
DOCUMENT RESUME

ED 272 155 IR 012 208

TITLE Instructional Support Software System. Final
Report.

INSTITUTION McDonnell Douglas Astronautics Co. East, St. Louis,
Mo.

SPONS AGENCY Air Force Human Resources Lab., Brooks AFB, Texas.
REPORT NO AFHRL-TR-85-53
PUB DATE Mar 86
NOTE 26p.; For a report on the Advanced Instructional

System, see ED 186 025.
PUB TYPE Guides General (050) -- Reports Descriptive (141)

EDRS PRICE
DESCRIPTORS

MF01/PCO2 Plus Postage.
Authoring Aids (Programing): *Computer Assisted
Instruction; *Computer Managed Instruction; Computer
Simulation; *Computer Software; *Military Training;
Programing Languages; Training Methods

ABSTRACT
This report describes the development of the

Instructional Support System (ISS), a large-scale, computer-based
training system that supports both computer-assisted instruction and
computer-managed instruction. Written in the Ada programming
language, the ISS software package is designed to be machine
independent. It is also grouped into functional modules so that each
module can be executed individually or combined as needed to support
operational requirements. The ISS is not designed for any particular
machine or operation system, and it can run on computer systems
ranging from small microcomputers to mini-.and mainframe computers.
This report provides a description of the pr:ject and discusses: (1)
the project's major accomplishments; (2) the applicaticn support
environment; (3) software portability; (4) system requirements,
including the Ada programming language, host operating system,
hardware, process/peripheral, and display station; and (5) ISS
potential for training purposes. Guidelines are also presented for
implementing the ISS software on a microcomputer. Conclusions and
recommendations are provided. (J8)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

AFHRL-TR-85-53

U E. DEPARTMENT OF EDUCATION
Office of Educational RIsearch and Improvement

EDUCATIONAL RESOURCES tNFOCIMATION
CENTER (ERIC)

%This document has been reproduced as
received I rom the person or organization
originating a

E. Minor changes have been made to impove
reproduction Quality

Pointsof view or opinions stated in this clocu
went do not neceSsarity iepresent officiai
OERI position or policy

AIR FORCE

H
U
M

v--4

1%.

CV

R
E

S

INSTRUCTIONAL SUPPORT SOFTWARE SYSTEM

McDonnell Douglas Astronautics Company

P. 0. Box 516

St. Louis, Missouri 63166

TRAINING SYSTEMS DIVISION
Lowry Air Force Base, Colorado 80230-5000

March 1986

Final Report for Period July 1981 - September 1985

Approved for public release; distribution unlimited.

LABORATORY

AIR FORCE SYSTEMS COMMAND
BROOKS AIR FORCE BASE, TEXAS 78235-5601

2

NOTICE

When Government drawings, specifications, or other data are used for any

purpose other than in connection with a definitely Government-related

procurement, the United States Government incurs no responsibility or any

obligation whatsoever. The fact that the Government may have formulated or

in any way supplied the said drawings, specifications, or other data, is

not to be regarded by implication, or otherwise in any manner construed, as

licensing the holder, or any other person or corporation; or as conveying

any rights or permission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

The Public Affairs Office has reviewed this report, and it is releasable to

the National Technical Information Service, where it will be available to

the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

ALAN MARSHALL

Contract Monitor

JOSEPH Y. YASUTAKE, Technical Advisor

Training Systems Division

DENNIS W. JARVI, Colonel, USAF

Commander

ti

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION

Unclassified

lb, RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PERFO- ING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ArHRL-TR-85-53

6a. NAME OF PERFORMING ORGANIZATION

Mcdonnell Douglas
Astronauti,:s Company

6b OFFICE SYMBOL
(If applkable)

7a NAME OF MONITORING ORGANIZATION

Training Systems Division

Air Force Human Resources Laboratory

6c. ADDRESS (City, State, and ZIP Code)

P.O. Box 516

St. Louis, Missouri 63166

7b ADDRESS (City, State, 'nd ZIP Code)

Lowry Air Force Base, Colorado 80230-5000

Ba. NAME OF FUNDING/SPONSORING
ORGANIZATION

Air Force Human Resources Laboratory

Bb. OFFICE SYMBOL
(If applicable)

HQ AFHRL

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F3361 5-81-C-0021

8c. ADDRESS (City, State, and ZIP Code)

Brooks Air Force 8ase, Texas 78235-5601

10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

62205F

PROJECT
NO.

1121

TASK
ND

09

WORK UNIT
ACCESSION NO

07

11 TITLE (Include Secwity Class,' -anon)

Instructional Support Software System

12. PERSONAL AUTHOR(S)

134. TYPE CF REPORT

Final
13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day)

FROM Jul 81 TO ,Se° 85J March 1986

15 PAGE COUNT
26

16 SUPPLF.MENTARt NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Ada computer-managed instruction
advanced instructional system instructional support software
computer-assisted instruction transportable instruction system

FIELD GROUP SUB-GROUP

05 09

19 ABSTRACT (Continue on everse if necessary and identify by block number)

This report describes the development of the Instructional Support System (ISS), a large - scale,

computer-based training system that supports both computer-assisted instruction (CAI) and computer-managed

instruction (CMI). The ISS is a software package that is written in Ada, designed to be machine independent;
and grouped into functional modules so that each module can be executed individually or can be combined as
needed to support operational requirements. The ISS is not designed for any particular machine or operating
system and, hence, can run on computer systems ranging from small microcomputers on up. The ISS is a

Government product available on a no-cost basis to authorized agencies or organizations.

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT

OD UNCLASSIFIED/UNUMITED SAME AS RPT DT1C USERS

21 ABSTRACT SECURITY CLASSIFICATION

I22a. NAME OF RESPONSIBLE INDIVIDUAL

Nancy A. Perri9o, Chief, STINFO Office
22b TELEPHONE (Include Area Code)

(512) 536-3877
22c OFFICE SYMBOL

ARRL/TSR

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted
All other editions are obsolete

4

SECURITY CLASSIFICATION OF -HIS PAGE

Unclassified

SUMMARY

A team comprised of personnel from AFHRL, McDonnell Douglas Astronautics Company, Denver

Research Institute, and Softech determined requirements for and developed the Instructional

Support System (ISS). The basis for this development was the Advanced Instructional System

(AIS), a computer-based instructional system developed jointly by AFHRL and McDonnell Douglas

Astronautics Company.

Early in the project, McDonnell Douglas teamed with Denver Research Institute to determine

the functional requirements of the ISS. An examination of key DOD training systems occurred to

determine the feasibility of adding certain key features to the ISS at reasonable cost. Also,

several lay DOD training environments were examined to determine training requirements the ISS

would need to address. Existing AIS capabilities as well as inputs from these DOD analyses were

used to create a Functional Description of the ISS. Existing AIS software which best satisfied

the Functional Description were then converted.

Nine basic applications software modules, comprising approximately 300,000 lines of source

code, exist as a result of the conversion. They are CAI Authoring, al Presentation, Graphics,

Simulation Authoring, Simulation Presentation, CMI Development, CMI Operation, Data Analysis, and

Access/Security.

A translator was developed by McDonnell Douglas and Softech to assist in the conversion from

CAMIL (Computer-Assisted/Managed Instructional Language), the primary language of implementation

for the AIS, to Ada, the primary language of implementation for the ISS. The translator was

capable of translating approximately 80% of a CAMIL program to correct Ada. Approximately 20% of

a CAMIL program was either partially translated or untranslated. These areas were clearly marked

with manual translation hints in the resultant Ada.

The ISS Application Support Environment (ASE) was developed concurrently with conversion of

the applications software. The purpose of the ASE is twofold: First, it provides portability to

the ISS, given that machine and operating system dependencies are implemented at the lowest level

of the support envtronment; second, it provides a variety of basic runtime support services to

ISS applications software to assist in the areas of user interaction, data processing, and

storage and retrieval of data.

Finally, an important aspect in the success of the Standardized Software project was a

microcomputer analysis, conducted to analyze and recommend small machines capable of executing

ISS software modules. An MC68000 basic Pacific Microcomputer PM200 was procured by the Air Force

as a result of the study. Key software modules were successfully compiled and executed on the

system, demonstrating the concept of ISS transportability and feasibility of running the ISS on a

microcomputer.

PREFACE

A number of individuals have contributed significantly in the successful design and

implementation of the ISS. Alphabetically, these individuals are: Dick Bolz

(AFHRL/ID), Dave Grossart (MDAC), Alan Hallauer (MDAC), Alan Marshall (AFHRL/ID), Glenn

McBride (MAC), Anne Montgomery (MDAC), Dave Pflasterer (MDAC), Steve Schaefer (MDAC),

Rick Shelgren (MDAC), Mark Weinberg (MDAC), and Dana Wunderlich (MDAC).

ii 6

TABLE OF CONTENTS

Page

1.0 INTRODUCTION 1

2.0 PROJECT DESCRIPUON 1

3.0 MAJOR ACCOMPLISHMENTS 2

3.1 Converted Applications Software 2

3.2 CAMIL-to-Ada Translator 4

3.2.1 Translator Action Routines 5

3.2.2 Translation Routines 6

3.3 The Application Support Environment 7

3.3.1 Terminal Communication 7

3.3.2 Data Management 9

3.3.3 Inter-Process Communication 9

3.3.4 Text Handling

3.3.5 Program Control 10

3.3.6 Mathematical Services 11

3.4 Software Portability 11

3.4.1 Ada Programming Language Requirements 11

3.4.2 Host Operating System Requirements 12

3.4.3 Hardware Requirements 12

3.4.3.1 Process/Peripheral Requirements 14

3.4.3.2 Display Station Requirements 14

3.4.4 VAX-11/780 And PM200 Implementations 15

4.0 ISS POTENTIAL 15

4.1 Current Implementatio-s 16

4.2 Future Implementations 16

4.3 The Configurable ISS 16

4.4 ISS Tailoring 16

4.5 The ISS Micro As A Central Processor 17

5.0 CONCLUSIONS AND RECOMMENDATIONS 18

REFERENCES 18

LIST CF FIGURES

Figure
Page

1 ISS Software Structure
3

2 Automatic Translation from CAMIL to Ada 5

3 Translator Functional Decomposition
6

4 ISS Software Structure Illustrating the Divided Application Support Environment. . . 7

5 Inter-Process Communication 10

6 Example of Cost/Performance Alternatives 17

LIST OF TABLES

Table Page
1 VML Procedures Utilizing Host Operating System Software 13

2 VML Procedures Fulfilling Performance Requirements 14

iv

INSTRUCTIONAL SUPPORT SOFTWARE SYSTEM

1.0 INTRODUCTION

The prototype Advanced Instructional System (AIS) was designed as a research and development

test bed for technical training. As such, it demonstrated that individualized computer-assisted

instruction (CAI) and computer-managed instruction (CMI) are directly applicable to an

operational Air Force training environment.

Although demonstrated as feasible, the original system was not transpertable; therefore,

exploitation of the training technology was limited. In order to correct this problem, the

Technical Training Division of the Air Force Human Resources Laboratory (AFHRL) awarded a

contract to the McDonnell Douglas Astronautics Company to create a transportable system. This

Standardized Software project had as the major goal to create a transportable instructional

system that is implementable on low-cost minicomputers and microcomputers in order to expand into

thu appropriate DOD training environments. The transportable system, called the Instructional

Support Software (ISS) system, has been developed and alpha tested. An operational test of the

system is projected to begin during tne third quarter of 1985.

The Air Force set forth several key requirements to accomplish its major goal. It was

decided that Ada, the newly standardized DOD language, would be used to enhance system

portability. Ada is the ideal language in which to implement transportable software, given its

mission as a standard high-order language that will become available on many machines.

Another requirement was to develop a set of generalized interfaces to enhance portability.

By embedding macnine dependencies low into the ISS support software, the necessary interface to

the host operating system could be accomplished in a portable way.

The final key requirement was to create application software made up of modular components to

support the execution of individual portions of the ISS. Components such as Authoring, Graphics,

and CAI Presentation were to be created for execution on an individual basis. By allowing

potential DOD customers the capability to choose only a subset of the entire ISS, particular

needs can be met at lower cost.

In order to report the significance and results of the Standardized Software project, the

following sections of this report will provide a project description, a statement of the major

accomplishments of the project, information on ISS potential, and conclusions and recommendations.

2.0 PROJECT DESCRIPTION

Early in the project, McDonnell Douglas teamed with the Denver Research Institute to

determine the functional requirements of the ISS. Key DOD training systems were examined to

determine the feasibility of adding certain key features to the ISS at reasonable cost. Also,

several key DOD training environments were examined to determine what training requirements the

ISS would need to address. Existing AIS capabilities, as well as inputs from these DOD analyses,

were :mod to create a functional description of the ISS. Existing AIS software which best

satisfied the functional description was then converted.

Nine basic application software modules, comprising approximately 300,000 lines of source

code, exist as a result of the conversion. They are CAI Authoring, CAI Presentation, Graphics,

Simulation Authoring, Simulation Presentation, CMI Development, CMI Operation, Data Analysis, and

Access/Security.

1

9

A tramslator was eloped to assist in the conversion from CAMIL (Computer-Assisted/Managed

Instructional Language), the primary language of implementation for the AIS, to Ada, the primary
language of implementation for the ISS. The translator was capable of translating approximately
80% of a CAMIL program to correct Ada. Approximately 20% of a CAMIL program was either partially
translated or untranslated. These areas were clearly marked with manual translation hints in the
resultant Ada.

The ISS Application Support Environment (ASE) was developed concurrently with conversion of
the application software. The purpose of the ASE is twofold. First, it provides portability to
the ISS, given that machine and operating system dependencies are implemented at the lowest level
of the support environment. Second, it provides a variety of basic runtime support services to
ISS application software to assist in the areas of user interaction, data processing, and storage
and retrieval of data.

Finally, an important aspect in the success of the Standardized Software project was a
microcomputer analysis, conducted to analyze and recommend small machines capable of executing
ISS software modules. An MC68000-based Pacific Microcomputer PM200 was procured by the Air Force
as a result of the study. Key software modules were successfully compiled and executed on the
system, demonstrating the concept of ISS transportability and the feasibility of running the ISS
on a microcomputer.

3.0 MAJOR ACCOMPLISHMENTS

The goals set forth at the beginning of the Standardized Software project have been
accomplished. Applications software which best satisfies the functional description has been
converted or developed. The developed system is portable. After the software had first been
produced on the development machine (VAX-11/780) and then transported to the PM200 microcomputer,
the concept of portability had been demonstrated. And finally, the system has been implemented
on a low -cost minicomputer and microcomputer.

The ISS is organized using a layered shell approach to allow for maximum ease of maintenance
and transportability. The design philosophy of the software is depicted in Figure 1. ISS users
interface with a set of programs called the Applications Software (described in Section 3.1).
The next layer of software, called the Application Support Environment, performs the interfacing
tasks necessary to support the Applications Software. The innermost layer is the Operating
System Software. This software provides interface to the computer hardware. The advantage of
this layered approach is that changes in basic hardware configuration or operating system
software are unlikely to adversely affect the ISS Applications Software. The Applications
Software is buffered by a layer of support environment software that performs the interf.cino
between Applications Software and the operating system and hardware.

The following sections discuss in more detail the major accomplishments during the project.

3.1 Converted Applications Software

With the ISS software modules, a user is able to develop, implement, and evaluate training.
Table-driven database programs, called editors, are dominant in the system, thereby allowing a
user to easily insert, display, and/or change information in the database. The most important
characteristic of the editors is that they allow quick access to the database via menus and
prompts. No computer programming skills are necessary for ISS system users.

2 10

CMI
COURSE

STRUCTURE
EDITOR

CMI
ADAPTIVE

MODEL

CMI

REPORT
PROGRAM

CIA
REGISTRATION

PROGRAM

0
0
0

CAI
AUTHORING

EDITOR CAI
PRESENTATION
PROGRAM

HOST MACHINE

OPERATING

SYSTEM

APPLICATOR
SUPPORT ENVIRONMENT

IBS

CAI
SIMULATION

DIALOGUE
EDIT OR

CAI
R APHICS
EDITOR

CAI
PlitHT

PROGRAM

1PP
APPLICATION SOFTWARE

Figure 1. ISS Software Structure.

HHPLICATION
SUPPORT
INTERFACE

USER
INTERFACE

The applications soPlare is divided into two major functions: the CAI system and the CMI

system. The former provides the development and delivery capability for on-line CAI, while the

CMI system controls the administrative and management functions for a given installation. Both

systems are integrated into the ISS package and share a common base of data and utility programs.

The CAI system allows nonprogrammers to develop and evaluate individualized, interactive CAI

modules containing a variety of text and graphics. Using the CAI editors, development of

courseware takes the form of an ongoing dialog between the author and the system. There are

three major authoring programs in the CAI software: CASS, SID, and GraphEdit. CASS is the

screen-frame-oriented, courseware-authoring editor that guides the author via the use of menus.

SID is an action-to-screen-oriented simulation courseware authoring editor that also guides the

author via menus. GraphEdit is a graphics creation editor for CASS and SID that guides the

graphics artist through input from many possible sources such as the keyboard, a digitizer

tablet, a touch panel, a joy-disk, or a light pen. Like the other editors, GraphEdit is

menu-driven.

CAI lessons are delivered to students through CAI software modules: CAI Presentation

(CAIPres) and Simulation Presentation (SIDPres). These modules provide the student with all CAI

and simulation lessons and allow for interaction, screen dynamics, branching, remediation,

feedback, and prompts. Like the authoring modules, CAIPres and SIDPres are menu-driven and

user-friendly.

The 41 system provides comprehensive management information and administration

implementation. It controls the scheduling of assignments, testing, remediation, and enrichment

activities for each student.

3

11

4

Four major editors assist the curriculum developer in describing the curriculum. By usingthese four editors, the Curriculum Definition Editor (CDE), the Course Structure Editor (CSE),
the Lesson Definition Editor (LDE), and the Test Editor (TESTED),

curriculum developers and
managers can define increasingly detailed characteristics of a curriculum. After the development
task is complete, the CMI operation programs administer the curriculum.

Student registration, course structure management, resource management, and student
self-pacing are maintained by three CMI programs comprising the CMI operations module. Theprograms are Student Logon, Student Registration, and the Adaptive Model.

Evaluation of individual student and overall course progress is monitored and recorded by
three CMI evaluation programs comprising the Data Analysis -odule. The programs are CourseEvaluation Summary (CES), Test Item Evaluation (TIE), and t [data Extraction Program (DEP).
These programs report data such as the standard deviation/mean times and test scores for alesson, course, or entire curriculum (CES), determine standard deviation/mean time and scores for
specific tests and test items (TIE), and select any available data, ad hoc, to run analysis for
curriculum evaluation and student/group performance (DEP).

The Access/Security module is used to define the access a user will have to the ISS. The
Access/Security software is necessary to allow operation of all of the other ISS software. Thesoftware contains two programs: BRED and LOGON.

Users of a computer-based training system are typically concerned with the security measures
that control access to the system. USRED allows system managers to control access to ail ISScomponents and software. It identifies users, database programs, and courses to the ISS system,and authorizes and/or restricts the access of individual users to ISS editors, database programs,and courses. USRED can also regulate a user's level of access within a specific editor, databaseprogram, or course. One may, for example, give a user permission to add and/or change
information in a specific course, but not to delete information. One may give another userpermission to display information but not to manipulate it in any way.

The LOGON program provides all users with access to the ISS. It also functions as a security
checkpoint by requiring the user to enter a specific ID followed by a specific password. LOGON
compares the information entered by the user with information that has been stored by USRED inthe user record. If no match is found, LOGON instructs the user to reenter the data.

Students entering LOGON are automatically transferred to the Student Logon program. Once inStudent Logon, a student user can interact with the ISS for training activities.

Non-student users are admitted to the system via LOGON. Here, the user is presented with a
list of editors and database programs that have been authorized the user via USRED.

3.2 CAMIL-to-Ada Translator

A translator has been developed to assist in the conversion from CAMIL (AIS-3.8-1674, 1979)to Ada. The translator is capable of translating approximately 80% of a CAMIL program to correctAda (ANSI/MIL-STD-1815A, 1933). Approximately 20% of a CAMIL program is either partiallytranslated or untranslated. These partially or untranslated areas are clearly ma'ked with manual
translation hints in the resultant Ada. Figure 2 illustrates the mechanism used to translate a
CAMIL program to Ada and to compile and link that Ada program into executable form.

4 12

4

Figure 2. Automatic Translation from MIL to Ada.

The functional units that comprise the translator are generally the same as those that

comprise the CAMIL compiler. The major differences in the translator functional units are as

follows: (See Figure 3 and DD1017F019, 1974.)

1. Modification of production action routines.

2. Replacement of code generation routines with Ada source generation routines.

3. Additions to data structures for symbol and type table entries.

Other minor differences exist. For example, the translator version of the lexical analyzer

and parser saves information abc.4 comments appearing in the source so that they may be preserves.

in the Ada translation. Figure 3 illustrates the combined top-level functional decomposition of

the CAMIL compiler and the translator. Note that the portion labeled Code Generator is pal of

the CAMIL compiler and is replac:d by the Translation Routines and Ada Source Generator in the

translator. All the other top-level functional units are shared by botn tne compiler and the

translator (with the differences already mentioned). Seklions 3.2.1 and 3.2.2 contain a general

description of how a translation is accomplished.

3.2.1 Translator Action Routines

Each time the translator's parser recognizes a particular construct or pertlon of a construct

(called production) in the CAMIL language, it invokes an associated action routine. These action

routines are responsible for checking semantic restrictions and building data structures (called

semantic frames) to represent the construct recognized. Syntax checking is done by the parser.

The semantic frames generated by action routines are placed on a stack which is pushed and

popped by the parser as constructs are recognized. In this way, an action routine for a

'13

r-

semmoca
HANDLER

LIIIIIAL
MIMS

SIMANTIC
TAOL1S

*144.4.11RANS-
LATIO
STATI-
MINTS

CAM"
104101

COOS

LINICAL
PROMISING

SYMBOL
CLASSIRIMN PARSON

ACTION
ROUT All

COOS
OINIRATOR

OOJICT
CODS

CLASS,-
11110

OTIOSOLS
TRANSLATION

ROUTINIS

SYMBOL
TASLIS

PAM.
TAILIS

SYMBOL
TAMS

ADA
SOURCS

OININATOR

Figure 3. Translator Functional Decomposition.

ADA
SOURIS

COOS

low-level productio, (for example, one that processes an operator expression) can pass
information about .t production to another action routine associated with a higher level
production (for example, an assignment statement production in which the operator expression
forms the right-hand side).

The action routines representing the declaration productions (e.g., variable declarations)
build symbol and type table entries using information that has been aved In semantic frames by
action routines.

Similarly, action routines invoked for statement level productions (e.g., assignment) call
translation routines to generate code passing them information saved in semantic frames (e.g.,
variable and expression frames) built by lower frames (on the parser stack), which represent the
parts of the right-hand side of the semantic production. The action routine usually generatrl a
new semantic frame that is input to nigher level productions; however, some action routines
generate a symbol or type table entry and/or call a translation routin, to generate Ada source
code.

3.2.2 Translat4on Routines

The translation routines are organized in a manner that roughly parallels the productions.
These routines are initially invoked by statement level action routines and internally invoke
each other to complete translation of a statement. The transition routines call the routines in
the Ada source generator that actually generate the source string. The translation routines
operate by "wOking" through the semantic tree and calling Ada source generation routines.

6 14

3.3 The Application Support Environment

The purpose of the Application Support Environment is twofold. First, it provides

portability to the ISS, given that machine and operating system dependencies are implemented at

the lowest level of the support environment. (Sre Section 3.4.) Second, it provides a variety

of basic runtime support services to ISS applications software to assist In the areas of user

interaction, data processing, and storage and retrieval of data.

The Application Support Environment is divided into two layers: the Application Support Layer

(ASL) and the Virtual Machine Layer (VML). Figure 4 illustrates the division of the Application

Support Environment in order to support t , applications software and to interface to the host

operating system. This section of the report describes the support services provided -by the ASL

to the applications software. The VML Is discussed In Section 3.4. The ASL provides software In

the areas of terminal communications, data management, inter-process communication, text

handling, program control, and mathematical services.

CAI
PNISINTATION
PROGRAM

CAI
SIMULATION

DIALOOUI
gpitOi

VIRTUAL
MACHINE
INTIRPAC1

APPLICATION
SUPPORT
INTERPACI

USSR
INTERPACE

Figure 4. ISS Software Structure Illustrating the Divided

Application Support Environment.

3.3.1 Terminal Communication

The Terminal Communication component provides the functional interface between the ISS

applications software and the terminal devices used to communicate with applications software

users. Terminal devices can be easily added since individual terminal characteristics are stored

in data tables. All that is necessary for the ISS to support a new terminal type Is to enter the

data describing the new terminal into the terminal definition table. The full set of combined

7

15

text/graphics display characteristics and capabilities provided by the Teminal Communication

component are as follows:

1. Characters per line range from 60 to 128.

2. Lines per screen rarge from 24 to 64.

3. Lines are numbered from 1 to L with line 1 at the top of the screen and line L at the

bottom of the screen.

4. Columns are numbered from 1 to C with collAmn 1 at the leftmost character cell position

and column C at the rightmost position.

5. Random cursor positioning is possible to any character position within the character

matrix defining the screen.

6. Random cursor positioning to any dot position within the dot matrix is possible.

7. Double height and width characters, as well as normal height and width characters, are

displayable.

8. Lines of dots from the current dot position to a different dot position are displayable.

9. Either a complete or partial circle of dots with a given radius is displayable, starting

at the current cursor position.

10. Text and graphics are displayable in eight different colors.

11. It is possible to select whether background or foreground elements can blink.

The terminal keyboard is tile means by which users of an application program input data to

that program. Ktypresses are interpreted by the Terminal Communication component and acted upon

where appropriate. Provisions are made for four distinct types of keys. These keys, as well as

the set of keyboard characteristics and capabilitit are as follows:

1. Textual Data Keys - This set of keys represents the printable character symbols as

defined in the ASCII character set.

2. Function Keys - This set of keys has special meaning to the Terminal Communication

component. Entry of an enabled function key triggers a preemptive transfer of control from the

current point of ex*cution within an application program to a handler area previously declared

within the program.

3. Action Keys - This set of keys has special meaning to the Terminal Communication

component. Entry of an action key causes the Terminal Communication component to act on the data

being assembled by a keyboard read operation (e.g., deletion of a character by pressing the

delete key).

4. Terminal Control Keys - This set of keys has special meaning to the Terminal

Communication component. Each terminal control key represents a special terminal control

function which can be performed by pressing that key. The terminal control functions generally

affect the current display screen attributes (e.g., color and blink).

8

ot

16

3.3.2 Data Management

The Data Management component consists of the ISS database and the necessary operations

required by the applications software for accessing and maintaining the database. The database

is the data storage system for all of the data objects used by the ISS applications software. It

supports Indexed Sequential, Direct Access, and Sequential files. The names of the files are
stored in a directory within the database along with sufficient additional information necessary
to access the file. A file cannot span disks but is otherwise not limited in size. The

characteristics of the different file types are as follows:

1. Indexed Sequential (ISAM) Files - An ISAM file is capable of containing zero or more
records, each of which may contain a variable amount of data. For each ISAM file in the data
base, a "key" is defined which designates that a specific portion of each record be used to
define a sequential ordering of the records contained in that file. Each record is at least long
enough to contain the entire key. An inaex sufficient to map key values to record locations, in

order to support random record accessing, is maintained for each ISAM file. An ISAM key can be a
maximum of 127 bytes.

2. Direct Access (DA) Files - A DA file is capable of containing zero or more records, each
of which may contain a variable amount of data. Each record within a DA file is associated with

a relative record number which defines the sequential ordering of the records contained in that

file. An index sufficient to map relative record numbers to record locations, in order to
support random record accessing, Is maintained for each Direct Access file. The maximum relative

record number in use for each file is maintained in order to facilitate the allocation of unused

relative record numbers to new records entered into that file.

3. Sequential Files - A sequential file is capable of containing zero or more records, each
of which contains a variable amount of data. The records within a sequential file have a

sequential ordering based on the order that the records were written into the file.

3.3.3 Inter-Process Communication

The Inter-Process Communication component provides a set of functional capabilities to

applications software to enable concurrently active ISS processes to communicate among
themselves. Figure 5 depicts that communication. The process is the logical unit of activity
within the ISS execution environment and the primary entity relating to Inter-Process
Communication. It is an active computing environment that can support the sequential execution
of one or more programs. Each active ISS user is associated with a dedicated process and
interacts with ISS application programs that execute within this dedicated process. The
operating system used by ISS systems and applications software supports the execution of multiple

concurrent processes; therefore, multiple, concurrent ISS users are supported.

Each active ISS process is associated with a system-wide ISS Process Index Number which
uniquely identifies that process within the system. The Process Index Number is kept across the
execution of multiple ISS application programs. At the completion of an ISS process, the Process

Index Number is deallocated, allowing other processes to reuse the number.

3.3.4 Text Handling

The Text Handling component provides a set of functional capabilities to ISS applications

software to manipulate text for display, comparison, assignment, examination, and conversion
to/from non-textual data types. Two data types comprise textual data in the ISS: String and

9

a

IBS

USER

PROCESS

41 HARD COPY

BACKGROUND
PROCESS

USER

PROCESS

USER

PROCESS

Figure 5. InterProcess Communication.

Character. String and Character data contain one or more characters of ASCII encoded data

representing displayable characters or control characters. String data may also contain generic

codes that specify functions to be accomplished by the Terminal Communication component.

A string has an actual length and a maximum length associated with it. A variable string has

a termination character to indicate the actual length, with the maximum length indicated at the

time of declaration. For the string declaration

S : STRING (l..5);

the maximum length is 5. By initializing "S" with the assign string procedure

ASST(S, "ABC");

the actual length is set at 3. "S" would appear as "ABCtc" in computer memory, where tc is the

termination character. If the actual length of a variable string is equal to the maximum length,

then no termination character is stored in the string. The actual length is determined to be the

maximum length when the appropriate string-handling procedures detect no termination character.

3.3.5 Program Control

The Program Control componer' provides service:; to assist in the control of the execution

flow of ISS programs. The design of existing software for the ISS assumes some additional

execution control flow capabilities beyond those available in the ISS implementation language,

Ada. The services provided by Program Control are as follows:

10

18

1. Prz.gram Transfer - An ISS program is able to designate which program should execute

within the current process after the current program terminates its execution.

2. Inter-Program Data Passage - An ISS program is capable of passing data for retrieval by

the next program specified for execution.

3. Timed Wait - The capability exists for a program to suspend its execution for a

designated time interval; the granularity of time is .01 second.

4. Obtaining Date and Time of Day Information - The capability exists for obtaining the

current date (year, month, day, and Julian date) and current time (hour, minute, and second).

5. Obtaining elapsed and central processing unit (CPU) Time - The capability exists for

obtaining the elapsed and CPU time for a session. The variables returned are in 10-millisecond

units.

3.3.6 Mathematical Services

The Mathematical Services component provides a set of capabilites to ISS applications

software to perform trigonometric, boolean, exponentiation, logarithmic, and other miscellaneous

mathematical functions.

Three types comprise the data that can be manipulated by the mathematical functions:

INTEGER, FLOAT, and BOOLEAN. The INTEGER and FLOAT data types are implementation defined with

respect to magnitude. If a particular host supports 32-bit integers, for example, an ISS INTEGER

will be 32 bits. If a host supports 16-bit integers, an ISS INTEGER will be 16 bits. The

BOOLEAN data type is represented as an enumeration type in the following way:

type boolean is (false, true);

3.4 Software Portability

In completing the design and implementation of a transportable system, it has been determined

what capabilities are necessary in candidate systems in order to port the ISS to those systems

(Marshall, 1983). Requirements of a candidate system can be divided into (a) Ada programming

language requirements, (b) host operating system requirements, and (c) hardware requirements

(processor/peripherals and terminal). A discussion of those requirements follows in the next

three sections of this report, followed by a section describing experience transporting the ISS

from the development machine (VAX-11/780) to the PM200 microcomputer.

3.4.1 Ada Programming Language Requirements

Since the ISS is implemented in the Ada language, it will be necessary for any candidate

system to provide an Ada compiler. Using such a system does not guarantee successful

implementation of the ISS, however. For example, some existing validated compilers impose

limitations with respect to code/data sizes and pragma implementation (a pragma conveys

information to the compiler but does not affect the correctness of a program). Also, some

existing compilers are incomplete implementations and do not provide features neeaed by the ISS.

If code and/or data are limited to 32k or 64k in a particular implementation of Ada, some ISS

programs will not execute without modification on that system.

11 19

Certain pragmas are necessary for a production implementation of the ISS (or a means must be

devised to equivalently implement the effect of missing pragmas). If the pragma PACK does not

sufficiently pack data, data management performance will degrade because records will be much

larger than if packing were available. If the pragma INTERFACE is not prodded by an Ada

compiler, It is awkward to interface to the ISS vML procedures (Figure 4) that are necessary to

implement the ISS. If the pragma SUPPRESS Is not available, costly execution time checks on

subranged integer assignments and array bounds will constantly occur, causing a degradation in

performance due to high CPU utilization. Also, while the pragma INLINE Is not required, its

prescice Is beneficial since sound design principles can then be used. By appropriately using

procedures and functions and declaring them to be compiled Inline, performance is not degraded

due to costly procedure call and function call linkage.

Note that in certain cases it may be possible to implement a system without the pragma PACK,

pragma INTERFACE, and pragma SUPPRESS. Alternate methods causing the same effect should always

be considered.

3.4.2 Host Operating System Requirements

In order to fulfill ISS functionality and performance needs, ASL software must utilize VML

machine-dependent procedures (Figure 4). These VML procedures, written in a non-Ada language

provided by the host system, must be relmplemented on a system to rehost the ISS to that system.

The VML procedures are of two different forms: (a) procedures that call host operating system

software to gain needed functionality, and (b) procedures that have been written to attain

necessary performance. (These procedures are invoked with high frequency but do not use

operating system functions; since they are in a machine-dependent, non-Ada language, It can be

said that they comprise a portion of host operating system requirements.) In an attempt to

minimize th size of the VML, the number of procedures has been kept as small as possible.

Tables 1 and 2 describe procedures that are of each form. To clearly depict what host operating

system software the ISS requires, the tables specify the VML entry point names and the

functionality requirements fulfilled (Table 1) or the performance requirements fulfilled (Table

2). Note that It may be possible to implement some of the VML procedures in Ada on some systems

and still meet the functionality and performance requirements. Therefore, in evaluating any

future candidate system, a rigid examination should not occur for operating system capabilities

that match exactly the requirements given In Tables 1 and 2. Where appropriate, equivalent and

acceptable implementations for fulfilling requirements should be considered.

3.4.3 Hardware Requirements

Computer hardware Is available in a wide range of varying capacity, functionality, and

performance. This section of the report describes the basic requirements of a hardware system

capable of developing and executing the ISS.

It Is not necessary to require processor, storage, and display station equipment to be

packaged either together in a desktop unit or separately in order to successfully develop and

execute the ISS on that equipment. For clarity, however, processor/peripheral requirements are

described separately from display station requirements.

20
12

Table 1. VML Procedures Utilizing Host Operating System Software

VNL Entry Point Name Functionality Requirement Fulfilled

1. BACKSPC Back space 1 record on a tape file
2. CALL Call procedure with absolute address
3. CHILDACTIVE Check for an active sub-process
4. CLOSET Close a tape file
5. DISMOUNT Dismount a tape
6. EXP Raise e to power of input value
7. FCLOSE Close a file

8. FCREATE Create a database file
9. FGETS Read a system file record
10. FOPEN Open a database file
11. FPUTS Write a system file record
12. FREAD Read a database record
13. FREEMEM Deallocates dynamic storage
14. FREMOVE Remove a file
15. FSEEK Position to a database record
16. FWRITE Write a database record
17. GETT Read a tape record
18. GET DATETIME Return the current date and time
19. GET-TERM INFO Return input terminal type
20. GET TIO Return the tc-minal identification
21. GET TIMERS Return elapsed and CPU time
22. GET PIO Return the process id
23. IBOOL Perform specified boolean oper.
24. INTOCHAR Convert an intc;.:T to a character
25. LOW LOCK Lock a resource
26. LOW_ UNLOCK Unlock a resource
27. MOUTT Mount a tape
28. NEWMEM Allocate dynamic storage
29. OPENT Open a tape file
30. PGM EXISTS Determine if a program exists
31. PUTT Put a tape record
32. PRINTFILE Print a file
33. RAND Generate a random number
34. RESUMEPROCESS Resume a process
35. REWINDT Rewind a tape file
36. RUNPGM Run a non-background program
37. RUNPROGRAM Run a background program
38. SHIFT Perform specified shifting oper.
39. STOPPROCESS Stop a process
40. SUMITFILE Submit a command file
41. SUSPENDPROCESS Suspend a process
42. TEMPFILE Create a name for a system file
43. TRANLOG Translate logical to actual name
44. TRAPMACHINEEXCEPTIONS Set up to trap machine exceptions
45. TRIG Perform the specified trig funct.
46. UNIT READ Read input from a terminal
47. UNIT WRITE Write output to a terminal
48. WAIT Halt program for input time

13 21

Table 2. VML Procedures Fulfilling Performance Requirements

-=r12101MIZIC- --73i1M1!=1C.ICIIICWMMG,

VNI. Entry Point Name Performance Requirement Fulfilled

1. COMPAREMEM

2. FILLMEM

3. MOVEMEM

4. SEARCHMEN

Efficiently compares two ranges of

memory locations

Efficiently initializes a range of

memory locations

Efficiently moves one range of

memory locations to another range of

memory locations

Efficiently searches a range of

memory locations for a specified

string of data

3.4.3.1 Process/Peripheral Requirements

Following is a list describing the minimum processor and peripheral requirements for

successfully executing the ISS:

1. Processor clock of at minimum 8 MHz.

2. Capability of addressing a minimum of 1 MB of random access memory (RAM) for software

development and ISS execution.

3. A minimum of 40-MB hard disk storage for operating system, program development, and ISS

applications data storage.

4. A 1-MB floppy disk drive.

Note that it would be possible to implement a more restricted version of the ISS on a system

providing less process/peripheral capacities than those listed.

3.4.3,2 Display Station Requirements

Following is a list describing the minimum display-station requirements for successfully

presenting ISS displays:

1. Color graphics monitor: An interactive monitor providing both alphanumeric and graphics

display capabilities is necessary. Any mixture of text, graphics, and background colors is

allowed. Drawing primitives of at least points, vectors, arcs, circles, and rectangles is

required. It is necessary for the station to clip picture elements so that screen boundaries are

not exceeded. Color and blink attributes must be assignable to any picture primitive.

Following are specific monitor requirements:

a. Screen size of at least 13-inch diagonal.

b. Dot triad spacing of 0.31 mm or better.

c. At least 42-Hz, non-interlaced refresh rate to prevent flicker.

d. Resolution of at least 480 horizontal by 360 vertical.

14 22

e. Blink capability.

f. 24 to 32 lines with minimum of 80 character lines.

g. 480+ characters-per-second writing rate.

h. At least 10 microseconds- per -pixel vector-writing rate.

2. Keyboard with function keys and numeric pad.

3. 96 standard ASCII characters plus varying character sizes.

4. If not provided, expandable to support light pen, touch panel, mouse, or other pointing
device.

3.4.4 VAX-11/700 And PM200 Implementations

In order to determine the portability of the ISS, software initially implemented on the
VAX-11/780 has been implemented on the 68000-based FM200 microcomputer. In general, key ISS
modules ported nicely to the PM200 due to (a) the fulfillment, by the PM200, of the Ada
programming language requirements, host operating system requirements (UNIX), and hardware
requirements discussed in Sections 3.4.1, 3.4.2, and 3.4.3 and (b) the ease with which the VML
was reimplemented on the PM200.

The VML consists of approximately 2500 lines of FORTkAN code and 600 lines of Assembly
language code on the VAX-11/780. On the PM200, the VML is approximately 1300 lines of code
implemented in the C language. By reimplementing this relatively small amount of software to
interface to the UNIX operating system and oy recompiling tne Ada source on the PM200, programs
were ported with relative ease.

It should be emphasized that the PM200 implementation was to demonstrate the feasibility of
ISS transportability and the execution of the ISS on a microcomputer. Performance and Winchester
disk size issues need to be addressed before the PM200 can be considered a production
implementation (Section 5.0, Conclusions and Recommendations).

The problems encountered in porting the software were relatively minor. Differences in the
command languages for VAX VMS and UNIX had to be reconciled in order to submit programs and print
jobs. An open file limit (17) exists in UNIX that does not exist in VMS, and this caused minor
modifications to some application programs. And, several compiler bugs were encountered in the
Ada compiler on the PM200 (to be expected for early implementations of Ada), causing minor
modifications in some of the application programs.

4.0 ISS POTENTIAL

As a result of the Standardized Software project, significant potential uses exist for the
ISS: (a) organizations currently using or planning to purchase hardware upon which the ISS now
operates can use the system immediately; (b) organizations currently using or planning to

purchase a system upon which the ISS can operate will be able to use the ISS after implementation

of the Virtual Machine Layer for that system; (c) depending or the training requirements for an
organization, the ISS can be delivered, in any combination, as an authoring system, a CAI
delivery system, and a CMI system; (d) depending on the training requirements for an
organization, the ISS can be tailored to fulfill those requirements; and (e) ISS users can
reasonably utilize lower-cost microcomputers, such as the system used in the Standardized
Software project, to perform as a central processor. The following sections elaborate on these
potential uses.

15 23

4.1 Current Implementations

During the project, the ISS was implemented on two systems: the VAX-11/780, using the VMS

operating system, and the PM200, using the UNIX operating system. There is significant potential

associated with each implementation.

The VMS implementation is significant in that it is available on an ever-broadening and

popular series of machines, including the VAX-11/725, VAX-11/730, VAX-11/750, VAX-11/780, and the

Micro VAX. DOD organizations currently using or planning to purchase machines from the VAX/VMS

line can use the ISS as their training system.

The UNIX operating system also continues to gain in popularity. Unlike VMS in the VAX li-,e,

it is implemented on many machines, thereby providing an excellent opportunity for transportation

of the ISS technology.

For either implementation, configuration parameters such as central memory size, disk storage

space, tape storage space, and terminal type should be carefully considered to best operate the

ISS in a particular training environment.

4.2 Future Implementations

In addition to systems utilizing VMS and UNIX, the ISS is implementable on other systems that

fulfill the language, operating system, and hardware requirements specified in Sections 3.4.1,

3.4.2, and 3.4.3. The capabilities of a potential system should be examined carefully to

determine the feasibility of ISS implementation. For a system fulfilling the requirements, the

Virtual Machine Layer must be implemented in order for the ISS to operate successfully on that

system.

4.3 The Configurable ISS

Depending on the training requirements for an organization, the ISS can be delivered, in any

combination, as a CAI authoring system, a CAI delivery system, and a CMI system. If a training

environment requires CAI that has not been developed, a method to systematically and efficiently

create courseware is necessary. The software modules comprising the CAI authoring system (CAI

Authoring, Graphics, and Simulation Authoring) provide this method. If CAI presentation is

required, software modules comprising the CAI delivery system should be used (CAI Presentation

and Simulation Presentation). And if management and scheduling of assignments, testing,

remediation, and enrichment activities are necessary, support is provided via the CMI system (CMI

Development, CMI Operation, and Data Analysis).

4.4 ISS Tailoring

Particular training environments may require hardware devices, terminal types, and/or

functional capabilities that are not currently provided in the ISS. With the layered and modular

design of the system (Figure 4), new software and device types can be integrated irto the ISS

with minimal effort. The ISS software is adaptable in nature, with clean interfaces provided by

the Ada package specifications. A terminal definition file can be updated to reflect the

characteristics of hardware devices to be added to the system.

24
16

4.5 The ISS Micro As a Central Processor

By implementing the software on the PM200 microcomputer, it has been shown that the ISS can
operate on a more economically feasible machine than minicomputers and mainframes. If, as a

hypothetical case, a training organization wanted to support 10 students utilizing 10 curricula,
10 courses, and 10 two-hour CAI lessons, approximately 4 MB of disk storage for instructional
data would be required.

The breakdown of the storage requirements is as follows:

1.0 MBytes

0.3 MBytes

0.2 MBytes

2.5 MBytes

4.0 MBytes

Storage for 10 curricula

Storage for 10 courses

Storage for 10 active students

Storage for 10 two-hour lessons

Total storage for instructional data

Also to be considered are ISS program executables which require approximately 15 MB and
operating system storage which is approximately 10 MB. The total ISS Winchester storage
requirement for this hypothetical case is, therefore, 29 MB. Winchester disk technology is
available to easily accommodate this capacity. Additional Winchester space would allow an
increase to even more curricula, courses, and student capacity. Current microcomputer technology
also allows large amounts of main memory.

With these capabilities currently available in the PM200 and in microcomputer technology in
general, a low-cost alternative exists (as compared to minicomputers and mainframes) for certain
training applications. Figure 6 depicts an example of the levels of capability from which a
training organization could choose, depending on available funds, storage requirements, and
computing power necessary. CMI could be performed at the central computer in all cases, and

(COULD SE FLOPPY DISK
ON A MICRO)

EX AMPLE -

CENTRAL PROCESSOR

ALTERNATIVES:

PM200 (LOW ENO)
111/0000
VAX-11/7110

GOON ENO)

LOW OR HIGH SPEED PRINTER

INTELLIGENT. SEMI-INTELLIGENT. OLAND TERMINALS

Figure 6. Example of Cost/Performance Alternatives.

17

25

depending on the intelligence of the display station, CAI could be performed either under control

of the central computer or the display statiod processor,

5.0 CONCLUSIONS AND RECOMMENDATIONS

The major goals set forth at the beginning of the Standardized Software project have been

eccr-,plished. Applications software that best satisfies the Functional Description has been

converted or developed. he developed system is portable. Finally, the system has been

implemented on a low-cost minicomputer and microcomputer.

A follow-on operational test is recommended for both the VAX and PM200 implementations.

During this operational test, significant performance upgrades should be made to the software in

order to support the required ISS user load. The test would also allow a user community to

evaluate the functionality of the .
Appropriate change requests could be issued to AFHRL for

evaluation. Enhancements deemed beneficial could then be made in a timely, orderly, and

non-disruptive manner.

The PM200 implementation was to demonstrate the feasibility of ISS transportability and

execution of the ISS on a microcomputer. While both capabilities have been demonstrated,

performance and Winchester disk size issues need to be addressed before the PM200 can be

considered a production implementation. Higher-speed, larger-capacity Winchester drives are now

available and can be placed in existing slots in the PM200. These are recommended as

replacements for the smaller, slower drives used curing the Standardized Software project.

Upgrade of the PM200 UNIX system is also recommended to provide more portability.

Finally, consideration should be given to development of a generic data converter in order to

transport ISS courseware. With the differences in data packing formats of the meny Ada compilers

that are and will come into existence, it will be necessary to easily convert those different

formats. By developing a generic data converter, courseware portability (as well as software

portability) becomes more feasible.

REFERENCES

AIS-3.8-1674. (1979, August). CAMIL reference manual.

ANSI/MIL-STD-1815A. (1983, January). Reference manual for the Ada programming language.

DD1017F019. (1974, January). Critical item development specification for the computer assisted/

managed instructional language (CAMIL) component of the advanced instructional system.

Marshall, A.P. (1983, Autumr). Development of a transportable CBI system. Journal of

Computer-Pased Instruction, 10(3,4), 66-69.

*U.S. GOVERNMENT PRINTING OPPICI: 1 9 8 6 6 5 9,, 0 5 5 x 0 0 0 3

