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Promising Directions For Assessing Item Response

Model Fit to Test Datala

Ronald K. Hambleton and H. Jane Rogers
University of Massachusetts, Amherst

Introduction

Item response theory (IRT) is presently being used by most of the

large test publishers, the Armed Services, many state departments of

education, large school districts, and a variety of industrial and

professional organizations. IRT is being used to construct achievement

and aptitude tests, to study differential item performance, to equate

test scores, and to provide the measurement theory for computerized

adaptive testing. The many applications have been sufficiently

successful that discussions of IRT have definitely shifted in recent

years from considerations of model advantages and disadvantages

compared to classical test models to considerations of such topics as

IRT model selection, parameter estimation methods, approaches for

assessing model fit, and the development of specific guidelines for

particular IRT applications. In these areas, the issues and technology

associated with item response theory ace not fully developed and some

This research was supported by a contract from the Air Force Human
Resources Laboratory (F33615-84-C-0058). The views, opinions, and
findings contained in this report are those of the authors and should
not be construed as an official Department of the Air Force position,
policy, or decision, unless so designated by other official documenta-
tion.

2 A paper presented at a symposium entitled, "Current Issues and Devel-
opments in Item Response Theory" at the annual meeting of AERA, San
Francisco, 1986.
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controversies still remain (see, for example, Goldstein, 1980; Traub &

Wolfe, 1981). This paper examines one of these issues, the assessment

of model fit.

While the potential of item response theory for solving many

testing and measurement pro'lems now appears to be substantial, the

success of any application is not assured simply by processing test

res.;lts through one of the availaole item response model computer

programs (e.g., BICAL or LOGIST). A poorly fitting model will not

yield invariant item parameter estimates, or statistics that accurately

describe the items.

Neither can it b, assumed that because so many datasets have been

fit by item response models in the past that the fit to new datasets is

assured. IRT applications in the measurement literature and especially

the applications described in the large set of conference papers over

the last ten years have often failed to address adequately the

goodness-of-fit issue and so the extent of model-data fit is unknown

(Divgi, 1981).

The advantages derived from the application of an item response

model cannot be achieved when the fit between the model and the test

data set of interest is less than adequate. Typical goodness-of-fit

evidence presently involves statistical tests, but these tests cannot

be used as the sole determiner of model-data fit because of their

dependence on examinee sample sizes. When sample sizes are large

nearly all departLres from a model (even those where the practical

significance of the deviation is minimal) will lead to rejection of the
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null hypothesis of model-data fit. With nall sample sizes even big

differences may not be detected via statistical tests because of the

low level of statistical power. In addition, the sampling

distributions of some of the popular statistics are not as specified,

and so errors will be made when these statistics are applied. This

point is further addressed in a later section.

With the goal of helping more researchers conduct appropriately

designed goodness-of-fit investigations, the principal purposes of the

present paper are to destribe (1) an up-to-date set of promising and

useful methods for addressing goodness-of-fit questions about item

response models, and (2) some of our current research studies to

advance the set of methods. Specifically, purpose one will be an

update of some earlier work by Hambleton and Murray (1983) and

Hambleton and Swaminathan (1985). Our review will include statistical

tests, though other approaches seem more useful at present. Purpose

two will be accomplished by presenting some of our rec.ent work

concerning statistical tests of fit, and investigations of

unidimensionality and item parameter invariance.

Promising Methods for Addressing Goodness-of-Fit Questions

Overview

After a review of the model fit literature, Hambleton and

Swaminathan (1985) suggested that the determination of how well an item

response model fits a set of test data be addressed in three ways:

a. Determine the extent to which the test data satisfy the

assumptions of the test model of interest.

AERA in 86, Bias.2 0
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b. Determine the extent to which expected advantages derived from the

use of the item response model (i.e., invariant item and ability

estimates) are obtained.

r. Determine the closeness of fit between predictions assuming the

validity of the model and observable outcomes (for example,

residuals and test score distributions) tilizing model parameter

estimates and the test data.

For each of these approaches Hambleton and Swaminathan (1985) prepared

a list of promising methods for collecting appropriate information.

Figure 1 is an up.2ate of their earlier work. Basically, their

orientation was to recommend that researchers avoid making important

decisions based upon a narrow range of information. They recommended,

instead, that researchers collect a wide range of data to influence the

final judgment about model data fit. Checks on model assumptions and

invariance properties, along with practical investigations of misfit

and the consequences of misfit for the intended applications are all

integral parts of the goodness-of-fit investigation.

Checking Model Assumptions

Item response models are based on strong assumptions which will

not be completely met by any set of test data (Lord & Novick, 1968;

Lord, 1980). There is some evidence that the models are robust to

moderate departures, but the extent of robustness of the models has not

been fully established (Hambleton et al, 1978). Given doubts about the

robustness of the models, a researcher might be tempted to simply fit

AERA in 86, Bias.2
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the most general model since it will be based on the least restrictive

assumptions. Unfortunately, the most general models are multi-

dimensional (i.e., assume that more than one latent variable is

required to account for examinee test performance); these models are

complex and do not appear ready for wide-scale use. Moreover,

interpretation of results is complex and may not be what the researcher

is looking for. Certainly, a multidimensional representation of

ability is not common output from a test administration.

Alternatively, it has been suggested that the three-parameter logistic

model, the most general of the unidimensional models in common use, be

adopted for important applications. The three-parameter model should

result in better fit than either the one- or two-parameter models.

There are three problems with this course of action: (1) more computer

time is require' to conduct the analyses, (2) somewhat larger samples

of examinees and items are required to obtain satisfactory item and

ability estimates and (3) the additional item parameters (item

discrimination and pseudo-chance levels) complicate the use of the

model for practitioners (see also Baker, 1986).

Model selection can be aided by an investigation of four principal

assumptions of several of the popular item response models: unidimen-

sionality, equal discrimination indices, minimal guessing, and

non-speeded test administrations. Approaches for studying these

AERA in 86, Bias.2
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assumptions are summarized in Figure 1. These approaches are

considered in more detail by Hambleton and Murray (1983) and Hambleton

and Swaminathan (1985).

There are many definitions of unidimensionality and this is one

reason for confusion about assessing its presence. McDonald (1980,

1982) and Hattie (1981) arrived at the conclusion that the principle of

local independence should be the basis for a proper definition for the

assumption of unidimensionality. McDonald defined a set of test items

as unidimensional if, for examinees with the same ability, the

covariation between items in the set is zero. Since the relationship

between items is typically non-linear, he recommended the use of

on-linear factor analysis to study item interrelationships. Also,

after fitting a single non-linear factor model to the item set, he

recommended that residual covariances be calculated and used to assess

the plausibility of the unidimensionality assumption. McDonald argued

that the dimensionality of a set of test items should be determined by

the number of factors or abilities needed for describing examinees in

order to satisfy the principle of local independence.

Checking Model Features

Three measurement advantages are obtained when an item response

model fits a set of test data:

1. Ability estimates are on the same ability scale and can be

compared even though examinees may have ta1/4en different sets

of test items from the pool of test items measuring the

ability of interest.

AERA in 86, Bias.2
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2. The item statistics do not depend upon the sample of examinees

from the population for whom the test is intended.

3. An indication of the precision of ability estimates at each point

on the ability scale is obtained.

Item response models are often chosen as the mode of analysis in order

to obtain these three advantages. However, whether or not these

features are obtained depends on several factors -- model-data fit,

test length, and precision of the item parameter estimates, among

others. Through some straightforward methods, these features can be

studied and their presence in a given situation determined.

The presence of the first advantage can be addressed, for example,

by administering to examinees two or more samples of test items which

vary widely in difficulty (Wright, 1968). It is most common to conduct

this type of study by administering both sets of test items to

examinees within the same test. Then, scores are obtained based on,

say, the easier and harder halves of the test. Pairs of ability

estimates obtained from the two halves of the test for each examinee

are plotted on a graph. The bivariate plot of ability estimates should

be linear, because expected ability scores for examinees do not depend

upon the choice of test items when the item response model under

investigation fits the test data. Some scatter of points about a best

fitting line, however, is to be expected because of measurement error.

When a linear relationship is not obtained, one or more of the

underlying assumptions of the item response model under investigation

are being violated by the test data set.

AERA in 86, Bias.2
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One weakness of the approaches described above is that there is no

baseline data available for interpreting the plots. How is one to know

whether the amount of scatter is acceptable, assuming model-data fit?

An alternative is to perform statistical tests to study the differences

between, say, b values obtained in two different subgroups. However,

as long as there is at least a small difference in the true parameter

values in the samples, statistically significant differences will be

obtained when sample sizes are large. Thus, statistically significant

differences may be observed even when the practical significance of

these differences is inconsequential.

In a promising line of research for checking the invariance

property, Hambleton and Rogers (1986) and Hambleton, Rogers, and

Arrasmith (1986) generated a plot of b-values for randomly equivalent

groups and then compared the plot to the plot of b-values obtained

between two subgroups who might be expected to respond differently to

some of the items (e.g., males versus females, Blacks versus Whites).

The first plot serves as a baseline for interpreting the second plot.

If the plots are similar, the groups are randomly equivalent and so the

subgroups (e.g., male and female) are operating no differently from the

randomly equivalent groups. Sex can then be ruled out as a factor in

item performance. If the plots are different, attention shifts to

identifying those test items which showed consistent differences in the

subgroups of interest. The methodology for the "plot method" will be

expanded on later in this paper.

AERA in 86, Bias.2
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Checking Additional Model Predictions

Several approaches for checking model fit are listed in Figure 1.

One of the most promising approaches for addressing model-data fit

involves the use of residual analyses. An item response model is

chosen; item and ability parameters are estimated; and predictions of

the performance of various ability groups on the items in the test are

made, assuming the validity of the chosen model. Comparisons of the

predicted results with the actual results are made (see, for example,

Hambleton & Swaminathan, 1985; Kingston & Dorans, 1985).

By comparing the average item performance levels of various

ability groups to the performance levels predicted by an estimated item

characteristic curve, a measure of the fit between the estimated item

characteristic curve and the observed data can be obtained. This

process, of course, can be and is repeated for each item in a test.

Most of the statistical tests of model fit that have been proposed use

this approach.

In addition to this approach, it is reasonable and desirable to

generate testable hypotheses concerning model-data fit. Hypotheses

might be generated because they seem interesting (e.g., Are item

calibrations the same for examinees receiving substantially different

types of instruction?) or because Questions may have arisen concerning

the validity of the chosen item response model and the testing

procedure (e.g., What effect does the context in which an item is

pilot-tested have on the associated item parameter estimates?). On

this latter point, see, for example, Yen (1980). Kingston and Dorans

addressed the question of item context on item statistics and

implications for the use of the statistics.

AERA in 86, Bies.2 11
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Researchers should also be encouraged to consider when possible

the consequences of misfit upon their results. Hambleton and Cook

(1983), for example, considered the effect of using the wrong model to

obtain ability estimates. They also looked at the role of test length

and sample size on it parameter estimates and, in turn, the effect of

these factors on the precision of test information functions. Other

researchers have studied the problem of other types of errors on

equating and adaptive testing (e.g., Kingston & Dorans, 1984).

Summary

Our literature review revealed a substantial number of methods for

conducting goodness-of-fit studies, but there appears to be too much

emphasis on statistical tests for determining model-data fit. As an

alternative, the use of researcher judgment in interpreting statistical

tests of fit (rather than through the use of critical values) and other

model-data comparisons for two or more models fitted to the same set of

test data seems more desirable. Perhaps the statistical approach can

be replaced by the use of graphical methods, replications,

cross-validation techniques, study of residuals, baseline results to

aid in interpretations, the study of practical consequences of misfit,

and so on. In the last section of the paper, a set of recommended

steps is offered.

With respect to testing model asswptions, unidimensionality is

clearly the most important assumption to satisfy. Many tests of uni-

dimensionality are available but those which do not use correlations

AERA in 86, Bias.2
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(Bejar, 1980) and/or incorporate the analysis of residuals (McDonald,

1980) seem most useful. In category two (checking model features),

there is a definite shortage of ideas and techniques. Presently, plots

of item parameter estimates obtained in two groups are compared without

the aid of any "baseline plots", c statistical tests are used to

compare the two sets of item parameter estimates. Such tests are less

than ideal for the reasons offered earlier. Several new methods seem

possible and one or two will be introduced in the planning sections.

In the third category (checking model predictions), a number of very

promising approaches have been described in the literature but they

have received little or no attention from researchers (exceptions

include the work of Kingston & Dorans, 1984; 1985; and several

simulation studies, for example, Ansley & Forsyth, 1983). An

outstanding example of a model data fit study (focusing on category 3)

was recently completed by Hills, et al.,(1985). Perhaps the problem is

due to a shortage of computer programs to carry out necessary analyses

or to an over reliance on statistical tests. In any case the problem

is likely to be overcome in the near future.

Statistical Tests of Model Fit

Statistical tests of model fit are typically chi-square tests

entailing comparison of obs °rved results with those expected assuming

model validity. Most of the chi - square tests that have been proposed

were developed for the one-parameter model, although recent work has

produced extensions to the two- and three-parameter moeels (see, for

example, Yen, 1981).

AERA in 86, Bias.2
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Three main approaches to the construction of chi-square tests of

goodness-of-fit may be identified. The first cf these and the most

commonly used is based on a standardized difference of observed and

expected results; the second uses contingency table data; and the third

employs a likelihood ratio. These different approaches to some extent

reflect different parameter estimation procedures; likelihood ratio

tests are only possible when conditional maximum likelihood estimation

is performed.

Chi-square tests of fit based on the standardized residual are of

the form

k m
Ir j ((fij) Effij))

2

y=
J=1 i =1 Var(fij)

where fij is the frequency of correct responses to item j among persons

with score i;

E(fij) is the corresponding expected frequency, equal to

nipij, where ni is the number of persons with

score i and pij is the probability of success on

item j for persons with score i, calculated from

the model parameter estimates.

m is the number of score groups (usually k.1) and k is the

number of items.

AERA in 86, Bias.2
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Since fij has a binomial distribution with parameter pig, the normal

approximation to the binomial yields a residual which has an

approximately unit normal distribution; squaring and summing over items

and score groups results in a chi-square on (m-1)(k-1) degrees of

freedom.

The chi-square statistic derived in this manner has been

criticized on several grounds. When any of the E(fij) terms has a

value less than one, the claim of a chi-square distribution is of

dubious validity, since the standardized residual of observed and

expected will not be normally distributed. When sample sizes are small

or do not contain a sufficient range of ability, this problem becomes

severe. On the other hand, when sample sizes are large, the statistic

gains sufficient power to detect trivial deviation from the model.

Hence, both small and large sample sizes can adversely affect the

behavior of the statistic. Nevertheless, variations on this statistic

have continued to be used in the absence of better tests.

Wright and Panchapakesan (1969) first proposed the statistic

described above as an overall test of the fit of the one-parameter

model. Summing over only items or persons results in statistics which

have been used to assess the fit of individual persons and items.

Wright and Stone (1979) suggested the use of a variation on this form,

called the mean square residual, as a measure of the fit of persons and

items. Unlike the Wright-Panchapakesan statistic, the mean square

residual is computed using individual responses rather than grouped

responses.

AERA in 86, Bias.2
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The mean square residual is calculated by means of the formula

(xij - )2
v =

pij(1-pip

where xij is the response of person i to item j

(=1) if correct, =0 if incorrect)

and pij is the probability of success on item j for person i,

calculated from the model parameter estimates.

The statistic may be summed over items for person fit or over persons

for item fit. It is unlikely that this procedure will result in a

chi-square statistic, however, given that each residual is blsed on a

single observation and cannot be normally distributed. Wright, Mead

and Bell (1979) point out that the mean square residual is very sensi-

tive to unexpected responses, such as correctly guessed answers for a

person of low ability, and modify the statistic to "fr-tify" it against

such responses. The statistic they produce is called the total-t, and

is included in the BICAL program as a measure of the fit of persons and

items. The total-t differs from the mean square residual in that the

numerator and denominator are summed separate'y. The statistic

produced is given by the formula

Ar(X..
Pi j)2v=1"

1301-130

where summation is over either person or items.

AERA in 86, Bias.2
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Although the statistic appears to be a ratio of variance estimates, its

distribution is not clear. Wright, Mead, and Bell (19791 apply a cube-

root transformation to produce a statistic which is said to be

approximately normally distributed.

Another variation on the right-Panchapakesan statistic is also

incorporated into BICAL as a measure of item fit. The between-t

differs from the Wright-Panchapakesan statistic in that persons with

different but adjacent scores may be included in the same score group.

The between-t in BICAL is calculated using six score groups.

The second approach to the construction of a chi-square test of

model fit is similar to the first in that a residual of observed and

expected results is obtained, but differs in that the frequencies of

both correct and incorrect responses are used in calculation of the

statistic. That is, a 2 X J contingency table of response by score or

ability group (where J is the number of groups) is set up and a chi-

square statistic constructed from the difference between oL.derved and

expected frequencies in each cell.

Van den Wollenberg (1979) presents a statistic called Q1 which is

derived in this way. Respondents are first grouped by total score into

k-1 groups (where k is the number of items). For each item, observed

and expected frequencies of correct am incorrect responses are calcu-

lated for each score group and a chi-square statistic on (k-2) degrees

of freedom is obtained. The chi-squares for all items are th* summed

to produce an °If eral I test statistic which is distributed as a

chi-square on (k-1)(k-2) degrees of freedom.

AERA in 86, Bias.2
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In calculating the expected frequencies for each cell, van den

Wollenberg uses parameter estimates obtained under the conditional

maximum likelihood estimation procedure. Since the derivation of 01

does not appear to depend on this approach to parameter estimation, the

statistic should be usable under other estimation procedures.

Yen (1981) employs a similar approach to produce a statistic which

she also calls Q1. Respondents are arranged into ten groups on the

basis of ability estimate, yielding a statistic which is appropriate

for the two- and three-parameter models as well as the one-parameter

model.

The Q1 statistic proposed by both van den Wollenberg and Yen is

given by the formula

*1 N(Oij - Eij)2 WI Ni((1 - Oij) - (1 - Eij))2

Q1 2 lE + ]E
1=1 Eij(1 Eij) j=1 Eij(1 - Eij)

where Oij is the observed proportion of examinees in group i

who answer item j correctly

and Ni is the number of examinees in group i.

The third approach to the construction of chi-square tests of

model fit uses the item response model property of invariance of para-

meter estimates when the model fits the data. That is, the likelihood

ratio test compares the likelihood of the observed data when the para-

meter estimates are obtained For the group as a whole to the likelihood

when parameter estimates are based on subgroups of the data. Andersen

(1973) presents a statistic which is calculated as follows:

AERA in 86, Bias.2
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Z = -2 log (L(b)/1T Lr(2r))

r=1

where L(b) is the likelihood of the total sample data given the

difficulty parameter estimates b for the k items.

and Lr(br) is the likelihood in the subgroup with the score r

given the estimates bi calculated in that subgroup.

When the data fit the one-parameter model, it is expected thatit4,

but if deviation from the model occurs, Iar will differ from b in at

least some of the score groups. In this case, the likelihood of the

observed results when difficulty estimates are allowed to differ across

subgroups will generally be greater than the likelihood given estimates

based on overall results. Therefore deviation from the model will lead

to values of the ratio less than one. Andersen (1973) proves that Z

tends to a limiting chi-square distribution with (k-1)(k-2) degrees of

freedom when nr-100°. When group sizes are small, however, the approxi-

mation to the chi-square distribution will be poor. Wainer, Morgan,

and Gustaffson (1980) suggest that 50 to 100 persons are needed in each

score group. When there are fewer persons in each group, parameter

estimates are likely to be unstable (Gustaffson, 1977). Andersen

advises that adjacent score groups be pooled when sample sizes are

small. The statistic will then have an approximate chi-square distri-

bution with (k-1)(m-1) degrees of freedom where m is the number of

score groups. Partitioning can also be performed on the basis of sex

or some other variable (e.g., see Gustaffson, 1977). A likelihood

ratio test has also been developed for the two-parameter normal ogive

model (Bock & Lieberman, 1970).

AERA in 86, Bias.2
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The likelihood ratio test can only be used when maximum likelihood

parameter estimates are obtained. Thus it is not available for use

with programs such as BICAL or LOGIST, which employ different methods

of estimation. Although the likelihood ratio test is asymptotically

distributed as a chi-square, it suffers the same sample size problems

as do the Wright-Panchapakesan statistic and its variations. Use of

any of these statistics therefore requires caution.

Given the theoretical problems associated with the fit statistics

described above, Monte Carlo studies can provide valuable information

about the conditions, if any, under which the statistics are sensitive

to violations of the model assumptions. Surprisingly, few Monte Carlo

studies have been reported in the literature. Rogers and Hattie (in

press) conducted an extensive simulation study to examine the behavior

of the person and item fit statistics used in BICAL. For 500 persons

and 15 items, Rogers and Hattie generated data to fit the one-, two-,

and three-parameter models and to reflect two levels of

multidimensionality. With 75 k.eplications of each dataset, Rogers and

Hattie found that the totalt statistic was unable to detect to any

practical degree overell model misfit as a result of guessing,

heterogeneity in discrimination parameters, or multidimensionality. The

between-t statistic, which resembles the Wright-Panchapakesan

statistic, showed some sensitivity to variation in discrimination

parameters and to guessing, but was insensitive to multidimensionality.

The statistic is probably best used as a marker for items which should

be more closely examined or as an indicator of the comparative fit of

the one-parameter model against the two- or three-parameter models.

AERA in 86, Bias.2 20



-.19-

Van den Wollenberg (1979), in an evaluation of the Q1 statistic,

found that it appeared to have a chi-square distribution with the

degrees of freedom claimed. Van den Wollenberg generated ten

replications of one-parameter model data for 1000 persons and test

lengths of four to eight items. The approximation of the distribution

of Q1 to the chi-square distribution was tested by means of the

Kolmogorov-Smirnov test of fit. For tests with difficulty parameters

in the range (-2, 2), the chi-square approximation was adequate for all

test lengths. For tests with extreme item parameters, in the range

(-4, 4), the approximation was not as good. This disturbance reflects

the sensitivity of Q1, like all chi-square statistics, to small cell

sizes.

Yen (1981) examined the behavior of the Q1 statistic she derived

using simulated data for 1000 persons and 36 items. Yen generated data

to fit the one-, two- and three-parameter models and fitted one-, two-

and three-parameter models to each dataset. Pearsonian chi-square

goodness-of-fit tests indicated that when generating and estimating

model were in agreement, the chi-square approximation to the distribu-

tion of Q1 was reasonable, although the mean of the statistic was

consistently higher than expectation. When the estimating model fitted

fewer parameters than were used to generate the data, the distribution

of Q1 was no longer chi-square; the mean value of Qi increased

substantially beyond that expected, except in the case where the

two-parameter model was fitted to three-parameter data.
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Gustaffson (1980) conducted simulations to study the behavior of

the Andersen likelihood ratio statistic. Data were generated for test

of length 15 and 30 items and for sample sizes of 150 and 300.

Variation in discrimination of parameters was small (0.8, 1.0, 1.2) or

large (0.5, 1.0, 1.5) and guessing parameters were either all zero or

all .2. Gustaffson concluded from his results that sample sizes of

500-1000 and test lengths of 20-40 items are necessary to provide

reasonable power in the likelihood ratio statistic for the detection of

heterogeneity in discrimination parameters and guessing.

Summary

The statistical tests of model fit described here (and summarized

in Table 1) do appear to have some value. Because they are sensitive

to sample size and because they are not uniformly powerful, however,

the use of any of these statistics as the sole indicator of model fit

is clearly inadvisable. Use of the BICAL fit statistics to discard

persons and items from model calibration procedures should certainly be

warned against. The van den Wollenberg and Yen statistics need further

evaluation, but appear to have promise, at least as contributors to the

evidence of model fit. Until conditional maximum likelihood estimation

procedures are incorporated into computer programs in this country, the

likelihood ratio statistic will not see much use.

Although the weaknesses of chi-square tests of model fit must

always be borne in mind, two situations can be iaentified in which

these tests may lead to relatively clear interpretations. When sample

sizes are small and the statistics indicate model misfit, or when

sample sizes are large and model fit is obtained, the researcher may
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have reasonable confidence that, in the first case, the model does

misfit the data, and in the second, that it fits the data. These

possibilities make it worthwhile to employ statistical '..ests of fit

despite their problems and despite the alternate possibility of

equivocal results.

Assessing Item Dimensionality

The assumption that a set of test items is "unidimensional" is

mole for all of the presently popular item response models. Despite

the importance of the assumption, there is substantial confusion in the

psychometric literature concerning the proper definition of the term

"unidimensionality" and methods for assessing its presence or absence

in a set of test items (Hattie, 1984, 1985; Traub & Wolfe, 19.,1).

Hattie (1984) reported that there are 87 indices in the psychometric

literature for assessing the dimensionality of a set of test items.

Unfortunately, these methods (or indices) are only loosely connected to

the many definitions in the literature.

In some of our recent research (Hambleton & Rovinelli, in press),

interest was centered on three promising methods for addressing the

unidimensionality of a set of test items: (1) non - linear factor

analysis (NLFA), (2) residual analysis, and (3) the Bejar analysis.

The first method appeared promising because NLFA does not require the

implausible assumption of linear relationships among the variables and

between the variables and the underlying traits to be made. In fact,

one of the fundamental assumptions of IRT is that these relationships
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are non-linear (Lord, 1980). The second method was an assessment of

the overall fit of a unidimensional model to a dataset through the

analysis of residuals. When the fit is adequate, it would seem that

the assumption of a unidimensional model is plausible also (see, for

example, Rentz b Rentz, 1979). The Bejar (1980) method appeared useful

for assessing item dimensionality because it does not involve

questionable linearity assumptions about the test data. In addition,

the method provides a straightforward check on one of the expected

outcomes of a unidimensional set of test data: the subset of items from

a test in which an item is calibrated is irrelevant.

The specific purpose of the Hambleton and Rovinelli investigation

was to compare the assessments of the dimensionality of a set of test

items with four methods: linear factor analysis ,LFA) , non-linear

factor analysis, residual analysis, and Bejar analysis. The four

methods were applied to five datasets. The datasets were artificial

and generated to reflect one- and two-dimensional datasets.

Description of Methods

LFA is probably the most commonly used method for studying item

dimensionality. Using (1) the matrix of phi or tetrachoric correla-

tions to summarize the linear relationships between pairs of items in a

test, and (2) communality estimates (often, squared multiple correla-

tions) in the diagonal entries of the correlation matrix, eigenvfilues

are extracted from the correlation matrix and plotted (from largest to

smallest). The number of "significant" factors is determined by

looking for the "elbow" in the plot.
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In NLFA, non-linear relationships between the variables and the

traits or factors measured by the variables are assumed (McDonald,

1967). The application of NLFA to the study of item dimensionality

seems especially desirable, within the context of item response theory,

because one of the principal assumptions (i.e., the mathematical form

of the item characteristic curves) specifies a particular non-linear

relationship between item performance and ability.

The method for addressing the unidimensionality of a set of test

items through a residual analysis involves fitting a unidimensional

item response model of interest to the test data, using the model

parameter estimates to predict the item performance data, and then

summarizing the discrepancies or residuals (see, for example, Hanbleton

Swaminathan, 1985). Specifically, ability categories are chosen to

divide the ability scale into equal intervals. Examinees are assigned

to categories based upon their ability estimates. For examinees in

each ability category on each item, a comparison is made between actual

performance (proportion correct) and the predicted proportion-correct

level from the corresponding item characteristic curve (icc). The

difference between the actual and predicted proportion-correct score

(called a residual or a raw residual score) in each ability category

and for each item can also be divided by the corresponding stan,;ard

error of the proportion-correct estimate to obtain a standardized

residual. When the chosen model fits the dataset, these standardized

residuals might be expected to be small and randomly distributed about

the value 0. The rationale for the appropriateness of residuals as a
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check on item unidimensionality is that when a unidimensional model

fits a dataset, all of the model assumptions must be met to a reason-

able degree.

Bejar (1980) argued that if the set of items in a test is unidim-

ensional, then the grouping of test items from the test for the purpose

of item calibration will be irrelevant. Parameter estimates for items

calibrated with different subsets of items, aside from sampling errors,

should be identical. Bejar's method (with minor modifications) can be

implemented in four steps:

1. Identify a subset of items in the test which appears to be

measuring a trait different from the trait measured by the

total test.

2. Conduct a three-parameter model analysis of only the items in

the subtest.

3. Repeat the three-parameter model analysis using the total set

of items.

4. Compare the two sets of b-value estimates for items in the

subtest.

The pairs of parameter estimates for items in the subtest and test,

respectively, should be linearly related unless the subset of items is

measuring a trait or traits which are not common to the trait or traits

measured in the total test.
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Description of the Data

To compare the four methods, Hambleton and Rovinelli (in press)

generated five artificial test datasets were generated to be consistent

with the assumption of either a one- or a two-dimensional latent space.

Each test consisted of 40 test items. The item performance for 1500

examinees was simulated with the three-parameter logistic model. In

dataset 1, the latent space was chosen to be one-dimensional. In

datasets 2 to 5, the latent space was chosen to be two-dimensional.

The only difference between datasets 2 and 3, and 4 and 5 was that in

datasets 2 and 3 the correlation between the two latent traits was .10

whereas in datasets 4 and 5 the correlation between the two traits was

.60. In addition, items were generated to measure one trait or the

other. In datasets 2 and 4, the first 20 items measured trait one and

the second 20 items measured trait two. In datasets 3 and 5, the first

30 items measured trait one and the remaining 10 items measured trait

two. The chart below summarizes the pertinent information:

Number of Items

Dataset Trait(s) 11212 ELL First Trait Second Trait
1 1 40 0

2 2 .10 20 20

3 2 .10 30 10

4 2 .60 20 20

5 2 .60 30 10

Parameter values were assigned to items on each trait in the

following way:
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b parameters were drawn at random from a uniform distribution on

the interval [-2.0, +2.0]

a parameters were drawn at random from a uniform distribution on

the interval [.40, 2.00]

c parameters were set to a value of .25.

The choice of item parameters reflected values often found in practice

(Hambleton & Swaminathan, 1985).

Results - One-Dimensional Data

The results of fitting from one to five linear factors, and one

and two factors with linear, linear and quadratic, and linear,

quadratic, and cubic terms to the one-dimensional dataset are reported

in Table 2. The first two criteria (rip s(rii)) show simply that the

mean off-diagonal elements after fitting one or more factors are

centered close to .00 (as compared to .127 in the original correlation

matrix) and that the standard deviation of the distribution of the

residuals approaches zero as the number of factors is increased. From

the statistics in the third and fourth columns of Table 2 it is clear

that a NLFA with one factor with linear and quadratic terms fits the

data better than the two factor solution provided by LFA. In fact,

even three linear factors did not produce as accurate a fit to the

data.

The residual analyses for the one-dimensional data with the three

logistic models are reported in Table 3. Not surprisingly, since the

data were generated to fit the three-parameter model, this model

provided the best fit to the data. More importantly, the distribution
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of standardized residuals (SRs) was (approximately) normal and the mean

absolute-valued SR was close to .799. With the one-dimensional data

and when the particular IRT model closely fits the data, the SRs appear

to have the desired distribution.

Since, for this dataset, all of the test items were generated to

fit a one-dimensional model, there was n' reason to suspect that a

second trait was necessary to account for the inter-item correlations.

As a rather simple check on the method, the last 20 items were presumed

to measure a second trait and the Bejar method applied. The

correlation between the b-values was in excess of .99. Clearly, the

assumption of unidimensionality could not be rejected on the basis of

the available evidence, nor should the assumption be rejected for this

dataset.

Results - Two-Dimensional Data

If the largest eigenvalue of the random data ( =1.48) is used as

the criterion for determining the number of factors for all four two-

dimensional datasets, three significant factors emerged (see Table 2).

Again, th.2 linear factor analysis method resulted in more factors than

the underlying dimensionality of the data.

Again, Table 2 shows that the NLFA method produced good results.

With the two-dimensional data (r=.10; 20/20) and the two-dimensional

data (r=.10; 30/10), the mean and standard deviation of absolute-valued

residuals associated with a two-factor model with quadratic terms were

smaller than those of the corresponding residuals obtained from a

three-factor solution using LFA. Thus, if the three-factor solution
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with LFA is acceptable, then the two-factor solution from NLFA will be,

too. The two-factor model with cubic terms was not obtained because of

the high costs associated with running the computer program and the

acceptability of the two-factor solution with quadratic terms.

Table 3 provides a summary of the absolute-valued residuals and

standardized residuals obtained from fitting logistic models to the

four two-dimensional datasets. Several findings are evident:

1. The one-parameter model did not fit any of the datasets.

Rather than suggesting multidimensionality in the data,

however, the likely explanation in view of the results of

fitting the one-parameter model to the one-dimensional data is

that the misfit is due to the failure of the model to account

for variations in item discrimination power and the guessing

behavior of low-ability examinees.

2. A comparison of the SRs from the two- and three-parameter

models showed substantially smaller SRs than those obtained

with the one-parameter model, and the three-parameter model

fitting the datasets slightly better than the two-parameter

model. On the basis of a study of the SRs for the two- and

three-parameter models, a researcher would probably accept the

hypothesis that the test items in each dataset were unidimen-

sional.

3. The overall fits were better when the traits were correlated

(r=.60), than when the traits were not (r=.10).
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How can the three-parameter model fit the four two-dimensional

datasets? The failure to identify multidimensionality in datasets 4

and 5 was surprising but in view of the moderately high correlation

between the two traits the results were not totally unexpected. LOGIST

simply proceeds to estimate the second order factor which incorpufates

the two related factors. Why multidimensionality could not be detected

in datasets 2 and 3 is not completely clear. This result was very

disappointing. It appears that LOGIST estimates an average ability of

the two unrelated traits and also attaches low a-values to all of the

test items. In doing so, a reasonable fit between the model and each

dataset can be achieved. When there is an imbalance in the test data

(i.e., 30/10), LOGIST assigns high a-values to items measuring the

"dominant trait" and relatively low values to the remaining items. In

this way, a one-dimensional model can fit the data. With a more even

split (i.e., 20/20), the values assigned to the a-values are relatively

low. In any case, because of the way LOGIST handles multidimensional-

ity in the test data, residual analyses cannot identify it when it is

present.

The results of the Bejar analyses on the four two-dimensional

datasets were especially surprising as well as disappointing:

1. With r=.10, and a split of 20/20, the test items had

comparable b-values.

2. With r=.10, and a split of 30/10, the b-values were substan-

tially different and appeared to be poorly estimated. This

analysis would lead to a rejection of the unidimensionality

assumption.
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3. When r=.60, ind for the two splits 20/20 and 30/10, the Bejar

analyses suggested that the assumption of unidimensionality

could not be rejected.

In only one of the four analyses was the Bejar method sensitive to the

multidimensionality in the data.

Though the results were not reported in detail by Hambleton and

Rovinelli, the four methods for assessing dimensionality were also

applied to the 80 item section of the 1982 ABFP In-Training Exam. The

four methods provided different answers to the question of

unidimensionality! Had the simulation studies described earlier not

been carried out, the results from the residual analyses or the Bejar

analyses would have been used to support the assumption of

unidimensionality. The LFA of the data suggested that anywhere from 4

to as many as 8 significi't factors would need to be retained for a

satisfactory accounting of the data. The NLFA also appears to indicate

that more thall one factor may be needed. In summary, the four methods

provided contradictory information about the item dimensionality.

Based upon the results from the simulations, it would seem that the

most likely conclusion is that more than one dimension is operating.

Conclusions

On the basis of a single simulation study with limited scope,

generalizability of the findings is obviously limited. But several

findings of the study do appear to suggest directions for some future

work. First, the linear factor analysis model in all instances over-

estimated the number of underlying dimensions in the data. Second,
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non-linear factor analysis with linear and quadratic terms led to the

correct determination of the item dimensionality in the three datasets

where it was used.

Both the residual analysis method and Bejar's method provided

disappointing results . It appears that the three-parameter model can

accommodate multidimensionality by assigning low a-values to these

"deviant" items. Good fit is achieved, but in doing so, the "deviant"

items are essentially removed from the test since those items neither

contribute much to ability parameter estimation or to the test

information function. Likewise, the Bejar method was unable to detect

the two underlying traits except when the correlation between the

traits was low and a disproportionate number of the test items measured

one of the traits.

In conclusion, despite the limited scope of the present investi-

gation, the results do suggest the need for extreme caution in using

linear factor analysis, residual analysis, or Bejar's method to address

questions about item unidimensionality. Clearly, more investigations

of these methods showing some positive results are needed before they

can be strongly recommended for use by practitioners. On the other

hand, while non-linear factor analysis produced the mo;t promising

results in this study, an accepted criterion for determining the mini-

mum number of factors to retain in a non-linear factor solution is not

available, nor is an easy-to-use non-linear factor analysis program

available. More research along these lines must be carried out first

before NLFA can be recommended.
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Studies of Item and Ability Parameter Invariance

Regardless of the extent to which a set of model assumptions are

met by a set of test data, researchers commonly proceed to check model

data fit and (occasionally) the invariance property of the item and

ability parameter estimates. The rationale seems to be that (1) little

is known about model robustness and (2) the tests of model assumptions

are not ,211-developed or grounded in statistical theory, and therefore

the additional checks on model appropriateness are justified. Studies

with respect to the invariance property for the most part have been

viewed as item bias investigations: studies which check the extent to

which item parameter estimates determined from different subgroups of a

population are equivalent. In a few cases, researchers have checked

the invariance property of ability estimates by comparing ability

estimates obtained from hard and easy sets of items in a test (e.g.

Wright, 1968).

Our own research has centered on the plot method for checking the

presence of the invariance property (Hambleton & Murray, 1983;

Hambleton & Rogers, 1986; Hambleton, Rogers, & ArrAsmith, 1986). In

this method, an independent variable of interest is chosen (e.g. sex).

Then, two groups of (say) males and females are formed and then the

groups are divided again to form two randomly equivalent female samples

and two randomly equivalent male samples. Three-parameter model

analyses are conducted on each of the four groups. Finally, the clots

of the item statistics (especially the b-values) in the
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randomly-equivalent groups are compared to the plots of the b-values in

the female and male samples. When sex is not a factor in item

performance, all the plots should be similar in shape. If the

plots differ, sex is assumed to be a factor and items showing

consistently large differences in their item statistics are identified

for further review. The plot method has several advantages: (1)

provides a graphical solution to the item invariance problem that is

easy to understand, and (2) recognizes the instability in item bias

statistics by focusing only on items which show consistently large

differences across independent samples.

One problem that arises is choosing a cut-off score for

identifying items showing consistently large differences. The same

problem arises with other item bias methods too, such as the "Total

Area Method" and the "Root Mean Squared Difference Method." With the

plot method, the distribution of (say) b-value differences between the

randomly equivalent samples can serve as the sampling distribution

under the null-hypothesis that there are no differences. This

distribution can be used to determine the cut-off points corresponding

to 1% and 5% type I errors. Then the cut-off points are applied to

distribution of b-value differences in the male and female samples so

that a subset of potentially biased items can be identified.

Unfortunately, the distribution of b-value differences in the plot

method is achieved at a cost: sample sizes must be cut in half and
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this action has a negative influence on the precision of item parameter

estimates. As an alternative, in some recent work, we have been using

sampling distributions of b-value differences, total area statistics,

and root mean squared difference statistics generated through item

response models from randomly-equivalent samples of simulated data.

Figures and 2 and 3 highlight this work with the total area statistic.

Figure 2 highlights the similarity in the distributions of total area

statistics from randomly-equivalent groups using real and simulated

data. The results are very similar. Figure 3(a) shows a distribution

of total area statistics for 75 items obtained from real data for male

and female samples. Figure 3(b) as well as Figures 2(a) and (b) can be

used for the purposing of setting cut-off points. The important point

is the high similarity in the distributions generated under the null

hypothesis for real data in Figure 2(a) with simulated data in Figure

2(a) and 3(b). These results along with others we have;stroagly

supported the use of logistic models to generate data for the purpose

of producing base-line statistics for interpreting invariance studies.
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Conclusions

The potential of item response theory has been widely documented

but that potential is not necessarily assured. Choice of tests,

populations of examinees, and applications will influence the success

of IRT uses. With respect to addressing the fit between an item

response model and a set of test data for some desired application, our

view at this time is that the best approach involves (1) designing and

implementing a wide variety of analyses, (2) interpreting the full set

of results carefully, and (3) judgmentally determining the appropriate-

ness of the intended application. Table 5 provides some initial

thoughts on appropriate goodness-of-fit investigations for both small

and large scale investigations.

Analyses should include investigations of model assumptions, the

extent to which desired model features are obtained, and comparisons

between model predictions and actual data. Statistical tests can be

carried out but care must be shown in interpreting the statistical

information. Mndel misfit with small samples or satisfactory fit

obtained with large samples are especially useful results with

statistical tests. Extensive use should be made of replication,

cross-validation, and of graphical displays of model predictions and

actual data, etc. Also, fitting more than one model and comparing the

residuals provides information that is invaluable in determining the

usefulness of item response models. Whenever possible, investigate the

consequences of misfit. There is no limit to the number of

investigations that can be carried out. The amount of effort in
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collecting, analyzing, and interpreting results should be related to

the importance and nature of the intended application. For example,

small school districts using the one-parameter model in item banking

and test development for classroom tests will not need to expend as

many resources'on goodness-of-fit studies as, say, the Educational

Testing Service when they equate multiple forms of nationally

standardized aptitude tests.

In summary, our recommended strategy for assessing rdodel-data fit

is to accumulate a considerable mount of evidence that can be used to

aid in the determination of the appropriateness of a particular use of

an item response model. Judgment will ultimately be required and

therefore the more evidence available, the more informed the final

decision about the use of an item response model will be. In fact,

goodness-of-fit studies and the interpretations of results are very

much like studies to validate tests as measures of constructs. A

researcher can never prove that a test measures a construct. However,

he/she can accumulate enough evidence so that reasonable persons can

agree that it makes sense to assume the test measures the construct

until counter-evidence is available.
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Figure 1. Approaches for Conducting Goodness-of-Fit Investigations.
(An update of Figure 8.1 which appeared in Hambleton & Swaminathan,
1985)

Checking Model Assumptions

. Unidimensionality (Applies to Nearly All of the Popular Item
Response Models)

Plot of Eigenvalues (from Largest to Smallest) of the
Inter-Item Correlation Matrix (Tetrachoric Correlations
Preferable to Phi Correlations)--Look for a dominant first
factor, and a high ratio of the first to the second eigenvalue
(Reckase, 1979).

Comparison of Two Plots of Eigenvalues--The one described
above and a plot of eigenvalues from an inter-item correlation
matrix of random data (same sample size, and number of
variables, random data normally distributed) (Horn, 1965).

Plot of Content-Based Versus Total-Test-Based Item Parameter
Estimates (Bejar, 1980).

Analysis of Residuals After Fitting a One-Factor Model to the
Inter-Item Covariance Matrix (McDonald, 1980a, 1980b).

Non-Linear Factor Analysis with Analysis of Residuals
(Hambleton & Rovinelli, in press).

Modified Parallel Analysis (Orasgow & Lissak, 1983).

A Test of Local Non-Negative Dependence (Holland, 1981)
(rejection of this hypothesis implies rejection of all IRT
models which assume local independence).

2. Equal Discrimination Indices (Applies to the One-Parameter Logistic
Model)

Analysis of Variability of Item-Test Score Correlations (for
Example, Point-Biserial and Biserial Correlations).

Identification of Percent of Item-Test Score Correlations
Falling Outside Some Acceptable Range (for Example, the
Average Item-Test Score Correlation + .15).
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Figure 1, continued:

3. Minimal Guessing (Applies to the One- and Two-Parameter Logistic
Models)

Investigation of Item-Test Score Plots (Baker, 1964, 1965).

Consideration of the Performance of Low-Ability Examinees
(Selected with the Use of Test Results, or Instructor
Judgments on the Kist Difficult Test Items)

Consideration of Item Format and Test Time Limits (for
Example, Consider the Number of Item Distractors, and Whether
or Not the Test Was. Speeded).

4. Nonspeeded (Power) Test Administration (Applies to Nearly All Item
Response Models).

Comparison of Variance of the Number of Items Omitted to the
Variance of the Number of Items Answered Incorrectly
(Gulliksen, 1950).

Investigation of the Relationship Between Scores on a Test
with the Specified Time Limit and with an Unlimited Time Limit
(Cronbach and Warrington, 1951).

Investigation of (1) Percent of Examinees Completing the Test,
(2) Percent of Examinees Completing 75 Percent of the Test,
and (3) Number of Items Completed by 80 Percent of the
Examinees.

5. Mathematical Form of the ICCs.

Tests of Monotonocity of ICCs (Rosenbaum, 1984).

Checking Expected Model Features

1. Invariance of Item Parameter Estimates (Applies to All Models)

Comparison of Item Parameter Estimates Obtained in Two or More
Subgroups of the Population for Whom the Test is Intended (for
Example, Males and Females; Blacks, Whites, and Hispanics;
Instructional Groups; High and Low Performers on the Test or
Other Criterion Measure, Geographic Regions). Normally,
comparisons are made of the item-difficulty estimates and
presented in graphical form (scattergrams). Random splits of
the population into subgroups the same size provide a basis
for obtaining plots which can serve as a baseline for

AERA in 86, Bias.2
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Figure 1, continued:

interpreting the plots of principal interest (Angoff, 1982;
Lord, 1980; Hambleton and Murray, 1983). Graphical displays
of distributions of standardized differences in item parameter
estimates can be studied. Distributions ought to have a mean
of zero and a standard deviation of one (for example, Wright,
1968).

. Invariance of Ability Parameter Estimates (Applies to All Models)

Comparison of Ability Estimates Obtained in Two or More Item
Samples from the Item Pool of Interest. Choose item samples
which have special significance such as relatively hard versus
relatively easy samples, and subsets reflecting different
content categories within the total item pool. Again,
graphical displays and investigation of the distribution of
ability differences are revealing.

Checking Model Predictions of Actual Aand Simulated) Test Results

Investigation of Residuals and Standardized Residuals of
Model-Test Data Fits at the Item and Person Levels. Various
statistics are available to summarize the fit information.
Graphical displays of data can be revealing.

Comparison of Item Characteristic Curves Estimated in
Substantially Different Ways (for Example, Lord, 1970).

Plot of Test Scores and Ability Estimates (Lord, 1974).

Plots of True and Estimated Item and Ability Parameters (for
Example, Hambleton & Cook, 1983). These studies are carried out
with computer simulation methods.

Comparison of Observed and Predicted Score Pistributions.
Various statistics (chi-square, for example) and graphical
methods can be used to report results. Cross-validation
procedures should be used, especially if sample sizes are small
(Hambleton & Traub, 1973).

Investigation of Hypotheses Concerning Scoring Keys (Kingston
& Dorans, 1985), Practice Effects, Test speededness, Cheating,
Boredom, Item Format Effects ( Kingston & Dorans, 1985), Item
Order (Kingston & Dorans, 1985), etc.

Comparisons of Two-Dimensional Data with One Dimension of
Model Results (for example, Ansley & Forsyth, 1985).
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(a)

HISTOGRAM total area statistics (F1-F2 and M1-M2), Real Data

SYMBOL COUNT MEAN ST.DEV.
X 150 .275 .'74

EACH SYMBOL REPRESENTS 1 OBSERVATIONS
INTERVAL FREQUENCY PERCENTAuE
NAME 5 10 IS 20 25 30 35 IN1. CUM. 1141. COM.

UPTO (1.,1 1I ,1 1

0.0+0.1 + XXXXXXXXXXXXXXXXXXX IY Py 12.7 1z./
+0.1+0.2 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 37 56 24.7 37.3
+0.2+0 3 +XXXXXXXXXXXXXXXXXYXXXXXXXXXXXXXXXXX* 41 97 27.3 64.7
+0.3+0.4 +YXXXXXXXXXXXXXXXXXXXX 21 110 14.0 78.7
40.4+0.5 +XXXXXXXXXXXXXXXXXXXX ')() 130 13.3 92.0
+0.540.6 +XXXXXXXX 8 146 5.3 97.3
+0.6+0.7 +X

1 147 .7 98.0
+0. 740.8 +X

1 148 .7 98.7
+0.8+0.9 +X

1 149 .7 99.3
+0.9+1.0 + 0 149 .0 99.3
+1.0+1.1 + 0 149 .0 99.3
+1.1+1.2 + 0 149 .0 99.3
+1.2+1.3 + 0 149 .0 99.3
+1.3+1.4 +X

1 150 .7 100.0
+1.4+1.5 + ( 150 .0 100.0
OVER+1.5 + 0 150 .0 100.0

10 15 20 25

(b)

HISTOGRAM total area statistics (F1-F2 and M1 -M2), Simulated Data

INTERVAL
NAME

SYMBOL COUNT MEAN ST.DEV.
X 150 .232 .170

EACH SYMBOL REPRESENTS I OBSERVATIONS
FREQUENCY PERCENTAGE

5 10 15 20 25 30 35 INT. CUM. INT. CUM.

UPTO 0.0 + 0 0 .0 .0
0.0+0.1 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 33 33 22.0 22.0

+0.140.2 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 47 80 31.3 53.3
+0.2+0.3 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 29 109 19.3 72.7
+0.3+0.4 +XXXXXXXXXXXXXXXXXXXX 20 129 13.3 96.0
+0.4+0.5 +XXXXXXXXXXXX 12 141 8.0 94.0+0.5+0.6 +XXXX 4 145 2.7 96.7
+0.6+0.7 + 145 .0 96.7
4-0.7+0.e 4XX 147 1.3 98.0
+0.8+0.9 4XX 2 149 1.3 99.3+0.9+1.0 +X

1 150 .7 100.0
+1.0+1.1
+1.1+1.2

+

+
0
0

15
150

.0

.0
100.0
100.0

+1.2+1.3
+1.3+1.4

4

+
0
0

150
150

.
c' 100.0

10,).0
+1.4+1,5.+ 0 150 .0 100. Ci
OVER+1.5 +

4-) 150 .0 10.0
= 10 15 20 25 30 -=

Figure 2. Histograms of total area item bias statistics calculated between
randomly equivalent groups using reading competency test data in

(a) and simulated data in (b).
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(a)

HISTOGRAM total area statistics (F1-M1 and F2M2), Real Data

SYMBOL COUNT MEAN ST.DEV.
X 150 .212

EACH SYMBOL REPRESENTS
1 OBSERVATIONSINTERVAL

FREQUENCY PERCENTAGENAME 5 10 15 20 25 20 35 INT. CUM. IN1. CUM.

UPTO 0.0 + 0 0 .o .00.0+0.1 4XXXXXXXXXXXXXXXXXXXXX 21 21 14.0 14.0+0.1+0.2 4XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 29 50 19.3 33.3+0.2+0.3 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 37 87 24.7 58.0+0.3+0.4 +XXXXXXXXXXXXXXXXXXXXXXXXX 112 16.7 74.7+0.4+0.5 +XXXXXXXXXXXXXXX 15 127 10.0 84.7+0.5+0.6 +XXXXXXXXXXXX 12 139 8.0 92.740.6+0.7 +XXXX 4 143 2.7 95.3+0.7+0.8 4XXX 3 146 2.0 97.3+0.8+0.9 +X
1 147 .7 98.0+0.9+1.0 4XX 2 149 1.3 99.3+1.0+1.1 + 0 149 .0 99.3+1.141.2 + 0 149 .0 99.3+1.2+1.3 + 0 149 .0 99.3+1.3+1.4 + 149 .0 99.3+1.4+1.5 +X
1 150 .7 100.0OVER+I.5 4 0 1St) .0 100.0

5 10 15 2U 25 -.7.0

(b)

HISTOGRAM total area statistics (F1-M1 and F2-M2), Simulated Data

SYMBOL COUNT MEAN ST. DEV.
X 150 .250 .214

EACH SYMBOL REPRESENTS 1 OBSERVATIONSINTERVAL
FREQUENCY PERCENTAGENAME 5 10 15 20 25 30 35 INT. CUM. INT. CUM.

UPTO 0.Q + 0 0 .0 .0
0.0+0.1 +XXXXXXXXXXXXXXXXXXXXXXXXX 25 25 16.7 16.7+0.1+0.2 +XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 49 74 32.7 49.3+0.2+0.3 +XXXXXiXXXXXXXXXXXXXXXXXXXXXXXXXXXXX* 37 111 24.7 74.0+0.3+0.4 +XXXXXXXXXXXXXXX XX 18 129 12.0 86.0+0.4+0.5 +XXXXXXXXXX 10 139 6.7 92.7+0.5+0.6 +XXX 3 142 2.0 94.7+0.6+0.7 +XXX 3 145 2.0 96.7+0.7+0.8 +XXX 3 148 2.0 98.7+0.e+0.9 +

0 148 .0 98.7+0.9+1.0 + 0 148 .0 90.7+1.0+1.1 +X
1 149 .7 99.3+1.1+1.2 4 o 149 .0 99.3+1.2+1.3 + 0 149 .0 99.3+1.341.4 + 149 .0 99.3+1.4+1.5 4

149 .0 99.3OVER41.5 +X
1 I9 .7 100.0

5 10 15 20 25 3(. 1;5

Figure 3. Histograms of total area it statistics calculated for female and
male samples using reading competency test data in (a) and simulated
data in (b).
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Table 1

Summary of x2 Statistics Used to Test Model Fit

Statistic Citation Distinguishing Features

Wright-Panchapakesan

Mean Square Residual

Total-t

Between-t

Wright & Panchapakesan (1969) - examinees grouped by total score into
(k-1) groups, k = no. of items

- standardized residual of observed and
expected frequencies calculated within
groups

- residual squared and summed over groups
and items for overall fit

- x4(k-1)(k-2)

Wright & Stone (1979) - based on individual observations
- standardized residual of observed response

(1/0) and probability of correct response
calculated

- residual squared and summed ove. persons
or items for item or person fit

- transformed to normal distribution

Wright, Mead, & Bell (3979) Incorporated in BICAL
- ratio of variance estimates
- based on individual observations

- summed over persons or items for item or person
fit

- transformed to a normal distribution in BICAL

Wright, Mead, & Bell (1979) Incorporated in BICAL
- variation on Wright-Panchapakesan statistic
- uses six score groups
- slimmed over groups for item fit

- x4(5)

-continued on next page-
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Statistic

Table 1, continued:

Citation Distinguishing Features

van den Wollenberg Q1 van den Wollenberg (1979)

Yen 01 Yen (1981)

Andersen Z Andersen (1973)

51

- based on contingency tables of response
(1/0) by score level (1, ..., k-1) for
each item

- difference between observed and expected
frequencies calculated for each cell to
give x4 on (k-2) degrees of freedom

- expected frequencies calculated using
conditional maximum likelihood parameter
estimates

- swmmeo over all items for overall fit
- xL(k-1)(k-2)

- similar in construction to van den Wollenberg
1

Qi

- appropriate for one-, two-, and three-
parameter models

- 1Q groups formed using ability estimate

- x4(10-s)., s= no. of item parameters in model

- likelihood ratio statistic
- uses conditional maximum likelihood parameter
estimates

- ratio of likelihood using parameter estimates
obtained for total sample to product of like-
llhoods for different subgroups

- x4(k-1)(k-2)
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Table 2
Eigenvalues (A) and Percent of Variance Accounted for in

Random and One-Dimensional Catasets Using Phi
and Tetrachoric Correlations
(40 items; 1500 examinees)

Factor

Random Datal One-Dimensional Data
Tetrachoric Phi

7----T
Tetrachoric

A % A %

1 1.48 3.7 8.86 22.2 15.00 37.5
2 1.44 3.6 2.09 5.2 2.21 5.5
3 1.37 3.4 1.11 2.8 1.15 2.9
4 1.34 3.3 1.05 2.6 1.10 2.7
5 1.32 3.3 1.03 2.6 1.08 2.7

6 1.30 1.02 1.02
7 1.28 .98 .96
8 1.25 .96 .95
9 1.22 .95 .92
10 1.21 .93 .90

11 1.19 .93 .88
12 1.18 .93 .84
13 1.15 .91 .80
14 1.13 .89 .77
15 1.10 .86 .74

I Squared multiple correlations used as communality estimates.
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Table 3
Residual Matrices After Fitting Linear
and Non-Linear Factor Analysis Models

Goodness of Fit

Dataset Model Al Var. rid s(rii) Iriil s(lriiI)

1-DIM Correlation Matrix
Factor Analysis

1 Factor 6.64
2 Factors 1.84
3 Factors 1.13
4 Factors 1.11
5 Factors 1.10

Non-Linear Factor Analysis
1 Factor, Linear Term
1 Factor, Quad Term
1 Factor, Cubic Term
2 Factors, Linear Terms
2 Factors, Quad Terms

2-DIM Correlation Matrix
(r=10; Factor Analysis
20/20) 1 Factor 4.41

2 Factors 3.59
3 Factors 1.64
4 Factors 1.41

5 Factors 1.15
Non-Linear Factor Analysis
1 Factor, Linear Term
1 Factor, Quad Term
1 Factor, Cubic Term
2 Factors, Linear Terms
2 Factors, Quad Terms

.127 .079 .127 .079

16.6 .006 .078 .060 .050
4.6 -.002 .030 .022 .021
2.8 -.003 .025 .019 .016
2.8 .000 .021 .016 .013
2.7 .000 .019 .015 .012

.002 .033 .026 .021

.001 .022 .017 .014

.000 .022 .017 .014
-.006 .030 .022 .020
.000 .020 .015 .012

.075 .090 .081 .084

11.0 .016 .074 .054 .054
9.0 .000 .033 .024 .022
4.1 .000 .025 .019 .016
3.5 .000 .020 .016 .012
2.9 .000 .018 .014 .011

.025 .072 .050 .057

.011 .037 .028 .027

.007 .029 .022 .020
-.005 .039 .027 .028
.000 .020 .016 .012

-continued on next page-
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Table 3, continued

Dataset Model A
1

Var.

Goodness of Fit

s(lriji)rid s(rij) hi'

2-DIM Correlation Matrix .104 .100 .109 .095
(r=.10; Factor Analysis
30/10) 1 Factor 6.27 15.7 .004 .047 .033 .034

2 Factors 2.10 5.3 .002 .036 .029 .021
3 Factors 1.88 4.7 .000 .023 .017 .015
4 Factors 1.28 3.2 .000 .020 .016 .012
5 Factors 1.09 2.7 .000 .018 .015 .011

Non-Linear Factor Analysis
1 Factor, Linear Term .008 .046 .033 .034
1 Factor, Quad Term .007 .036 .032 .029
1 Factor, Cubic Term .005 .039 .027 .028
2 Factors, Linear Terms .004 .042 .031 .028
2 Factors, Quad Terms .000 .020 .016 .012

2-DIM Correlation Matrix .111 .069 .111 .068
(r=.60; Factor Analysis
20/20) 1 Factor 5.7 14.3 .001 .046 .038 .028

2 Factors 2.2 5.6 .000 .030 .022 .020
3 Factors 1.6 3.9 .000 .023 .018 .014
4 Factors 1.2 3.1 .000 .020 .016 .013
5 Factors 1.1 2.8 .000 .019 .015 .012

2-DIM Correlation Matrix .132 .080 .132 .080
(r=.60; Factor Analysis
30/10) 1 Factor 6.8 16.9 .000 .042 .022 .027

2 Factors 2.0 5.1 .000 .028 .021 .019
3 Factors 1.6 3.9 .000 .021 .017 .013
4 Factors i.2 3.1 .000 .020 .015 .012
5 Factors 1.1 .7 .000 .028 .014 .011
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Table 4
Summary of Standardized Residuals (SRs)

Data Set
and

Model

1-DIM
1

2

3

2-DIM
.10; 20/20)

1

2

3

2-DIM
=.10; 30/10)

1

2

3

2-DIM

.60; 20/20)
1

2

3

2 -DIM

..60; 30/10)
1

2

3

% of Absolute-ValNed SRs
Average
Absolute-
Valued
Residual

Average
Absolute-
Valued
SR

0 to 1 1 to 2 2 to 3 3 and overt

32.3 28.2 18.8 21.4 .067 1.86
66.6 26.8 5.5 1.1 .033 .89
76.8 21.1 1.8 .2 .031 .71

49.8 32.7 13.0 4.6 .048 1.20
63.6 32.1 3.0 1.4 .036 .86
68.2 26.8 3.9 1.1 .035 .84

33.2 26.6 16.4 23.9 .075 1.99
61.8 27.3 7.7 3.2 .038 .99
69.8 26.6 3.6 0.0 .027 .76

44.3 26.8 16.6 12.3 .060 1.51
67.1 24.8 7.1 1.1 .035 .88
72.7 22.7 3.6 0.9 .030 .79

39.1 25.7 15.0 20.2 .065 1.79
61.6 29.1 5.0 4.3 .038 1.00
73.2 24.1 2.7 0.0 .026 .73



Table 5
Suggestions for Model Selection/Goodness of Fit Investigations

Category
SME: ca e pp ica ions
e... Classroom Tests

Large- ca e App ications
Ma or State and Nationall Administered Tests)

Model Assumptions

Model Features

- Conduct a classical item analysis (if the
test has many hard items, and/or wide range
of item discrimination indices, avoid the
one-parameter model).

- Avoid thP three-parameter model with small
sampli:. ..: 400).

- Consider costs, computer capabilities, time
available, and technical assistance avail-
able in choosing a modal.

Identify key demographic variables in the
population of interest (e.g., race, sex,
or geography) and compare item parameter
estimates in these subgroups. (Use a

t-test, or the Mantel-Haenszel statistic.)

Model Predictions - Look at residuals by ability level (across
items) and by items (across ability levels).

- Conduct a unidimensional study (con-
sider the modified parallel analysis
method or non-linear factor analysis).

- Carry out a classical item analysis to
help in model selection( consider
sample size also in model selection).

- Identify key demographic variables in the
population of interest and conduct item
bias investigations (e.g., plot method
or total area).

' 1

LP

- Check the invariance of ability estimates a-
cross subsets of items (e.g., hard vs. easy).

- Compare residuals and standardized residu-

als for several models for both items and
ability levels.

Check a variety of hypotheses about the
fit (e.g., look for context effects,
correlates with fit statistics such as
item format, and item content).

- Determine the practical consequences of
misfit on the intended application
(usually through simulation techniques).
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