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Abstract
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N.
0.1 The research described in this paper was designed to respond to

two major methodological shortcomings in the item bias literature: (1)

misfitting test models, and (2) the use of significance tests. The

goals of the present paper were (1) to describe a new method known as

the "plot method" for identifying potentially biased test items, and

(2) to conduct several methodological investigations associated with

applying the plot method.

The plot method resulted in reasonably stable determinations of

potentially biased test items with small samples. Other methods with

small sample sizes were not as successful. Methodological findings

provided guidance for future applications of the plot method.
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EVALUATION OF THE PLOT METHOD FOR IDENTIFYING POTENTIALLY BIASED TEST ITEMS

Ronald K. Hambleton and H. Jane Rogers
University of Massachusetts, Amherst

The notion that some items in a test may be biased against

specific minority groups has become a matter of sukstantial concern for

both test users and test developers. Numerous approaches for the study

of item bias, based upon staidard testing technology and item response

theory, have been advanced and researched in recent years (e.g., Berk,

1982; Hoover & Kilen, 1984; Ironson & Subkoviak, 1979; Shepard, 1981;

Shepard, Camilli, & Averill, 1981; Shepard, Camilli, & Williams, 1984).

The research described in this study was prompted by two problems

with current research on item bias. First, while the use of item

response models appears to hold considerable potential for detecting

biased items (Ironson, 1982; Subkoviak, et al., 1984), many researchers

are using the less defensible one-parameter item response model.

Perhaps this particular choice of model is made because of the wide

availability of a straightforward computer program (BICAL) to carry out

one-parameter model analyses. The typical strategy is to compare item

difficulty values obtained in two samplers (for example, Blacks and

Whites) and label items as biased (or, in need of careful scrutiny) if

statistically significant differences are obtained. But, the

one-parameter model is highly restrictive and so model-data fit may be

1 The authors are grateful to the Cleveland Public Schools, and to Gail
Ironson, University of South Florida, and Michael Subkoviak, University

of Wisconsin, for providing the test data that were used in this study.
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poor (Hambleton & Murray, 1983). Seldom do researchers check model-

data fit in each group of interest prior to conducting bias studies.

When the fit is poor, comparisons of item difficulty values are not

very useful because the item difficulty values provide inaccurate

information about the functioning of test items in the minority and

majority groups. Poor model fit may result in the labeling of

misfitting items as biased when the misfit is actually due to the

failure of the one-parameter model to account for variation in item

discriminating power or the guessing behavior of low-ability examinees.

A serond problem arises when significance tests are used in item

bias studies. Unfortunately, the results of significance tests are

influenced by examinee sample size. It is well kncytn that there is a

positive relationship between the number of items detected as biased

and examinee sample size. With an examinee sample size of 100, perhaps

no test items will be identified; with a sample size of 5000, it is

possible that nearly all test items will be identified as "biased" (see

for example, Hambleton & Murray, 1983). A second problem is that the

sampling distributions of many of the bias statistics are unknown so

that proper hypothesis testing cannot he carried out. Alternatives are

needed for studying bias that do not use significance tests, and/or are

not based upon faulty distributional assumptions.

The research described in this paper was designed to address the

problws introduced above. Specifically, the goals of the research

were (1) to describe a new method known as the "plot method," for

identifying potentially biased test items, and (2) to conduct several

4
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methodological investigations associated with applying the plot method.

The new method uses the three-parameter logis is model (Hambleton &

Swaminathan, 1985) though other item response models might be used too.

The plot method can overcome the two problems mentioned earlier as well

as offer several advantages, and therefore the research seemed

worthwhile. Many readers may not be familiar with the three-parameter

logistic model and so an introduction to the theory from which the

three-parameter model was derived and the model itself will be provided

next.

Item Response Theory

The three-parameter logistic model is one of the class of mathe-

matical models called item response models. These models derive from a

relatively new approach to test theory, know as item response theory.

Item response theory has several important advantages over classical

test theory which have provided strong impetus for its development and

implementation. In the last decade, it has become the dominant topic

of research in measurement, and applications continue to increase in a

wide variety of educational, industrial, and professional settings

(Hambleton & Swaminathan, 1985; Lord, 1980).

Item response theory is based on the assumption that observed per-

formance on the items in a test can be substantially accounted for by a

set of underlying, unobservable factors called traits or abilities. In

most applications at present, a single underlying factor is assumed.

It i. further assumed that for each item of the test, the probability
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of a correct answer is a monotonically increasing function of this

ability. That is, as ability increases, so does the prooability of

success. The mathematical function specifying this relationship is

called the item characteristic function and the curve it yields, the

item characteristic curve.

Item 0,aracteristic curves vary according to the characteristics

of the item. Items may be described (for ex iple) by one, two, or

three parameters, representing item difficulty, discrimination, and

guessing. The number of parameters incorporated in the model

identifies it as a one-parameter (difficulty parameter only), a

two - parameter (di ff ty and discrimination parameters), or a

three-parameter model (difficulty, discrimination, and guessing

parameters). The one-parameter model assumes that items vary only in

difficulty; all items are equally discriminatiog and no guessing

occurs. The two-parameter model, while allowing items to vary in

difficulty and discrimination, assumes that there is no guessing. The

three-parameter model allows items to vary in difficulty,

discrimination, and guessing.

Each item response model specifies a particular item characteris-

tic function, depending on the number of item parameters incorporated.

The three-parameter model has the most general mathematical form of the

models in common use; it reduces to the two- or one-parameter model

when further restrictive assumptions are made. The item characteristic

function for the three-parameter model is given by the equation

Dag(0 -bg)
Pg( 0 ) = Cg 4 (1-Cg) e , g=1, 2, ..., n

1+e
ua

g
(0 -b

g
)
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where:

P ( 0) = the probability that a randomly - chose, examinee with

ability level e answers item g correctly,

b
9

= the item g difficulty parameter,

a
9

= the item g discrimination parameter,

cg = the lower asymptote of an item characteristic curve
representing the probability of success on item g

for low-ability examinees,

= 1.7 (a scaling factor), and

n = the number of items in the test.

Estimation of item and ability parameters in the three-parameter

logistic model is most often performed using maximum likelihood

methods. That is, estimates which maximize the probability of

obtaining the observed results are sought. LOGIST (Wingersky, Barton,

& Lord, 1982) is the most commonly used computer program for

three-parameter model estimation. However, the maximum likelihood

procedures used in LOGIST do not guarantee that parameter estimates

will remain within acceptable bounds. Bayesian procedures appear to

offer a promising alternative (Hambleton & Swaminathan, 1985), although

there is no computer program presently available which incorporates

these methods.

The measurement scales for reporting item and ability parameter

estimates are quite arbitrary. It is probably most common to scale

either the item difficulty parameter estimates or the ability estimates

to a mean of zero and a standard deviation of one (though other means

and standard deviations are sometimes chosen to avoid negatives and

decimals). OnLe tnis scaling is completed, the other model parameter

estimates are rescaled too so that the probabilities associated with

7
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examinees giving correct answers to test items on the original scale

remain the same on the new transformed scale (see Hambleton &

Swaminathan, 1985, for details).

Item response theory is based on strong assumptions which must be

shown to hald, at least to an adequate degree, before the advantages of

the IRT model of interest accrue. Assessing model-data fit is an

essential step in any application of item response theory. Many

techniques have been proposed for the investigation of goodness-of-fit;

at present, however, the user must resort to evidence from a variety of

les, than perfect sources, since there seem to be no entirely adequate

tests of model fit. Yet, given the acceptability of the

unidimensionality assumption and the appropriateness of the item

characteristic function, item response theory yields many important

results unobtainable under classical test theory.

The main advantage is the invariance of parameter estimates.

Under classical test theory, estimates of item difficulty and discrim-

ination are dependent on the particular sample of individuals taking

the test, and ability estimates are dependent on the particular set of

items administered. Generalization of results to groups of people or

items which differ to any substantial degree from the original groups

is not possible. Item response theory overcomes this problem by

providing ability estimates which incorporate information about the

items and item parameters which incorporate information about the

sample of examinees. By taking into account this information,

parameter estimates which are independent of the testing situation are

obtained.

8
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A further problem of classical test theory is that it assumes that

the standard error of measurement is the same for all examinees. How-

ever, it is often true that high and low ability examinees will be

measured less precisely than middle ability examinees. Item response

theory provides an estimate of standard error -- that :s, precision of

estimation -- for each examinee. In addition, once parameter estimates

are known, item response theory allows the prediction of future per-

formance. This knowledge is useful in adapting tests to the ability

level of the examinee. Classical test theory cannot provide such in-

formation.

In summary, IRT models are especially attractive for item bias

research because the invariance property of item parameter estimates

means that post4ble ability differences between the groups of interest

(e.g., Blacks and Whites) will not serve as a confounding variable when

interpreting item bias results. The confounding of group ability

differences and item bias results is a common problem with classical

item bias studies. Essentially, IRT models make it possible to compare

the performance levels of the two or more groups of interest (using the

item characteristic curve estimated for each group) at points along the

ability scale continuum. When the differences in the ICCs are small,

no item bias is present. When the differences in the item character-

istic curves are greater, explanations for the differences are sought.

One explanation is that the test item is "biased" against the

lower-performing group. Possibly the test item includes some

unfamiliar language for this group or descriues an unfamiliar

situation. In any case, item characteristic curves (ICCs) provide an

9
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excellent basis for conducting item bias studies if, of course, the

ICCs fit the test data under investigation. To enhance model-test data

fit and thereby reduce the problem in our work, the three-parameter

logistic model was selected for subsequent use in our item-bias

research.

Description of the Plot Method

The precise origin of the plot method is unknown to us, though the

general approach using non-IRT concepts was described by Angoff (1982).

Hambleton (1982), Hambleton and Murray (1983), and Hambleton, Martois,

and Williams (1983) described the plot method in their research papers

on goodness-of-fit measures for IRT models. However, it seems likely

that Shepard (1981) was the first researcher to describe the general

method referred to in this paper as the "plot method."

Basically, the following steps are followed in applying the

method:

1. Choose the independent variable of interest for the item bias

study (e.g., sex, race, geographic region, etc.). Form two
groups (e.g., Males and Females) and label them "A" and "B".

2. Count the number of individuals in each grow; draw a random

sample from the larger group so that both groups (A and B) are

of the same size.

3. Split both groups in half to form four equal-sized subgroups

(Al, A2, B1, B2).

4. Conduct a three-parameter model analysis on each of the four
subgroups (Wingersky et al., 1982) to obtain item and ability

parameter estimates.

10
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5. Scale the b-values in each analysis to a mean of zero and a
standard deviation of one (or any common mean and standard
deviation).

6. Plot the b-values from Al and A2, and 81 and 82, to provide
baseline information on the amount of scatter to be expected
in the parameter estimates due to factors such as sample size
and model-data misfit. Al and A2, and 81 and B2, are randomly

equivalent samples. b-values are plotted because they are
more stab'e than the a-values (though the a-values could be
plotted too).

7. Plot the b-values from Al and 81, and A2 and B2, to determine
if the amount of spread in the plots differs from the baseline
plots obtained at step 6. If they do differ, then the
independent variable (or a variable confounded with it) is

influencing the b-values. A comparison of the Al and Bl, and

A2 and 82 plots, permits the researcher to check the
replicability of the findings.

8. Plot the differences Al-A2 (the differences in item difficulty
estimates in the two samples, Al and A2) and BI-B2 (the
differences in item difficulty estimates in the two samples,
Bl and B2) and compare to the plot of Al-Bl and A2-B2. If the
plots differ, identify the test items showing consistently
large differences in the A and B samples. These items are the
ones that may be biased against one of the groups.

The main advantages'of the plot method appear to be that (1) the

problem of sample size is controlled for through the baseline plots

(with small sample sizes the plots are more circular in shape), (2) the

baseline plots provide a basis for interpreting the importance of

particular independent variables on the invariance property of item

difficulty parameter estimates, and (3) the concept of replication can

replace the concept of statistical significance testing.

There are several variations on the above method. For example,

items which on a priori grounds appear to be "biased" can be removed

prior to step 4. With ability estimates in hand that are not

influenced by potentially biased items, the potentially biased items

can be returned to the analysis, and treating the ability estimates as

11
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known (fixed), the complete set of item parameter estimates can then be

obtained. In fact, this variation at step 4 was applied to the data

described below. The variation seems especially useful when the ratio

of the number of potentially flawed test items to total test length is

high. In this case, the potentially biased test items can "contamin-

ate" the ability estimates and make the overall bias analysis less

sensitive.

Insert Figures 1, 2, and 3 about here.

Figures 1, 2, and 3 contain the results of our race bias study on

a 50-item college vocabulary test administered to 2030 students (Whites

= 1022, Blacks = 1008). These data were kindly provided by Michael

Subkoviak and Gail Ironson.2 These data are especially interesting

because 10 of the 50 vocabulary items were included in the test because

they would be "biased" against White students. These Black vocabulary

words were: (with the meaning in brackets) fro (bush), member (black

person), butch (lesbian), crib (apartment), kicks (shoes), clean

(chic), boot (blood), greasing (eating), hog (car), and player (pimp).

Figures la and lb provide an indication of the expected

variability in item difficulty estimates across randomly-parallel

samples of the same race and size. The scatter of points is influenced

by the sample size and the model-test data fit. If, in this study,

2 We are indebted to the Computing Center at the University of
Wisconsin for reprocessing and restoring the test data and doing the
work at no charge.

12
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race is not a factor in test performance, the plot of item difficulty

estimates in the Black and White samples should look similar to the

plots of the item difficulty estimates in the two Black samples (Figure

la) or in the two White samples (Figure lb). Figure 2a snows a subset

of test items to be operating very differently in the Black and White

samples. The same pattern is observed in the second independent Black

and White samples (see Figure 2b). Clearly, race (or a variable

confounded with race) is influencing the item parameter estimates, and

hence there is the strong possibility of biased items in the test. In

actual fact, all 10 items were grossly biased against the Whites (the

word "butch" Was the least biased of the vocabulary items, but even

here there was an average difference of 1.17 standard deviations in the

Black and White b-values), and it was extremely easy to detect them.

An additional two items also showed a consistent tendency to be

answered differently by Blacks and Whites.

Figure 3b shows that these Black-White item difficulty differences

were also very consistent. The test items showing consistently large

differences between the Black and White samples are the ones which are

labelled "potentially biased" and are investigated further. These test

items appear in the top right corner and the bottom left corner of the

plot in Figure 3b. After identifying potentially biased items,

however, it remains important to review the full set of item statistics

(b, a, c, and associated errors) to determine the item statistics most

responsible for the item characteristic curve differences and to

investigate poor estimaticn as the source of the problem. Figure 3a

shows that the differences B1 -B2 and Wl-W2 are uncorrelated, which is

13
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the result that shoule be obtained when parameter estimation is being

done correctly. Essentially, the variables being correlated are errors

associated with parameter estimation.

Our original plan was to work with the Subkoviak-Ironson data set

extensively in our research, but the ten biased items were so easy to

detect that we preferred to carry on our research with a different set

of data.

Methodological Investigations of the Plot Method

Introduction

In this section of the paper several methodologice- investigations

of the plot-method will be described. The test data used were provided

by the Cleveland Public Schools. The actual test studied was a 46-item

criterion-referenced test that was administered to (approximately) 1200

grade 3 children in the Spring of 1983. The test seemed especially

interesting in our item bias research because it was not in final form.

A number of potentially biased items might be expected. Usually item

bias studies are conducted on tests which have already been carefully

screened (e.g., standardized achievement and aptitude tests) and so the

task of finding biased test items is considerably more difficult.

There were only 296 Whites in the total sample and so subgroups of

Blacks and Whites were formed that consisted of 148 individuals.

Blacks were randomly drawn from the larger pool of available Black

students so that the sizes of the Black subgroups and the White sub-

groups were equal.

14
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Insert Figures 4, 5, and 6 about here.

Because of the modest sample sizes and because the test items were

in draft form, our decision was to combine the total examinee sample

(Blacks and Whites) first and estimate ability score: using 29 test

items judged (a priori) to be unbiased. In this way, ability scores

using non-biased test items, and stable item parameter estimates

obtained from nearly 1200 examinees, could be obtained. These ability

scores were then treated as known (fixed) and used to calibrate the

item parameter estimates for the 46 test items within each subgroup of

examinees. Such a modification to the application of the plot method

can contribute substantially to the precision of the item parameter

estimates in the rather small sized subgroups.

The plots in Figures 4, 5, and 6 provide the basic information for

the bias study. They indicate that there are only four potentially

biased items. Figures 5a and 5b are quite similar and not very

different from Figures 4a and 4b. Therefore, race does not seem to be

a major factor in item performance. Figure 6b shows that only four

test items showed a consistent b-value difference of over .75 standard

deviations in the Black and White samples.

Choice of Scaling Method

The first investigation concerned the choice of scaling method to

be applied to the b-values prior to preparing the plots. Since the

b-value scale is arbitrary (up to a linear transformation), it is

15
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necessary to place the b-values from separate analyses (e.g., Blacks

and Whites) on a common scale before any comparisons can be made. On

the surface, the task seems easy: Each set of b-values can be trans-

formed to a new scale with mean = 0 and standard deviation m 1 (or any

other common mean and standard deviation).

A problem is that some b-values may be very large (e.g., in the

analysis described in the last section, several b-values exceeded 60!)

and therefore they exert a tremendous influence on the mean and

standard deviation. With a very large standard deviation, most of the

scaled b-values become very homogeneous and subsequent analyses become

difficult to carry out. This problem perhaps can be solved by choosing

some arbitrarily large value for the very big b-values (we chose + 3.5)

and/or removing these items from the calculations of means and standard

deviations.

A second problem arises because some of the large b-values may be

very poorly estimated. It is undesirable for these poorly estimated

b-values (large or small) to have as much influence on the scaling as

b-values which are more precisely estimated. Stocking and Lord (1'483)

provide a new method for scaling two sets of b-values to a common scale

by considering the standard errors associated with the b-values. The

effect of the new scaling method was studied in this part of our work.

Insert Figures 7 and 8 about here.

Figures 7 and 8 show the results of applying the Stocking-Lord

scaling method. The similarity of the plots in Figures 7a, 7b, 8a, and

16
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8b, suggest that race is not an important factor in item performance.

For this one set of test data at least, the special effort to place the

results on a common scale using the complicated Stocking-lord

procedures made no difference to our interpretations. Of course, their

method may be more useful with othe types of analyses.

Choice of Cut-off Points

Insert Figures 9 and 10 about here.

While studying plots can be helpful in identifying subsets of test

items which show consistent differences in statistical properties

between two groups, guidelines for interpreting these differences are

not available at the present time. We would certainly be unwilling to

do significance testing on these differences because, among other

things, questionable assumptions about distributions would need to be

made. Figures 9 and 10 show the differences in b-values for the white

samples (a) and black samples (b). These sampling distributions which

reflect chance differences principally due to the choice of sample size

can be used to set cut-off points which can be applied to the Black and

White b-value differences shown in Figures 9c, 9d, 10c, and 10 d. For

example, a researcher could select points on the scale beyond which

only about 5% of the b-value differences fall. These critical points

could then be used to interpret the Black-White b-value differences.

When race is a factor in item performance, many test items might be

expected to have b-value differences which exceed the critical values.

17
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Figure 10 differs from Figure 9 in that standardized b-value

differences are plotted instead. The possible advantage of plots of

standardized b-value differences is that the errors associated with the

b-values under study can be considered too. Large b-value differences

then are taken less seriously when the errors associated with the

corresponding b-values are large. The formula for a standardized

b-value difference is:

b
Bi

b
Wi

VSE2(bBi) + SE
2
(bwi)

where i = 1, 2

and bBi and bwi are the b-values in sample i (i = 1, 2) for the Black

and White subgroups, respectively, and SE2(bBi) and SE2(bwi) are the

corresponding (squared) errors associated with the b-value estimates.

Again, these data in Figure 10 reveal almost no biased items in the

test. All of the distributions have about the same characteristics. If

race were a factor, the distributions in (c) and (d) would differ

somewhat from the distributions in (a) and (b) in Figures 9 and 10.

Comparison of Item Bias Methods

One criticism that can be made of the plot-method is that only one

item statistic (item difficulty) is used in identifying potentially

biased test items. Item difficulty might not vary in two groups of

interest but the test items could vary in (say) discriminating power.

On the other hand, the b-values are (usually) estimated with more

precision than the a-values (Lord, 1980) and therefore (possibly) their

18
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use in item bias studies could lead to more stable information about

item bias.

In this phase of the work, the stability of two popular IRT item

bias methods (which use all three item statistics in the three-para-

meter model) with the plot method was compared. The area method

(Rudner, et al., 1980) and the squared difference method (Linn et al.,

1981) were considered in the research. In the "area method," the area

between the item tharacteristic curves in the two groups of interest

over an interval of interest on the ability scale is used as an

estimate of item bias. Of course, the minimum bias is achieved when

the two curves are equivalent. Then, the item bias is zero. The more

different the curves, the larger the area, end the more biased the item

is assumed to be. The " squared difference method" is defined over the

same interval on the ability scale; however, the square root of the sum

of the squared differences between the two item characteristic curves

at fixed intervals (usually .01) is used as the measure of item bias.

The seconl author prepared a computer program to compute the item

bias statistics using the area and squared difference methods.

Calculations were carried out on the ability scale between -3 and 3.

Prior to computing the item bias statistics, corresponding sets of item

statistics were placed on a common scale, using a method described by

Linn, et al (1981). Of interest in the study was the level of

replicability of the item bias statistics for the three methods across

independent samples.

Ta same subgroups Identified earlier (81, B2, Wl, W2) were used

in this analysis. Again, though the sample sizes for the item
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The results in Table 1 show that the plot method produced

considerably more stable results. In fact, the results for the other

two methods are quite unacceptable. Their stability is nearly zero.

Insert Table 1 about here.

However, no attempt should be made to generalize the findings since

they almost certainly are limited to small-sample item bias studies.

Conclusion

It is difficult at this time to draw any definitive conclusions

about the plot method for identifying potentially biased items.

Certainly the method has some intuitive appeal and there is evidence

that it can be successfully applied.

Though the Subkoviak-Ironson data set provided a very simple check

on the method, it can be stated that all ten flawed items were easily

identified (along with two additional items). Of course the level of

bias in the items in the vocabulary test probably far exceeded the

level of bias that could be expected in many achievement and aptitude

tests, even tests that were being field-tested.

The methodological investigations produced a number of useful

results. Apparently the Stocking-Lord method for placing item

parameter estimates on a common scale did not produce results that

differed from the use of standard score equating (where the very large

values are eliminated from the calculations) for the type of
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application of b-values described in this paper. This result was

obtained even though the standard errors associated with the b-value

estimates ranged widely and in some cases the standard errors were very

large. If the Stocking-Lord scaling method was going to produce

different results from standard score equating, it would have been

under these conditions.

The sampling distribution of b-value differences under the

null-hypothesis that the two groups are identical (B1, B2, Wl, W2),

provides a helpful way for obtaining cut-off points for identifying

potentially biased test items since no distributional assumption must

he made. The actual distrfbution can be produced though the shortness

of a test may limit the usefulness of this distribution somewhat. The

cut-off points can be positioned at the P.025 and P.975 points of the

distribution, or alternatively, at breaks in the distribution of

differences. This choice of cut-off score will result in a

conservative approach to identifying biased test items, however, since

often the amount of true bias in test items may be small. Still, the

sampling distribution does provide a useful frame of referenc= for

determining the size of a significant b-value difference.

Finally, evidence for the stability of the item bias results

obtained from the plot method is encouraging when compared to the two

other IRT item bias methods. Of course, it is unknown how these other

methods would fare with larger samples. Our prediction is that the

differences in the methods would be far less dramatic. In any case,

the results reported in this paper seem to suggest that with small
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samples, perhaps methods which fo'us on the most stable of the item

parameter statistics should be given preference.

In summary, additional investigations of the plot method would

seem to be warranted based upon the results reported in this paper. In

addition, some of the methodological research reported here provides

direction for applying the plot method and interpreting the results.

Our next step will be to validate the method by addressing the agree-

ment between test items identified as potentially biased by the plot

method and test items identified as potentially biased via the use of

judgmental review methods (Berk, 1982). Agreement in the results from

these two very different methods would lend credibility to both

approaches for identifying potentially biased test items.
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Table 1

Stability of Item Bias Statistics
Across Independent Samples

(Black vs. White, N = 46 items)

S :atistic

B-W (Group 1)
Correlation

vs. B-W (Group 2)
Consistency

Overall P1 P2

Plot Method .643 .935 .50(06) .50(06)

Area Method .159 .826 .33(06) .33(06)

Squared Difference Method .028 .783 .00(06) .00(04)

Overall = proportion of test items identified consistently
as "biased" or "unbiased" in both samples.

P1 = proportion of test items identified as "biased" in sample 1
which were also identified as "biased" in sample 2. P1 re-

flects the consistency of biased items from sample 1.

P2 = proportion of test items identified as "biased" in sample 2
which were also identified as "biased' in sample 1. P2 re-

flects the consistency of biased items from sample 2.

The numbers in brackets correspond to the numbers of test items

exceeding the cut-off score for a particular group (under the P1

column the group is sample 1; under the P2 column the group is sample

2) and a particular method.

25



3.50

lal

0

!I45

dP

Op

% o
0 00

0.0

BLACKS -GROUP I

3.50

I bl

O
0

O
1.75

O
cb00

0 o,290

0.0 0 0 0

COsf

0
Oo 0
0° 0

0
O

1.75
O

O

3.50
1.75 3 50 -3.50 -1.75 0.0

WHITES-GROUP 1

Figure 1. Plot of item difficulty estimates in two equivalent black samples (N= 504)
in (a) and white samples (N = 511)in (b).

26

1.75 3.50

2P/

N
CT



3.50

1.75

0.0

-1.75

-3.50
-3.50

0

O
O

0
0

O 0
88

0
0 0
O
0

keoft;

0

0
O oS?)
O

o8D
00
00

0 0

0

0

-1.75 0.0

BLACKS -GROUP 1

1.75 3 50

1bl

BLACKS-GROUP 2

Figure 2. Plot of item difficulty estimates in the black and white samples (Sample 1 in

a, Sample 2 in b).

28 29

1\)



1.50

I a 1

.75

..-
0 a'

at

I
3

-.75

-1.50
-1.50

1.50

.75

0.0

-.75

lb,

O

0

0

0

O
O 0 cp 0

0 0 C'

00 0?) 0 0
OsC8°0 0 00 el0 0

08

1.50 0.0 L__
-.75 0.0 .75 1.50 -1.50 -.75 0.0

0

BLACKS IG1 -G21

0

0

0

.75 1.50

BLACKS IG11- WHITES IGII

Figure 3. Plot of differences in item difficulty estimates (Bl - B2 vs. W1 - W2 in a,
and 81 - W1 vs. B2 - W2 in b).

31



3.50

la'

0 0

0 0
1.75- 0

0 08

0.0

1.75

3.50
3.50

0

o 00
o

o 0

0000

0

-1.75 0.0
I.

BLACKS -GROUP 1

1.75 .50

Ibl

-1.75 0.0

WHITES -GROUP 1

Figure 4. Cleveland data plots of item difficulty estimates in two equivalent black samples
(N=148) in (a) and white samples (N=148) in (b).

32

1.75

33

3.50

Iv
Co



3.50

1.75

0.0

-1.75

lbl

3.5n
-3.50

3.50

la1

175-

00

-1.75

3 50
-3 50

0

0

099 0

4,2g 0

0

0

-1.75 0.0

BLACKS -GROUP 1

1.75 3 50

0

000 0
00

0 9).
U 0

TSPC? 0

,0 0
0`;'.64 0

0
0

0

-1.75 0.0

BLACKS GROUP 2

Figure 5. Cleveland data plots of item difficulty estimates in the black and white samples
(Sample 1 in a, Sample 2 in b).

34

1.75

35

3.50

tD



1.50

.75

0 \
N
LD

Ia)

0
-.75

0

oo
o

0
0b'

0 If 0 8
0 %%..2 0 8:40

0%00

o8
O

0

1.5 1 1

-1.50 -.75 0.0 .75

BLACKS (G1 -G2)

0

1.50

1.50

Ibl

0

0
0

0

BLACKS (G1) - WHITES (G 1)

Figure 6. Cleveland data plots of differences in item difficulty estimates (B1-B2 vs. Wl-W2 in a,
Bl -Wl vs. B2-W2 in b).

36 37



3.50

1.75

0.0

1 75

lal

3.50
3 50

0 0

O 0 00

0

t 1

-1.75 0.0

0

1.75 3.50

BLACKS GROUP 1

3.50

1.75

I b I

0.0-

- 1.75

3.50
-3.50

0

q)

08 0
°0

0
0

00

0 43

I

-1.75

0

I I

0

0.0 1.75

WHITES GROUP 1

Figure 7. Stocking/Lord scaled Cleveland plots of item difficulty estimates in two equivalent
black samples in (a) and white samples in (b).

38
39



3.50

1.75

0.0

-1.75

181

-3.50
-3 50

C

0

8

0j 00

0 00
O

-1.75

0

0.0 1.75

BLACKS GROUP 1

0

0

0

3.50

1.75

Ibi

-1.75

3.50

0

3 50 -3.50

0 0
0

0 0

0 0%
0

-1.75 0.0

00

OO O
O

BLACKS GROUP 2

Figure 8. Stocking/Lord scaled Cleveland data plots of item difficulty estimates in the
black and white samples (Sample 1 in a, Sample 2 in b).

40

0

0

0

1.75 3.50

41



12

(8-

4-

12-

f8-

4

(a)

1---I 41 I i I I II II ii-1.3 .9 -.5 'I .1 .5 .9 1.3
W1 -W2

(C)

1 3 5 -.1 .1 .5
B1 -W1

1.3

12-

18-

.4-

il ii III ill
-1.3 -.9 .5 -.1 .1 .5

61 - B2

(b)

(d)

.9

I

1.3

itlftti-ift--///111
-1.3 -.9 -.5 -.1 .1 .5 .9 1.3

B2 W2

Figure 0. Distribution of b-value differences: (a) Wl-W2, (b) B1 -B2, (c) B1 -W1, and (d) B2-W2

42 43



12-

18-

4-

12-

18-

4-

44

I I- 11111 i li it il-1.3 -.9 -.5 -.1 .1 .5 .9 1.3
W1 -W2

(a)

(C)

12-

18-

01.

4--

12-

I

f8-

mm,

4-

(b)

1 1 i 1 1- 1 1 1 1 1 1 I 1-1.3 -.9 -.5 -.1 .1 .5 .9 1.3
B1 -V2

(d)

t-1.3 -.9 -.5 -.1 .1 .5
B2 W2

Figure 10. Distribution of standardized b-value differences: (a) Wl-W2, (b) Bl-B2,
(c) 81-W1, (d) B2 -W2.

1.3

45


