
DOCUMENT RESUME

ED 271 100 IR 012 177

AUTHOR Kaiser, Javaid
TITLE Identification of Factors That Affect Software

Complexity.
PUB DATE Dec 85
NOTE 93p.; Requirement for master's degree, University of

Kansas. Small print in the appendixes.
PUB TYPE Dissertations/Theses Undetermined (040) --

Tests /Evaluation Instruments (160)

EDRS PRICE 14701/PC04 Plus Postage.
DESCRIPTORS Adults; *Computer Software; *Difficulty Level; Factor

Analysis; Integrated Activities; Programing;
Questionnaires; Research Methodology; Surveys;
*Systems Analysis; Tables (Data)

IDENTIFIERS *Software Design; *Software Maintenance; System
Dynamics

ABSTRACT
A survey of computer scientists was conducted to

identify factors that affect software complexity. A total of 160
items were selected from the literature to include in a questionnaire
sent to 425 individuals who were employees of computer-related
businesses in Lawrence and Kansas City. The items were grouped into
nine categories called system planning, system characteristics,
system design, system testing, system documentation, system
correctness, system clarity, programming style, and system
management. Factor analysis and central tendency measures were used
to analyze the data. Based on 147 resvndents, 98% of the items were
found to affect system complexity. Large item variance was attributed
to the lack of formal education or experience of respondents in some
areas of software development. The factors extracted in this study
were found to be useful in regrouping items to determine the
complexity of system attributes, system components, or of various
phases of system development. The need for a weighting scheme to add
component complexity to determine the overall system complexity was
identified. It is suggested that replication of this study on a
larger scale would prove useful and that the complexity of various
system components be weighted to determine the overall complexity of
the system. A list of references, a copy of the questionnaire, and
factor matrices are also provided. (JB)

Reproductions supplied by EIRS are the best that can be made

from the original document.

IDENTIFICATION OF FACTORS THAT AFFECT

SOFTWARE COMPLEXITYO U.S. DEPARTMENT Of EDUCATION

O EDUCATIONAL ifirdSICES INFORMATION
CENTER (ERIC/

The document has been reproduced as
received from the person or orpsnizahon

r.- onpsneang It
O Mmor changes have been mode to improveN reproduction qualm/

Points of view or opinions stated in tMa docu
mans do not necessarily represent office.W
position or policy

By

Javaid Kaiser

B.S., University of Punjab, 1970
M.A., University of Punjab, 1972
M.S., University of Kansas, 1980
Ph.D., University of Kansas, 1984

Submitted to the Department of Computer Science
and to the Faculty of the Graduate School of the
University of Kansas in partial fulfillment of
the requirements for the degree of Master of Science.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Javaid Kaiser

Thesis Committee:
TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

mow_ \A-1.1,4.Jotc
hairman

2-7 6'21A-

Thesis defended: December, 1985.

2

ABSTRACT

A survey was conducted on computer scientists to

identify factors that affect software complexity. A total

of 160 items were selected from the literature to include

in the questionnaire. The items were grouped into nine

categories called system planning, system characteristics,

system design, system testing, system documentation,

system correctness, system clarity, programming style, and

system management. Factor analysis and central tendency

measures were used to analyse data.

Based on the data on 147 respondents, 98% of the

items were found to affect system complexity. Large item

variance was attributed to the lack of formal education or

experience of respondents in some areas of software

development. The categories used in the present study,

were not found mutually exclusive. The factors extracted

in this study were found useful in regrouping items to

determine complexity of system attributes, system

components, or of various phases of system development.

The need for a weighting scheme to add component

complexity to determine the overall system complexity was

identified. The replication of this study on a larger

sample was suggested.

i

3

ABSTRACT
TABLE OF CONTENTS
LIST OF TABLES

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

REFERENCES

Appendix A
Appendix B

TABLE OF CONTENTS

INTRODUCTION
Statement of the problem

System Maintenance
Repair Maintenance
Adaptive Maintenance . . .

Productivity Maintenance
Significance of the study . . .

Purpose of the study
REVITW OF LITERATURE

Types and Levels of complexity
Software Metrics

Program Length
Program Volume
Programming Effort
McCabe's Metric
Bond Metric
Program Chunk

METHODOLOGY
Development of the Questionnaire
Sampling
Data Analysis

RESULTS
System Planning
System Characteristics
System Design
System Testing
System Documentation
System Correctness
System Clarity
Programming Style
System Management

DISCUSSION AND CONCLUSION
Conclusion

THE QUESTIONNAIRE
FACTOR MATRICES

ii

4

Page

1
2
3

3

3

4

4

5
6
8
9
10
11
11
12
13
13
17
17

20
22
29
31
36
39
43
46
49
52
56
60
64
67

71
78

LIST OF TABLES

TABLES PAGE

1 Item Statistics 23

2 Factors, Eigenvalues, and the Variance
Explained on System Planning Items 30

3 Factors, Items loaded on Factors, and

4

5

6

7

8

9

10

11

12

13

14

Item loadings on System Planning Category 32

Factors, Eigenvalues, and the Variance
Explained on System Characteristics Items 34

"actors, Items loaded on Factors, and Item
loadings on System Characteristics Category 35

Factors, Eigenvalues, and the Variance
Explained on System Design Items 37

Factors, Items Loaded on Factors, and Item
Loadings on System Design Category 38

Factors, Eigenvalues, and the Variance
Explained on System Testing Items 40

Factors, Items Loaded on Factors, and Item
Loadings on System Testing Category 42

Factors, Eigenvalues, and the Variance
Explained on System Documentation Items 44

Factors, Items Loaded on Factors, and Item
Loadings on System Documentation Category 45

Factors, Eigenvalues, and the Variance
Explained on System Correctness Items 47

Factors, Items Loaded on Factors, and Item
Loadings on System Correctness Category 48

Factors, Eigenvalues, and the Variance
Explained on-System Clarity Items 50

iii

15 Factors, Items Loaded on Factors, and Item
Loadings on System Clarity Category

16 Factors, Eigenvalues, and the Variance
Explained on Programming Style Items

17 Factors, Items Loaded on Factors, and Item
Loadings on Programming Style Category

18 Factors, Eigenvalues, and the Variance
Explained on System Management Items

19 Factors, Items Loaded on Factors, and Item
Loadings on System Management Category

iv

6

51

53

55

57

58

it*

Chapter 1

INTRODUCTION

Software complexity is a general, non-standard, and

relative term describing the composition of the system. It

is a relative term because it does not have an absolute

value assigned to it. A system with high software

complexity may be less complex than another system._ The

term is non-standard as it is not delimited in scope and

may be used on different occasions to mean different

things. A system with a large code having several

interliking modules may be considered a complex system. On

she other hand a short program with a difficult algorithm

may equally be called complex.

Because of the generality associated with the term,

software complexity may be used to define complexity level

for various components of the system i.e. algorithm

complexity, code complexity, programming language

complexity, module linkage complexity, or I/O complexity.

Software complexity may also be used as an index for

various stages of system development and maintenance.

These developmental phases may be system planning, system

characteristics, system design, system testing, system

management, system coding, and programming style.

The term 'software complexity' gives an overall view

of the complexity level in a system and does not

1
7

necessarily mean that all system components have the same

complexity level. For example, a system may have a complex

code but a simple testing procedure or may have a complex

design but simple code. Likewise, various stages of system

development may not have the same complexity level. A

system may be very simple at the design stage but very

complex in the testing phase. Therefore, the term

'software complexity' gives a general impression about the

system but does not completely describe all its attributes.

The complexity of a system is very much affected by

the way the system is designed, coded, and tested. ;human

factors including programming style, language

characteristics, and hardware limitations also affect the

complexity of the system. It is a known fact that

maintenance of a complex system is a difficult and

expensive task. This concern has resulted in a research

activity to find ways to develop less complex systems. The

present study is a step forward in this direction. The

identification of factors that affect software complexity

will help computer scientists to build less complex

systems.

Statement of the Problem

The problem addressed in this research study was

stated as 'Identification of factors that affect software

2

complexity'. The term 'factors' as used in the statement,

referred to the underlying dimensions that supposedly

affect software complexity. The term software complexity

was used interchangeably with system complexity and

referred to large nrograms only. Complexity was defined in

terms of system maintenance and included repair

maintenance, adaptive maintenance, and productivity

maintenance. The definitions of these terms are given

below:

System Maintenance:

System maintenance was defined as an amouont of effort

needed to add, delete or modify segment(s) of a program. A

program that takes less effort in modification is less

complex than the one that takes more effort.

Repair Maintenance:

Repair maintenance is the maintenance needed to

correct logic errors discovered in a program after it has

been released into production (Vessey and Weber, 1983).

Adaptive Maintence:

Adaptive maintenance is the maintenance needed by a

program to better meet users' needs (Lientz and Swanson,

1981).

3

9

Productivity Maintenance:

Productivity maintenance is the maintenance needed to

improve the efficiency of the program in terms of

consumption of resources (Lientz, Swanson, and Tompkins,

1978).

Significance of the Study

Several attempts have been made in the past to

identify the factors that affect software complexity and

to develop a procedure to measure the complexity level in a

system (Curtis, Sheppard, Millman, Borst, and Love, 1979;

Lientz et. al., 1981; Vessey et. al., 1983).

The uniqueness of this study stems from rationale that

overall system complexity cannot be measured accurately

unless the complexity of its major components is measured

correctly, because system components tend to have

different levels of complexity. In order to produce an

index for the overall complexity of a system, component

complexity should be measured such that it has an additive

property. The other unique characteristic of this study

is the belief that overall system complexity is not of much

value compared to the system component complexity. It is

the component complexity that determines the cost of

particular system maintenance.

The significance of this study therefore, lies in its

attempt to identify major components of the system and the

various elements that affect the complexity of those

components.

Purpose of the Study

The purpose of this study was to develop an exhaustive

list of elP-Lents that affect system complexity measured in

terms of system maintenace and then to use these elements

to identify underlying dimensions called factors, that

affect system complexity of various system components.

The factors identified based on statistical significance

were considered to provide a framework to conduct

experimental study to determine the impact of each of these

factors on various softwares under various conditions and

to help in developing procedures to make less complex

systems.

5

11

Chapter 2

REVIEW OF LITERATURE

Software complexity may have different meanings in

different contexts. It may refer to the complexity of the

algorithm, complexity of developing the system, complexity

of interlinking modules, or the complexity of I/O

interface. In the present study, software complexity means

the amount of the effort needed to do repair maintenance.

Software complexity is affectted by several factors.

Structured programming, module programming, and top down

programming have considerably reduced the software

complexity of systems (A1- Suwaiyel, 1983). These factors

contribute to the simplicity and clarity of code and

therefore make it easy to perform repair maintenance

(Canning, 1972). Formal proofs of correctness also reduce

software complexity (DeMillo, Lipton, and Perlis, 1979).

Personnel characteristics of programmers affect system

complexity as well (Weinberg, 1971). Endres (1975) found

empirical evidence that high quality programmers have less

cost of repair maintenance. However, more formal and

operational measures of module complexity, progrr-nming

style, and programmer quality are needed to reduce system

complexity (Vassey et.al., 1983).

The issue of software complexity is tied up with the

repair maintenance of the system. Vassey et. al., (1983)

considered repair maintenance a function of system

6

12

complexity. Repair maintenance implies modifications in

the program already in production to (1) fix logical errors

discovered after its release, (2) to improve the

operational efficiency of the program by economizing

resources, or (3) to meet users' needs in a better way

(Lientz et. al., 1981).

The complexity measure provides an index of relative

cost to implement or comprehend a system. Rising cost of

software development and maintenance has aroused interest

in tools and measures to quantify and analyse software

complexity (Jensen and Nairavan, 1985). Leintz et. al.

(1978) found that the repair maintenance cost may go from

.0% to 75% of the total life cycle of a system. Davis

(1974) discovered the relationship between system

complexity and the entropy. He found that complex systems

undergo greater entropy. The high correlation between

system complexity and repair maintenance as well as the

need to reduce the cost of system maintenance has triggered

tremendous amouont of research activity on issues related

to system complexity (Thayer, Lipow, and Nelson, 1977).

The measuremeut of software complexity is still in its

infancy (DeMillo, et. al., 1980). It is generally measured

by the nuilbsq of modules, size of modules, and inter-

linkage of modules (Al-Suwaiyel, 1983). Software metrics

are also used in determining the system complexity. A

strong relationship between software metrics and system

7

13

complexity has been identified by McCabe (1976), Henry,

Kafura, and Harris (1981), Ottenstein (1981), and Schneider

(1981). In spite of 4°Nese indices, it is very difficult to

determine system complexity accurately because of less

precise factors that determine such complexity. Such

factors include but are no limited to ease of design,

clarity of code, ease in understanding inter-module

communication, programming style, and team work of

programmers (Pashtan, 1985).

Types and Levels of Complexity

Al-Suwaiyel (1983) has categorized software complexity

into inherent complexity and complexity of developing the

system. Inherent complexity deals with the complexity of

the algorithm and depends on the computational model used

for the solution (Savage, 1976). It may be defined as the

minimum over all the complexities of all the algorithms

available e- solution. Inherent complexity is generally

measured in terms of time and space needed for execution.

Quality and effectiveness of design and the total project

cost can best be determined through inherent complexity.

The second type of complexity that deals with system

development have attributes like size of the system, number

of modules, number of functions within the system and the

linkage between modules. It is heavily influenced by

8

14

system design methods that include flow oriented methods,

data structure oriented methods, and perspective methods

(Peter, 1981). System development complexity is

independent of the inherent complexity of a system.

Software complexity may also be categorized as (1)

logical, (2) structural, or (3) psychological. Logical

complexity deals with program control graph and may be

measured by a graph model called Cyclomatic (McCabe, 1976).

Structural complexity deals with size and linkages within

the sytem. Psychological complexity, on the other hand,

refers to program comprehensibility.

The complexity level in a system may be documented in

several ways. Vassey et. al., (1983) based his

classification on the length of code. A system with a code

length of 1 to 300 lines was called a simple system. Code

length of 301 to 600 lines represented a moderately complex

system while systems with more than 600 lines were labeled

as complex systems.

Software Metrics

The software metrics that are most commonly used in

determining software complexity have been reviewed briefly

in the following text.

9 15

Program Length:

This is the most commonly used metric and is denoted

by 11 such that

N = N
1
+ N

2
where

Hi and NN2 represent total number of operator and operand

occurances, respectively. This metric was first introduced

by Halstead (1977) to measure software complexity. Program

length can also be measured as

N = n1 log2 nl + n2 log2 n2 where

H1
and

R2 represent unique operators and opernads in the

system, respectively.

If size of the system is the sole determinant of

system complexity, program length is the most suited

metric. Davis (1984) criticised the use of operator and

operand counts and considered it as an obsolete measure to

determine software complexity. Jensen (1982) however, has

propuserl anohter alternative to measure program length and

it is represented by the following expression.

N log2 n1 ! + log2 n2 !

This equation is considered an improvement over

Halstead's original proposal (Jensen et. al., 1985).

Jensen et. al. (1985) also reported that the normalized

difference between the program length and Halstead's length

eatisatOr is higher than reported by Halstead (1977). It,

therefore, confirmed the findings of Shen, Conte, and

Dunsmore (1982) that program length is an imprecise measure

to determine software complexity.

Program Volume:

Program Volume is the size of the program and is

denoted by y. Mathematically,

V = (N1 + N2) log2 (n1 + n2) where

H1 and N
2

are the number of operators and operands that

occur in a system, respectively. The ni and n2 refer to

unique number of operators and operands, respectively

(Halstead, 1977).

Programming Effort:

The amount of programming effort needed to perform

repair maintenance on a system is considered an index of

the complexity of that system. It is denoted by E and may

be expressed as

E = V (nl / n2) (N2 / 2) where

n
1 '

n
2 '

and N2 represent number of unique operators,

number of unique operands, and the number of occurances of

operands, respectively. This metric was also proposed by

Halstead (1977).

Programming effort may also be interpreted as decision

to implement an algorithm. It is highly correlated with

program length and program volume measures. Programming

effort, therefore, is also algebrically equivalent to

E = (nl N2 V) (36 n2) where

11

17

V refers to program volume. The notation nl, n
2

, and
112

have already been defined.

Shen et. al. (1983) has developed a linear

relationship between programming time and programming

effort. It is mathematically represented as

E = V2 / V* where V = N log2

In this equation, effort refers to elementary mental

discriminations, V to the number of mental comparisons

needed to write a program of length N. V* refers to

program potential volume (smallest value).

Pashton (1985) has used programming effort metric to

compare process model and monitor model in the design of

operating systems.

McCabe's Metric:

McCabe's metric denoted by MC deals with program

control complexity. According to thf.a scheme, lineraly

independent control paths are determined in a connected

graph representing the software system. Mathematically,

MC = e - v + 2 where

e and v are the ?Ages and vertices of the graph (McCabe,

1976). The metric mg may also be computed readily by the

equation

MC = D + 1 where

p denotes the number of decision nodes in the graph.

12

18

The correlation of program length, program volume, and

programming effort with McCabe's complexity measure (MC)

was found low and confirmed the hypothesis that high

correlation between mg and N is typical of decision bound

systems (Henry et. al., 1981). Prather (1984) considered

McCabe's metric insensitive to restructuring of code,

nesting level in the program, and found it correltaed

highly with the length of the program.

Bond Metrics:

This metric was introduced by Belady (1980) and refers

to the average level of nesting or average width of the

control graph. It is also called Belady's Bond Metric and

is denoted by B. Mathematically,

B = (i L(i)) / K where

E refers to the number of nodes in the control graph while

L(i) denotes the number of nodes at level i. Jensen et.

al., (1985) found consistently high correlation between

McCabe's MC and Belady's g measures. However, because of

less precision of B over MC and because of the

computational ease, mg was considered a better estimate of

system complexity.

Program Chunk:

Davis (1984) has introduced a new metric called

program chunk to measure software complexity. The

rationale of this appraoch is that experienced programmers

13

19

Use chunks to understand a program while beginners

concentrate on individual statements (Shneiderman, 1976b).

Therefore, the cost of repair maintenance can best be

estimated if system complexity is expressed in terms of

chunk complexity.

Based on the work of Woodfield (1980) on modules and

their inter-relationship, Davis (1984) proposed the

following equation to determine chunk complexity.

C = n
(

m
Ci Rj) where

C = Complexity of the chunk 1,

m = Number of other chunks affected by the chunk i,

n = Number of chunks, and

R = 2/3, a constant.

The constant B is based on the assumption that the

chunk is reviewed as many times as there is inter-

relationship with other chunks and that the complexity of

the chunk in terms of understanding it, decreases with

every subsequent review.

From the perspective of the maintenance programmer,

the effort required to modify the program depends on

whether the code is familiar or unfamiliar. The idea of

chunks, therefore, may easily be extended to familiar and

non-familiar chunk. A chunk is considered familiar if it

has a high frequency of occurance. The formation of chunks

recognizable by a programmer is a function of programming

language and the application environment. It is because

14

20

semantic representation is formed by the syntactic

knowledge of the programming language. For example, the

recall of statements to switch the values of two variables

is spontaneous to an experienced programmer. Moreover, the

chunks that are meaningful can be remembered better

(Shneiderman, 1976).

The identification of chunks and defining their

boundaries is a difficult task. Norcio (1980) and Brotsky

(1981) have addressed this issue in detail.

Chunks may be classified as mandatory or non-mandatory

(Mayer, 1979). Mandatory chunks are a set of statements

that have to occur together. For example, opening and

closing of a FOR loop. Soloway (1982) however, has

categorized chunks as strategic, tactical, and

implementation.

The overall complexity of a system, according to this

metric, may be determined by the complexity of chunks and

their inter-relationship. The latter is also called

program structure.

In spite of large number of research efforts, the

software metrics that are available are not precise enough

to accurately measure the system complexity. Moreover, the

existing literature on the subject does not provide enough

direction to rank these metrics in terms of their

efficiency. The metrics of Halstead (1977) that are

supported by Sanshara, Vehara, and Ohkawa (1981) and Curtis

15

21

et. al., (1979) are criticised by Baker and 4weben (1980)

for being insensitive to program nesting and program

structure. Similarly, the metrics of McCabe (1976) and

Belady (1980) are considered too coarse to tap the

intricasies of the program (Prather, 1984). The chunk

complexity metric that taps the cognitive process needed to

understand programs look promising but needs further

research.

16

22

Chapter 3

METHODOLOGY

This chapter describes in detail the process used to

identify factors that reduce software complexity measured

in terms of repair maintenance.

Development of the Questionnaire

The first task of this study was to review the

existing literature on software complexity and to identify

elements that supposedly affect the corplexity of the

system. After a thorough review, 160 items were selected

as a potential set of elements that affect software

complexity measured in terms of system maintenance. The

items were generally drawn from Arthur (1983), Bersof,

Handerson, and Siegel (1980), Dunn and Ullman (1982),

Kernigham and Planger (1974), London (1974), Meek and Heath

(1981), and Tassel (1978).

Based on content, the items were categorized into nine

logical categories named system planning, system

characteristics, stystem design, system testing, system

documentation, system correctness, system clarity,

programming style, and system management. System planning

category included items related to system specifications

and overall planning considel:ations. System ..naracteristics

17

23

category included terms that defined various attributes of

the system like efficiency, portability, maintainability,

modularity, reliability and so on. Items related to design

considerations were grouped under system design category.

System testing category included items on testing options

and tools. Items that heavily influenced the correctness

of the system output were grouped under system

correctness. The items that influenced writing simple and

easy to understand code were grouped under the program

clarity category. Programming style elements describing

Do's and Don'ts were grouped under programming style

category. Items describing management of systems from

planning to the completion stage were grouped under system

management.

Items were written like a Likert Scale to provide

enough variance. Five choices numbered 1 to 5 were given

to respondents on each item. The choices were labeled as

strongly agree, agree, neither agree nor disagree,

disagree, and strongly disagree. For consistency

considerations, the format of these choices was kept the

same throughout the questionnaire. This forced some of the

items to be worded negatively and they were spread randomly

within the category to which they belonged.

A statement describing the content of each category

preceded before the items. In each lead paragraph, it was

18

24

explicitly mentioned that the system complexity should be

interpreted in terms of system maintenance.

After thr questionnaire was developed, a cover letter

was prepared describing the purpose of the study,

definition of the term 'complexity', and the use of the

data collected. The need for respondents' cooperation was

also emphasized. This cover letter was used as the front

page of the questionnaire.

The last section of the questionnaire requested

demographic information on respondents. It included

questions on sex, education, type of employment, nature of

job, job designation, and computer related experience.

This section was included to identify and exclude from

study those respondents who were associated with software

firms but were not necessarily computer scientists. For

example, a Data Processing Manager who is an administrator

working in a software firm may not have any formal training

in the field of computer science.

A copy of the questionnaire including cover letter and

demographic section is given in Appendix A.

Sampling

Because of the length of the questionnaire, the

cooperation of computer related businesses in administering

the questionnaire to their employees was not frequently

19

25

available. Since it was an exploratory study and intended

to be exhaustive, the reduced version of the questionnaire

was not considered appropriate. Therefore, the whole

questionnaire was mailed out or was delivered in person to

businesses in Lawrence and Kansas City without any regard

to sampling strategy.

A total of 425 questionnaires were distributed of

which 152 were received in complete form. The completed

questionnaires were examined to identify the ones that were

completed by computer professionals. This task was

accomplished with the help of demographic information

collected on respondents on the last page of the

questionnaire. Seven of the completed questionnaires did

not have complete demographic information to identify their

status as computer scientists. These questionnaires were

therefore excluded from the analysis leaving behind a

sample of 147.

Data Analysis

The information from the completed questionnaires was

entered on to a computer system. Item statistics in terms

of means and standard deviation was computed for each item.

Items with a mean value of 3.0 were considered non-

discriminatory in terms of increasing or decreasing system

complexity. Items with a standard deviation of 1.0 or

20

26

greater were either poor discriminators or the respondents

did not have the theoretical or practical background of

concepts used in those statements.

Factor analysis was performed on each of the nine

categories separately. A principal component solution was

performed on each category to determine the total number of

factors. The factors with eigenvalue of 1.0 or greater

were considered significant. After this initial analysis

for each category, factor analysis was repeated several

times for each category by varying the number of factors to

be extracted and examining rotated and unrotated solutions,

until such a time th,t a final solution was obtained. A

solution was considered final if it was the most logical

and meaningful in terms of naming factors and cross-

loadings. Varimax rotation was used whenever a factor

matrix was rotated. The assignment of items to factors

depended on item loadings. The item was assigned to a

factor on which it loaded the highest. Items with a loading

of less than .40 were considered insignificant and were not

assigned to any factor. Statistical Package for Social

Sciences (SPSS, 1983) was used to perform statistical

analysis.

Chapter 4

RESULTS

This chapter includes the results obtained from data

analysis on items related to software complexity. The

items, divided into nine categories called system planning,

system characteristics, system design, system testing,

system documentation, system correctness, system

clarity, programming style, and system management, were

analyzed within the respective categories.

Table 1 describes the item means and standard

deviations on all the items. The category to which items

belong is identified on the top of each column. The

analysis revealed that all the items on system planning had

a mean value of less than 3.0. Item 15 was close to 3.0

and was considered a non-discriminator of software

complexity. Items 3 and 14 had a standard deviation

greater than 1.0.

Item statistics on items related to system

characteristics revealed that items 2 and 14 have means

greater than 3.0. This happened because these items were

negatively worded. On the remaining items, the mean value

was less than 3.0. In terms of standard deviation, items 1

to 5, 8, and 14 had a standard deviation of greater than

1.0.

Table 1

ITEM STATISTICS

System Planning

ITEMS MEAN S.D.

System

ITEMS

Characteristics

MEAN, S.D.

1 1.27 0.45 1 2.19 1.10

2 1.42 0.70 2 3.50 1.11

3 2.19 1.17 3 2.04 1.15

4 1.92 0.94 4 2.46 1.27

5 2.12 0.95 5 2.85 1.16

6 1.58 0.95 6 1.46 0.71

7 1.92 0.98 7 2.58 0.99

8 2.00 0.85 8 1.96 1.02

9 2.17 0.64 9 2.08 0.85

10 2.27 0.83 10 1.77 0.77

11 2.42 0.99 11 2.23 0.91

12 2.00 0.89 12 1.54 0.81

13 2.04 0.87 13 1.42 0.58

14 2.58 1.03 14 3.42 1.24

15 2.92 0.89 15 1.58 0.76

16 2.00 0.85

17 2.12 0.86

23

29

ITEMS

System Design

MEAN S.D.

TABLE 1 (Contd.)

System Testing

ITEMS MEAN S.D.

1 3.85 1.05 1 1.85 0.68

2 2.86 1.21 2 2.39 0.64

3 2.12 0.71 3 2.04 0.60

4 2.19 0.75 4 2.08 0.89

5 1.23 0.43 5 2.00 0.80

6 2.35 0.69 6 2.00 0.89

7 1.85 0.78 7 2.12 0.77

8 2.58 0.86 8 1.73 0.67

9 2.23 0.71 9 2.39 0.75

10 2.85 0.83 30 2.04 0.82

11 2.69 1.23 11 2.58 1.27

12 3.00 0.80 8 1.73 0.67

9 2.23 0.71 9 2.39 0.75

10 2.85 0.83 10 2.04 0.82

11 2.69 1.23 11 2.58 1.27

12 3.00 0.80 16 2.48 1.16

17 1.96 1.08 17 2.04 0.54

18 2.23 0.86 18 1.80 0.65

19 1.85 0.88 19 2.40 0.71

20 2.54 0.91

21 3.58 0.81

22 3.46 1.14

23 3.73 1.04

24

30

TABLE 1 (Contd.)

System

ITEMS

Documentation

KEAH

System Correctness

ITEMS MEAN S.D.

1 3.80 1.35 1 2.24 0.78

2 1.80 0.76 2 2.00 0.82

3 1.80 0.76 3 1.77 0.65

4 1.76 0.78 4 2.08 0.80

5 1.68 0.63 5 4.04 0.87

6 1.68 0.56 6 2.23 0.95

7 1.52 0.71 7 2.19 0.85

8 1.88 0.68 8 1.77 0.71

9 2.67 0.82 9 1.60 0.76

10 1.36 0.65 10 1.89 0.77

11 1.84 0.75 11 1.92 0.89

12 1.32 0.56 12 2.81 0.90

13 2.20 0.96 13 3.40 0.96

14 3.40 0.96 14 1.65 0.75

15 3.24 1.05 15 1.88 0.73

16 1.40 0.58 16 1.54 0.81

17 2.27 0.96

18 3.31 0.88

19 2.19 0.69

20 1.84 0.75

25

31

TABLE 1 (Contd.)

System Clarity

ITEMS MEAN S.D.

Programming Style

ITEMS MEAN S.D.

1 1.96 0.72 1 2.00 1.06

2 4.19 0.80 2 2.28 0.98

3 4.23 0.91 3 1.89 0.82

4 1.85 0.97 4 2.58 1.14

5 1.69 0.55 5 3.62 1.20

6 2.00 0.85 6 3.31 0.93

7 3.08 1.09 7 2.46 0.95

8 2.00 0.85 8 1.73 0.67

9 1.65 0.49 9 1.69 0.68

10 2.04 0.72 10 3.58 0.90

11 2.12 1.03 11 2.27 0.67

12 2.65 1.13 12 2.00 1.04

13 1.85 0.54 13 2.62 0.85

14 1.73 0.60 14 1.77 0.59

15 1.54 0.76 15 1.73 0.60

16 2.12 0.71 16 2.15 0.78

17 2.04 0.66

18 2.15 0.78

19 3.81 0.75

20 2.92 0.80

26

TABLE 1 (Contd.)

System Management

ITEMS MEAN S.D.

1 2.23 0.96

2 2.19 0.90

3 1.69 0.62

4 2.77 1.03

5 2.77 0.95

6 2.12 0.86

7 2.58 1.17

8 1.65 0.69

9 2.19 0.94

10 1.92 0.63

11 2.35 0.69

12 2.77 1.03

13 2.15 0.78

14 3.65 1.23

27

33

The analysis of system design items revealed that

items 1, 16, and 21 to 23 had a mean value greater than

3.0. Of these items, 1, 16, 21, and 23 were negatively

worded and this kind of outcome was expected. Item 22,

however, was found inappropriate to determine complexity

because of its high mean value. The items, 1, 2, 11, 17,

22, and 23, had a standard deviation greater than 1.0 and

reflected large variances present in the opinions of

respondents.

Item 15 was the only item on the list of items on

system testing that had a mean value of greater than 3.0.

It happened because of the negatively worded statement. It

was also observed that the items 11, 14, and 19 had high

standard deviations (S > 1.0).

The analysis of system documentation items revealed

that items 1, 14, and 15 were negatively worded and

therefore, showed a high mean value (X > 3.0). Items 1 and

15 were found to have a high standard deviation value

(S > 1.0).

The analysis of items under system correctness

category identified items 5, 13, and 18 with high

mean values (X > 3.0). All these three items happened to

be negatively worded statements. Regarding standard

deviation, all items behaved as expected (S < 1.0).

Items 2, 3, and 7 related to system clarity had high

mean values because of their negatively worded stem. The

28

34

standard deviation of items 7, 11, and 12 was higher than

1.0.

The analysis of programming style items identified

items 5, 6, 10, and 19 with high mean 'ralue (X > 3.0).

Content of these items revealed that they were negatively

worded. Standcird deviation on items 1, 4, 5, and 12 was

found greater than 1.0.

Item 14 related to system management had a high mean

value (X > 3.0) because of its negatively worded statement.

The remaining items of this category had a mean value of

less than 3.0. Items 4, 7, and 12 were found to have

standard deviation of greater than 1.0.

Factor analysis was performed on items for each of the

nine categories identified earlier. The results of the

analysis aria summarized below under the subheading

representing each category.

System Planning

The principal component solution of items on system

planning identified six significant factors. They together

explained 77.4% of the total variance. The factors, their

eigenvalues, and the percent of variance explained by each

factor is given in Table 2.

After exploring several possibilities, the solution

with 3 factors was found meaningful. The original factor

TABLE 2
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM PLANNING ITEMS

VARIABLE

PLAhl
PLAN2
PLAN3

PLANS9.4

PLAN5
PLANt
PLANT
PLAN8
PLAN9
PLAN10
PLAN11
PLAN12
PLAN13
PLAN14
PLAN15
PLAN-16
PLAN17

FACTOR

1

2
3

6
7
8
9

10
11
12
13
14
15
16
17

EIGENVALUE

3.94697
2.94792
2.14215

1.35919
1.16695
.89620
.69659
.61145
.44935
.3 5599
.26114
.21328
.15064
.1Uiti

:81378

PCT OF VAR

23.2
17.3
12.6

8.0
6.9
5.3
4.1
3.6
2.6
2.1
1.5
1.3
.9

6
.4
.1

CUM PCT

23.2
40.6
51.2
64.6
70.6
77.4
82.7
86.8
90.4
93.0
95.1
96.7
97.9
98.8
99.4
999

100..0

30

36

matrix was rotated orthognally to minimize crossloadings.

The three factors explained 53.2% of the total variance.

The factors, the items that loaded on these factors, and

the loading of the individual items a77e given in Table 3.

According to this solution, items 3, 4, 5, 10, 15, and

16 loaded on Factor 1. Items 6 to 9 loaded on Factor 2.

Items 1, 2, 11, 13, 14, and 17, loaded on Factor 3. Item

12 loaded poorly on all the three factors and was therefore

dropped from the analysis. Its highest loading was .38.

Based on item content, the three factors were named as High

level planning, design level planning, and Implementation

level planning.

The item loading on factor 1 ranged from .45 to .89.

Item 16 had the lowest loading while item 5 had the

highest loading. Item 4 also loaded high (.83). The

remaining items loaded in .50's. On factor 2, items 6 to 8

loaded in .70's. The range of item loading was .63 to .77.

Item 9 had the lowest loading. Item loadings on factor 3

ranged from .50 to .70. The lowest loading was .50 on item

11. Item 17 loaded the highest.

System Characteristics

The factor analysis of items on system characteristics

found four significant factors that met Kaiser's criterion

of eigenvalue greater than 1.0 (Kaiser, 1960). However,

Table 3

Factors, Items Loaded on Factors, and Item Loadings
on System Planning Category

FACTOR 1 FACTOR 2 FACTOR 3
High Level Design Level ImplementationPlanning Planning Level Planning

Items Loading Items Loading Items Loading

3 .58132 6 .71252 1 .65085

4 .83292 7 .76632 2 .67906

5 .88704 8 .75154 11 .50273

10 .50264 9 .63042 13 .57553

15 .56487 14 .55251

16 .44937 17 .70456

38

three factor solution was found more appropriate and

meaningful. The three factors combined, explained 63.1% of

the total variance. The fourth factor contributed 8.7% to

the total variance. The factors, their eigenvalues, and

the percent of variance as extracted by principal component

solution are given in Table 4.

The analysis of the rotated factor matrix revealed

that items 6, 8, 9, 12, and 13, loaded on Factor 1; items

2, 3, 4, 5, 7, and 14, loaded on factor 2; and items 1, 10,

11, and 15 loaded on Factor 3. The items that loaded on

Factor 1 were related to system characteristics that dealt

with maintenance activity. The factor was therefore named

as Maintenance. Factor 3 included items that related to

the correctness of the output and was named Correctness.

The second factor included characteristics other than those

related to Correctness or Maintenance, and was therefore

named Others. The factors, the items comprising those

factors, and their loadings are given in Table 5.

Item loadings on factor 1 range from .64 to .86. The

lowest loading was on item 12. Itme 8 loaded the highest.

The range of item loading on factor 2 was .53 to .78. Item

2 loaded the highest while item 7 had the lowest loading.

On factor 3, items 1 and 10 loaded in .50's while items

11 and 15 loaded in .80's. The range of lowing was .57 to

.898. Items 10 and 15 had the lowest and the highest

loadings, respectively.

TABLE 4

FACTORS. EIGENVALUES, AND THE VARIANCE EXPLAINED
ON SYSTEM CHARACTERISTICS ITEMS

VARIABLE

CHAR1
CHAR2
CHAR3
CHAR4
CHARS
CHAR6
CHART
CHARS
CHAR9
CHAR10
CHAR11
CHAR12
CHAR13
CHAR14
CHAR15

FACTOR

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

EIGENVALUE

3.75633
3.71272
1.99046
1.31103
.98471
.71253
.64425
.55377
.37971
.27914
.20451
.18207
.13432
.10076
.05369

PCT OF VAR

25.0
24.8
13.3
8.7
6.6
4.8
4.3
3.7
2.5
1.9
1.4
1.2
.9
.7
.4

CUM PCT

25.0
494
63.1
71.8
78.4
83.1
87.4
91.1
93.6
95.5
96.9
98.1
99.0
99.6

100.0

34

44O

Table 5

Factors, Items Loaded on Factors, and Item Loadings
on System Characteristics Category

FACTOR 1
Simplicity

FACTOR 2
Others

FACTOR 3
Correctness

Items Load ng Items Loading Items Loading

6 .78225 2 .77855 1 .59229

8 .85695 3 .68902 10 .56969

9 .72422 4 .70783 11 .83310

12 .64100 5 .76050 15 .89a31

13 .76106 7 .52989

14 .64722

L 41

System Design

The principal component analysis of items on system

design extracted nine factors with eigenvalue of 1.0 or

greater. They explained 35.1% of the total variance.

After repeating analysis with different number of factors,

the solution wlva five factors was found more meaningful.

The five factor solution explained 60.9% of the total

variance. The factors, their eigenvalues, and the

proportion of variance explained by each factor are given

in Table 6.

The item loadings for the five factor solution after

varimax rotation are given in Table 7. Factor 1, labeled a

General factor, was comprised of items 2, 10, 14, 21, and

23. The items 8, 17, 18, and 19, loaded on Factor 2 and

this factor was named System Environment. Factor 3 was

comprised of items 3 to 6 and 20. It was given a name of

Programming Considerations. The fourth factor was called

Programming Style and included items 1, 9, and 11. Items

12, 13, 15, and 16 loaded on Factor 5 called Efficiency

Considerations.

Item 7 did not meet the criterion of minimum loading

of .4 and was therefore dropped from further consideration.

Item 22 was found inappropriate after the questionnaire was

printed. Therefore, it was not included in any analysis.

These deletions dropped the total number of items in this

section to 22.

36

42

TABLE 6
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM DESIGN ITEMS

VARIABLE FACTOR EIGENVALUE

DESIGN1 1 3.61591
DESIGNS 2 3.43662DESIGN 3 2.89156
DESIGN4 4 2.10637
DESIGNS 5 1.95081
DESIGht 6 1.65630
DESIGN? 7 1.59642
DESIGNS 8 1.25301
DESIGNS 9 1.07044
DESIGh10 10 .77270
DESIGN11 11 .67533
DESIGN12 12 .51980
DESIGN13
DESIGN14

13
14

.40201

.
DESIGN 15 15 .20422DESIGN16 16 .17545
DSSIGN17 17 .11714
DESIGNI8 1A .10450
DESIGN19 19 .08481
DESIGN20
DESIGN21

20
21

.04894

DESIGN22 22
.03216
.00454

DESIGN23 23 .00106

PCT OF VAR CUM PCT

15.7 15.7
14.9 30.7
12.6 43.2
9.2
b.5

52.4
60.9

7.2 68.1
6.9

1738:?5.4
4.7 85.1--
3.4 88.5
2.9 91.4
2.3
1.7

93.7
95.4

1.2 96.6
.9 97.5
.8 98.3
.5 98.8
.5
.4 33:i
.2 99.8

100.0

A 100.0
100.0

37

43

Table 7

Factors, Items Loaded on Factors, and Item Loadings
on System Design Category

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4 FACTOR 5
General System Program Programming Efficiency
Factor Environment Consider-

ations
Style Consider-

ations

Items Loading Items Loading Items Loading Items Loading Items Loading

,
, .74770 8 .60084 3 .59183 1 .73281 12 .64593

10 .61624 17 .83495 4 .65513 9 -.60385 13 .66006

14 -.60566 18 .78685 5 .75944 11 .71115 15 .74960

21 .69443 19 .74569 6 .66780 16 .62822

22 .71095 20 .48605

23 .58179

44

I

Item loadings on factor 1 ranged from .60 to .75. The

lowest loading was on item 14 which also happened to be the

only negative value on this factor. The loading on item 2

was the highest. The highest loading on factor 2 was .83

(item 17). The lowest loading was on item 8 (.60). The

range of item loading on factor 3 was from .49 to .76.

Item 20 had the lowest loading while item 5 loaded the

highest. Item 9 on factor 4 was the only negatively loaded

item. It also had the lowest loading on this factor. The

highest loading (.73) was found for item 1. The range of

item loadings on factor 5 was .63 to .75. Item 15 loaded

the highest while item 16 loaded the lowest. Items 12 and

13 loaded .64 and .66 respectively.

System Testing

Seven factors having eigenvalue of 1.0 or greater were

extracted from the 19 items on Testing. They together

accounted for 75.3% of the total variance. The factors,

their eigenvalues, and the proportion of variance explained

by each factor is given in Table 8.

After repeating the analysis with different number of

factors, the solution with four factors was found to bk. the

best. The solution explained 56.5% of the total variance.

Varimax rotation could not be performed due to

39

45

TABLE 8
FACTORS, EIGENVALUES, ArD THE VARIANCE EXPLAINED

ON SYSTEM TESTING
ITEMS

VARIABLE

TES T1
TES T2
TES T3
TES T4
TESTS
TES TE
TES T7
TES 18
TESTS
TEST10
TES 111
TES T12
TES II3
TES T14
TESTIS
TES T16
TES T17
TES T18
TES T19

FACTOR

1

2
3
4
5
6
7
8
9

10
11
12
13
14

16
15

17
18
19

EIGENVALUE PCT OF VAR CUM PCT

4.11176 21.6 21.6
2.67095 14.1 35.7
2.19451 11.6 47.2
1.76227 9.3 56.5
1.27842 6.7 63.3
1.19170 6.3 69.5
1.10598 5.8 75.3
.99465 5.2 80.6
.85524 4.5 85.1
.76674 4.0 89.1
.58512 3.1 92.2
.41027 2.2 94.4
.31239 1.6 96.0
.25821 7.4
.21203

.4
.12395 .7 99.1

8.5
.08774 .5 99.6
.05368 .3 99.9
.02437 .1 100.0

nonconvergence. The factors and the items that loaded on

these factors are given in Table 9.

The items that loaded on Factor 1 included 1, 2, 3, 5,

8, 13, 15, and 18. Based on item contents, the factor was

named Test Planning. The second factor was named Testing

Techniques and was comprised of items 9, 11, 12, 14, 17,

and 19. Items 6, 10, and 16, loaded on Factor 3. The

item content suggested Testing as an appropriate name for

this factor. Factor 4 was comprised of items 4 and 7 only.

This factor stayed in every solution examined and basically

loaded all the items that could not be loaded on other

factors. Therefore, this factor was given the name

Residual.

The item loadings on F-Jtor 1 ranged from .50 to .76.

Item 3 had the highest loading while item 13 had the lowest

loading. Item 15 was the only item with negative loading

(-.66). Items 9, 11, and 19 loaded negatively on Factor

2. Disregarding the sign of loadings, the range was found

to be .50 to .75. The lowest loading was on item 17. Item

12 loaded the highest. Items 10 and 16 on Factor 3 had

almost the same loadings; .495 and .496, respectively.

Item 6 with a loading of .5e was the only negatively loaded

item on Factor 3. On Factor 4, item 4 loaded .63. The

only other item on this factor was item 4 and had a loading

of .63

41

47

Table 9

Factors, Items Loaded on Factors, and Item Loadings
on System Testing Category

FACTOR 1
Test
Planning

FACTOR 2
Testing
Technique

FACTOR 3
Testing

FACTOR 4
Residual

Items Loading Items Loading Items Loading Items Loading

1

2

3

5

8

13

15

18

.65402

.69137

.75801

.56680

.51267

.49862

-.66493

.57430

9

11

12

14

17

19

-.61911

-.54400

.75380

.56077

.49590

-.52302

6

10

16

-.58582

.49491

.49619

4

7

.63362

-.58325

48

System Documentation

P-incipal component analysis of the 16 items assessing

program documentation extracted five factors that met

Kaiser's criterion of an eigenvalue (Kaiser, 1960) and

explained 72.7% of the total variance. The factors

extracted, their eigenvalues, and the proportion of

variance explained by each factor is given in Table 10.

Factor analysis was repeated several times with

varying number of factors until a three factor solution was

found. The three factor solution explained 59.5% of the

total variance. Varimax rotation provided a better look on

factor matrix. The first factor was defined by items 2 to

8, 12, and 16, was named as Documentation Standards. The

second factor named Quality and Style included items 10,

11, 13, and 15. Items 11 9, and 14 loaded on Factor 3.

This factor was named Documentation Analysis. The factors

and the item loadings on these factors are given in Table

11.

The range of item loadings on Factor 1 was .57 to .86.

Item 3 loaded the lowest while item 7 had the highest

loading. Items 6 and 8 had factor loadings in the .60's.

The remaining items loaded in .70's. The range of item

loadings on Factor 2 was .63 to .78. item 11 had the

lowest loading. Item 15 had the highest loading. The

highest loading on Factor 3 was found on item 1 (.71). The

TABLE 10
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM DOCUMENTATION
ITEMS

VARIABLE FACTOR EIGENVALUE

DOCU1 1 5.32211
DOCU2 2 2.49793
DOCU3 3 1.69724
DOCU4 4 1.06802
DOCL5 5 1.04301
DOCU6 6 .99134
DOCU7 7 .88653
DOCU8 8 .63145
DOCU9 9 .46436
DOW() 10 .43418
DOCU11 11 .34424
DOCU12

li :iit8;DOCU13
DOCU14 14 .11284
DOCU15 15 .08684
DOCU16 16 .03530

PCT OF VAR CUM PCT

33.3 33.3
15.6 48.9
10.6 59.5
6.7 66.2
6.5 72.7
6.2 78.9
5.5 84.4
3.9 88.4
2.9 91.3
2.7 94.0
2.2 96.1
1.4 97.5
1.0 98.5
.7 99.2
.5 99.8
.2 100.0

Table 11

Factors, Items Loaded on Factors, and Item Loadings
on System Documentation Category

FACTOR 1 FACTOR 2 FACTOR 3
Documentation Quality Documentation
Standards and Style Analysis

Items Loading Items Loading Items Loading

2 .75081 10 .74884 1 .71028

3 .57085 11 .63104 9 .62792

4 .75785 13 .74112 14 .48123

5 .78442 15 .77805

6 .68614

7 .85776

8 .63960

12 .74420

16 .72493

51

lowest loading of .48 was on item 14. Item 9, the only

remaining item on this factor, loaded .63.

System Correctness

Principal component analysis performed on 20 items

related to program correctness produced seven significant

factors that met Kaiser's criterion of eigenvalues (Kaiser,

1960). These factors explained 80.1% of the total

variance. The factors, their eigenvalues, and the percent

of variance explained by each factor is given in Table 12.

The factor analysis was repeated several times by

varying the number of factors to be extracted. The

solution with four factors was finally selected for its

logical and meaningful structure. This four factor solution

explained 60.3% of the total variance. The factors and the

items that loaded on these factors are given in Table 13.

Item loadings are based on orthognally rotated solution.

Items 7, 9, 10, 17, 19, and 20, loaded on Factor 1.

Based on item contents, the factor was named as

Programming Style. The second factor named Coding

Considerations was comprised of items 5, 12, 13, 14, and

16. Items 1, 3, 4, 6, and 15, constituted Factor 3 which

was named Programming Structure. The fourth factor that

included items 2, 8, and 18, was named Residual as the

items that did not fit to other factors, were loaded on

Factor 4.

46 52

TABLE 12
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM CORRECTNESS

ITEMS

VARIABLE FACTOR

CORECT1 1

CORECT2 2
CORECT3 3
CORECT4 4
CORECT5 5
CORECT6 6
CORECT7 7
CORECT8 8
CORECT9 9
CORECT10 10
CORECT11 11
CORECTI2 12
CORECT13 13
CORECTI4 14
CORECT1S 15
CORECT16 16
CORECT17 17
CORECT18 18
CORECT12
CORECTZU 18

EIGENVALUE PCT OF VAR CUM PCT

5.16206 25.8 25.8
2.60216 13.0 38.8
2.36562 11.8 50.61.92420 60.1.54266 3-i 3

68.0
1.37380 6.9 74.9
1.04140 5.2 80.1
.96188 4.8 84.9
.77504 3.9 88.7
.62194 91.9
.50412 1..1 94.4
.44440 2.2 96.6
.27128 1.4 98.0
.18606 .9 98.9.06931 .3 99.2
.06382 .3 99.5.04C67 .2 99..8
.03195 .2 99.9
:84ti3 -3 188.8

47

53

Table 13

Factors, Items Loaded on Factors,' and Item Loadings
on System Correctness Category

FACTOR 1
Coding
Considerations

FACTOR 2
Programming
Style

FACTOR 3
Program
Structure

FACTOR 4
Residual

Items Loading Items Loading Items Loading Items Loading

7 .61130 5 -.66383 1 .87715 2 .85286

9 .80668 12 -.41989 3 .67233 8 .46509

10 .90569 13 -.49621 4 .79171 18 .81536

11 .88483 14 .64655 6 -.52551

17 .56146 16 .86023 15 .50372

19 .60276

20 .59991

54

Item loadings on Factor 1 ranged from .56 to .90. The

items with the lowest and the highest loadings were item 17

and item 10, respectively. Items 9 and 11 loaded in .80's.

The remaining items were loaded in .60's. Items 5, i2, and

13 on Factor 2 were loaded negatively. Disregarding the

sign, the range of item loadings was .42 to .86. The

lowest loading 1,-Ls on item 12 while item 16 had the highest

loading. The range of item loadings on Factor 4 was .46 to

.85. Items 2 and 8 were found as the highest and lowest

loaded items respectively. Item 18 loaded .81 on Factor 4.

System Clarity

Factor analysis was performed on 16 items on program

clarity. Six factors met Kaiser's criterion (Kaiser, 1960)

and explained 75.4% of the variance. The factors, their

respective eigenvalues and the percent of variance

explained are given in Table 14.

The factor analysis with three factors was accepted as

a more logical and explainable solution. The initial

factor matrix was rotated orthognally. The factors, the

items that loaded on these factors, and their respective

loadings are given in Table 15.

Items 2 to 5, 11, 14, 15, and 16 were loaded on

Factor 1. This factor was named as Program Quality. The

s.cond factor named Coding Considerations consisted of

items 1, 6, 9, and 13. -terns 7, 8, 10, and 12 constituted

49

TABLE 14
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM CLARITY
ITEMS

VARIABLE

CLAR1
CLAR2

CZAR
CLAR
CLAR6
CLAR7
CLAR8
CLAR9
CLAR10
CLAR
CLAR2

11

CLAR13
CLAR14
CLARIS
CLAR16

FACTOR

1

-2

i
5
6
7
8
9

_10
11
12
13
14
15
16

EIGENVALUE

3.92909
2.78223

1:76769;i
1.35292
1.20630
.87960
.70374
.52316
.37365
.27487
.18721
.16085
.08972
.06692
.03645

PCT OF VAR

24.6
17.4

11:1
8.5
7.5
5.5
4.4
3.3
2.3

11..

1.0
.6
.4
.2

CUM PCT

24.6
41.9

56i:2
71.9
79.4
84.9
89.3
92.6
94.9

6
97.
96.8

98.8
99.4
99.8
100.0

Table 15

Factors, Items Lcaded on Factors, and Item Loadings
on System Clarity Category

FACTOR 1 FACTOR 2 FACTOR 3
Programming Coding Programming
Quality Considerations Style

Items Loading Items Loading Items Loading

2 -.58995 1 .75874 7 .73963

3 -.78412 6 .81327 8 .56674

4 .54674 9 .51472 10 .66008

5 .63232 13 .52702 12 .68103

11 .62855

14 .56825

15 .74500

16 .44680

5 7

Factor 3. This factor was named Programming Style based on

the content of items defining the factor.

Items 2 and 3 loaded negatively on Factor 1. The

lowest loading was on item 16 (.45). Item 3 had the

highest loading (.78). On Factor 2, the range of item

loadings was .51 to .81. Items 6 and 9 were the highest

and lowest loaded items, respectively. Item 1 loaded .76

while itme 13 loaded .53. The range of item loadings on

Factor 3 was .56 to .74. Items 7 and 8 were the highest

and lowest loaded items, respectively. The remaining items

were loaded in .60's.

Programming Style

Tha principal component solution performed on 20 items

of programming style extracted seven factors having

eigenvalues greater than 1.0. The factors explained 80.2%

of the total variance. Table 16 lists the factors, their

eigenvalues and the percent of variance explained by these

factors.

After sevelul trials, a four factor solution after

varimax rotation was found more logical and explainable

than the other solutions and was therefore adopted for this

analysis. According to this solution, the four factors

explained 60.0% of the total variance. Factor 1 was

comprised of items 5 to 10, 12, and 19. The factor was

TABLE 16
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON PROGRAMMING STYLE
ITEMS

VARIABLE

STYLE1
STYLE2
STYLE3
STYLE4
STYLE5
STYLE6
STYLE7
STYLE8
STYLE9
STYLE10
STYLE11
STYLE12
STYLE13
STYLEI4
STYLE15
STYLE1f
STYLE17
STYLE18

BIM

FACTOR

1

2

i
5
6
7
8
9

10

11
13
14
15
16
17
18

18

EIGENVALUE

4.39826
2.83706
2.70445
2.06803
1.55852.

1.29267
1.17177
.89350
.73479
.58217
.51737
.34431
.32311
.20276
.18492
.11259
.03994
.01695

:81B9

PCT OF VAR

22.0
14.2
13.5
10.3
7.8.
6.5
5.9
4.5
3.7
2.9
2.6
1.7
1.6
1.0
.9
.6
.2
.1
.1
.0

CUM PCT

22.0
36.2
49.7
60.0
67.8
74.3
80.2
84.6
88.3
91.2
93.8
95.5
97.1
98.1
99.1
99.6
99.8
99.9

188:8

53

5

named Progam Quality. Items 2, 3, 14, and 15, loaded on

Factor 2. The factor was called Programming Style. The

third factor called Coding Consideration included items 1,

4, 11, 16, and 20. Items 13, 17, 18, produced the fourth

factor called Efficiency Considerations.

The factors, the items that loaded on these factors,

and their respective loadings after varimax rotation are

given in Table 17.

Item 19 loaded slightly higher (.406) than the minimum

value of .40, needed to assign that item to a particular

factor. This item had the lowest loading on Factor 1.

Item 10 had the highest loading (.87). Items 8, 9, and 12

were negatively loaded. Item loadings on this factor were

comparatively lower than the other three factors. Item

loadings on Factor 2 ranged from .50 to .86. The items

with the lowest and highest loading on this factor were

items 15 and 2, respectively. The loading range on Factor

3 was .61 to .85. Item 4 loaded the highest while item 11

loaded the lcwest. Most of the remaining items had factor

loadings in .60's. The range of item loadings on

Factor 4 was .75 to .88. Items 13 and 17 were the lowest

and highest loaded items, repectively. The only remaining

item (item 18) had a loading of .80.

54

0

Table 17

Factors, Items Loaded on Factors, and Item Loadings
on Programming Style Category

FACTOR 1
Programming
Quality

FACTOR 2
Programming
Style

FACTOR 3
Coding
Considerations

FACTOR 4
Efficiency
Considerations

Items Loading Items Loading Items Loading Items Loading

5 .61753 2 .86058 1 .70405 13 .74984

6 .58687 3 .83146 4 .84666 17 .87682

7 .55423 14 .68506 11 .60707 18 .80412

8 -.54315 15 .49848 16 .63895

9 -.41708 20 .67019

10 .87187

12 -.48739

19 .40658

61

System Management

Fourteen management related items were analyzed by

factor analysis to discover underlying dimensions. The

principal component solution revealed six factors that

explained 80.0% of the total variance. The factors, their

respective eigenvalues and the percent of variance

explained by each factor are given in Table 18.

Factor analysis was repeated several times by varying

the number of factors to be extracted so that a logical and

meaningful solution could be obtained. The solution with

four factors after varimax rotation met this criterion and

is included here for interpretation. According to this

solution, the factors explained 64.4% of the total

variance. The factors, items loaded on these factors, and

item loadings after varimax rotation are given in Table 19.

Factor 1 was defined by items 2, 4, and 12, and was

named Management Structure. Factor 2 included items 5, 8,

9, and 10, and was called Personnel Management. Items 3,

11, 13, and 14, comprised the third factor called

Management Support. The fifth factor called Management

Strategy consisted of items 1, 6, and 7.

Item 2 loaded the lowest on Factor 1 (.59). The

highest loading of .90 was found on item 12. Item 4, the

only remaining item on this factor, loaded .65. The range

of item loadings on Factor 2 was .60 to .81. The lowest

loading was on item 9. Item 8 had the highest loading.

56

62

ABLE 18
FACTORS, EIGENVALUES, AND THE VARIANCE EXPLAINED

ON SYSTEM MANAGEMENT ITEMS

VARIABLE FACTOR EIGENVALUE PCT OF VAR CUM PCT

MANAGE1 1 3.64358 26.0 26.0
MANAGE2 2 1.96359 14.0 40.1MANAGE3

i
1.88064 13.4 53.5

MANAGE 4 1.53049 10.9 64.4MANAGES 5 1.12760 8.1 72.5
MANAGEt 6 1.05838 7.6 80.0
MANAGE/

.80897
901MANAGE/ g .62984 ?...g

MANAGE 9 9 .39490 2.8 93,1MANAGE10 10 .32116 2.3 95.4
97.2MANAGETI

11
.576
.21356

1.8
1.5 98.8M*NAGE12

MANAGE13 13 .1125 .8 99.6MANAGE14 14 .06102 .4 100.0

Table 19

Factors, Items Loaded on Factors, and Item Loadings
on System Management Category

FACTOR 1
Management
Structure

FACTOR 2
Personnel
Management

FACTOR 3
Management
Support

FACTOR 4
Management
Strategy

Items Loading Items Loading Items Loading Items Loading

2 .59563 5 -.65511 3 .45150 1 .79499

4 .65539 8 .81564 11 .52884 6 .74311

12 .90512 9 .59775 13 .88239 7 .55144

10 .64892 14 -.75144

64

Item 5 was the only negatively loaded item on this factor.

Item 14 on Factor 3 loaded negatively. The lowest and

highest loading were on item 3 and item 13, respectively.

The range of item loadings was .45 to .88. Item loadings

on Factor 4 ranged .55 to .79. Items 1 and 7 were the

lowest and highest loaded items, respectively. Item 6

loaded .74 on this factor.

The factor matrices on all the nine categories are

given in Appendix B.

Chapter 5

DISCUSSION AND CONCLUSION

This chapter includes discussion of the results

described in Chapter 4. The chapter closes with the

conclusion derived from the findings of this research

study.

The analysis of item means and standard deviations

confirmed that all the items included in the questionnaire

affect system complexity to varying degrees. Items with a

mean value of less than 3.0 reflected respondents'

agreement that the attributes expressed in the statements

decrease software complexity. Similarly, item means of

greater than 3.0 reflected respondents' opinions that such

attributes incre se system complexity. The items with a

mean value of 3.0 or closer were not considered good

discriminators. These items were PLAN 15, DESIGN 12,

DESIGN 22 and STYLE 20. The content analysis revealed that

all these items except DESIGN 22 were highly related to

system complexity but respondents responeed to them

randomly and the mean value turned out to be 3.0.

An examination of standard deviation values revealed

that not all respondents agreed or disagreed with the

statements with equal strength. Standard deviation of 1.0

or greater was viewed as high for this analysis. Standard

deviation of less than 1.0 was an index of the conformity

of views of respondents regarding those statements. Large

standard deviation values were considered to be a result of

different interpretations, that respondents attached to

standard terms. This fact confirmed the confusion that

exists in computer science literature for non-standard

definitions and use of more than one term for a single

phenomenon.

Factor analysis revealed that the nine logical

categories to which the questionnaire was divided were not

exclusive. Factor analysis of items of a single category,

sometimes, produced factors that were related to the major

category. For example, Factor 3 of system characteristics

was named correctness which in fact is one of the nine

categories. Similarly, Factor 4 of System Design, Factor 2

of Program Correctness, and Factor 3 of Program Clarity

discovered underlying dimensions that were supposedly

tapped by one of the main categories. This finding

confirmed the rationale of this study that a single factor

in a system may affect several system components making a

cumulative effect on the complexity of a total system. It

meant that a system cannot be categorized into non-

exclusive components. For example, system testing which is

a component of system development may not stand alone

because it includes planning for testing, characteristics

of testing, testing documentation, testing management,

testing accuracy, clarity of test procedures, and

61

67

programming style in test code. In other words, each

component of a system encompasses the whole developmental

span of the system. This finding was important for future

research activity in which the factors obtained from this

study may be used as logical entities rather than making

judgmental categories as was done in this exploratory

study.

Factor analysis also revealed that a major category

may give rise to factors that identify major components of

that category. The example is of System Planning categor,

in which all the three factors obtained refer to system

planning but at a different level. Factor 1 referred to

high level planning. Factor 2 clustered items that related

to design level planning. The third factor identified

implementation level planning or lower level planning.

Similarly, the system testing category produced four

factors called test planning, testing technique, testing,

and residual factor. Another example was the system

management category in which the four factors identified

various components of management. Factor 1 was called

management structure, Factor 2 related to personnel

management, Factor 3 was management support, and Factor 4

referred to management strategy.

On program documentation category, the three factors

identified three dimensions called documentation standards,

quality and style of documentation, and documentation

analysis. Under the programming style category, the four

dimensions that were discovered by factor analysis were

named programming quality, programming style, coding

considerations, and efficiency considerations.

On certain categories, factor analysis gave rise to

factors that could not successfully be named. The examples

included system characteristics category in which Factor 2

was named "Others". It was, in fact, a residual factor

such that the items that did not load on other factors were

loaded on Factor 2. For the program correctness category,

Factor 4 was a residual factor. The items that did not

load on the coding consideration factor, programming style

factor, or programming structure factor, loaded on Factor

4 called residual factor.

The cross-loading of items, though minimized by

varimax rotation was still greater than expected. This

confirms the earlier finding made on the basis of item

means and standard deviations that the use of several terms

for tho :-.ame phenomenon means different interpre,Ations.

The other possible reason of cross-loadings was that

people were not sure what they were responding to and

therefore selected the degree of agreement or disagreement

with the statement at random. This tendency might have

been resulted from lack of education or experience by

respondents in the respective areas. Most of the subjects

of this study were involved in the process of large system

development but not all of them had extensive formal

training in system design and development. Those who

learned through experience were not familiar with the

terminology used in the literature. The third category was

those who had taken at least one course in system design

and development but did not have experience of designing

the system. The perceptions of these three distinct groups

produced three unique sets of responses such that their

cumulative effect resulted in cross-loading of items on

more than one factor.

Conclusion

One hundred and sixty items extracted from the

existing literature were categorized into nine categories

according to their content. These categories were made on

subjective reasons and were system planning, system

characteristics, system design, system testing, program

documentation, program correctness, program clarity,

programming style, and system management.

Item means indicated that at least 98% of the items do

affect system complexity. Content analysis indicated that

all the items except one are related to system complexity.

High variance in respondents' responses was attributed

either to their lack of formal training or experience in

some areas of system development, or to the confusion

64

caused by multiple definitions of a single term. Computer

science literature has an abundance of terms that have

multiple meanings and all of them are recognized as

legitimate.

Factor analysis on system planning category identified

three factors called high level planning, design level

planning and implementation level planning. The system

characteristics category produced two factors called

simplicity and correctness. The third factor was a general

factor. Under system design category, the factors were

identified as general factor, system enviornment, program

considerations, programming style, and efficiency

considerations. Test planning, testing technique, testing,

and residual were the factors identified in System testing

category. Program documentation category had three

underlying dimensions called documentation standards,

documentation quality & style, and documentation analysis.

Program correctness had coding considerations, programming

style, program structure, and residual as factors.

Programming quality, coding considerations, and programming

style were the dimensions of program clarity category.

Programming style category identified programming quality,

programming style, coding considerations and efficiency

considerations as factors. The last category, system

management, had management structure, personnel management,

management support, and management stragtegy as factors.

Factor analysis suggested that the items may be

regrouped according to the factors extracted to determine

complexity of system attributes, system components, or of

various phases of system development. It was recommended

that the study be replicated with a larger sample and that

the complexity of various system components be weighted to

determine the overall complexity of the system.

REFERENCES

Al-Suwaiyel, M.I. Man and Software Complexity.
Cybernetica, 26,3, 1983, 227-235.

Arthur, Lowell J. Programmer Productivity: Myths, Methods,
and Murphology. John Wiley & Sons, N.Y., 1983, pp. 287.

Baker, A.I., and Zweben, S.H. ? comparison of measures of
control flow complexity. IEEE Transactions on Software
Engineering, SE-6, 6, 1980, 506-512.

Belady, B.L.A. Software geometry. In proceedings of 1980
Computer Symposium, Taipei, Republic of China, 1980.

Bersof, E.H., Henderson, V.D., and Siegel, S.G. Software
Configuration Management: An investment in product
integrity. Prentice Hall Inc., N.J. 1980, pp 385.

Brotsky, D. Program Understanding Through Cliche
Recognition. Working Paper 224, AI Lab., MIT, 1981.

Canning, R.G. Modular COBOL programming. EDP Analyzer, 10,
7, 1972, 1-14.

Curtis, B., Sheppard, S.B., Millman, P., Borst, M.A., and
Love, T. Measuring the psychological complexity of software
maintenance tasks with Halstead and McCabe metrics. IEEE
Transactions on Software Engineering, SE-5, 2, 1979, 96-
104.

Davis, John S. Chunks: A basis for complexity measurement.
Information Processing & Management, 20, 1-2, 1984, 119-
127.

De Millo, R.A., Lipton, R.J., and Perlis, A. Social
processes and proofs of theorams and programs.
Communications of the ACM, 22, 5, 1979, 271-280.

Dun, Robert, and Ullman, Richard. Quality Assurance for
Computer Software. McGraw-Hill book Company, N.Y., 1982,
pp.351.

Endres, A. An analysis of errors and their causes in
systems programs. IEEE Transactions on Software
Engineering, SE-1, 2, 1975, 140-149

Halstead, M. Elements of software science. Elsevier
Computer Science Library, N.Y., 1977.

67

73

Henry, S., Kafura, K., and Harris, K. On the relationship
between three software metrics. Proceedings of the ACM
Workshop/Symposium. Software Quality, University of
Maryland, college Park, 1981.

Jensen, H. An investigation of software metrics for real-
time software. Unpublished master's thesis, University of
Wisconsin - Milwaukee, 1982.

Jensen, H.A., and Vairavan, K. An experimental study of
software metrics for real-time software. IEEE Transactions
on Software Engineering, SE-11, 2, 1985, 231-234.

Kaiser, H.F. The application of electronic computers to
factor analysis. Educational Psychological Measurement,
20, 1960, 141-151

Kernighan, B.W., and Planger, P.J. The Elements of
Programming Style. McGraw Hill Book Company, N.Y., 1974,
pp. 147.

Lientz, B.P., and Swanson, E.B. Problems in application
software maintenance. Communications of the ACM. 24, 11,
1981; 763-769.

Lientz, B.P., Swanson, E.B., and Tompkins, G.E.
Characteristics of application software maintenance.
Communications of the ACM, 21, 6, 1978, 466-471.

London, Keith R. Documentaion Standards (Revised Ed.).
Petrocelli Books, N.Y., 1974, pp. 253.

Mayer, R.E. A psychology of learning basic.
Communications of the ACM, 22, 11, 1979, 589-593.

McCabe, T.J. A complexity measure. IEEE Transactions on
Software Engineering, SE-2, 4, 1976, 308-320.

Meek, Brian, and Heath, Patricia. Guide to Good
Programming Practice. Ellis Horwood Ltd., N.Y., 1981, pp.
181.

Norcio, A. Human Memory Processes for Comprehending
Computer Programs. Applied Science Department, U.S. Naval
Academy, 1980.

Ottenstein, L.M. Quantitative estimates of debugging
requirements. IEEE Transactions on Software Engineering,
SE-5, 1979.

68

74

Pashtan, Ariel. Operating system models in a concurrent
Pascal environment: Complexity and performance
considerations. IEEE Transactions on Software Engineering,
SE-11, 1, 1985, 136-141.

Peter, L.J. Software Design: Methods & Techniques.
Yourdon Press, N.Y., 1981.

Prather, Ronald E. An axiomatic theory of software
complexity measure. The Computer Journal, 27, 4, 1984,
340-347.

Savage, J.E. The Complexity of Computing. John Wiley &
Sons, N.Y., 1976.

Schneider, V. Some experimental estimators for
developmental and delivered errors in software development
projects. In Proceedings of the ACM Workshop/Symposium.
Software Quality, University of Maryland, College Park,
1981.

Shneiderman, B. Measuring computer program quality and
comprehension. International Journal of Man-Machine
Studies, 9, 1976, 465-478.

Shneiderman, B. Exploratory experiments in programmer
behavior. IilAarnational Journal of CICS, 5, 2, 1976b, 122-
143.

Shen, V.Y., Conte, S.D., and Dunsmore, H.E. Software
science revisited: A critical analysis of the theory and
its empirical support. IEEE Transactions on Software
Engineering, SE-9, 1983, 155-165.

Soloway, E. What do novices know about programming?
Directions in Human-Computer Interactions, Ablex, 1982.

SPSS Inc. SPSS'X: User's Guide. McGraw Hill Book
Company, N.Y., 1983.

Sunohara, T., Takano, A., Vehara, K., and Ohkawa, T.
Program complexity measure for software devleopme&
management. 5th International Conference on Software
Engineering, IEEE, N.Y., 1981.

Tassel, Dennie V. Program Style, Design, Efficiency,
Debugging, and Testing. Prentice-Hall Inc., 1978, pp 323.

Thayer, T.A., Lipow, MO, and Nelson, E.C. Software
Reliability. North-Holland, Amsterdam, 1978.

69

75

Vassey, Iris, and Weber, Ron.
program repair maintenance:
Commununications of the ACM, 26, 2,

Weinberg, G.M. The Psychology of
Van Nostrand Reinhold, N.Y., 1971.

Some factors affecting
An empirical study.
1983, 128-134.

Computer Programming.

Woodfield, S.N. Enhanced effort estimation by extending
basic programming models to include modularity factors.
Doctoral dissertation, Purdue University, 1980.

70

76

BEST COPY AVAILABLE
The University of Kansas

Institute for Research in Learning Disabikbes
blotwo as A010.11011118 and YOulg *Ma

Canu801.son 41a
Ram 201
Lowwts, genus 8110458342
.t 11644780

Dear Computer Scientists,

There are several factors that are considered very predictive of software
complexity. A program which is structured,well documented, and has simple to
understand code is believed to have less repair maintenance after its release
into production than the programs that do not incorporate these factors. A
long list of factors that make later modifications of programs easy. is
available from the literature. However,

there is no empirical evidence as to
what factors are more important than

the others. The present study is a step
forward to identify the most significant factors that reduce system complexity
and to discover their underlying dimensions.

The terms system complexity and software complexity are used interchang-ably in tne enclosed questionnaire
and both refer to large programs, only.

For this study, the definition of complexity is also delimited to an amount
of effort needed to add, delete. or modify segments) of a program. For
example, a program that takes less effort is less complex than the one thatneeds more effort.

Your name has been selected for partcipation in this study as a represen-tative of the profession that deals with the development and maintenance of
computer software. Your responses on the enclosed questionnaire will provide
us valuable information about factors that could reduce system complexity.

Your responses on the questionnaire will be kept confidential and a
copy of the results will be sent to you, if desired. If you have any question
about the questionnaire, or on any other part of the study, please feel free
to contact me at (913) 864-4780.

Thankyou for your participation and completing the questionnaire.

Sincerely.

ejeW4hc/^L

Javaid Kaiser. Ph.D.

77

System planning(top level design) is the most crucial part of system

development. Thorough understanding of the proposed srstem not only

helps in its development, but also reduces system complexity. Indicate

the degree to which you agree or disagree that the following considera-

tions at the planning stage would reduce the complexity of the system.

(Complexity, for this study, is defined in trans of repair maintenance)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you NEITHER AGREE OR DISAGREE with the statement.

Circle 4 if you DISAGREE with the statement.

Circle S if you STRONGLY DISAGREE with the statement.

System design specifications 1 2 3 4 5

Software requirement specifications 1 2 3 4 5

Performance Specifications 1 2 3 4 5

Product specifications 1 2 3 4 5

Project rationale 1 2 3 4 5

Top level design review 1 2 3 4 S

Nodule design review 1 2 3 4 5

Data base design 1 2 3 4 5

Integration test plan 1 2 3 4 5

Selection of test procedures 1 2 3 4 5

Configuration management 1 2 3 4 5

Documentation standards 1 2 3 4 5

Quality control plan 1 1 3 4 5

1

Tool specifications 1 2 3 4 5

Vendor survey and survillanee
1 2 3 4 5

Knowledge about future development plans 1 2 3 4 5

Future maintenance activity
1 2 3 4 5

The following characteristics represent a system with less complexity.

Indicate the degree to which you agree or disagree that the named

characteristic would also reduce system complexity. (Complexity is

defined as repair maintenance)

Circle I if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you neither AGREE or DISAGREE with the statement.

Circle 4 if you DISAREE with the statement.

Circle 5 if you STRONGLY DISAGREE with the statement.

Correctness of output
1 2 3 4 5

Efficiency(Ninimixed processing time) 1 2 3 4 5

Flexibility to make enhancements 1 2 3 4 5

Integrity(Row well the software and data

are protected 1 2 3 4 5

Interoperability(Interface with other systems) 1 2 3 4 5

Naintainability(Activity to locate or repair

errors).
1 2 3 4 5

Portability(Change in machine environment) 1 2 3 4 5

Reliability(Degree to which a system is

7 9

required to perform its functions). 1 2 3 4 5

Usability(Effort to learn, operate, and use

the system). 1 2 3 4 5

Testability(Structured testing to insure

correctness) 1 2 3 4 5

Traceability(Nachine operated measurement

for correctness). 1 2 3 4 5

Simplicity(Implesentation of functions in

most understandable way). 1 2 3 4 5

Nodularity(Independent functions linked

together). 1 2 3 4 5

Concision(Implement a function with

minimum code). 1 2 3 4 5

Structured programming(Use of IF-THEN-ELSE etc.) 1 2 3 4 5

Several factors need to be considered st the detailed design stage of

system development to reduce software complexity. Indicate the degree to

which you agree or disagree that the named factor would reduce the com-

plenity of the system. (Complexity is defined in terms of repair main-

tenance)

Circle 1 if you STRONGLY AGREE with the statemenL.

Circle 2 if you AGREE with the statement.

Circle 3 if you NEITHER AGREE OR DISAGREE with the statement.

Circle 4 if you DISAGREE with the statement.

Circle 5 if you STRONGLY DISAGREE with the statement.

2 3

BEST COPY AVAILABLE
S O

C'sJ

High decision density(/ of decisions in a

module).
1 2 3 4 5

Nigh program level(/ of CALLA to functions

per 100 lines of code).
1 2 3 4 5

Choice of procedures for formal corrective action 1 2 3 4 5

Resolution of hardware sod software interface 1 2 3 4 5

Well defined data structure
1 2 3 4 5

Establishing control over batches of input 1 2 3 4 5

Use of methods for isolating errors and their causes1 2 3 4 5

Control on multiprogramming
1 2 3 4 5

Use of generality in program design
1 2 3 4 5

Enhancement to a system
1 2 3 4 5

Formal evaluation of algorithm accuracy 1 2 3 4 5

Differential comparison of programs
1 2 3 4 5

Use of psudocode to document module logic 1 2 3 4 5

Use of graphical tools to display software logic 1 2 3 4 5

Use of cross references in code
1 2. 3 4 5

Including modules with multiple entry/exists
1 2 3 4 5

Choice of a programming language
1 2 3 4 5

Adequacy of operational environments
1 2 3 4 S

Top -down programming
1 2 3 4 :

State of the art hardware for program development 1 2 3 4 5

Poor distinction between hardware and software

functions
1 2 3 4 5

Initial system stets not considered 1 2 3 4 5

Poor user training
1 2 3 4 5

81

Testing is a part of system development. The decisions made during the

testing stage may affect the system complexity. Indicate the degree to

which you agree or disagree that the named characteristic would reduce

system complexity. (Complexity is defined as repair maintenance)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you NEITHER AGREE OR DISAGREE with the statement.

Circle 4 if you DISAGREE with the statement.

Circle S if you STRONGLY DISAGREE with the statement.

Choice of test procedures 1 2 3 4 5

Choice of test equipment selected 1 2 3 4 5

Program test and operating instructions 1 2 3 4 5

Appropriateness of tests of reasonability for I/O

validation 1 2 3 4 5

Establishing tolerance for accuracy criterion 1 2 3 4 5

Top down testing 1 2 3 4 5

Testing and maintenance history 1 2 3 4 5

Quality of test programming 1 2 3 4 5

Run time analysis 1 2 3 4 5

Retesting of all modules on new data that interact

with modified module 1 2 3 4 5

Bottom-up testing 1 2 3 4 5

Testing a big propsm in small pieces 1 2 3 4 5

Testing program at boundary values 1 2 3 4 5

Checking answers by hand 1 2 3 4 5

4 5

BEST COPY AVAILABI r 82

yl

Lack of exhaustive testing 1 2 3 4 5 Documentation un interrupt processing 1 2 3 4 5

Using simple version to test the basic design 1 2 3 4 S Static analysis of documentation and source code 1 2 3 4 5

Using test data for each path 1 2 3 4 5
Quality of written documents 1 2 3 4 5

Adequate time for testing 1 2 3 4 5
Documentation of data layouts 1 2 3 4 5

Each test rep ins differential' class 1 2 3 4 S Agreement between comments and code 1 2 3 4 5

Uniformity of style and appearance 1 1 3 4 5

Use of core comments than needed 1 2 3 4 5

Program documentation i important in understanding the system logic. Indenting comments and source code the

Indicate the degree to which you agree or disagree that the named same amount 1 2 3 4 5

documentation characteristic would reduce system complexity. (Complexity

is defined in terms of repair maintenance)

Documentation should start at design stage 1 2 3 4 5

Circle 1

Circle 2

:Artie 3

Circle 4

Circle 5

if you STRONGLY AGREE with the statement.

if you AGREE with the statement.

if you NEITHER AGREE OR DISAGREE with the statement.

if you DISAGREE with the statement.

if you STRONGLY DISAGREE with the statement.

Inadequate description of data environment 1 2 3 4 5

High self documentation value(' of comment

lines per 100 lines of code). 1 2 3 4 5

Documentation for individual in tallation 1 2 3 4 5

Development of operator and maintenance manuals 1 2 3 4 5

Documentation of input, output, and files handled

by the system 1 2 3 4 5

Information on specie' diagnostic codes and flags 1 2 3 4 5

Documenting of complex logic, wizen used 1 2 3 4 5

6

Correctness is an important characteristic of system development.

Several decisions that are made to make the system function correctly P
et
,

also affect its complexity. You are asked to indicate the degree to

which you agree or disagree that implementing the named characteristic

for correctness would also reduce software complexity. (Complexity is

interpreted as repair maintenance)

Circle 1

Circle 2

Circle 3

Circle

Circle 5

if you STRONGLY AGREE with the statement.

if you AGREE with the statement.

if you NEITHER AGREE OR DISAGREE with the statement.

if you DISAGREE with the statement.

if you STRONGLY DISAGREE with the statement.

Control structure to process priorities 1 2 3 4 5

Conformity with data base rules 1 2 3 4 5

BEST COPY AVAILABLE

7

84

Clarity in addressing scheme 1 2 3 4 5

Proper use of registers 1 2 3 4 5

Patching bad code instead of rewriting it 1 2 3 4 5

Use of recursive procedures for recursively

defined data structures 1 2 3 4 5

Terminating input by end-of-file or marker,

not by count 1 2 3 4 5

Identify bad output and recover when possible 1 2 3 4 5

Initialize variables and constants before use 1 2 3 4 5

Avoid off-by-one error 1 2 3 4 5

Branch the right way on equality 1 2 3 4 5

Arithmetic with floating numbers 1 2 3 4 5

Comparison of floating point numbers for equality 1 2 3 4 5

hating code right before making it faster 1 2 3 4 5

Assure the correctness of solution at the

design stage 1 2 3 4 5

Reliability is important than efficiency 1 2 3 4 5

Initializing variables with executable code 1 2 3 4 5

Use of mixed data types 1 2 3 4 5

Use of debugging compiler 1 2 3 4 5

Introducing debugging aids early 1 2 3 4 5

The level of clarity maintained during system development, to a greater

extent, determines the ease in maintenance, after the system goes into

production. Indicate the degree to which you agree or disagree that the

85

following statements about clarity would also reduce system complexity.

(Complexity is defined as repair maintenance)

Circle 2 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you NEITHER AGREE OR DISAGREE with the statement.

Circle 4 if you DISAGREE with the statement.

Circle S if you STRONGLY DISAGREE with the statement.

Sequence of source code
1 2 3 4 5

Sigh GOTO density(0 of GOTO statements per 100

lines of code)
1 2 3 4 S

Sacrifice clarity for efficiency
1 2 3 4 5

Transform hard logical expression to simple ones 1 2 3 4 5

Using meaningful statement labels
1 2 3 4 5

Use of uniform input format
1 2 3 4 5

Using free-form input when possible
1 2 3 4 5

Using blank spaces in source code
1 2 3 4 5

Selecting mnemonic names that won't be confused 1 2 3 4 5

Use of prefix or suffix on file names 1 2 3 4 5

Using single statement per line
1 2 3 4 5

Alphabetizing lists including arguments,

parameters, and declarations
1 2 3 4 5

Use of prP.-..mthesis to avoid ambiguity
1 2 3 4 5

Indentation to show program structure
1 2 3 4 5

flaking code simple to understand
1 2 3 4 5

Use of prefered variable type for subscripts 1 2 3 4 5

8 9

BEST COPY AVAILABLE

86

Programming style elements enhance clarity and help in understanding

software logic better. Indicate the degree to which you agree or

disagree that the following set of statements would also reduce software

complexity. (Complexity is interpreted as repair maintenance)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with the statement.

Circle 3 if you NEITHER AGREE OR DISAGREE with the statement.

Circle 4 if you DISAGREE with the statement.

Circle 5 if you STRONGLY DISAGREE witb tbe statement.

Keeping module size small (not to escede 100

executable statements)
1 2 3 4 5

Use of temporary variables
1 2 3 4 5

Replacing repetetive tasks by CALLS to functions 1 2 3 4 5

Avoiding FORTRAN arithmetic IF
1 2 3 4 5

Use of unnecessary branches
1 2 3 4 5

Use of conditional branches as a substitute

for logical expression
1 2 3 4 5

Use of data arrays to avoid repetetive control

sequence 1 2 3 4 5

Choice of data representation that makes the

program simple 1 2 3 4 5

Making output self explanatory 1 2 3 4 5

Strain to reuse code instead of rearranging it 1 2 3 4 5

Making special cases truly special 1 2 3 4 5

Don't diddle code to make it faster, find

a better algorithm 1 2 3 4 5

Use of variables not constants for parameters 1 2 3 4 5

Use of library routines and functions when

available 1 2 3 4 5

Plan ahead for program changes 1 2 3 4 5

Use of compiler for simple optimization 1 2 3 4 5

Block I/O efficiently 1 2 3 4 5

Use of load modules for repeated runs 1 2 3 4 5

Use of large number of NOT conditional clauses 1 2 3 4 5

Use of several EJECT and SKIP statements 1 2 3 4 5

Management plays an important role in system development and may also

affect system complexity. To what degree do you agree or disagree that

the following set of management related activities would reduce software

complexity. (Complexity is defined as repair maintenance)

Circle 1 if you STRONGLY AGREE with the statement.

Circle 2 if you AGREE with tbe statement.

Circle 3 if you NEITHER AGREE OR DISAGREE With the statement.

Circle 4 if you DISAGREE with the statement.

Circle 5 if you STRONGLY DISAGREE with the statement.

Management by objectives 1 2 3 4 5

Phased methodology to develop system 1 2 3 4 5

Favorable management environments 1 2 3 4 5

Fixed sch.lule to complete work 1 2 3 4 5

10
11

87 BEST COPY AVAILABLE 88

Homoger-ous group of system developer

Team concept of system development

Egoless programmiug

Programmer's motivation for task

Inclusion of development staff in the testing team

Vertical and horizontal interaction of programmers

Well budgeting of the system

A beirarchical organization of programmers

Small design teams

Differences over interpretation between

project manager and general management

1

1

1

1

1

1

1

1

1

1

2

2

2

1

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

S

5

5

5

5

5

5

5

5

5

The questions below ask you responses to enable us to see the

differences in opinions expressed by groups representing various levels

of sex, education, experience, and profession.

CIRCLE the response that describes you the best.

SEX: 1. MALE 2. FEMA'.E

EDUCATION:
1. BS in computer science
2. MS in computer science
3. Ph.D. in computer science
4. Computer coursework but no degree in Comp. Sc.

5. No formal education in computer science

TYPE OF EMPLOYMENT:

12

89

1. Regular job
2. Student monthly
3. Student hourly

NATURE OF JOB:

1. Related to software development/maintenance
2. NOT related to software development/maintenance
3. Any other, explain:

WORK DESIGNATION:

COMPUTER RELATED EXPERIENCE:

1. Less than 1 year
2. 1-2 years
3. 2-4 years
4.More than 4 years

Do you ,.milt o copy of results7 1, YES

BEST COPY AVAILABLE

13

2. NO

ROTATED

DESIGN1
DESIGN?.
DESIGN3
DESIGN4
DESIGhl
DESIGN
DESIGh7
DESIGNS
DESIGh9
DESIGN1Q
DESIGN':
DESIGN 2
DESIGN 13
DESIGN i4
DESIG615
)E210116
DESIGN'?
DESIGN18
OESIGA19
DESIGNU
DESIC621
DESIGN22
DESIGA23

BEST copy

FACTOR MATRICES

System Planning

ROTATED FACTOR MATRIX:

FACTOR 1 FACTOR 2 FACTOR 3
PLAN1 .29764 .03363 .65085PLAA2 -.15106 -.15660 .67906PLAN3 .58132 -.33728 .22070PLAN4
PLAN5 .83292

.88704
-.07077
-.04583 .03433

.02189PLAN/ -.24696 .71252 -.21493PLAN? -.e6897 .76632 .18352PLAN8 .39209 .75154 .16460PLANS .14219 .63042 -.11769PLA110 .50264 .44601 .10786PLAn11 .35332 .47113 .50273PLA612 .05230 .21101 .38494PLA613 -.17490 .53526 .57553PLA614 .51663 -.08639 .55251FLAn15 .56487 .19333 -.08636PLA616 .44937 .03062 .38879PLAN17 -.u7418 -.04882 .70456

System Characteristics

ROTATEC FACTOR MATRIX:

FACTOR 1 FACTOR 2 FACTOR S
CHAR1 -.00347 .34353 .59229CHAR2

.77855 .10899CHAR?, .33121 .68902 - .08656CHAR4
CHARS

.26893
-.05363

.7783

.760050
.097
.12641

3/
CHAR6 .78225 .10112 .17049CHAR? .22812 .52989 .52783CHART .85695 .08343 -.0746UCHARS .7242, .04421 .11288CHAR10 .44862 -.34976 .56969CHAR11 .1589/ -.U6590 .8331uCHAR12 .64100 -.44283 .1)3491CHAR13
CHAR14

.7610
-.32250

6 29
.604722

.02483

.09411CHAR15 -.14548 .18268 .89831

FACTOR MATRIX:

FACTOR 1

-.43282
.747/0
.20638
.13069

-.03042
-.18076
-.31649
.19998
.17915
.01624

-.00776
.32129

-.01740
-.60566
-.13253
-.10245
.04388
.03515

-.07164
-.J7246
.o9443
.71095
.58179

System Design

FACTOR 2 FACTOR 3

-.03483 -.01116
.08623 .16588

-.41677 .59183
-.47334 .65513
.24867 .75944
.06111 .667015
.02159 .19085
.60084 .01660

-.28404 -.1123U
.16375 -.20697

-.01619 ,e1633
.41374 .21801
.43001 -.17711
.17135 -.14248
.03710 .05232
.17425 -.22110
.83495 -.06722
.76685 .07860
.14569 .04731
.13822 .48605
.03139 -.17744
.06567 -.23429
.09904 .22461

78

91

FACTOR

.73281
-.11820
.021F7

-.06930
-.14114
-.10501
-.21941
-.23946
.60385

-.15111
-.71115
-44258
.34787
.05011
.18171

-.44542
-.17229
-.02580
.22932

-.02191
-.10285
.40169
.47073

4 fACIne

-.11ce,)
-.140f-0.,
-.312u5
-.GUAC6
-.(_24".5
.;7441-,

-.11941
.17449
.40?4

-.005?
.1503,
.459i
(60C-. 6

.11491

.74060

.6282?

.02t P_;
...l50e.
.0574
.16194
.1611i

-.V,1;i
.1120u

5

FACTCR MATRIX:

FACTOR 1

TESTI .65402
TEST2 .69131
iEST3 .75801

TEST1E514
S

.3i366

.56:80
TEST6 .4150/
TEST? .30753
TES1E .512/.7
TESTS .24618
TEST1O .48900
TEST11 .24646
7E5112 .01356
TEST13 .49862
TEST14 .21568
TESTIS -.66493
TEST16 -.01553
TESTI? .27532
7E5118 .57430
TESTIS .37301

System Testing

FACTOR

.24662

.15059

.06604
-.13508
-.20941
.05105

-.41655
-.27148
-.61911
-.02090
-.54400
.75330
.31395

-88?. 26
.09268
.49590
.28668

-.52302

BEST COPY AVAILABLE

2 FACTOR 3 FACTOR 4

-.07002 .30880
-.50114 .07755
-.13370 .16354
.2497e .63362

-.14248 -.07292
-.58582 -.13921
.19919 -.58325
.27751 .02965
.42928 .17955
.49491 -.0751J
.30864 -.2A406
.34504 -.27303
.36897 .21033
.38014 .26044
.40870 .41924
.49619 -.43561
.18068 -.11723
.08620 -.38,24
.02338 .19064

System Documentation

ROTATED FACTOR MATRIX:

FACTOR 1 FACTOR 2 FACTOR 3

DOCUI .16579 .06285 .712
DOC1.2 .75081 -.16217 - .16901
DOCULI .57085 .00693 -.01676
DOCU4 .75785 .08008 .51574
DOCU5 .78442 .30342 .00241
DOCU6 .68614 .33187 -.16967
DOCU7 .85776 .06177 .1715e
DOCUE .63930 .16208 -.2372/
DOCU9 .05428 .31812 -.62792
DOCU10 .28191 .74884 .22357
DOCL11
D00012

.28680

.74420
6104

-..031992
-.7
.14898

D00013 .05643 .74112 -.05021
DOCU14 -.13553 3.4812/7805

DOCLIS -.34241 ./7805 .02702
D00016 .72493 -.08370 .35595

System Correctness

ROTATED FACTOR MATRIX:

FACTOR 1

CORECT1
CORECT2 00945

.12778
CORECT3 .29996
CORECT4 .24412
CORECT5 .315/2
CORECT6 .27935
COREC17 .61130
CORECT$.41050
CORECT9 .80664
CORECT10 .90569
CORECTI1 .68483
CORECT12 .18614
CORECTI3 -.00995
CORECT14 .02
CORECT15 .1654CORECT16
CORECT17 87380.1728

61 6CORECT18 .02717CORECT19 .60276
CORECT20 .59991

FACTOR

-.26536
-.01932
-.36331
.20626
.66383

-.30270
.18329

-.05453
.03476
.U6539
.00669

-.41939
-.49621
.64655
.36516

./tH3. 8

.06064
-.00824
.43457

79

2 FACTOR 3 FACTOR 4

.87715

.30808
.11700
.85286

.67233 -./9501

.79171 .05938

.06618 .20385
-.52551 -.06425
-.09592 - .C9847
.05814 .46509

-.00669 .16437
.19019 -.C5224
.17624 .22241
.16192 -.37423
.14408 .13E08
.20442 .18444
.50372 -.28440
.09065 -.09370
.1067/

-
-..11505

22859
-.03526
.81536
.3407/

.14648 -.04995

92

ROTATED FACTOR MATRIX:

FACTOR

CLAR1 .U5136
CLAR2 .58995
CLAR3 .78412
CLAR4 .54674
CLAR5 .63232
CLARE .09616
CLAR7 -.14512
CLARA .06933
CLAR9 .57322
CLAR1C -.01660
CLAR11 .62855
CLAR12 .05884
CLAR13 -.29952
CLAR14 .56825
CLAR15 .74500
CLAR1t .44680

System Clarity

1 FACTOR 2

.75874
-.3o019
.04869
.39463
.50065
.81327

-.06990
.54882
.51472
.34703

-.14881
-.J1795
.52702
.04904
.03383

-.00544

ROTATED FACTOR MATRIX:

BEST COPY AVAILABLE

Programming Style

STYLE1
STYLE?
STYLE
STYLE
STYLES
STYLE 4
STYLE!

FACTOR 1

-.32087
-.00Q2
-.19(Q
-.1464W2
.61753

..868554273

FACTOR 2

.31784

.86058

.83146

.02383

.24255
- .U1243
.01458

STYLE! .54315 .34861
STYLES .4178088 .22865
STYLE10 -.19134
STYLE11 .24798 -.24933
STYLE12 .48739 .37805
STYLE13 .43621 .25648
STYLE14 .20857 .68506
STYLE15 ..39010 .49848
S:VLE16 -.12152 .17378
STVLE17 .093o6 -.1367o
STYLE1R .05806 .26215
STYLE19 -.40658 .07875
STYLE20 -.12750 .38779

ROTATED FACTOR MATRIX:

FACTOR 3

.36846
-.11312
-.17349
-.11504
-.00005
-.04049
.73963
.56074

-.05436
.66008
.56158
.66103
.03967
.02795
.02994
.21095

FACTOR 3 FACTOR 4

-.32558
-..Pii(3)1 .01739
-.12494 .14365
.846o6 .02205
.13456 .16407

- 295 .11146
-,. Li072 -.18305
.33485 -.17823
.02433 .27436
.02104 .C5527
.60707 .22470
.28U41 .21431

-.02634 .74984
.235o0 .06009

-.00024 .09470
.63895 .52970
.03142 .87082

-.04537 .80412
.01918 -.21753

-.67019 .22642

System Management

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4

MANAGE1 -.15153 .28580 -.26765 .79499MANAGE? .59563 .00032 .00504 .23343MANAGES .17721 .44494 .45150 .37460MANAEd .65539 .20701 .01117 .03237MANA.E5 .31733 -.65511 .3e798 .0005JmANAGE6 .20584 .09136 .21199 .74311MANACE7 .16346 -<35173 .07160 .55144MANACE8 .07285 .81564 .06892 .16047
MANAGE9 .32098 .59775 .13389 -.18628
MANAGE 10 .46326 .64892 .27543 .20455
MANAGE1

.49979

.90512
.25069

-.05333
.52b84

-.07958 .2ig9-.0 6MANAGE1 .05233 .06770 .88239 -.02109mAhAGE14 -.45037 -.U8803 .75144 -.01843

80

93

