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Abstract

Sampling distributions of 10 tests for comparing population variances

in a two group design were generated for several combinations of equal

and unequal (a) sample sizes, (b) population means, and (c) group

variances when distributional forms differed. Type I error rates and

power estimates were compared. No one procedure provided the best

solution for all conditions studied. The O'Brien procedure, however,

generally had appropriate Type I error rates and provided power

estimates as high or higher than alternatives for most conditions

studied. Modifying O'Brien's procedure by adopting a Welch-type ANOVA

test increased statstical power when sample size and group variance was

positively related.
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Tests of Variance Equality When Distributions

Differ in Form, Scale, and Location

Although many statistical tests for comparing population variances

have been developed, very few of these procedures are appropriate when

the population distributions are non-normal. Conover, Johnson, and

Johnson (1981) compared 56 tests of variance equality and could only

recommend three tests which they felt were insensitive to non-normal

distributions and had adequate statistical power. Of the parametric

procedures studied by Conover et al., only the Brown-Forsythe (1974)

procedure was recommended. This procedure is an ANOVA using

Dij = IXii mil as the dependent variable. Here, Xii is the ith

observation in the jth group and m is the median in the jth group.

An alternative parametric procedure, not considered by Conover

et al. (1981), was suggested by O'Brien (1978). This procedure is an

ANOVA using the following transformation of Xii:

r = (n -1.5)n (X -XJ.)
2
- .58 (n -1)/[(n,-1)(n -2)].

In this expression nj is the number of observations in the jth group,

X.i is the mean score for the jth group, and Si is the variance of the

observed scores in the jth group. It can be shown that for the jth

population the mean of rii is equal to the population variance of Xii.

Similarly, for the jth sample the mean of rij is equal to the sample

variance. O'Brien's approach has been shown to be robust to non-normal

distributions and can be substantially more powerful than the Brown-

Forsythe approach when the population distribution is light-tailed

(O'Brien, 1978; Olejnik & Algina, 1985a).

4



3

There are a variety of nonparametric procedures available (Duran,

1976). Two of the better known techniques were suggested by Siegel and

Tukey (1960) and by Klotz (1962). In the Siegel-Tukey approach the data

are pooled across groups and ranks are assigned as follows: 1 to the

lowest score, 2 and 3 to the highest and second highest scores, respec-

tively; 4 and 5 to the second and third lowest scores, respectively;

and so forth. The ranks are then disaggregated and the mean ranks are

compared among groups. In the two group case the Wilcoxon rank test

can be used, whereas in the multiple group case the Kruskal-Wallis

test is used (Puri, 1964). The Kruskal-Wallis test statistic is

computed using

112i
2

a-H = E - 3(N + 1)
N(N

1

+ 1) j nj

where 111 is the sum of ranks in the jth group, nj is the number of

observations in the jth group and N is the total sample size in the

study. The test statistic is asymptomatically distributed as chi-square

with J - 1 degrees of freedom.

Klotz's (1962) test uses normal scores. AfLer pooling the observed

scores across groups, the data are ranked frOm lowest to highest; the

ranks are replaced by their inverse normal scores

-1 .(
Z =

N + 1

The test stacistic is calculated using Ti. = Z
ij

in the following

formula:

Enj(Ti - T..)
2

K = (N - 1)
EE (Tij - T. )

2

ij
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(Puri, 1964). K is asymptomatically distributed as chi-square with

J - 1 degrees of freedom. As expected from theoretical considerations,

when applied to data sampled from populations with identical non-normal

distributions, the Siegel-Tukey and Klotz tests have appropriate Type I

error rates (Penfield & Koeffler, 1985; Olejnik & Algina, 1985a). When

the sampled distributions differ only in variance, the Klotz test has

power equal or greater than the power of the Brown-Forsythe or O'Brien

procedure (Olejnik & Algina, 1985a).

The Siegel-Tukey and Klotz tests of scale are strongly affected

by differences between population medians (Moses, 1963). When the

sampled distributions have the same shape, the tests become increas-

ingly insensitive to scale differences as differences in the location

parameters increase. A suggested solution (e.g., Lehmann, 1975;

Marascilo & McSweeney, 1977) to this problem is to align the data by

computing the difference between each observation and its group mean,

(X
ij

- X .j ). In conducting the Siegel-Tukey or Klotz test, the

deviation scores can then be used in place of the raw scores.

Alternatively, the data can be aligned by computing the deviation of

each score from its median. When applied to data sampled from two

symmetric distributions that are identical except possibly in location,

the mean-aligned Siegel-Tukey and the mean- and median-aligned Klotz

tests tend to yield appropriate Type I error rates. With such symmetric

distributions, the mean-aligned Klotz test has power comparable to the

Brown-Forsythe and O'Brien tests (Olejnik & Algina, 1985a). Using the

mean- or median-aligned data when the population distributions are

asymmetric provides liberal Type I error rates for both the Klotz and

Siegel-Tukey procedures.
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From previous investigations it is clear that no one approach is

uniformly superior for comparing variances. The best procedure for a

given situation depends on the shape of the population distribution and

the magnitude of the difference in the population location parameters.

This conclusion is based on studies which have assumed that the

distributional forms of the populations sampled were identical. The

nonparametric and O'Brien's test also make this assumption. In the

latter case, differences in distributional forms affects the independence

between the mean square between and within group sources of variation

in calculating the F-ratio (O'Brien, 1979). Since differences in

distributional forms may occur in ex post facto studies as well as

experiments where a treatment could affect the shape of the distribution,

one of the purposes of the present otudy was to investigate the effect

differences in distributional forms have on the Type I error rates and

statistical power of several tests of variance equality.

The second purpose was to investigate two modifications suggested

by O'Brien (1979) for improving the robustness and power of his test.

Box and Andersen (1955) showed that when the population distributions

have the same shape and only the normality assumption is violated, the

ANOVA F statistic is approximately distributei as F with degrees of

freedom ddfl and ddf2. Here 6 = (1 + g/N) and g is the kurtosis of

the population distribution of the dependent variable. O'Brien

suggested that if the distribution of r is known, the degrees of freedom

for the test statistic can be adjusted accordingly. However, when the

population distributional form is unknown, O'Brien recommended

calculating 6 under the assumption that the observed scored distribution

is normal. Under that condition, the distribution of r is a chi-square
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with 1 degree of freedom; the kurtosis is 12. Thus, O'Brien suggested

using (1 + 12/N) (J -1) and (1 + 12/N) (N-J) degrees of freedom for a

one way analysis of variance. The effect of using the modifizd degrees

of freedom when the population distribution is non-normal and unknown

has not been studied.

O'Brien showed that when the sampled populations are identically

distributed, his test will tend to be liberal if the sample sizes are

unequal. To overcome this problem, O'Brien suggested using a Welch-

James analysis in place of the ANOVA of the transformed variable r.

It can be shown that when there are between population differences in

raw score (X) kurtoses, there will also be between population

differences in the variances of r. The Welch-James analysis is also a

solution to potential problems that may arise in this situation.

Finally, regardless of whether there are between population differences

in kurtoses, when there are between population differences in the

variances of X there will also be between population differences in the

variances of the r. In this situation it can be predicted from

research comparing ANOVA to the Welch-James procedure for testing

hypothesis on means (Olejnik & Algina, 1985b), that applying the

Welch-James procedure to r will result in a more powerful test than

O'Brien's when there is a direct relationship between the sample sizes

and the population variances of r. This relationship will occur when

there is a direct relationship between the sample sizes and the

population variances of X. Because of these considerations the present

study investigated applying the Welch-Jame3 procedure to r. The Welch-

James (Welch, 1951) statistic is calculated using
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Zwi(r.j - )1.1.1r.j/iwi)/J - 1

F* =
2(J - (1 - w )

1 +
nj - 1 Zw.

4 3

where wj = n /S.
2

. The statistic F* is approximately distributed as F

with (J - 1) and

3 1
(1 27-1-)]-1j nj -1 Ewi

degrees of freedom.

In summary, the present study investigated the impact of between

population differences in shape, variance, and mean on the Type I error

rates and power of 10 procedures. In addition, the impact of between

sample differences in sample size were investigated. The 10 procedures

included were: O'Brien's (OB); O'Brien's with adjusted degrees of

freedom (AOB); Brown - Forsythe (BF); Welch-James test on O'Brien's r

transform (WJOB); the unaligned, median-, and mean-aligned Klotz

(K, KMD, and KM); and the unaligned, median- and mean-aligned Siegel-

Tukey (ST, STMD, and STM).

Method

Type I error rates and power were estimated using simulated data.

Sample size, population variances, population means, and the shapes of

the population distributions were all manipulated. All comparisons

were based on data generated for a two group design, although the

parametric tests are appropriate for multiple group designs. The

nonparametric approaches, however, are not appropriate for factorial

designs.
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Three sample-size combinations were included: (20,20); (23,17);

and (17,23). To compare Type I error rates, data were generated from

populations having equal variances. Statistical power estimates were

made based on samples generated from two populations with variances in

the following ratios: (1.5:1); (2.0:1); (2.5:1); (3.5:1); and (4.0:1).

Population means were equal or differed by .5 pooled standard deviation

units. Finally, eight distributional shapes were considered: normal;

platykurtic; skewed, with three levels of skewness; and leptokurtotic,

with three levels of kurtosis. Table 1 presents skewness and kurtosis

figures for the distributions from which the data were generated.

Insert Table 1 about here

Data for the study were generated and analyzed using the SAS

computing package. Scores on the dependent measure were created using

the linear model Xij = p + a.j + crew The grand mean, p , was set
eo OP

equal to 10. The effect size parameter for the jth group, a.j, was set

to either 0 or .5 pocled standard deviation units. The random error

component for the model e
ij

was generated using the RANNOR normal

random number generating function in SAS. A standard normal random

variable Y
ij

was generated with the RANNOR function and e
ij

was set

equal to it when studying the normal distribution. To study the non-

normal distributions, Yij was transformed using the power function

suggested by Fleisman (1978): eij = a + bYij + cY2i1 + dY11. (The

constants a, b, c, and d are chosen to transform the normally distributed

variable to a standardized variable with known skewness and kurtosis.)
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The coefficient o
1
was chosen so that the variance of the first group

increased from 1 to 4 in increments of .5 units. The coefficient o
2
was

set equal to 1 for all observations in group two. Each condition was

replicated 1,000 times. Test statistics for the 10 procedures were

computed and the frequencies of rejecting the null hypothesis of equal

variances were recorded for the nominal .01, .05, and .10 significance

levels.

The present study investigated the Type I error rates and power of

each of the tests when the sampled population distributions differed in

shape. For the eight distributions in Table 1, there are 56 possible

combinations not including combinations involving negatively skewed

distributions. Because it was not possible to consider all possible

combinations, only a subset of the distribution combinations were

selected for investigation. Table 2 summarizes the conditions investi-

gated. In Table 2 the symbol -S indicates a negatively skewed

distribution.

Insert Table 2 about here

Results

Only the results obtained when the nominal significance level was

equal to .05 are reported here. Patterns of results similar to those

reported here were obtained when the nominal significance level was

.01 and .10.

To evaluate the adequacy of the procedures with regard to Type I

error rates, estimated Type I error rates more than two standard
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errors above or below the nominal significance level were judged as

unacceptable. Based on 1,000 replications the standard error for the

nominal .05 significance ievel is .0069, so observations outside the

interval (.036, .064) were considered either less than or greater than

the nominal significance level.

Type I Error Rates

Estimated Type I error rates for the conditions in which popu-

lation means were equal are reported in Tables 3 and 4. The former

results are for equal-sized samples and the latter are for unequal-

sized samples. With equal -sited samples the following seven tests

had inappropriate Type I error rates for no more than two distribution

combinations: OB, BF, WJOB, ST, K, STMD, KMD. The remaining tests

exhibited a strong tendency to be liberal. Among the seven tests

with appropriate Type I error rates, only ST and STMD tended to

become markedly liberal with unequal sample sizes. The remaining

tests (OB, BF, WJOB, K, and KMD) maintained their appropriate Type I

error rates. The tests that were liberal with equal-sized samples

were also liberal with unequal-sized samples.

Insert Tables 3 and 4 about here

With two notable exceptions, the same pattern of results tended

to occur for the conditions in which the population means were, unequal.

First, ST did not become more liberal when the sample sizes were

unequal. Second, K exhibited more of a conservative tendency for both

equal- and unequal-sized samples.
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Power

Power estimates are reported in Table 5 for the conditions in which

the population means were equal. The power estimates are reported only

for tests that had appropriate Type I error rates for both equal- and

unequal-sized samples. However, power estimates for K are not reported

because although it had good power in conditions with equal means, it

had poor power in conditions with unequal means.

Insert Table 5 about here

For conditions involving two equal-sized samples the power

comparisons depended on the distribution combination. OB, BF, WJOB,

and KMD were approximately equivalent in power for the following

distribution combinations: N/N, SS/MS, N/SS, N/MS, N/S, N/-S and

N /SL. For the N/P distribution combination, BF had somewhat less power

than the other procedures. The KMD test had less power than the other

three pror-_!ures when applied to data from the S/-S distribution

combination. When at least one of the distributions was leptokurtic,

BF and KMD had approximately equivalent power and more power than either

OB or WJOB.

The pattern of results was similar for conditions in which there

were between population mean differences. Because these results would

not lead to any radically different conclusions about power, they are

not reported here.

When the sample sizes were unequal, the power estimates depended on

the relationship between the population variances and sample sizes.
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With a direct relationship, WJOB had power superior to or approximately

equal to the power of the other three tests. This was true for every

distribution combination. WJOB was superior to OB, BF, and KMD for the

N/N, N/P, SS/MS, N/SS, N/MS, N/S, N/-S, and S/-S distribution combi-

nations. Only for the S/-S combination were there any notable

differences among the power estimates for OB, BF, and KMD; KMD had less

power than the other two tests. WJOB, BF, and KMD were about equally

powerful and more powerful than OB when applied to data from the N/SL,

N/ML, N/L, or ML/SL distribution combinations.

When the population variances and sample sizes were inversely

related, [the (17,23) sample-size combination], the OB test had power

superior to or approximately equal to the power of the other three

tests. With all but one distribution combination, WJOB had inferior

power to the other three tests. The exception occurred for the S/-S

combination. Here KMD and WJOB were approximately equal in power, and

less powerful than BF. BF was, in turn, less powerful than OB. With

the N/N combination, KMD and BF were about equally powerful and less

powerful than OB. With the N/P, SS/MS, N/SS, N/MS, N/S, and N/-S

combinations OB had more power than KMD which, in turn, was somewhat

more powerful than BF. OB, BF, and KMD had approximately equal power

when applied to the N/ML, N/L, and ML/SL condition combinations.

Power estimates were made for conditions in which the mean for

the second population exceeded the mean for the first, and for

conditions in which the size order of the means was reversed. For

these conditions WJOB tended to be the procedure of choice with an
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indirect relationsh:2 between sample sizes and population variances, and

OB tended to be the procedure of choice for indirect relationships.

Because these results parallel the results for the conditions with equal

means, the power esamates are not reported here.

Conclusions

Based on the results reported in the present paper the following

conclusions were drawn.

1. The ST procedure frequently led to a liberal test when the

populations had equal means and variances but dissimilar shapes and the

sample sizes were unequal. When population means differed by a half

standard deviation, ST had Type I error rates similar to the nominal

significance level. The Type I error rate for K was not seriously

affected by differences in distributional shape when population means

were equal. The empirical Type I error rates tended to be less than

the nominal significance level when population means were unequal.

Previously, Conover et al. (1981) and Olejnik and Algina (1985a) found

that when distributions had unequal means but were otherwise identical,

both ST and K tended to be conservative. These results are consistent

with the results reported in this paper for K, but are not consistent

with the results reported for ST.

2. STM and KM tended to be liberal both for conditions with equal

population means and for conditions with unequal population means. They

were also liberal with both equal and unequal sample sizes. When the

sample sizes were unequal the STED was liberal for many distribution

combinations. Only KMD had empirical Type I error rates similar to the

15
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nominal level for most of the distribution combinations, for equal and

unequal sample sizes, and w both equal and unequal population means.

The results for STMD are consistent with previous research indicating

that STMD becomes liberal with unequal sample sizes (Olejnik & Algina,

1985a). The results for STM and KM are not consistent with this previous

research indicating that these tests have appropriate Type I error rates

only with symmetric distributions (Conover et al., 1981; Olejnik &

Algina, 1985a). In a sense, the results for KMD are not consistent with

previous research indicating that KMD becomes liberal when all populations

are skewed to the same degree.

3. Using AOB frequently led to a liberal test. This result wad

found for equal and unequal sample sizes and for equal and unequal

population means. Even when both distributions were normal, a slightly

inflated Type I error rate was observed.

4. Using OB, BF, and WJOB resulted in empirical Type I error rates

similar to the nominal significance level. These results were consistent

across equal and unequal sample sizes and across equal and unequal

population means.

5. The relative power of the tests depended on the sample-size

conditions being investigated. With equal sample sizes and either equal

or unequal population means, the four tests considered in the power

comparisons (OB, BF, WJOB, and KMD) tended to have similar power. The

exceptions to tais generalization were that KMD had lower power with the

S/-S distribution combination, BF had lower power with the N/P combination,

and BF and WJOB had lower power with the N/ML, N/L, and ML/SL combi-

nations.
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6. WJOB was at least as powerful as OB, BF, and KMD when sample

sizes and population variances were positively related. It was more

powerful except when at least one distribution was leptokurtic. In

those conditions BF and KMD had approximately the same power as WJOB.

These results were consistent for conditions involving equal population

means and fcr conditions involving unequal population means. When

sample sizes and population variances were negatively related, OB was

at least as powerful as the otter tests. OB was the most powerful test

except with distribution combinations involving at least one leptokurtic

distribution. Then, BF and KMD had power approximately equivalent to

the power of OB. Again these results were consistent across conditions

with equal population means and conditions with unequal population

means.

7. The results of the present study in conjunction with previous

research indicates that no one procedure for comparing variances is

uniformly the best strategy. With equal-sized samples a strategy that

will yield appropriate Type I errors and reasonably powerful tests is to

use OB unless there is evidence of heavy tails. In that case BF can be

used to increase power while retaining appropriate Type I error rates.

With unequal sample sizes and when the evidence suggests a direct

relationship between the sample sizes and population variances the

strategy might be modified to use WJOB in place of OB. The major

question about this modification is whether the relationship between

the sample sizes and sample variances is a reliable guide to the

relationship between the sample sizes and population variances. If the

former relationship is an unreliable guide, then the modification may

entail a fairly large loss of power.
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Table 1

Skewness and Kurtosis of the Distributions

Distribution Skewness Kurtosis

Normal (N) 0 0

Platykurtic (P) 0 -1.00

Slightly Skewed (SS) .25 0

Moderately Skewed (MS) .50 0

Skewed (S) .75 0

Slightly Leptokurtic (SL) 0 .50

Moderately Leptokurtic (ML) 0 1.75

Leptokurtic (L) 0 3.75
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Table 2

Summary of Conditions Simulated

Distributions

2 2 2 2 2 2

> 02 al "2 02

al a2 al a2 al a2

N/N

N/P

N/SS

N/MS

N/S

N/SL

N/ML

N/L

SS/or S

ML/SL

Note: The following sample-size combinations were employed with
each condition: 20/20, 23/17, 17/23.
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Table 3

Estimated Tj'e I Error Rates: Conditions with E ual Effect Sizes and

Sample S'zes

Distributions AOB OB BF WJOB ST K STM KM STMD KMD

N/N 64
a
51 56 47 51 55 56 71 45 50

N/P 64 52 42 52 57 52 63 65 48 46

SS/MS 53 46 39 40 47 44 53 64 35 38

N/SS 49 36 41 36 55 52 60 60 46 44

N/MS 58 44 41 41 54 49 54 59 41 47

N/S 64 50 39 47 56 61 65 69 50 41

N/-S 76 57 52 56 54 57 79 74 54 54

S/-S 72 53 43 47 57 43 62 48 48 27

N/5L 54 40 48 35 39 41 51 54 45 40

N/ML 60 44 51 39 65 48 74 71 56 52

NIL 68 61 66 56 82 70 86 79 72 58

ML/5L 59 47 46 44 50 52 68 68 54 51

Note: Underlined figures are liberal estimated Type I error rates.

aNumber are rounded to the thousandth place.
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Table 4

Estimated Type I Error Rates: Conditions with Equal Effect Sizes and

Unequal Sample Sizes

Distribution
Sample
Size AOB OB BF WJOB ST K STM KM STMD KMD

N/N 23/17 58a 41 41 43 53 50 56 71 45 50
17/23 55 43 41 42 50 58 55 56 76 45

N/P 23/17 66 51 34 46 72 61 69 56 114 48
17/23 67 51 50 53 73 59 84 63 103 46

SS/MS 23/17 53 52 37 40 47 44 53 64 35 38
17/23 68 39 33 59 57 56 56 68 92 43

N/SS 23/17 69 60 43 48 63 59 66 73 94 51
17/23 48 39 43 43 60 43 59 58 86 46

N/MS 23/17 51 43 33 43 43 42 43 49 54 31
17/23 63 52 51 52 57 56 58 72 109 63

N/S 23/17 64 44 36 46 65 50 69 72 96 43
17/23 60 44 39 42 44 57 79 74 54 54

N/-S 23/17 54 41 39 51 50 43 61 52 77 38
17/23 63 45 35 49 50 60 68 69 80 45

S/-S 23/17 73 57 40 65 69 70 75 53 84 27
17/23 77 65 50 57 69 67 88 63 102 37

N/SL 23/17 62 50 44 50 54 51 63 56 91 51
17/23 69 55 48 53 65 55 70 66 109 57

N/ML 23/17 64 46 53 58 60 60 77 72 92 48
17/23 54 43 38 44 69 52 70 59 101 49

N/L 23/17 61 51 50 64 78 53 82 64 115 53
17/23 75 62 63 38 85 81 85 84 141 69

ML/SL 23/17 62 45 43 42 62 68 65 70 90 53
17/23 48 30 42 52 49 35 61 60 83 38

Note: Underlined figures are liberal estimated Type I error rates.

aNumbers are rounded to the thousandth place.
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Table 5

Estimated Power: Conditions with Equal Differences

giiTLFgize
Variance 20/20 23/17 17/23

Distribution Ratio OB BF WJOB KND OB BF WJOB KMD OB BF WJOB KMD

N/N 1.5:1 12a 12 11 11 10 10 14 10 12 9 7 10
2.0:1 24 23 23 23 21 21 29 11 26 22 16 23
2.5:1 36 37 34 31 33 38 44 34 45 38 32 38
3.0:1 51 50 50 52 43 46 55 44 57 51 38 52
3.5:1 62 62 60 61 55 60 69 58 68 62 51 63
4.0:1 70 70 67 71 61 68 75 68 78 72 60 71

N/P 1.5:1 10 8 5 8 7 6 11. 7 11 5 5 9
2.0:1 25 20 22 23 17 18 27 20 28 17 16 23
2.5:1 40 31 37 38 29 26 44 31 44 29 28 37
3.0:1 53 45 50 52 42 39 58 43 62 44 40 53
3.5:1 65 55 61 60 54 53 69 58 72 58 51 65
4.0:1 75 66 71 70 67 66 80 70 79 65 59 70

SS/MS 1.5:1 11 11 11 12 11 10 14 11 14 9 8 11
2.0:1 28 23 23 24 22 22 30 24 28 22 18 27
2.5:1 39 40 37 40 33 35 45 37 43 34 27 40
3.0:1 51 50 50 53 43 47 56 51 59 47 40 54
3.5:1 64 60 61 63 57 59 70 62 69 62 51 65
4.0:1 70 68 67 71 62 66 74 68 77 70 58 72

N/SS 1.5:1 12 12 12 12 8 9 11 9 12 9 7 11
2.0:1 24 22 23 23 21 22 28 21 28 21 18 24
2.5:1 40 38 38 39 31 33 42 33 42 34 27 36
3.0:1 52 50 50 49 42 47 57 47 57 51 40 52
3.5:1 60 59 57 59 54 56 66 56 67 59 49 60
4.0:1 70 71 68 71 63 68 76 67 74 70 57 69

N/MS 1.5:1 11 9 10 10 10 11 14 11 14 10 8 11
2.0:1 25 23 23 24 19 20 29 20 27 19 16 22
2.5:1 38 36 36 38 34 35 44 34 47 36 28 41
3.0:1 53 51 51 51 46 50 61 50 56 49 40 52
3.5:1 62 61 59 62 55 60 69 60 68 59 49 62
4.0:1 71 72 68 72 58 65 72 65 73 67 55 70

N/S 1.5:1 11 10 11 13 10 10 15 13 12 8 7 13
2.0:1 23 20 21 23 20 22 28 23 28 21 18 27
2.5:1 40 36 38 40 34 34 44 36 44 36 31 42
3.0:1 52 49 50 53 43 46 56 49 58 47 39 54
3.5:1 64 63 61 68 53 55 66 58 68 59 48 64
4.0:1 70 65 67 70 62 64 76 67 75 69 56 73

(Table continues)
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Table 5 (continued)

Sample Size
Variance 20/20 23/17 17/23

Distribution Ratio OB BF WJOB KND OB BF WJOB KMD OB BF WJOB KMD

N/-S 1.5:1 12 9 10 12 9 9 13 10 13 9 7 12

2.0:1 28 24 26 26 19 19 27 22 28 21 18 27

2.5:1 40 36 37 39 30 34 43 35 42 34 27 39

3.0:1 52 49 49 53 44 46 56 50 57 49 41 55

3.5:1 62 59 58 63 57 58 69 58 67 58 49 65

4.0:1 70 69 68 72 62 65 75 68 76 69 59 72

S/-S 1.5:1 12 10 11 7 12 11 16 7 14 9 8 7

2.0:1 25 21 24 14 23 23 30 14 28 21 19 14

2.5:1 42 37 39 25 34 33 44 21 43 34 29 26

3.0:1 53 49 50 35 42 46 55 30 57 47 42 37

3.5:1 62 59 59 44 58 60 70 45 70 60 55 47

4.0:1 69 67 66 51 63 68 75 49 75 69 59 56

N/SL 1.5:1 12 13 11 12 10 10 13 10 15 12 10 14

2.0:1 24 24 23 24 22 24 30 23 27 23 17 25

2.5:1 40 39 37 39 32 37 43 36 45 40 30 40

3.0:1 51 54 48 51 44 49 55 47 57 51 40 53

3.5:1 60 63 57 61 55 60 66 60 69 64 50 63

4.0:1 67 69 64 67 63 73 76 71 73 70 54 69

N/ML 1.5:1 14 15 14 13 12 14 16 13 17 15 12 15

2.0:1 25 26 23 25 21 25 29 23 29 28 18 29

2.5:1 40 43 39 43 34 40 46 38 39 39 28 41

3.0:1 53 58 50 54 46 54 56 59 55 54 41 53

3.5:1 63 67 61 65 52 61 63 56 65 64 48 62

4.0:1 67 71 64 70 61 72 75 71 73 73 57 72

N/L 1.5:1 18 19 17 19 16 19 21 18 17 17 11 18

2.0:1 33 39 31 35 25 33 33 32 33 34 23 33

2.5:1 42 49 40 46 38 47 50 45 47 48 35 47

3.0:1 54 63 52 59 48 60 60 54 56 59 41 56

3.5:1 60 68 58 65 56 68 66 63 66 69 50 66

4.0:1 66 75 64 72 61 74 72 71 73 77 61 75

ML/SL 1.5:1 6 6 6 7 4 6 8 8 7 5 3 6

2.0:1 14 16 13 17 10 15 18 15 16 14 7 15

2.5:1 22 25 20 27 14 22 24 21 28 27 15 28

3.0:1 32 37 30 37 26 36 39 37 41 37 22 38

3.5:1 41 47 38 49 33 47 49 47 50 48 30 49

4.0:1 48 55 44 55 39 51 55 46 56 55 35 55

aNumbers are rounded to the hundredth place.

25


