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THE ROBUSTNESS OF LISREL ESTIMATES IN STRUCTURAL

EQUATION MODELS WITH CATEGORICAL VARIABLES

ABSTRACT

This study was an examination of the effect of type of correlation matrix

on the robustness of LISREL maximum likelihood and unweighted least squares

structural parameter estimates for models with categorical manifest variables.

Two types of correlation matrices were analyzed; one containing Pearson product-

moment correlations and one containing tetrachoric, polyserial, and product-

moment correlations as appropriate. Using continuous variables generated

according to the equations defining the population model, three cases were

considered by dichotomizing some of the variables with varying degrees of

skewness. When Pearson product-moment correlations were used to estimate

associations involving dichotomous variables, the structural parameter estimates

were biased when skewness was present in the dichotomous variables. Moreover,

the degree of bias was consistent for both the maximum likelihood and unweighted

least squares estimates. The analysis of mixed matrices produced average

estimates that more closely approximated the model parameters except in the case

where the dichotomous variables were skewed in opposite directions.
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THE ROBUSTNESS OF LISREL ESTIMATES IN STRUCTURAL

EQUATION MODELS WITH CATEGORICAL VARIABLES

The use of models to represent and explain phenomena is pervasive in *very

field of study and, in the social sciences, a class of models that has become

widely applied is the structural equation model. The seminal works of Joreskog

(1970) and Goldberger (1971) led to the first general structural equation model,

the ACOVS model (Joreskog, 1970, 1973b; Joreskog, Gruvaeus, and van Thillo,

1970), followed by a -more general model that has become known as the Lisrel

model (Joreskog, 1973a). Several models incorporating different sets of

assumptions defining a specific covariance or moment structure have subsequently

appeared in the literature (e.g., Bentler, 1982, 1983; Bentler and Weeks, 1980;

Browne, 1974, 1982: Lohmoller, 1981; McDonald, 1978; Muthen, 1979, 1983b, 1984;

Wold, 1980, 1982). Nevertheless, the public availability of the computer

program, LISREL (Joreskog and van Thillo, 1972), now in its sixth edition

(Joreskog and Sorbom, 1983), has resulted in the Lisrel model becoming the most

widely applied. Substantive examples of the Lisrel model can be found in the

psychology, sociology, economics, and education literature, and reviews of the

applied literature by Bentler (1980) and Bielby and Hauser (1977) contain

hundreds of references.

The Lisrel model consists of two parts, the measurement model defined by:

x AxE +

y Ayn + e

and the structural model defined by:

n On + +
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The measurement model specifies how the observed variables, x and y, are

determined through Ax and Ay by the latent variables, E and 'i, respectively;

the d and 'e terms represent residuals in x and y unexplained by ;. and 'i. The

structural model specifies the causal relationships among the latent endogenous

variables in 0, between the exogenous and endogenous variables in r, and

describes unexplained residuals of the latent factors in ?' (Joreskog and Sorbom,

1983). The elements of 8 and r are regression coefficients resulting from the

regression of the endogenous latent factors on their respective antecedent

causal factors.

The only estimation procedure available in the earlier versions of LISREL

WS the maximum likelihood procedure. With the assumption that the observed

variables hiVe a multivariate normal distribution, this procedure uses a

modification of an iterative minimization procedure described by Fletcher and

Powell (1963) to fit the estimated covariance matrix implied by the model, E, to

the sample covariance matrix, S. The estimates of the parameters of the

hypothesized model are those values minimizing the maximum likelihood fitting

function:

F = + tr(SE1) logISI (p q).

A likelihood-ratio chi-square statistic comparing E and S is computed, and gives

an indication of the goodness of fit of the whole model.

The assumption of a` multivariate normal distribution for the data is the

weakest part of Me LISREL program (de Leeuw, et al., 1983), for in many

instances the distributions of variables are unknown or suspected to be far from

normal. Consequently, the fifth edition of LISREL (Joreskog and Sorbom, 1981)

included generalized least squares and unweighted least squares estimation
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procedures in addition to the maximum likelihood. These limited information

procedures minimize the general fitting function:

F = (S a(0))* W
-1

(S - a(0))

where the weight matrix, W, is a consistent estimator of the asymptotic

covariance matrix of S. In the unweighted least squares procedure, W = I, and

the procedure reduces to an iterative ordinary least squares method.

Unfortunately, the chi-square statistic and standard errors of estimates are not

available with these procedures.

While the robustness of more traditional statistical procedures against

violations of assumptions has often been tested, methods applied in the analysis

of covariance structures have only recently begun to be examined for robustness

(Boomsma, 1982, 1983; Browne, 1982; Huba and Bentler, 1983; Huba and Harlow,

1984; Joreskog and Goldberger, 1972; Muthen, 1978, 1983a; Muthen and Kaplan,

1984; Olsson, 1979; Tanaka, 1984). These robustness studies have primarily been

concerned with the effects of non-normality as evidenced by the inclusion of

dichotomous or ordered polychotomous variables with assumed underlying

Continuities as indicator variables in Lisrel-type models. These studies have

examined the impact of choice of correlation type in factor analysis models and

differences among various estimation procedures for both factor analysis models

and structural equation models.

The studies of factor analysis models containing categorical variables have

implications concerning the measurement portion of Lisrel-type models. Using

their own computer programs, Muthen (1983a) and Olsson (1979) examined the

impact of correlation type and found that the analysis of Pearson product-moment

matrices resulted in downwardly biased estimates of the factor loadings of the
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categorical variables and inflated values for the chi-square goodness-of-fit

statistics. Muthen (1983a) found that the use of tetrachoric and polychoric

correlations to measure associations among the variables produced more robust

parameter estimates and better fitting models. As for the estimation of Lisrel

models, these results suggest that the reliabilities of categorical variables

would be underestimated with product-moment correlations and the models too

often rejected for lack of fit.

In studies of the robustness of various estimation procedures (including

some not necessarily found in LISREL) for factor analysis models containing

categorical variables (Boomsma, 1982, 1983; Muthen, 1978; Muthen and Kaplan,

1984; Olsson, 1979; Tanaka, 1984), the maximum likelihood (ML), generalized

least squares (GLS), categorical variable methodology (CVM), and asymptotically

distribution free (ADF) procedures were all found to perform well for data that

did not deviate too drastically from normality. In cases of extreme skewness,

distortions in the ML and GLS chi-squares and standard errors were found; the

chi-squares were inflated and the standard errors were biased downwards.

However, the parameter estimates were generally unbiased for large sample sizes

(N > 400). An exception was found by Tanaka (1984) wherein both the MI. and ADF

were found to underestimate not only the standard errors but the factor loadings

as well. When the parameters of the model were seen to hold for the underlying

continuous variables, only the CVM estimation produced robust results.

The case studies by Browne (1982), Huba and Bentler (1983), Huba and Harlow

(1984), and Joreskog and Goldberger (1972) provided comparisons of the ML, GLS,

and ADF estimators in factor analyses of categorical variables. No large

differences were found among estimated factor loadings for the procedures,
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although Browne (1982) and Joreskog and Goldberger (1972) reported that in

general the GLS and ADF parameter estimates were lower than those obtained with

ML. Moreover, the ADF chi-square was consistently lower than either the GLS or

ML, and the estimated standard errors were generally smaller for GLS and ML.

Results from the above studies suggest in terms of the measurement portion

of the Lisrel model, that the choice of estimation procedure may not be as

important as the choice of correlation type when the concern is with the

robustness of parameter estimates. However, for valid hypothesis testing and

assessment of fit, ADF or CVM seem to be the preferred estimation procedures.

The extension of these kinds of studies to the structural portion of

Lisrel-type models has just begun. To date there has been only one study of the

robustness of the structural parameter estimates against non-normality (Boomsma,

1983). Using an adaptation of LISREL-III (Joreskog and Sorbom, 1976) which he

called LISREP, Boomsma examined the robustness of the maximum likelihood

estimates for models in which all indicator variables for both the exogenous and

endogenous variables were categorical.

In the models estimated, Boomsma found no bias in the parameter estimates

or estimates of standard errors. He did find both a categorization effect and a

skewness effect on the standard deviations of the estimates. They were found to

be generally too small for model variations with zero or small skewnesses, and

generally too large for variations with moderate and large skewnesses. Thus,

with increased skewness, on the average, the estimates are not too far from the

population values, but for a single sample, the parameter estimates may deviate

substantially. Boomsma also reported only a minor effect of categorization on

the chi-square goodness-of-fit statistic, but with increased skewness the model
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was rejected too often. Thus, the number of categories of variables had less

effect than the skewness of the variables.

From the studies reviewed above, it appears that the LISREL maximum

likelihood measurement parameter estimates are probably non-robust when skewness

is present in the observed variables and product-moment correlations are used to

estimate the model. What is not known at the present is the influence of the

choice of correlation type on LISREL latent variable structural parameter

estimates, or the robustness of the LISREL limited information procedures. The

purpose of this study is to examine the effect of correlation type on the

robustness of LISREL maximum likelihood and unweighted least squares estimates

of the structural parameters of models containing categorical variables as

indicators of latent factors.

METHODOLOGY

Ideally, this study would examine the robustness of the three estimation

procedures in LISREL (maximum likelihood, generalized least squares, and

unweighted least squares) by the analysis of covariance matrices. However,

there are several restrictions placed on the methodology used in this study by

the limitations of the LISREL-VI program. LISREL does not provide estimates of

variances and covariances corresponding to the tetrachoric, polychoric, and

polyserial correlations; thus, only standardized estimates are reported since

this study was of necessity restricted to the analysis of correlation matrices.

Furthermore, the weight matrix used in the generalized least squares procedure

assumes the input of a Pearson product-moment matrix and thus precludes the use

of the LISREL generalized least squares procedure to analyze a matrix including

tetrachoric or polyserial correlations. As a result,'analyses reported here
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employed only the ML and ULS procedures. Finally, the technical and

computational problems of computing the chi-square statistic and the standard

errors of parameter estimates have not been solved for the ULS procedures in

LISREL. Consequently, comparisons between procedures and correlation type can

only be made for the beta and gamma parameter estimates and not their standard

errors or the chi-square goodness-of-fit statistics.

This study was conducted using data generated to fit the equations defining

the Lisrel model shown in Figure 1. Fifty sets of data were generated using a

SAS PROC MATRIX (Sas Institute, 1982) program, each set containing 500

observations on ten standard normal variables. These variables were

subsequently dichotomized and represent the continuum underlying the

dichotomized variables. The average correlations among these continuous

variables are given in Table 1.

Insert Figure 1 About here

Insert Table 1 About Here

The robustness of the estimates of the model parameters was then examined

for three cases of non-normality determined by the dichotomization of the

manifest indicators of ni and n2 with varying degrees of skewness. In the

first case, the skewness of each variable was zero (50% of the data were in each

category); in the second case, each variable had a skewness of 1.5 (80% vs.

20%); and in the third case, the indicators of ni had a skewness of 1.5 (80%
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vs. 20%) and the indicators of 2 had a skewness of -1.5 (20% vs. 80%). Two

types of correlation matrices were computed for each case: one consisting only

of Pearson product-moment correlations, and one consisting of tetrachoric,

polyserial, and product-moment correlations as appropriate. Table 2 gives the

averages of each type of correlation matrix for each of the three cases. It is

evident, by comparing these matrices to the matrix of correlations among the

continuous variables given in Table 1, that in every case the mixed matrix more

closely approximated the correlations of Table 1 while the product-moment matrix

underestimated the associations involving the dichotomous variables. The

attenuation in the product-moment correlations was expected to be manifested by

an underestimation of the structural parameter estimates, and the mixed matrix

was expected to produce estimates more closely approximating the model

parameters.

Insert Table 2 About Here

The quality of the data generation procedure can be checked by examining

the results of the analysis of the continuous data, since any deviations of

these estimates from the model parameters are due to the randomness involved in

the data generation process. Statistics for the structural parameter estimates

using these data are shown in Table 3. The maximum likelihood chi-square

statistic gives an indication of how well the generated data fit the model. For

each of the 50 estimations of the model, this statistic was compared with the

critical value of X2.05;25 .1 37.6526. With an alpha level of .05,

probability theory indicates that for the 50 data sets used to estimate the
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model, 2.5 rejections would occur. Since there were only two rejections,

overall the data fit the model very well. There is a slight inflation in the

mean square errors of the estimates for 031 and 032 indicating some bias in

these estimates. The average estimate for 031 overestimates the parameter

while 032 is underestimated. The bias present in these estimates is probably

a function of the data generation procedure and the use of only 50 replications,

but should be kept in mind in the interpretation of subsequent results.

Insert Table 3 About Here

RESULTS

Tables 4, 5, and 6 give the results of the analyses for each of the three

cases of dichotomization. The likelihood ratio chi-square statistic shows

little effect of skewness or categorization in terms of number of rejections for

lack of fit when product-moment matrices are analyzed, although the rejection of

4 of the 50 estimations of the model in Case 1 is slightly more than the

expected 2.5. This is in contrast to previous studies (e.g., Boomsma, 1983;

Muthen, 1983a; Olsson, 1979) where inflation was found in the maximum likelihood

chi-square for increasing skewness. However, the empirical distribution of the

chi-square statistic does appear to be affected. For the model used in this

study, this statistic is distributed as x
2
with 25 degrees of freedom. In

Cases 2 and 2, the variance is slightly larger than expected, and in Case 3,

both the mean and variance are considerably smaller than expected.

Insert Tables 4, 5, and 6 About Here

1?
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The highly inflated chi-squares occurring in the analyses of the mixed

matrices cannot be compared with previous studies that calculated goodness-of-

fit measures without using LISREL, for in LISREL this statistic is computed on

the assumption that the correlations used in the analysis are product-moment

correlations. Based on these chi-squares, the population model was rejected 45,

49, and 48 times for Cases 1, 2, and 3, respectively. This should be an

important consideration for researchers estimating substantive Lisrel models for

it indkates that the rejection of an estimated model using tetrachoric or

polyserial correlations would probably not be a function of the data not fitting

the model, but of the type of correlation used in the analysis. In any event,

the user would not know the cause of rejection.

Case 1

The first case of non-normality examined the effect of categorization only.

The manifest indicators for the two independent endogenous variables, ni and

n2, were dichotomized with fifty percent of the cases in each category, giving

a symmetrical distribution with no skewness. When the matrix used in the

analysis is the mixed matrix of tetrachoric, polyserial, and product-moment

correlations, both the average maximum likelihood (ML) and unweighted least

squares (ULS) estimates are robust against categorization (see Table 4). The

analysis of product-moment matrices generally underestimated the model

parameters with hosubstantial differences between the ML and ULS estimates.

However, the bias in these estimatesdoes.not appear to be too serious since

there is only a slight inflation of the mean square errors. The exceptions are

the average estimates of 031 and 032, and the direction of bias is opposite

of that found in the analysis of the continuous data.

13
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Case 2

The second case estimated the model with each of the manifest indicators of

ni and /2 dichotomized with a skewness of 1.5 (80% in the first category and

20% in the second). Results here show the effects of correlation type and

estimation procedure on the parameter estimates when each of the dichotomized

variables are skewed in the same direction.

The underestimation of the associations involving these variables by the

product-moment correlations was greater here than in Case 1 (see Table 2). The

impact of this underestimation is evident in the bias that appears in the

estimates resulting-from the analyses of product-moment matrices (see Table 5).

Again there are no substantial differences between the ML and ULS estimates.

With both the ML and ULS procedures, each of the parameters were underestimated

with the exception of 732, leading to a general underestimation of the

magnitude of the influence of one latent variable on another.

The analyses of matrices containing tetrachoric, polyserial, and product-

moment matrices result in more robust parameter estimates, regardless of

estimation procedure. While three of the estimates did exhibit a slight

inflation in their mean square errors (531, 032, and 721), the bias in the

estimates of the two beta parameters was consistent with that appearing when the

continuous data was analyzed.

Case 3

The final case of non-normality considered in this study had the manifest

indicators of "i (y1 and y2) and of n2 (y3 and y4) skewed in

opposite directions. The skewness for the indicators of ni was set at 1.5

(80% vs. 20%) and for '72 was set at -1.5 (20% vs. 80%). The attenuation in
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the product-moment correlations involving these variables is quite large in this

case (see Table 2). For example, the correlation between Y2 and Y3 measured

as continuous variables is .553, but the product-moment estimate of this

correlation after the variables are dichotomized and skewed in opposite

directions is only .207 while the tetrachoric estimate is .546. The large

attenuation in the correlations was expected to substantially affect the

parameter estimates, and the analyses of the mixed matrices were expected to

produce more robust estimates. In the event, however, the results were not as

expected.

When product-moment matrices were analyzed, as expected, the beta parameter

estimates were severely biased, and the degree of bias was consistent for both

the MI. and ULS estimation procedures (see Table 6). The estimates for the

gammas, however, did not exhibit the same increase in bias. In fact, they were

no more biased than the estimates in Case 1 where the dichotomized variables

each had no skew and the zero-order associations between the variables were much

better estimated.

Turning to the estimates resulting from the analyses of the mixed matrices,

substantial bias was also found in both the ML and ULS estimates of many of the

parameters. Only four of the nine parameter estimates (021, 711 , y22, and

731) did not show substantial bias, and, surprisingly, the estimates of 721

and 112 were extremely biased while the corresponding product-moment estimates

were not. This was not expected, for the closer approximation of the

correlations between the underlying variables was expected to result in more

robust estimates from the analyses of the mixed matrices than from the product-

moment analyses. Evidently the extreme skewness in opposite directions that was
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present among some of the variables was not entirely compensated for by the

closer approximations of the correlations involving these variables by the

tetrachoric and polyserial correlations. In addition, the estimates from the

analyses of the mixed matrices exhibited a much greater variability. The

increasing variability of the estimates for increasing skewness has also been

reported in the studies of Boomsma (1983) and Muthen and Kaplan (1984).

CONCLUSIONS

While it is noted that the results of studies of the effect of non-

normality in structural equation modeling are not completely independent of the

models used cn the studies, they do pose potentially serious problems for the

applied researcher. From the results reported here, a general qualitative

conclusion can be drawn: the analysis of product-moment correlation matrices

resulted in biased estimates of the structural parameters of the model used in

this study when skewness was present in the dichotomous variables. Moreover,

the degree of bias was consistent forboth the maximum likelihood and unweighted

least squares procedures. With the exception of Case 3, the analysis of mixed

matrices produced average estimates that more closely approximated the model

parameters.

In cases where the categorical variables have approximately symmetric

distributions, there are choices to be made. A conservative approach would be

to analyze product-moment matrices with the maximum likelihood procedure. The

parameter estimates exhibit little bias and the maximum likelihood chi-square

statistic appears generally reliable. Additionally, both standardized and

unscaled estimates, may be obtained along with standard errors. The uvil of

tetrachoric or polyserial correlations produce unbiased parameter estimates on
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the average, but the lack of standard errors and goodness-of-fit measures

detract from their use.

Al present, researchers do not have alternative estimation procedures

available for the analysis of latent variable structural equation models.

Programs such as EQS by Bentler (1982) and LISCOMP (described as LACCI in

Muthen, 1984) that employ distribution-free estimation procedures that consider

the skewness and kurtosis of the variables hold promise for the future and

should be available for public distribution shortly. Until that time,

researchers are ill-advised to employ LISREL in the estimation of models

containing skewed categorical manifest variables. Perhaps the best

recommendation for researchers who wish to use LISREL to estimate latent

variable structural equation models is to avoid the use of categorical

variables, particularly dichotomies. Careful consideration of the nature of the

data to be analyzed is of utmost importance. Consideration given to how the

variables are to be measured while the research is in the conceptual stage would

avoid the problems, that have been identified in this study. Great care should

be taken to use interval scales of measurement. However, this does not assure

that the data gathered from a sample will have a multivariate normal

distribution. The impact of skewness in continuous distributions on LISREL

estimates is thus of great importance, and future research should address this

question.
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Table 1

Average Correlations for Continuous Variables

Xi x2 x3 Xg Yl Y2 Y3 Y4 Y5 Y6

XI

X2

x3

x4

Yl

Y2

Y3

Yg

Y5

Y6

1.000

.697

.345

.337

.115

.124

.258

.234

.068

.065

1.000

.344

.335

.117

.128

.261

.234

.069

.067

two

.802

.108

.120

.323

.288

.214

.204

1.000

.110

.120

.318

.282

.213

.209

1-.000

.664

.519

.472

.527

.506

1.000

.553

.509

.566

.547

1.000

.753

.504

.479

1.000

.458

.433

1.000

.731 1.000



Table 2

Average Correlations for Three Cases of Dichotomization

Xi 12 13 x4 Yi Y2 13 14 Y5 Y6

Case 1

X1
_-- .697 .345 .337 .095 .094 .203 .187 .068 .065

X2 .697 _-_ .344 .335 .092 .098 .210 .186 .069 .067

13 .345 .344 --- .802 .087 .101 .255 .232 .214 .204

X4 .337 .335 .802 --- .089 .100 .257 .227 .213 .209

Yi .119 .115 .109 .112 --- .462 .342 .305 .419 .405

Y2 .117 .123 .127 .125 .663 --- .366 .337 .456 .434

Y3 .254 .263 .320 .322 .512 .544 --- .538 .405 .382

Y4 .234 .232 .291 .284 .460 .504 .746 .371 .346

Y5 .068 .069 .214 .213 .542 .571 .507 .464 .731

Y6 .065 .067 .204 .209 .507 .545 .480 .434 .731 - --

Case 2

Xi __- .697 .345 .337 .079 .083 .179 .161 .068 .065

X2 .697 --- .344- .335 .085 .088 .181 .161 .069 .067

X3 .345 .344 --- .802 .075 .079 .234 .201 .214 .204

14 .337 .335 .802 -_-
, .077 .079 .227 .196 .213 .209

Yi .113 .121 ,107 .110 --- .419 .305 .270 .364 .351

Y2 .118 .125 .113 .113 .657 --- .333 .297 .393 .381

13 .253 .255 .332 .322 .511 .550 .506 .361 .339

14 .229 .227 .285 .278 .462 .500 .750 - -- .317 .302

Y5 .068 .069 .214 .213 .520 .559 .516 .454 .731

Y6 .065 .067 .204 .209 .503 .544 .485 .433 .731 -_-

Case 1

X1 --- .697 .345 .337 .079 .083 .182 .163 .068 .065

X2 .697 _-_ .344 .335 .085 .088 .183 .160 .069 .067

X3 .345 .344 --- .802 .075 .079 .223 .202 .214 .204

14 .337 .335 .802 --- .077 .079 .222 .199 .213 .209

Yi .113 .121, .107 .110 --- .419 .201 .190 .364 .351

Y2 .118* .125 .113 .113 .657 - -- .207 .199 .393 .381

13 .263 .266 .322 .322 .521 .546 --- .512 .351 .334

14 .235 .232 .291 .288 .481 .517 .757 r-- .323 .304

Y5 .068 .069 .214 .213 .520 .559 .503 .463 .731

Y6 .065 .067 .204 .209 .503 .544 .477 .435 .731 ---

aProduct=momentliatrix is above the diagonal and nixed

matrix, below
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Table 3

structural Parameter Estimates and lampling Variability Using Continuous Variables

Parameter

ML ULS

Estimate Variability Estimate Variabilty

021 a .663 .667 .0013 .668 .0013
.0013 .0013

031 .669 .689 .0057 .691 .0059
.0061 .0064

032 8 .127 .109 .0071 .106 .0074
.0074 .0079

.132 .134 .0034 .134 .0031
.0034 .0031

T12 .105 .097 .0034 .097 .0033
.0035 .0034

.126 .115 .0016 .115 .0015
.0017 .0016

122 a .238 .234 .0017 .232 .0017
.0017 .0017

111 -.153 -.155 .0025 -.153 .0024
.0025 .0024

112 a .199 .193 .0023 .194 .0024
.0023 .0024

x
2

2,var tx
24.1654
52.1977

Rejections 2

The entries under variability are variance and mean square error.
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Table 4

Itruclural Parameter' Estimates and Sampling Variability for Case 1 i50L501.* =*........o
Pearson Matrix Mixed Matrix

ML ULS ML ULS

Parameter Estimate Variability' Estimate Variabilty Estimate Variability" Estimate Variability"

021 a .663 .626 .0030 .625 .0031 .661 .0027 .660 .0028
.0044 .0045 .0027 .0028

1131 = .669 .636 .0075 .638 .0077 .678 .0107 .679 .0113
.0086 .0087 .0108 .0114

032 a 127 .146 .0119 .142 .0127 .131 .0168 .129 .0175
.0122 .0130 .0168 .0175

.132 .120 .0047 .121 .0044 .125 .0051 .127 .0047
.0048 .0045 .0052 .0047

Y12 = .105 .102 .0054 .101 .0052 .106 .0061 .106 .0056
.0054 .0052 .0061 .0056

721 a .126 .116 .0022 .117 .0022 .120 .0025 .120 .0025
.0023 .0023 .0026 .0025

122 a .238 .219 .0031 .219 .0030 .231 .0038 .230 .0035
.0034 .0033 .0039 .0035

-.153 -.146 .0037 -.145 .0035 -.152 .0042 -.152 .0039
.0038 .0036 .0042 .0039

112 .188 .187 .0039 .188 .0038 .180 .0046 .182 .0044
.0039 .0038 .0047 .0044

x
2

2.
Var lx 1

24.8112
63.9152

57.5588
445.2100

Rejections 4 45

"The entries uncer variability are variance and mean square error.
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Table 5

Structural Parameter Estimates and Simpling_yariabilitv for Case 2 (80/201.

Parameter

Pearson Matrix Mixed Matrix

ML ULS ML ULS

Estimate Variability Estimate Variabilty Estimate Variability Estimate Variability

021 a .663 .614 .0069 .612 .0067 .665 .0063 .665 .0058

.0093 .0093 .0063 .0058

1331 a .669 .599 .0143 .599 .0138 .693 .0238 .697 .0216

.0192 .0187 .0244 .0223

032 a .127 .111 .0133 .111 .0127 .111 .0266 .107 .0235

.0136 .0130 .0268 .0239

Til a .132 .120 .0056 .120 .0056 .135 .0070 .136 .0069

.0058 .0057 .0070 .0069

112 * .106 .078 .0055 .080 .0054 .089 .0069 .092 .0069

.0062 .0061 .0071 .0071

Iv a .126 .091 .0044 .093 .0040 .102 .0064 .103 .0056

.0056 .0051 .0070 .0062

)22 ' .238 .213 .0026 .212 .0026 .247 .0034 .244 .0035

.0032 .0033 .0035 .0035

111 a -.153 -.133 .0044 -.130 .0042 -.158 .0061 -.157 .0057

.0048 .0047 .0061 .0057

112 a .188 .217 .0034 .216 .0036 .196 .0053 .197 .0053

.0042 .0043 .0054 .0054

X
2

, 2,
Var ix P

25.9206
59.3208

78.3846
689.6611

Rejections 2 49

.

The entries under variability are variance and mean square error.
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Table 6

Itructural Parameter Estimates and_lampling variability_for Case 3 (80/20 vs. 20/.801.

Pearson Matrix Mixed Matrix

Parameter

Mt. ULS ML ULS

Estimate . virTiMity Estimate Variabilty Estimate Variability' Estimate Variability

-021 = .663 .381 .0030 .384 .003t .690 .0122 .684 .0115

.0825 .0811 .0129 .0119

1131 = .669 .557 .0053 .556 .0052 .787 .0571 .774 .0519

.0179 .0180 .0709 .0629

032 4 .127 .283 .0042 .281 .0041 -.011 .0685 .010 .0648

.0285 .0279 .0875 .0785

4 .132 .122 .0058 .121 .0056 .139 .0077 .137 .0069

.0059 .0057 .0077 .0069

112 4 .105 .077 .0056 .079 .0054 .083 .0072 .091 .0069

.0064 .0061 .0077 .0071

1-21 = .126 .126 .0042 .127 .0042 .103 .0098 .111 .0082

.0042 .0042 .0104 .0084

1-22 a .238 .224 .0034 .222 .0035 .242 .0061 .239 .0065

.0036 .0038 .0061 .0065

111 a -.153 - 158 .0030 -.156 .0029 -.148 .0080 -.141 .0097

.0030 .0029 .0080 .0099

132 8 .188 .179 .0032 .178 .0034 .228 .0088 .222 .0078

.0033 .0035 .0104 .0089

v
2 22.7272 103.2198

Var ix
2

1 36.2031 1983.9096

Rejections 0 48

'The entries under variability are variance and mean square error.
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Figure 1. Structural Equation Model Used for Data Generation
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