tests of HO(IRT) and

estimates of ICC differences that are optimal. Furthermore, even the marginal
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maximum likelihood procedures are not optimal when the assumed model is wrong.

In our view, parametric IRT models provide an important testing ground for

evaluating dif procedures. Under R0( IRT), test statistics ought to achieve

significance levels that are close to the nominal values regardless of the

choices of GR, GF, and the ICCs, Pk(0). Against alternatives to H0( IRT), the

likelihood ratio procedure will set the upper bounds on the power and efficieny

of any test proced,re, including the LOGIST-based procedures or chi-square pro-

cedures like the Mantel-Haenszel. Our use of a specific IRT model (the Rasch

model) to evaluate the Mantel-Haenszel procedure resulted in a new conception of

the importance of including or excluding the studied item in the criterion.

This shows the advantage of a theoretical analysis. We were led to that analy-

sis by the empirical finding that including the studied item in the test score

used as a matching criterion had a measurable and consistent effect on the

values of &lc and Am computed in real data. The Am values will shift by an

amount that is nearly independent of the studied item but which did depend on

the overall differences in performance on the criterion test between R and F.

The bigger the difference the bigger the shift. This is exactly what is pre-

dicted by equation (33) when there are large differences between the 0-

distributions, GF and GR.

Our conjecture is that it is correct to include the studied item in the

matching criterion when it is being analysed for dif, but if it has substantial

dif then that item should be excluded from the criterion used to match examinees

for any other studied item. The first "inclusion" is to control the size of the

test given by MH-CHISQ while the second "exclusion" is to prevent large dif

items from degrading the power of this test. Such an approach is independent of

the MH procedure and can be incorporated into other chi-square techniques, or

22
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into the iterative logit technique discussed by Kok et al. (1985).

A final note on costs. The MH procedure is very inexpensive to use com-

pared to IRT analyses. For example, runs that involve 50 items and 2500

examinees cost about $10 on a typical mainframe computer. Our main reason for

pursuing this approach has been to provide ETS with a practical, and yet power-

ful tool for the study of dif that incorporates all of the advances in metnodo-

logy that have occurred since the late 1970s.
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