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A Comparison of Item Parameter Estimates and of Ability Parameter

Estimates Obtained By Different Methods Implemented by BILOG1

A binary item response theory (IRT) model is a model for the

relationship between binary scores on a test item and scores on a

latent (or unot;ervable) trait. The curve expressing the

relationship is called an item characteristic curve (ICC). The

most popular binary IRT models are the normal ogive model and the

one, two, and three parameter logistic models. The development

of procedures for estimating the parameters of binary IRT models

has a history dating back about 50 years. As Baker (1977) notes,

initial attempts to solve the estimation problem generally

involved substituting an observed score, usually a total score on

the test, for the latent trait and estimating the item parameters

of each ICC independently. Finney (1944) presented this kind of

maximum likelihood estimation procedure for estimating parameters

of the normal ogive model. Earlier Richardson (1936), Ferguson

(1442), and Lawley (1943) had applied the constant process, a

generalized least squares procedure, to the estimation task. The

maximum likelihood and constant process approach typically yield

similar estimates (Baker, 1965) though the former can encounter

prcblems when a score group has a large proportion of examinees

answering correctly or incorrectly (Finney, 1944). Both

approaches can be applied to the logistic models.

Another approach to estimating item parameters of the normal

ogive is based on Richardson's (1936) demonstration of the

functional relationship between the item parameters of the normal
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ogive model, and the item-latent trait correlation and item

difficulty of classical test theory. When the item-observed

score correlation is substituted for the item-latent trait

correlation, an approximate procedure is obtained for estimating

the normal ogive parameters. More recently, Urry (1974) extended

this procedure to the three parameter normal ogive model.

In recent years, three new maximum likelihood procedures

have become available. These procedures, which do not require

substituting an observed score for the latent trait score, are

the conditional (CML), joint (JML), and marginal maximum

likelihood (MML) procedures. All three can be applied to the one

parameter logistic (Rasch) model. The latter two can be applied

to the two and three parameter logistic models. There are

computer programs available to implement each of the CML, JML,

and MML procedures with the logistic models. The PML

(Gustafsson, 1977) program implements the CML procedure for the

one parameter logistic model. BICAL (Wright, Mead and Bell,

1979) implements the JML procedure for the Rasch model. LOGIST 5

(Wingersky, Barton, and Lord, 1982) calculates JML estimates for

all three logistic models, whereas BILOG (Mislevy & Bock, 1982)

implements the MML for the three logistic models. Swaminathan

(1983) gave a detailed presentation of the three types of

estimators.

CML and MML item-parameters estimators are consistent

estimators. This may be a significant advantage over the JML

estimators which are inconsistent when the number of items is

finite. However, for the one parameter logistic model the JML
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estimators have been shown to be consistent as the number of

items and examinees each tend to infinity (Haberman, 1975).

Empirical results (Lord, 1975; Swaminathan and Gifford, 1983)

suggest this result may hold for the two and three parameter

logistic models.

There has also been some interest in Bayesian estimation of

the item parameters of the logistic models. Swaminathan and

Gifford (1982) developed a Bayesian procedure for use with the

one parameter logistic model. The Bayesian procedure has been

extended to the two parameter logistic model by Swaminathan and

Gifford (1985). BILOG implements a Bayesian procedure for all

thrt.e models. However, it differs in several details from the

Swaminathan-Gifford procedure.

Just as there are several procedures available for

estimating the item parameters, there are several for estimating

the ability parameters. The name of the JML procedure derives

from the fact that it simultaneously estimates the item and

ability parameters. Thus there are JML estimators of ability

parameters. Similarly the Swaminathan-Gifford Bayesian

procedures simultaneously estimate both the item and ability

parameters. Other e,ility estimation procedures assume the item

parameters are known. Both a maximum likelihood procedure and a

variety of Bayesian procedures are available. BILOG incorporates

both kinds of procedures. However, of course, in practice these

procedures are implemented using estimates of the item

parameters.
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Purpose Of The Study

The focus of this study is on the estimation procedures

implemented in BILOG. One purpose is to compare the item

parameter estimates produced by various procedures available in

BILOG. Four different models were used: the one, two, and three

parameter model and a three parameter model with common guessing

parameters. For item parameter estimation, BILOG basically

implements the MML and Bayesian procedures. However, th options

available in the program give the user a fairly wide set of

choices about the implementation of the procedures. These will

be described in the succeeding section.

A second purpose is to compare the ability estimates

produced by the available procedures: maximum likelihood,

expected a' posteriori, and maximum a' posteriori. The latter

two are Bayesian procedures. For each of the three procedures

biweight robustification is the only available option. The

effect of robustification was investigated.

Marginal Maximum Likelihood Procedure

In this section we describe the MML procedure in the context

of the three parameter logistic model. Let Pi(81) denote the

probability that the jth examinee (j=1,...,n) answers the ith

item correctly (i=1,...,N). Let uij be a binary variable. For a

correct response uij=1; for an incorrect response uij=0. Let

W= (81...an) be the vector of latent trait scores, and let a'=

[al...aN], b'= [b,...bN], and c'=(ci...cN) be vectors of item

discrimination, difficulty, and guessing parameters respectively.
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For the jth examinee the likelihood function for rfinata is

L(uileja,b,c).= n[Pi(ei)]uij[1-P1(8j))1-uij

where u'i=[uli...uNi]. The notation emphasizes that the

likelihood function is conditioned on the jth ability parameter

and the item parameters for all items. For all N examinees the

likelihood function is

L(uI83,a,b,c)= n L(uil8i,a,b,c)

J

where us=[u'l...11'n]. The JML procedure simultaneously computes

the 8, a, b, and c that maximize the latter likelihood function.

Thus n+3N parameters are estimated for the three parameter model.

In the MML procedure each examinee's latent trait score-(8)

is considered to be randomly chosen from a population with

ability distribution f(8). The marginal likelihood of the data

for the jth examinee 1.s

L(u.la,b,c)= SL(u.3 18.7 ,a b,c)f(8)d83

Essentially, the marginal likelihood is obtained as a weighted

average of the conditional likelihoods

L(u.3 187 .,a,b,c)
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where the weights are determined by f(8). This weighting process

removes the dependence on 8 and, therefore, in the process of

estimating item parameters, it is not necessary to estimate the

ability parameters for the N examinees. The function maximized

in the MML procedure is

L(ula,b,c)= n L(ujla,b,c)

To implement the MML procedure it is necessary to make an

assumption about the form of f(8). In BILOG the default option

is for f(8) to be a standard normal distribution. However, the

program permits the user to specify other distributions.

In BILOG, the distribution f(8) can be treated in either of

two ways. In one, f(8) is treated as a distribution to be

estimated. Thus the assumed f(8) is the basis for starti:g

values in an iterative procedure for estimating f(8) and the item

parameters. As Mislevy and Bock (1982) note this type of

procedure is similar to the JML procedure. We refer t.) it as

marginal maximum likelihood with estimation of ability

distribution MML-EAD. In the other, f(8) is treated as an

assumption about the distribution of latent ability. The same

distribution is employed throughout the iterative procedure for

estimating the item parameters. This is the MML procedure. Both

options were investigated in the study. We investigated three

forms for f(8). Two were a normal distribution and a uniform

distribution, each with mean zero and standard deviation one.

For the third, we used BILOG to estimate f(8) on one sample and
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then used this estimate of f(s) in applying the MML procedure to

a second sample. Both samples were chosen randomly from a larger

sample.

Bayesian Procedures

The Bayesian procedures incorporate assumptions about the

distributions of item parameters. These assumed distributions

are called prior distributions. The default prior distributions

employed in BICAL are: normal, with mean zero and standard

deviation two, for the difficulty parameters; lognormal, with

mean e
.5

and variance e
1
(e

1
-1) for the discrimination parameters,

and beta, with a=20p+1 and 0=20(1-p) +1. For the beta

distribution, p is the reciprocal of the number of alternat.des.

The incorporation of the prior distributions into the

estimation procedure makes it unlikely for the estimates to occur

in regions that are less probable according to the prior

distribution. For example, the default prior distribution for

difficulty parameters is a normal distribution with mean zero and

standard deviation 2. Thus difficulty estimates <-2 or >2 are

substantially less likely than estimates between - 2 and 2.

Difficulty estimates <-4 or >4 are very unlikely to occur. The

default prior distributions in BILOG are relatively diffuse.

That is, they do not constrain the estimates to unreasonably

small regions of the parameter space. However BILOG permits the

user to tailor the priors to the specific application. Thus the

user can use more diffuse priors or tighter priors. In addition

the user can also choose which parameters to place priors on. In

9
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the present study we implemented the Bayesian procedures by

employing default priors on all item parameters.

When using the Bayesian procedure in BILOG the user can

either specify that the priors remain the same at each iteration

or that the parameters of the priors be updated on each

interation. We refer to the former as Bayesian estimation (BE)

and the latter as Bayesian estimation with updating of item

priors (BE-UIP). For the kth iteration, the updating of the

prior distribution of the item difficulties, for example,

consists of substituting the mean of the item difficulty

estimates from the (k-1)th iteration for the mean of the assumed

prior distribution (which equals zero in the default prior for

item difficulties). The updating of the other priors also

involves substitution of the appropriate mean parameter estimate

from the (k-1)th iteration. When we employed prior

distributions, we investigated the effect of updatir.g on the

parameter estimates.

Other Options for Item Parameter Estimation

In addition to the options described above, with the three

parameter model and the three parameter model with common

guessing parameters there are three options for treatment of

omitted items. Omitted items can be treated as incorrect, not

presented, or fractionally correct. Mislevy and Bock (1984)

pointed out that the second ,,ption permits an examinee to obtain

high scores by responding only to items the examinee is sure of.
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This optior Duld seem to favor the extremely cautious examinee

and it was not investigated.

Method

Instrument

The test used in the study had 39 items and was relatively

easy. The mean and standard deviation, for number correct

scores, were 31.3 and 7.8. Frequency distributions for number

correct scores, proportion-correct item difficulties, and

item-total point biserials are displayed in Table 1.

Design

The levels of the factors in the design for investigating

parameter estimation procedures were:

1. Model-one parameter, two parameter, three parameter, and

three parameter with common guessing parameters;

2. Sample size - 250, 500, 750, and 1000 examinees;

3. Ability distributions normal, uniform, and empirical;

4. Estimation procecures: MML, MML-EAD, BE, BE-UIP;

5. Scoring of omits: incorrect and fractionally correct fog

the three parameter and three parameter common c models.

For the one and two parameter model, only incorrect

scoring of omits is implemented in BILOG.

Not all possible condition combinations were investigated. In

particular the effect of ability distribution was not

investigated with samples of 500 or 750. With samples of 1000,

the effect of ability distribution was only investigated in

11
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connection with the three parameter model and the three parameter

common c model.

Three methods of estimating ability parameters were

investigated: maximum likelihood (ML), maximum a' posteriori

(MAP), and expected a' posteriori (BAP). In addition the effect

of biweight robustification was investigated. To implement each

ability estimation procedure, a set of item parameter estimates

is required. MML and BE estimates, obtained using both normal

and uniform ability distributions, were employed. This choice of

item parameter estimates was based on the results cf the

comparison of item parameter estimates. Only the three parameter

model was employed, and only item parameter estimates based on

samples of 250 were employed. Again these decisions were based

on the comparisons of the item parameter estimates.

Insert Table 1 About Here

Results

Ability Distribution

A normal, an empirical, and a uniform ability distribution

were employed in the MML procedure to obtain three sets of

parameter estimates for the three parameter model. For a

particular sample size, the same sample was used with each prior

distribution. Means and standard deviations for each set of

estimates, based on a sample of 250, are reported in Table 2.

Also reported are correlations between the a 's , between the

12
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b 's, and between the c 's estimated using the three ability

distributions. The results indicate that the estimates based on

the normal and empirical distributions are quite similar. There

is less similarity between the estimates based on the normal and

uniform distributions and between the estimates based cn the

empirical and uniform distributions. Nevertheless the agreement

is still quj.te substantial.

Insert Table 2 About Here

The effect of the ability distribution on item-parameter

estimates for the three parameter model was also examined in

connection with three other estimation schemes: MML-EAD, BE, and

BE-UIP. The results for the MEL-EAD procedure were very similar

to those reported in Table 2. The results for the BE and BE-UIP

were also quite sjmilar to one anotner. Results based on the BE

procedure are reported in Table 3. Comparing the results in

Table 3 to those in Table 2 indicates the Bayesian procedures

were even less affecc.ed than the marginal maximum-likelihood

procedures were by the choice of the ability distribution.

Insert Table 3 About Here

The effect of ability distribution on item-parameter

estimates was also investigated in connection wi:1 the one and

two parameter model, and the three parameter common c models.

With these simpler models, the effect of the ability distribution

13
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was as small or smaller than it was for the three parameter

model. This trend is illustra.ed by the results, reported in

Table 4, for the MML procedure applied with the three-parameter

common c model.

Insert Table 4 About Here

The preceding results are based on estimates obtained by

scoring omits as wrong answers. With the three-parameter model

(with or without a common c) omits can also be scored as

fractionally correct. With this latter option, the effects of

ability distributions were small and approximately the same as

with the former option.

For all of the preceding results, the sample size was 250.

It seemed unlikely that the effect of the prior ability

distribution would increase as the sample size increased.

However, to c'heck this possibility, a sample size of 1000 and a

normal, an empirical, and a uniform distribution were employed

with each of the four estimation procedures applied to the three

parameter model and the three parameter common c model. Omits

were scored as incorrect. For the MML procedure, means, standard

deviations, and correlations are reported in Table 5. Comparison

of the results in Tables 2 and 5 indicates that the effect of

ability distribution is independent of the sample size. The

effect of sample size was similar for the other :,..t..glation

procedures and for the three parameter common c model.
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Insert Table 5 About Here

Type of Estimation Procedure

Pout different estimation procedures (MML, MML-EAD, BE, and

BE-UIP) were employed to obtain four sets of estimates for the

three parameter model. Means and ,tandard deviations for each

set of estimates, based on a sAmple of 250 and a normal prior,

are reported in Table 6. Also reported are correlations between

the a
g
's, between the b

g
's, and between the c

g
's obtained by

using the four methods. The results indicate that the two MML

procedures yield similar estimates as c 1 the two Bayesian

procedures. However between the two typas of procedures

(marginal maximum likelihood and Bayesian), the estimates are

less similar.

Insert Table 6 About Here

The effct of estimation procedure was also investigated

with three simpler models: the one and two parameter models, and

the three parameter common c model. Estimation procedure had

almost no effect with the simpler models. This is illustrated by

results for the three parameter common c model reported in Table

7. The estimates described by these results were calculated

using a normal ability distribution. With the empirical and

uniform ability distributions the results for the three parameter

common c model were also unaffected by method of estimation.
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Similarly, with each ability distribution the results for the one

and two parameter models also indicated a lack of effect for

estimation procedure

Insert Table 7 About Here

The preceding results are based on a sample size of 250.

The effect of method of estimation was also investigated with a

normal ability distribution and samples of 500, 750, and 1000

examinees. For a sample size of 250 and with the three simple

models, estimation-method effect was quite small. With larger

sample sizes it appeared to become even smaller. With the three

parameter model the effect of sample size depended on the

parameter. For the ag parameter, increasing the sample size from

250 to 500 increased the between estimation-method correlations

and decreased the between method differences in means and

standard deviations. Further increases in sample size appeared

not to effect the similarity of the estimates. These trends are

shown in Table 8. For the bg parameter, increasing the sample

size had a negligible effect on the between estimation-method

correlations. The between method diffcrences in means tended to

decrease as the sample size increases from 250 to 500 and remain

about the same with further increases. The effect of increased

sample size on between method differences in standard deviations

was irregular. The between method differences in standard

deviations increased as the sample size changed to 500 then

decreased as the sample size '.ncreased to 750 and decreased again

16
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as the sample size increased to 1000 examinees. This trend

principally reflects the behavior of the largest of the estimated

b 's. With the MML procedure, for example, the largest of the

estimated b 's were approximately -4, -12, -8, and -5 with 250,

500, 750, and 1000 examinees respectively. Thus the trend found

for standard deviations may not occur with other tests. For the

cg parameter, there were negligible effects of increasing sample

size on between method differences in parameter estimates.

Insert Table 8 About Here

As expected, the maximum likelihood procedures tended to

result in more extreme estimates than the Bayesian procedures.

This tendency was most marked with three parameter model and is

illustrated in Table 9. The results in Table 9 describe the

estimates obtained using a normal ability distribution. The

tendency for the maximum likelihood procedures to produce extreme

estimates was not reduced by using the empirical or the uniform

ability distribution. With the simpler models the maximum

likelihood procedures had less of a tendency to produce extreme

estimates. When extreme estimates were produced the

discrepancies between the maximum likelihood and Bayesian

estimates tended to be smaller than they were with the three

parameter model.

Insert Table 9 about Here
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Scoring of Omits

For the three parameter model and the three parameter common

c model, parameters were estimated with omits scored as wrong and

omits scored as fractionally correct. The effect of the method

of scoring was relatively minor for the sample of 250 and

decreased with increasing sample size. This trend is illustrated

in Table 10 which contains results for the three parameter model

and MML parameter estimation.

Insert Table 10 About Here

Ability Estimates

Correlations among the ML, EAP, and MAP ability .tst2.mates,

based on MML and BE item parameter estimates obtained using a

sample of 250 examinees and a normal ability distribltion, are

reported in Table 11. The sample size for the correlations was

also 250 and the sample was the same as the one used to obtain

the item parameter estimates. Tne correlations are all above

.90. Similar results were obtained for ability estimates bases

on MML and BE item parameter estimates obtained using a uniform

ability distribution. The cross correlations between the two

sets of ability estimates were also all above .90.

Insert Table 11 About Here

Means and standard deviations for the ability estimates,

calculated using item parameters estimates based on a normal

ability distribution, are reported in Table 12. The item

18



estimation procedures - MML and BE - had a relatively small

effect on the mean ability estimate. Controlling for ability

estimation procedure and robustification, the mean differences

range in absolute value from .03 and .06, Similarly, the effect

on standard deviations was small. The effect of robustification

was relatively small; it increased the mean ability estimate,

with increases between .03 to .06. The effect on stPndard

deviations was also small. The effect of ability estimation

procedure - ML, EAP, aid MAP - on means and standard deviation

was relatively large. Moreover the effect appears to be larger

with robustification than without. In general, the ML estimates

had the largest mean and standard deviation. The MAP estimates

had the smallest mean and standard deviation. The effect was due

to the fact that the ML procedure produced much higher maximum

ability estimates than either the EAP or MAP. Minimum and

maximum ability estimates am shown in Table 13. Both the

differences in the mean estimates and in the maximum estimates

are of sufficient size to be of practical significance. This is

particularly true for the differences between the ML estimates

and either the MAP or the EAP estimates.

Insert Tables 12 and 13 About Here

As noted earlier, the ability estimates were obtained using

item parameter estimates that were calculated using a sample size

of 250. Because the item parameters are treated as known in the

ability estimation phase, increasing the sample size in the item

19
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parameter estimation phase should not have any impact on the

effect ability estimation procedure has on the ability estimates.

The general trend in the results were the same for ability

estimates based on item parameter estimates calculated using the

uniform distribution. The effect of robustification was of about

the same magnitude as in the preceding results. The effect of

item estimation procedure - MML or BE - on mean ability estimates

was, however, larger. It ranged in absolute value from .09 to

.13. The effect of ability estimation procedure - ML, EAP, or

HAP - was about the same magnitude as in the preceding results.

Summary

The results indicate that, for the most part, the various

item parameter estimation procedures tend to yield similar

results. The major exception to this generalization concerned

the Bayesian and maximum likelihood procedures applied to the

three parameter model. With 250 examinees, correlations between

ag estimates averaged about .75 for maximum likelihood-Bayesian

pairs of estimation procedures. For cg estimates the correlation

was likewise about .75. For the bg estimates the correlations

averaged about .92. For the ag estimates, these correlations

increased to between .90 and .95 with sample sizes of 500, 730,

and 1000 examinees. The correlations for the bg and cg estimates

were largely unaffected by changes in the sample sizes.

The maximum likelihood procedure had a tendency to produce

more extreme estimates than the Bayesian procedure. This

20
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tendency was most pronounced when the procedures were applied to

the three parameter model.

Ability estimation was investigated only in connection w4.th

the three parameter model. Generally, the correlations were high

between ability parameter estimates obtained using the various

approaches studied in this research. In addition, the results

indicated that robustification did not strongly effect the mean

or standard deviation of the ability estimates. The results also

indicated that the mean and variance of the ability estimates

were not strongly effected by the type of item parameter

estimates used in calculating the ability estimates, at least

when the item, parameter estimates were based on a normal edlity

distribution. The effect of type of item parameter estimate was

stronger when the item parameters were calculated using a uniform

ability distribution. The importance of the latter finding is

that it emphasizes the possibility that the former results may be

sample and/or test specific. In studying the effect of item

estimation procedure, the sample for which ability estimates were

obtained was also used for item parameter estimation. It is

Possible that the method of item parameter estimation might have

a stronger effect when ability estimates are calculated for a new

sample. This should be investigated.

There was a fairly strong effect of ability estimation

procedure on the ability estimates. The largest discrepancies

were between the ML procedure, on one hand, and the EAP and MAP

procedures on the other. Additional research shou2d be

undertaken to determine Whether these differences will also occur
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with the simpler models. In addition analyses of simulated data

should be undertaken to determine wL,ther any of the three

procedures produces substantially biased ability estimators.
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- Table 1

Frequency Distributions for Raw Scores Classical Item Difficulties, and

Item-Total Biserials

Item

Score Difficulty Biserial

Interval Frequency Interval Frequency Interval Frequency

11-15 2 <.65 1 .200-.299 5

16-18 14 .650-.699 3 .300-.399 5

19-22 19 .700-.749 2 .400-.499 8

23 -24 37 .750-.799 4 .500-.599 8

25-26 38 .800-.849 9 .600-.699 9

27-28 43 .850-.899 5 .700-.800 4

-29 54 .900-.949 7

30. 45 .950-.999 8

31 51

32 56

33 69

34 87

35 84

36 115

37 120

38 107

39 60

Note: N=1000 examinees, n=39 items
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Table 2

Descriptive Statist.::s for MML Estimates Based on Three

Ability Distributions: Three Parameter Model

Parameter

ability

D!,tribution N E U Mean

Standard

Deviation

a
g

Normal 1.00 .99 .92 1.83 .98

Empirical 1.00 .89 1.84 1.07

Uniform 1.00 1.67 1.10

b
g

NoriAl 1.00 .98 .95 -1.2.5 1.05

Empirical 1.00 .91 -1._. 1.21

Uniform 1.00 -1.36 1.10

c
g

Normal 1.00 .9b .70 .24 .21

Empirical 1.00 .67 24 .21

Uniform 1.00 .18 .20

Note: N=250 examinees
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Table 3

Descriptive Statistics for BE Estimates Based on Three

Ability Distributions: Three Parameter Morel

Ability

Parameter Distribution N E U Mean

Standard

Deviation

a
g

Normal 1.00 .99 .98 1.44 .51

Empirical 1.00 .96 1.41 .52

Uniform 1.00 1.44 .51

b
g

Normal 1.00 .99 .99 -1.45 1.18

Empirical 1.00 .99 -1.53 1.27

Uniform 1.00 -1.32 1.11

c
g

Normal 1.00 .98 .83 .25 .03

Empirical 1.00 .67 .26 .04

Uniform 1.00 .25 .02

Ncte: N=250 examinees
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Table 4

Descriptive Statistics for MML Estimates Based on Three Ability

Distributions: Three Parameter Common c Model

Parameter

Ability

Distribution N E U Mean

Standard

Deviation

a
g

Normal 1.00 .99 .97 1.51 .55

Empirical 1.00 .96 1.49 .55

Uniform 1.00 1.49 .57

b
g

Normal 1.00 .99 .99 -1.51 1.16

Empirical 1.00 .99 -1.58 1.23

Uniform 1.00 -1.47 1.17

c Normal - - - .21 -

Empirical - - .21 -

Uniform - .19 -

Note: N=250 examinees
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Table 5

Descriptive Statistics for MML Estimates Based on Three Ability

Distributions: Three Parameter Model

Parameter

Ability

Distribution N E U Mean

Standard

Deviation

a
g

Normal 1.00 .99 .88 1.48 .57

Empirical 1.00 .83 1.48 .58

Uniform 1.00 1.52 .67

b
g

Normal 1.00 .99 .96 -1.63 1.39

Empirical 1.00 .97 -1.64 1.39

Uniform 1.00 -1.74 1.28

c
g

Normal 1.00 .94 .73 .26 .21

Empirical 1.00 .72 .28 .20

Uniform 1.00 .17 .20

Note: N=1000 examinees
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Table 6

Descriptive Statistics for MML, MML-EAD, BE, and BE-UIP Estimates:

Three Parameter Model

Parameter

Estimation

Procedure MML MML-EAD BE BE-UIP Mean

Standard

Devia,..ion

a
g

MML 1.00 .93 .79 .80 1.83 .91

MML-EAD 1.00 .71 .71 1.78 .87

BE 1.00 .99 1.53 .53

BE-UIP 1.00 1.52 .56

b
g

MML 1.00 .97 .93 .92 -1.25 1.05

MML-EAD 1.00 .93 .92 -1.31 1.19

BE 1.00 1.00 -1.45 1.18

BE-UIP 1.00 -1.42 1.08

c
g

MML 1.00 .93 .73 .74 .24 .21

MML-EAD 1.00 .73 .74 .24 .21

BE 1.00 .99 .25 .03

BE-UIP 1.00 .25 .03

Note: N=250 examinees, normal ability distribution
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Table 7

Descriptive Statistics for MML, MML-EAD, BE and BE-UIP Estimates:

Three Parameter Common c Model

Parameter

Estimation

Procedure MML MML-EAD BE BE-UIP Mean

Standard

Deviation

a
g

b
g

c

MML

MML-1'AD

BE

BE-UIP

MML

MML-EAD

BE

BE-UIP

MML

MML-EAD

BE

BE-UIP

1.00

1.00

.99

1.00

.99

1.00

-

-

.99

1.00

1.00

.99

.99

1.00

-

-

.99

.99

.99

1.00

.99

.99

.99

1.00

-

-

-

-

1.52

1.51

1.42

1.49

-1.51

-1.54

-1.49

-1.47

.21

.22

.23

.21

.56

.55

.51

.52

1.19

1.18

1.05

1.09

-

-

Note: N=250 examinees, norms' ability distribution
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Table 8

Descriptive Statistics for ag Estimates Obtained Using Various

Sample-Size-Estimation-Procedure Combinations: Three Parameter Model

Sample

Size

Estimation

Method MML MML-EAD BE BE-UIP Mean

Standard

Deviation

250 MML 1.00 .93 .79 .80 1.83 .91

MML-EAD 1.00 .71 .71 1.78 .87

BE 1.00 .99 1.44 .51

EF-UIP 1.00 1.53 .53

500 MML 1.00 .99 .95 .95 1.35 .59

MML-EAD 1.00 .93 .93 1.34 .61

BE 1.00 .99 1.25 .51

BE-UIP 1.00 1.26 .52

750 MML 1.00 .98 .91 .91 1.55 .52

MML-EAD 1.00 .91 .91 1,51 .52

BE 1.00 .99 1.41 .48

BE-UIP 1.00 1.41 .47

1000 MML 1.00 .99 .94 .95 1.47 .57

MML-EAD 1.00 .93 .93 1.45 .58

BE 1.00 .99 1.34 .48

BE-UIP 1.00 1.36 .49

Note: Normal ability distribution
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Minimum and Maximum Item Parameter Estimates

Parameter

a b c
g g g

Sample

Size

Estimation

Procedure Min Max Min Max Min Nax

250 MML .5 5.3 - 4.2 .2 .00 .50

BE .5 2.7 - 4.3 .7 .18 .34

500 MML .2 2.8 -12.1 .6 .00 .50

BE .3 2.3 - 7.1 .7 .18 .35

7E0 MML .4 2.5 - 8.3 .9 .00 .50

BE .4 2.3 - 6.7 .9 .15 .44

1000 MML .5 3.1 - 5.5 .9 .00 .50

BE .5 2.2 - 5.6 .9 .15 .42

Note: Normal ability distribution
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Table 10

Descriptive Statistics for MML Estimates Based cn Incorrect and

Fractionally Correct Scoring of Omits: Three Parameter Model

Parameter
Sample
Size

Scoring of
Omits W FC Mean

Standard
Deviation

a 250 W 1,00 .97 1.83 .91
g FC 1.00 1.76 .87

500 W 1.00 .99 1.35 .59
FC 1.00 1.34 .59

750 W 1.00 .99 1.56 .52
FC 1.00 1.55 .52

1000 W 1.00 .99 1.47 .57
FC 1.00 1.47 .57

b 250 W 1.00 .96 -1.25 1.05
g FC 1.00 -1.29 1.05

500 W 1.00 .99 -2.18 2.39
FC 1.00 -2.18 2.33

750 W 1.00 1.00 -1.56 1.42
FC .99 -1.57 1.48

1000 W 1.00 1.00 -1.63 1.39
FC .99 -1.63 1.37

c 250 W 1.00 .84 .24 .21
g FC 1.00 .24 .21

50P W 1.00 .99 .19 .19
FC 1.00 .19 .20

750 W 1.00 .99 .18 .19
FC 1.00 .18 .20

1000 W 1.00 .99 .26 .21
FC 1.00 .26 .21

Note: Normal ability distribution
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' Table 11
Ability Estimate Intercorrelations

34

MML Item Parameter Estimation BE Item Parameter Estimation

ML EAP MAP ML

"BW BW NBW BW NBW BW NBW BW NBW BW NBW BW

1.00 .94

i.00

.98

.94

1.00

.95

.96

.98

1.00

.98

.94

.99

.98

1.00

.94

.97

.97

.99

.98

1.00

.99

.95

.99

.97

.99

.97

1.00

.92

.99

.93

.96

.94

.97

.95

1.00

.97

.94

.99

.98

.99

.98

.99

.95

1.00

.94

.95

.98

.99

.98

.99

.97

.97

.99

1.00

.97

.95

.99

.98

.99

.98

.99

.95

.99

.99

1.00

.94

.96

.97

.99

.97

.99

.97

.97

.98

.99

.99

1.00

Note: Ability estimates based on item parameter estimates obtained
using a sample size of 250 and a normal ability distribution. The
sample size for the correlations is also 250.
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Table 12

Means and Standard Deviations for Ability Estimates

Estimation Procedure NBW BW

Standard Standard

Item Ability Mean Deviation Mean Deviation

MML ML .05 1.13 .08 1.15

EAP -.02 .91 -.07 .85

MAP -.07 .86 -.09 .79

BE ML .08 1.18 .11 1.20

EAP .03 .96 -.03 .89

MAP -.01 .91 -.06 .84

Note: Ability estimates based or item parameter estimates
obtained using a normal ability distribution
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Table 13

Minimum and Maximum Ability Estimates

Estimation Procedure NBW BW

Item Ability Minimum Maximum Minimum Maximum

I4ML ML -4.00 2.48 - 4.00 3.10

EAP -3.99 1.50 -3 .94 1.17

MAP -4.00 1.35 -3. 36 1.03

BE ML -4.00 2.45 -4.0 0 3.32

EAP -3.56 1.58 -3.41 1.26

MAP -3.55 1.45 -3.41 1.12

Note: Ability estimates based on item parameter estimates
obtained using a normal ability distribution.
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