
DOCUMENT RESUME

ED 270 478 TM 860 359

AUTHOR Hambleton, Ronald K.; Rovinelli, Richard J.
TITLE Assessing the Dimensionality of a Set of Test

Items.
PUB DATE [86]
NOTE 37p.
PUB TYPE Reports Research/Technical (143)

EDRS PRICE M701/PCO2 Plus Postage.
DESCRIPTORS Comparative Analysis; Computer Simulation;

Correlation; *Factor Analysis; Graduate Medical
Education; Higher Education; *Item Analysis; *Latent
Trait Theory; *Mathematical Models; Occupational
Tests; Statistical Studies

IDENTIFIERS Bejar Model; Linear Models; Nonlinear Models;
Residuals (Statistics); *Unidimensionality (Tests)

ABSTRACT
Four methods for determining the dimensionality of a

set of test items were compared: (1) linear factor analysis; (2)
residual analysis; (3) nonlinear factor analysis; and (4) Bejar's
method. Five artificial test data sets (for 40 items and 1500
examinees) were generated, consistent with the three-parameter
logistic model and the assumption of either a one- or a
two-dimensional latent space. Two variables were manipulated: the
correlation between the traits (either .10 or .60) and the percent of
test items measuring each trait (either 50 percent measuring each
trait, or 75 percent measuring the first trait and 25 percent
measuring the second trait). The results indicated that linear factor
analysis in all instances overestimated the number of underlying
dimensions in the data. Nonlinear factor analysis, with linear and
quadratic terms, led to the correct determination of the item
dimensionality in the three data sets where it was used. Both
residual analysis and Bevies method provided disappointing results.
The results suggested the need for extreme caution in using linear
factor analysis, residual analysis, and the Bejar method, until
further investigations confirm their adequacy. Nonlinear factor
analysis appeared tc be the most promising of the four methods.
(Author /GDC)

***********************************************************************
* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

***********************************************************************



CO

O
N-
cuO

Assessing the Dimensionality of a Set of Test Items

Ronald K. Hambleton
University of Massachusetts at Amherst

and

Richard J. Rovinelli
Educational Services for the Professions

Abstract

The main purpose of the study was to compare the determination of

the dimensionality of a set of test items with four methods: linear
factor analysis, non-linear factor analysis, residual analysis, and a

method developed by Bejar. Five artificial test datasets (for 40 items

and 1500 examinees) were generated to be consistent with the
three-parameter logistic model and the assumption of either a one- or a

two-dimensional latent space. Two variables were manipulated: the
correlation between the traits (r = .10 or r = .60) and the percent of

test items measuring each trait (50% measuring each trait, or 75%

measuring the first trait and 25% measuring the second trait).

The results were that linear factor analysis in all instances

overestimated the number of underlying dimensions in the data. Non-

linear factor analysis, on the other hand, with linear and quadratic

terms led to the correct determination of the item dimensionality in

the three datasets where it was Ised. Both the residual analysis
method and Bejar's method provided disappointing results. The results

suggest the need for extreme caution in using linear factor analysis,

residual analysis, and the method by Bejar until more investigations of

these methods can confirm their adequacy. Non-linear factor analysis

appears to be the most promising of the four methods, but more experi-

ence in applying the method seems to be needed before it can be

recommended for wide-scale use.
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Ronald K. Hambleton2

University of Massachusetts, Amherst

and

Richard J. Rovinelli
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The assumption that a set of test items is "unidimensional" is

made for all of the presently popular item response models. Despite

the importance of the assumption to these item response models there is

substantial confusion in the psychometric literature concerning the

proper definition for the term "unidimensionality" and the methods for

assessing its presence or absence in a set of test items (Hattie, 1984;

Traub & Wolfe, 1981). Definitions in the literature for what it means

to say that a set of test items is unidimensional are typically

abstract and non-operational. A typical example is: A set of test

items is unidimensional when a single ability can explain or account

for examinee test performance.

Methods for assessing the unidimensionality of a set of test items

range from the commonly used but unarceptle measures of internal

consistency (Green, Lissitz, & Mulaik, 1977), to the more appropriate

uses of eigenvalue plots and related statistics (Lord & Novick, 1968;

Reckase, 1979). Hattie (1984) reported that there are 87 indices in

the psychometric literature for addressing the dimensionality of a set
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of test items. Unfortunately, many methods for assessing the

unidimensionality of a set of test items are only loosely connected to

the various definitions in the psychometric literature.

This investigation of several methods for assessing the uni-

dimensionality of a set of test items was prompted by a practical

problem which arose in connection with the in-training exam produced by

the American Board of Family Practice in Lexington, Kentucky.

Candidates are required to take a core exam plus three additional

subtests of their choice selected from a larger set of six available

subtests. These six subtests vary somewhat in their difficulty. Score

reporting and subsequent comparisons among candidate, must be carried

out on the combined exam (core plus subtests) and since the candidates

do not, in general, take the same three subtests (there are 20 possible

combinations), the subtests are equated to the common scale defined by

the core items. How well the equating of candidate scores is done

depends upon the choice of item response model (the three-parameter

model is chosen to increase the likelihood of a satisfactory model fit

to the data) and the extent to which the core items and subtest items

measure a common trait, i.e., a unidimensional trait. Thus, two

questions arose, "What is meant by the expression 'unidimensionality of

a set of test items'?" and "How should the assumption of

unidimensionality be assessed to be consistent with the definition?"

4
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Despite the confusion in the literature on these two questions

there are contributions by McDonald (1980, 1982) and Hattie (1981)

which proved to be helpful, and these contributions influenced the

general direction for the present research. McDonald and Hattie

arrived at the conclusion that the principle of local independence

should be the basis for a proper definition for the assumption of

unidimensionality. McDonald defined a set of test items as

unidimensional if, for examinees with the same ability, the covariation

between items in the set is zero. Since the relations between items is

typically non-linear, he recommended the use of non-linear factor

analysis to study these relations between items. Also, after fitting a

single non-linear factor model to the item set, he recommended that

residual covariances be calculated and used to assess the plausibility

of the unidimensionality assumption. McDonald argued that the

dimensionality of a set of test items should be determined by the

number of factors or abilities needed for describing examinees, so that

the principle of local independence is satisfied.

In this research, interest was centered on three promising methods

for addressing the unidimensionality of a set of test items: (1)

non-linear factor analysis (NLFA) because of McDonald's recommendation,

(2) residual analysis, and (3) the Bejar analysis. The first method

appeared promising because NLFA does not require the implausible

assumption of linear relationships among the variables and between the

variables and the underlying traits to be made. In fact, one of the

5
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fundamental assumptions of IR1 is that these relationships are

non-linear (Lord, 1980). The second method is an assessment of the

overall fit of a unidimensional model to a dataset through the analysis

of residuals. When the fit is adequate it would seem that the

assumption of a unidimensional model is plausible too (see, for

example, Rentz & Rentz, 1979). Of course when the fit is poor,

specific reasons for the misfit may be unknown. For example, the

assumption of unidimensionality may not be violated by the data

set but some other assumption of the model is. The Bejar (1980) method

appeared useful for assessing item dimensionality because it does not

involve questionable linearity assumptions about the test data. Also,

the method provides a straightforward check on one of the expected

outcomes of a unidimensional set of test data: the subset of items from

o test in which an item is calibrated is irrelevant.

The specific purpose of the investigation was to compare the

assessments of the dimensionality of a set of test items with three

methods, referred to in this paper, as non-linear factor analysis,

residual analysis, and Bejar analysis. To provide a basis for

comparing the merits of the methods, linear factor analysis was also

studied on the same datasets. The four methods were applied to five

datasets. The datasets were artificial and generated to reflect one

and two dimensional datasets.

6
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Method

Methods for Assessing Item Dimensionality

Linear Factor Analysis (LFA)

LFA is probably the most commonly used method for studying item

dimensionality. Using (1) the matrix of phi or tetrachoric

correlations to summarize the linear relationships between pairs of

items in a test,3 and (2) communality estimates (often, squared

multiple correlations) in the diagonal entries of the correlation

matrix, eigenvalues are extracted from the correlation matrix and

plotted (from largest to smallest). The number of "significant"

factors is determined by looking for the "elbow" in the plot. The

number of eigenvalues to the left of the "elbow" is normally taken to

be the number of "significant" factors underlying test performance.

The method fails in those instances where an "elbow" cannot be found.

A second procedure for determining the number of factors is found

by applying an identical LFA to a dataset consisting of the same number

of items and examinees and with random normal deviates substituted for

the actual data. This procedure appears to have been first suggested

by Horn (1965) and was later studied by Linn (1968), Humphreys and

Ilgen (1969), and Humphreys and Montanelli (1975). For the purpose of

computing phi and tetrachoric correlations, the data are dichotomizea

at z=0,4 normal deviates above 0 are coded as "correct" and below 0 as

"incorrect." Since all of the data are randomly generated, the value of

7
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the largest eigenvalue can be used as a cut-off score with the

eigenvalues obtained from the actual data to determine the number of

"significant factors." Thus, if the largest eigenvalue obtained from

the random data is 1.5, all eigenvalues over 1.5 in the analysis of the

real date. are considered to be associated with significant factors.

Non-Linear Factor Analysis (NLFA)

McDonald (1967) sought to improve upon LFA by developing

non-linear factor analysis (NLFA). In NLFA, non-linear relationships

between the variables and the traits or factors measured by the

variables are assumed. The application of NLFA to the study of item

dimensionality seems especially desirable, within the context of item

response theory, because one of the principal assumptions (i.e., the

mathematical form of the item characteristic curves) specifies a

particular non-linear relationship between item performance and

ability. One version of NLFA takes the form

t s

yi = aiO + E E aize (i =1, 2, ..., n)

2. =1p =1

where yi represents an examinee's score on item i, t is the number of

traits necessary to account for examinee test performance, s is the

degree of the polynomial used to fit the model with each factor, aikp

is the factor loading of the i th item on the kth trait for the pth

degree element in the polynomial. For example, with a one factor model

(t=1) with polynomial terms to the third power (s=3) the model has the

following form:

(1=1, 2, ..., n)
Yi = ai0 + aill el + ai12 6412 + ail3 6413

8
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The two factor model (t=2) with polynomial terms to the third power

(s=3) has the form

Yi = a10 +8111 61 + ai12 612 + ai13 613

,

+ ai21 62 + 6i22 v
a
2
2

+
.

vi23 v2
3 (1=1, 2, ..., n)

The one- and two-factor models above with linear, with linear and

quadratic, and with linear, quadratic, and cubic terms were fitted to

the various datasets in the study.

Residual Analysis

The method for addressing the unidimensionality of a set of test

items through a residual analysis involves fitting a unidimensional

item response model of interest to the test data, using the model

parameter estimates to predict the item performance data, and then

summarizing the discrepancies or residuals (see, for example, Hambleton

& Swaminathan, 1985). Specifically, ability categories are chosen to

divide the ability scale into equal intervals. Examinees are assigned

to categories based upon their ability estimates. For examinees in

each ability category on each item, a comparison is made between actual

performance (proportion-correct) and the predicted proportion-correct

level from the corresponding item characteristic curve (icc). In this

study the proportion-correct estimate was obtained at the mid-point of

each ability category. (A slightly better estimate is the average of

the probabilities for a correct answer associated with the ability

scores for examinees in the category.) ThE difference between the

actual and predicted proportion-correct score (called a residual or a

9
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raw residual score) in each ability category and for each item can also

be divided by the corresponding standard error of the proportion-

correct estimate to obtain a standardized residual. When the chosen

model fits the dataset, these standardized residuals might be expected

to be small and randomly distributed about the value O. It is common

within the framework of regression theory to assume the distribution of

standardized residuals is normal. Of course, the distribution of

residuals would only be (at best) approximately normal because of

non-normal distributions of the SRs when the icc's approach values of 0

or 1.

The rationale for the appropriateness of residuals as a check on

item unidimensionality is that when a unidimensional model fits a

dataset, all of the model assumptions must be met to a

reasonable degree.

Bejar Analysis

Bejar (1980) argued that if the set of items in a test is

unidimensional, then the grouping of test items from the test for the

purpose of item calibration will be irrelevant. Parameter estimates

for items calibrated with different subsets of items, aside from

sampling errors, should be identical. Bejar's method (with minor

modifications) can be implemented in four steps:

1. Identify a subset of items in the test which appears to be

measuring a trait different from the trait measured by the

total test.

2. Conduct a three-parameter model analysis of only the items in the

subtest.

10
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3. Repeat the three-parameter model analysis using the total set of

items.

4. Compare the two sets of b-value estimates for items in the sub-

test. (Because b-values are estimated with smaller sampling

errors than the a-values, b-values are more useful for studying

the relationships between item parameter estimates obtained in

two samples.) Bejar has a simple statistical test that can be

used to compare the parameter estimates. Alternately, the pairs

of b-values can be plotted to determine the extent to which the

two sets are linearly related.

The pairs of parameter estimates for items in the subtest and test,

respectively, should be linearly related unless the subset of items is

measuring a trait or traits which are not common to the trait or traits

measured in the total test.

Criteria for Assessing the Usefulness of the Methods

Linear Factor Analysis

One way to evaluate LFA as d measure of item dimensionality is to

compare the number of factors retained in a solution to the

dimensionality of the latent space in the artificial data. Two ways

for determining the number of factors ere used:

1. the "elbow" in the plot of eigenvalues,

2. eigenvalues greater than the largest eigenvalues obtained with

the random data.

11
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Also, to facilitate a comparison between LFA and NLFA, four additional

criteria were used. After fitting one, two, three, four, and five

factors to the reduced correlation matrix, the matrix of residuals was

calculated. The off-diagonal elements of the matrix were summarized by

(1) the average residual, (2) the standard deviation of the residuals,

(3) the average of the absolute-valued residuals, and (4) the standard

deviation of the absolute-valued residuals. When the chosen model fits

the dataset well, the true values of these off-diagonal elements are

(near) zero. In practice, because of errors of measurement and of

sampling, the residuals should be small, and evenly distributed around

0.0.

Non-Linear Factor Analysis

The four statistics described above were calculated after fitting

one and two factor models with linear, quadratic, and cubic terms to

the inter-item correlation matrices for four of the five datasets.

Residual Analysis

For each artificial dataset there were 40 items and 12 ability

categories. In total, 480 residuals were produced. Since interest

centered on the size and not the direction of the discrepancies,

absolute-valued residuals and standardized residuals were substituted

for residuals and standardized residuals. Criterion measures chosen

were (1) average absolute-valued residual, (2) average absolute-valued

standardized residual, and (3) the distribution of absolute-valued

standardized residuals. With respect to (2), when a model fits the

12
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data, and if the SRs are normally distributed, then the average

absolute-valued SR should be close to .799. (The value of .799 can be

obtained by calculating the average of absolute values of normal

deviates.) Since a study of absolute-valued residuals i, more

informative when several models have been been fit to the same test

data, in this phase of the work, residual analyses were carried out

with the one-, two-, and three-parameter unidimensional logistic

models. A computer program developed by Linda Murray and described by

Hambleton (1982) was used to conduct the residual analyses.

A comparable analysis of residuals with NLFA would have been

useful, but with the polynomial models the expected probabilities are

not defined on the interval [0,1] across the total ability score range

and therefore an analysis of residuals would have no value.

Belar Analysis

The results from this analysis were summarized by a correlation

coefficient between b-vaiues for a subset of test items: items

calibrated in a subtest and again in the total test. The original plan

was to produce the plot of item b-values obtained in the sub-test and

total test for each of the five datasets. But the correlations were

very high in all but one analysis and so the plots did not seem

necessary.

13
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Generation of Artificial Data

The generation of examinee item resronse data to fit a

three-parameter logistic unidimensional model is straightforward.

Using item parameters which are generated according to the

specifications described in the next section, for each examinee j, and

given the ability level, ei, a vector of probabilities (P1, P2, ...,

Pn) associated with answering the test items correctly is obtained from

the expression

Pi(6j) = ci + (1-ci) [1 + exp (-Dai(Tbi) )]-1, i=1, 2, n .

Using a random number generator to produce numbers uniformly

distributed on the interval [0, 1], the probabilities can be converted

to 0's and l's to reflect examinee item scores. This is done by

assigning a "1" to the examinee for item i when the random number

selected is below Pi, which will happen Pi of the time, and "0"

otherwise.

The simulation of two-dimensional data was a substantially more

difficult problem. First, there are several possible multi-dimensional

models to select from. Second, there are no guidelines in the IRT

literature for choosing reasonable item parameter values for

multidimensional models.

Sympson (1978) offered one model which took the form

K
= cl + (1-ci) 01 [1+exp(-Daik(auk-bik) )]-1

The problem encountered in applying this model was that the probabili-

ties even for the two-dimensional model (k=2), quickly converged to the

value c and as a consequence there was little variation in item

performance for examinees, and little variation in test scores among

examinees.

14
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A similar problem was encountered in applying a model used by

Christofferson (1975) and Hattie (1981). In Hattie's formulation

K

Pi(emej2,...,eik) = c + (1-c) [1+exp -OkEla ik-A jkh --i]-1

where c is a constant value over all items, bi is the item difficulty,

aik, k=1, 2, ..., K are the item discriminating powers on the K

underlying traits and eik, k=1, 2, ..., K are the trait or ability

scores for examinee j on the K traits. In preliminary simulations it

was observed that the probabilities for small changes in e quickly

approached values of c and 1. Perhaps the main problem encountered

concerned the choice of item discriminating powers which were taken to

be values often observed with one-dimensional models. fn any case, a

simpler model than the models proposed by Sympson and Hattie was

chosen. The model was not only simpler (a special case of the

Christofferson-Hattie model with independent item clusters) but

guidelines for selecting item parameters were readily available.

Specifically, item parameter values were assigned to all test items in

the same way that the assignments were made with the one-dimensional

model described in the next section. Then, examinees were assigned two

trait scores (with the specified correlation). The simulation of two

traits was easily carried out with the aid of a formula developed by

Hoffman (1959). First, two uncorrelated normally distributed random

variables Xj, zj(Mean=0, SO=1) are generated with the aid of a random

number generator. Then the variable Yj is obtained from the expres :ion

15
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Y. = X. +
r

Z
J JJ

where k

and r is the desired correlation between variables X4 and Yj. Xj and

Yj are used in the simulations as the two trait scores for an examinee.

Pairs of trait scores with the desired correlation were generated for

the 1500 examinees. Finally, item probabilities and item scores were

generated for examinees. For the first 20 items (or 30 items for

datasets 3 and 5) the first set of trait scores were used in generating

item probabilities and for the remaining items, the second set of trait

scores for examinees were used.

In summary, first, artificial data generated from a one- dimension-

al model were used. Of interest was whether or not the four methods

could identify unidimensional data. Second, two-dimensional data

representing the situations where the items could be organized into two

clusters measuring different traits were used. Two variables were

manipulated: the correlation between the traits and the percentage of

total items in each cluster.

Description of the Test Data

The five artificial test datasets were generated to be consistent

with the assumption of either a one- or a two-dimensional latent space.

Each test consisted of 40 test items. The item performance for 1500

examinees was simulated with the three-parameter logistic model. These

16
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numbers were assumed to be large enough to avoid parameter estimation

problems when using LOGIST. In dataset 1, the latent space was assumed

to be one-dimensional. In datasets 2 to 5, the latent space was

chosen to be two-dimensional. The (nly difference between datasets 2

and 3, and 4 and 5 was that in datasets 2 and 3 the correlation between

the two latent traits was .10 whereas in datasets 4 and 5 the

correlation between the two traits was .60. In addition, items were

assumed to measure one trait or the other. In datasets 2 and 4, the

first 20 items measured trait one and the second 20 items measured

trait two. In datasets 3 and 5, the first 30 items measured trait one

and the remaining 10 items measured trait two. The chart below

summarizes the pertinent information:

Dataset Trait(s) r(01, 02)

Number of Items

First Trait Second Trait

1 1 40 0

2 2 .10 20 20

3 2 .10 30 10

4 2 .60 20 20

5 2 .60 30 10

Parameter values were assigned to items on each trait in the

following way:

b parameters were drawn at random from a uniform distribution on

the interval [-2.0 to +2.0]

a parameters were drawn at random from a uniform distribution on

the interval [.40, 2.00]

c parameters were set to a value of .25.

17
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The choice of item parameters reflected values often found in practice

(Hambleton & Swaminathan, 1985).

Results

One-Dimensional Data

Linear Factor Analyses

The eigenvalues for the random data and the one-dimensional data

are reported in Table I. The plots of eigenvalues for the

one-dimensional data using phi correlations to measure the

relationships between pairs of items (or tetrachoric correlations)

suggest that two significant factors are present. The analysis of the

tetrachoric correlations was more revealing than the phi correlations

in the sense that more of the variance was associated with the first

factor which would be expected when the data are unidimensional.

Whether the criterion for the number of significant factors is

determined from the "elbows" in the plots or the largest eigenvalue

from the matrix of correlations of normal random deviates, two factors

would be retained.

Non-Linear Factor Analyses

The results of fitting from one to five linear factors, and one

and two factors with linear, linear and quadratic, and linear,

quadratic, and cubic terms to the one-dimensional dataset are reported

in Table 2. The first twc criteria (rid, s(rij) ) show simply that the

mean off-diagonal elements after fitting one or more factors are

centered close to .00 (as compared to .127 in the original correlation

matrix) and that the standard deviation of the distribution of the

18
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residuals approaches zero as the number of factors is increased. From

the statistics in the third and fourth columns of Table 2 it is clear

that a NLFA with one factor with linear and quadratic terms fits the

data better than the two factor solution provided by LFA. In fact,

even three linear factors did not produce as accurate a fit to the

data.

Residual Analyses

The residual analyses for the one-dimensional data with the three

logistic models are reported in Table 3. Not surprisingly, since the

data were generated to fit the three- parameter model, this model

provided the best fit to the data. More importantly, the distribution

of SRs was (approximately) normal and the mean absolute-valued SR was

close to .799. With the one dimensional data and when the particular

IRT model closely fits the data, the SRs appear to have the desired

distribution. The slight predicted bias in this distribution is also

apparent.

Bejar Analyses

Since all of the test items were generated to fit a one-dimension-

al model there was no reason to suspect that a second trait was

necessary to account for the inter-item correlations. As a rather

simple check on the method, the last 20 items were presumed to measure

a second trait. The b-values for the last 20 items calibrated both in

the sub-test composed of the last 20 items and the total test are

reported in Table 4. The correlation between the b-values was in

19
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excess of .99. Clearly, the assumption of unidimensionality could not

be rejected on the basis of the available evidence, nor should the

assumption be rejected for this dataset.

Two-Dimensional Data
Linear Factor Analyses

If the largest eigenvalue of the random data (x1=1.48) is used as

the criterion for determining the number of factors, for all four

two-dimensional datasets three significant factors emerged (see Table

2). If the "elbow" of each eigenvalue plot is used, possibly two

significant factors might emerge for the two-dimensional data (r=.10;

20/20) but choosing three or four factors is not totally unreasonable.

With the other two-dimensional datasets, the "elbow" revealed (at

least) three significant factors also. Again, the linear factor

analysis method resulted in more factors than the underlying

dimensionality of the data. However, the LFA did reveal the dominance

of one factor over the other. With the two- dimensional data (r=.10;

20/20) the first two factors accounted for rcughly the same amount of

variance. With the two-dimensional data (r=.10; 30/10) the ratio of

variance accounted for by the first two factors (15.7/5.2 or roughly

3/1) was proportional to the number of items measuring each factor

(30/10 or 3/1). For the final two datasets a second order factor

appeared to be emerging.

Non-Linear Factor Analyses

Again, Table 2 shows that the NLFA method provided promising

results. With the two-dimensional data (r =.10; 20/20) and the two-

20
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dimensional data (r=.10; 30/10) the mean and standard deviation of

absolute-valued residuals associated with a two-factor model with

quadratic terms were smaller than the corresponding residuals cbtained

from a three-factor solution using LFA. Thus, if the three factor

solution with LFA is acceptable, then the two factor solution from NLFA

would be, too. The two factor model with cubic terms was not obtained

because of the high costs associated with running the computer program

and the acceptability of the two factor solution with quadratic terms

solution.

Residual Analyses

Table 3 provides a summary of the ab$olute-valued residuals and

standardized residuals obtained from fitting logistic models to the

four two-dimensional datasets. Several findings are evident:

1. The one-parameter model did not fit any of the datasets.

However, rather than suggesting multidimensionality in the data,

the likely explanation in view of the results of fitting the

one-parameter model to the one-dimensional data (and point two

below) is that the misfit is due to the failure of the model to

account for variations in item discrimination power and the

guessing behavior of low-ability examinees.
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2. A comparison of the SRs from the two- and three-parameter models

showed substantially smaller SRs than those ibtained with the

one-parameter model, and the three-parameter model fitting the

datasets slightly better than the two - parameter model. In fact,

on the basis of a study of the SRs for the two- and

three-parameter models, and assuming of course the validity of

the residual analysis method, a researcher would accept the

hypothesis that the test items in each datasct were

unidimensional.

3. There was also evidence that the overall fits were better when

the traits were correlated (r=.60), than when the traits were not

(r=.10). The average absolute-valued standardized residual

dropped from .84 and .76 (in datasets 2 and 3, with r=.10) to .79

and .73 (in datasets 4 and 5, with r=.60), respectively.

How could the three-parameter model fit the four two-dimensional

datasets? The failure to identify multidimensionality in datasets 4

and 5 was surprising but in view of the moderately high correlation

between the two traits the results were not totally unexpected although

larger SRs had been predicted. Apparently LOGIST simply proceeds to

estimate the second order factor which incorporates the two related

factors. Why multidimensionality could not be detected in datasets 2

and 3 is not completely clear. It appears tnat LOGIST estimates an

average ability of the two unrelated traits and also attaches low

a-values to all of the test items. In doing so, a reasonable fit
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between the model and each oAaset can be achieved. When there is an

imbalance in the test data (i.e., 30/10), LOGIST assigns high a-values

to items measuring the "dominant trait" and relatively low values to

the remaining items. In this way, a one-dimensional model can fit the

data. With a more even split (i.e., 20/20), the values assigned to

the a-values are relatively low.

In any case, because of the way LOGIST handles multidimensionality

in the test data, residual analyses cannot identify it when it is

present.

Bejar Results

The results of the Bejar analyses on the four two-dimensional

datasets are reported in Table 4. For the purposes of these analyses

the last 20 items in datasets 2 and 4 and the last 10 items in datasets

3 and 5 constituted the sub-tests. These, of course, were the test

items in the datasets that measured the second traits. The following

observations were noted:

1. With r=.10, and a split of 20/20, the test items had comparable

b-values.

2. With r=.10, and a split of 30/10, the b-values were substantially

different and appeared to be poorly estimated. This analysis

would led to a rejection of the unidimensionality assumption.
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3. When r=.60, and for the two splits 20/20, and 30/10, the Bejar

analyses suggested that the assumption of unidimensionality could

not be rejected.

In only one of the four analyses was the Bejar method sensitive to the

multidimensionality in the data. This result also wi.ts a surprise

because the method appeared to have been successful in at least one

other study (Bejar, 1980).

Real Data

Though the results are not reported here, the four methods for

assessing item dimensionality were also applied to the 80 item section

of the 1982 ABFP In-Training Exam. The four methods provid-d different

answers to the question of unidimensionality. Had the simulation

studies described earlier not been carried out the results from the

residual analyses or the Bejar analyses would have been used to support

the assumption of unidimensionality. The LFA of the data suggested

that anywhere from 4 to as many as 8 significant factors would need to

be retained for a satisfactory accounting of the data. The NLFA also

appears to indicate that more than one factor may be needed. If for

example, the ratio of the average absolute residual after fitting a one

factor model with a cubic term, to the average correlation in the

initial matrix is used as a criterion, the ratio is .018 to .042 or

.438 whereas with clearly one-dimensional data the ratio was .017 to

.127 or .134. It would seem that more factors are needed to obtain a

satisfactory solution.
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In summary, the four methods provided contradictory information

about the item dimensionality. Based upon the results from th^

simulations, it would seem that the most likely conclusion is that more

than one dimension is operating.

Discussion

On the basis of a single simulation study with limited scope,

generalizability of the findings is obvioilly limited. But several

findings of the study do appear to suggest directions for some future

work. First, the linear factor analysis model in all instances

overestimated the number of underlying dimensions in the data. Of

course this result along with the result that the tetrachoric

correlations are more useful than phi correlations in addressing item

dimensionality are well-known. Second, non-linear factor analysis with

linear and quadratic terms led to the correct' determination of the item

dimensionality in the three datasets where it was used. In subsequent

work the NIJA with two traits with a correlation of .60 will be used to

see if it can detect the multidimensionality. Two problems however

emerged in our work with NIJA. First, the appropriate number of

factors and polynomial terms to retain in a solution was determined by

comparing the size of the residuals to those obtained from a

satisfactory linear factor analysis. When working with real data

another criterion will be needed to determine the adequacy of model

fit. McDonald (personal communication) has indicated that the standard

error of a binary covariance gives a good rule of thumb for the

expected sizes of the residual covariances.
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Both the residual analysis method and Bejar's method provided

disappointing results. The residual analysis method using the one

parameter model is certainly of limited value in addressing item

dimensionality because large residuals may be due to the violations of

several model assumptions including unidimensionality. This problem

can be reduced somewhat by fitting (say) a three-parameter logistic

model to the dataset. But even in the two-dimensional case where the

traits were nearly orthogonal, the residual analysis method with the

three-parameter model could not detect the violation in the

unidimensionality assumption. It appears that the three-parameter

model can accommodate multidimensionality by assigning low "a" values

to these "deviant" items. Good fit is achieved, but in doing so, the

"deviant" items are essentially removed from the test since those items

neither contributz much to ability parameter estimation or to the test

information function.

Likewise, the Bejar method was unable to detect the two underlying

traits except when the correlation between the traits was low and a

disproportionate number of the test items measured one of the traits.

A highly plausible explanation for the failure of the Bejar method with

the datasets is as follows: While it is certainly true in datasets 2

and 3 that the traits have a low correlation (r..10), there was a very

high correlation between the trait scores used in calibrating test

items in the subtest and the total test. In fact if el is assumed to

measure the first trait and e2 the second trait, then the trait

measured by the combined set of test items might be closely
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approximated by wiel+w262 where w1 and w2 represent the proportion of

items in the test measuring trait 1 and 2, respectively. When the

subtest of items is calibrated, 62, is operating, whereas when the

subset of items are calibrated in the total test w1e1 +w2e2 is the

underlying trait being measured and not Si. If ability scores on 01 and

02 are standardized (as they were in the simulations), and if

w1=w2=.50, the correlation between the trait measured by the subtest

(denoted 02) and the total test (approximated by .501 + .502) is at

least .70. (And when the correlation between the traits is .60, the

expected correlation between 02 and .501 + .502 is over .88!) Perhaps

then it is not so surprising that the test items had highly similar

difficulty estimates when calibrated in the sub-test and the total

test. In the only application where the Bejar method indicated a

violation of the undimensionality assumption, the correlation between

62 and w1e1 +w202 was relatively low because w1=.75 and w2=.25. Why was

a similar result not obtained in dataset 5? The same trend was not

observee in dataset 5 because while the weighting of test items to the

two traits was disproportionate (3 to 1), the traits were moderately

correlated (r=.60).

The problem identified in this study with the Bejar method can be

resolved by plotting ability estimates for examinees obtained in two

independent samples -- one from the subtest and the other from the

remaining test items. While the b -value 'plots, in theory, are

preferable because of their higher precision, there is not an obvious

way to remove "ie high overlap in the ability estimates apart from
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choosing reldtively short subtests in relation to the total test. But

this solution has problems too because only relatively unstable ability

estimates will be available for item calibration.

In conclusion, despite the limited scope of the present investiga-

tion, the results do suggest the need for extreme caution in using

linear factor analysis, residual analysis, or Bejar's method to address

questions about item unidimensionality. Clearly, more investigations

of these methods showing some positive results are needed before they

can be strongly recommended for use by practitioners. On the other

hand, while non-linear factor analysis produced the most promising

results in this study, an accepted criterion for determining the

minimum number of factors to retain in a non-linear factor solution is

not available, nor is an easy-to-use non-linear factor analysis

program available. More research along these lines must be carried out

first before NLFA can be recommended. Also, in our subsequent work,

attention will be focused on the use of non-linear factor analysis in

studying item dimensionality. Our plan is to determine the usefulness

of NLFA with multiple traits and various correlational structures.
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Footnotes

1 Funding for this research study was provided by the American Board of

Family Practice, Lexington, Kentucky. We are grateful to Jamshid

Etezadi for providing us with a copy of NOFA, a computer program for

conducting non-linear factor analyses.

2 The authors are grateful to I. Bejar, R. McDonald, F. Lord, Jane

Rogers, R. Traub, and two anonymous reviewers for comments on an

earlier draft of the paper.

3 Usually the choice of phi correlations or tetrachoric correlations is

not a major consideration in conducting factor analysis studies. But,

McDonald (personal communication) notes that as Lord originally

showed, if the normal ogive model fits the data, and if ability scores

are normally distributed, the matrix of tetrachoric correlations should

fit a Spearman model. This is therefore an approximate method for

fitting the normal ogive model.

4 In severil pilot runs, the z scores were dichotomized to simulate the

actual difficulty levels of the test items. However, the effect on the

results was minimal.
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Table 1
Eigenvalues (A) and Percent of Variance Accounted for in

Random and One-Dimensional Datasets Using Phi
and Tetrachoric Correlations
(40 items; 1500 examinees)

Factor

Random Data1 One-Dimensional Data

Tetrachoric Phi Tetrachoric
A % )----Ji A %

1 1.48 3.7 8.86 22.2 15.00 37.5

2 1.44 3.6 2.09 5.2 2.21 5.5

3 1.37 3.4 1.11 2.8 1.15 2.9

4 1.34 3.3 1.05 2.6 1.10 2.7

5 1.32 3.3 1.03 2.6 1.08 2.7

6 1.30 1.02 1.02

7 1.28 .98 .96

8 1.25 .96 .95

9 1.22 .95 .92

10 1.21 .93 .90

11 1.19 .93 .88

12 1.18 .93 .84

13 1.15 .91 .80

14 1.13 .89 .77

15 1.10 .86 .74

1 Squared multiple correlations used as communality estimates.
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Table 2
Residual Matrices After Fitting Linear
and Non-Linear Factor Analysis Models

=3 Ill=

Dataset Model A

Goodness of Fit

Var.
rij

s(rij) Iriji s(lriiI)

1-DIM Correlation Matrix
Factor Analysis

1 Factor 6.64
2 Factors 1.84

3 Factors 1.13

4 Factors 1.11

5 Factors 1.10

Non-Linear Factor Analysis
1 Factor, Linear Term
1 Factor, Quad Term
1 Factor, Cubic Term
2 Factors, Linear Terms
2 Factors, Quad Terms

2-DIM Correlation Matrix
(r=10; Factor Analysis

20/20) 1 Factor 4.41

2 Factors 3.59
3 Factors 1.64
4 Factors 1.41

5 Factors 1.15
Non-Linear Factor Analysis
1 Factor, Linear Term
1 Factor, Quad Term
1 Factor, Cubic Term
2 Factors, Linear Terms
2 Factors, Quad Terms

.127 .079 .127 .079

16.6 .006 .078 .060 .050

4.6 -.002 .030 .022 .021

2,8 -.003 .025 .019 .016

2.8 .000 .021 .016 .013

2.7 .000 .019 .015 .012

.002 .033 .026 .021

.001 .022 .017 .014

.000 .022 .017 .014

-.006 .030 .022 .020

.000 .020 .015 .012

.075 .090 .081 .084

11.0 .016 .074 .054 .054

9.0 .000 .033 .024 .022

4.1 .000 .025 .019 .016

3.5 .000 .020 .016 .012

2.9 .000 .018 .014 .011

.025 .072 .050 .057

.011 .037 .026 .027

.007 .029 .022 .020

-.005 .039 .027 .028

.000 .020 .016 .012

-continued on next page-
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Table 2, continued

Dataset Model A
1

Var.

Goodness of Fit

7ij WO Iriji s(lriji)

2-DIM Correlation Matrix
(r=.10; Factor Analysis

30/10) 1 Factor 6.27

2 Factors 2.10
3 Factors 1.88

4 Factors 1.28

5 Factors 1.09

Non-Linear Factor Analysis

1 Factor, Linear Term
1 Factor, Quad Term
1 Factor, Cubic Term
2 Factors, Linear Terms
2 Factors, Quad Terms

2-DIM Correlation Matrix
(r=.60; Factor Analysis

20/20) 1 Factor 5.7

2 Factors 2.2
3 Factors 1.6

4 Factors 1.2

5 Factors 1.1

2-DIM Correlation Matrix

(r=.60; Factor Analysis
30/10) 1 Factor 6.8

2 Factors 2.0

3 Factors 1.6

4 Factors 1.2

5 Factors 1.1

.104 .100 .109 .095

15.7 .004 .047 .033 .034

5.3 .002 .036 .029 .021

4.7 .000 .023 .017 .015

3.2 .000 .020 .016 .012

2.7 .000 .018 .015 .011

.008 .046 .033 .034

.007 .036 .032 .029

.005 .039 .027 .028

-.004 .042 .031 .028

.000 .020 .016 .012

.111 .069 .111 .068

14.3 .001 .046 .038 .028

5.6 .000 .030 .022 .020

3.9 .000 .023 .018 .014

3.1 .000 .020 .016 .013

2.8 .000 .019 .015 .012

.132 .080 .132 .080

16.9 .000 .042 .032 .027

5.1 .000 .028 .021 .019

3.9 .000 .021 .017 .013

3.1 .000 .020 .015 .012

.7 .000 .028 .014 .011
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Table 3
Summary of Standardized Residuals (SRs)

Average Average

Data Set % of Absolute-Valued SRs Absolute- Absolute-

and Valued Valued

Model 10 to 11 11 to 21 12 to 31 13 and over' Residual SR

1-DIM
1 32.3 28.2 18.6 21.4 .067 1.86

2 66.6 26.2 5.5 1.1 .033 .89

3 76.8 21.1 1.8 .2 .031 .71

2-DIM
(r=.10; 20/20)

1 49.8 32.7 13.0 4.6 .048 1.20

2 63.6 32.1 3.0 1.4 .036 .86

3 68.2 26.6 3.9 1.1 .035 .84

2-DIM
(r=.10; 30/10)

1 33.2 26.6 16.4 23.9 .075 1.99

2 61.8 27.3 7.7 3.2 .038 .99

3 69.8 26.6 3.6 0.0 .027 .76

2-DIM
(r=.60; 20/20)

1 44.3 26.8 16.6 12.3 .060 1.51

2 67.1 24.8 7.1 1.1 .035 .88

3 72.7 22.7 3.6 0.9 .030 .79

2-DIM
(r=.60; 30/10)

1 39.1 25.7 15.0 20,2 .065 1.79

2 61.6 29.1 5.0 4.3 .038 1.00

3 73.2 24.1 2.7 0.0 .026 .73
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Table 4
b-Values with the Simulated Test Data

ast

Items

1-DIM
2-DIM

r=.10; 20/20

Dataset
2-DIM

r=.10; 30/10
2-DIM

r=.60; 20/20
2-DIM

r=.60; 30/10
Total Subtest Total Subtest Total Subtest Total Subtest Total Subtest

21 1.64 1.71 -0.91 -0.88 -0.43 0.23
22 -1.05 -1.01 -2.17 -1.88 0.13 0.26
23 -1.96 -1.80 0.55 0.74 -0.63 -0.25 --

24 -2.40 -2.24 0.71 0.70 -1.55 -1.45 --

25 1.12 1.13 0.61 0.73 -1.95 -1.81

26 1.15 1.11 -1.87 -1.87 -- -0.03 0.05
27 -0.63 -0.59 0.34 0.50 -- -- 1.64 1.34 -- --

28 1.81 1.85 1.55 1.40 -- -- -0.61 -0.46
29 1.52 1.46 -0.39 -0.22 -- -1.64 -1.47 -- --

30 -1.52 -1.43 1.55 1.17 -- 2.07 1.60 --

31 -1.37 -1.28 -0.33 -0.31 -10.59 -1.08 -1.97 -1.73 -2.51 -1.25

32 -1.56 -1.48 -1.08 -1.03 -5.38 -0.67 -1.21 1.09 -1.28 -0.82
33 1.60 1.57 -1.54 -1.55 2.70 7.03 1.93 1.52 2.28 1.88
34 -1.88 -1.76 -1.52 -1.53 3.27 10.83 2.12 2.03 2.37 2.07

35 -1.15 -1.21 -1.79 -L73 2.96 3.48 1.01 0.82 1.31 0.95

36 0.25 0.27 -1.20 -1.11 1.95 -0.22 -0.41 -0.28 -0.52 -0.39

37 0.36 0.37 0.82 0.99 3.80 16.37 2.22 2.25 2.58 2.23
38 0.39 0.31 1.51 1.35 -5.60 0.37 -1.43 -1.35 -1.70 -0.38
39 -0.69 -0-.59 1.90 1.48 5.33 -0.53 -1.69 -1.38 -2.42 -0.69

40 -0.82 -0-.79 -0.70 -0.53 -5.64 -1.09 -1.56 -1.40 -2.04 -1.24

Mean -0.26 -0.22 -0.20 -0.18 -0.72 3.45 -0.20 -0.13 -0.22 0.24
SD 1.38 1.33 1.30 1.21 5.50 6.07 1.51 1.34 2.12 1.40
r .99 .99 .56 .99 .98
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