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Abstract

The reading data from the 1983-1984 NAEP survey were scaled using a

unidimensional item response theory model. To determine whether the

responses to the reading items were consistent with unidimensionality, four

methods were applied: principal component analysis of phi and tetrachoric

correlation matrices; principal component analysis of the image correlation

matrix, a method based on the work of Guttman (1953); Bock's fullinformation

factor analysis (Bock, Gibbons, and Muraki, 1983); and Rosenbaum's (1984a)

test of unidimensionality, monotonicity, and conditional independence.

Rebults indicated that it was not unreasonable to regard the reading items as

measures of a single dimension.
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1. The National Assessment of Educational Progress

The National Assessment of Educational Progress (NAEP) is a congressionally

mandated survey of the educational achievement of American students that has

been conducted since 1969. Educational Testing Service assumed responsibility

for it in 1983. During the 1983-1984 academic year (Year 15 of NAEP), ETS

collected data on three socalled grages: 9/IV, 13/VIII, and 17/IX. In NAEP

parlance, a grage is the union of an age, denoted by an Arabic numeral, and a

grade; denoted by a Roman numeral.

The subject areas assessed during Year 15 were reading and writing.

Only the reading items are discussed in the present report.

1.1 The unidimensionality assumption in item response theory

In order to determine whether it was reasonable to regard the reading

items administered in the Year 15 NAEP data collection as measures of a single

construct, a series of analyses of the dimensionality of the reading data was

performed. Dimensionality analyses were conducted both within and across the

three grages, 9/IV, 13/VIII, and 17/IX. It was important to investigate the

dimensionality issue because the validity of the item response theory (IRT)

model used to estimate reading proficiency in the 1983-1984 NAEP survey rests

on the assumption of unidimensionality. It should be noted, however, that

regardless of whether an IRT model is used, it is ordinarily assumed that items

on an achievement test can be treated as measures of a single dimension, in

this case, reading proficiency. Scoring a test by simply summing the item

scores involves an implicit assumption of unidimensionality; IRT scaling

formalizes this assumption.
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The reading data were analyzed using the three-parameter logistic

model (Birnbaum, 1968; Lord, 1980) in which Pij, the probability that subject

i gets item j correct can be expressed as follows:

[1]pii = P(xij = lie) = cj
1 cj

1 e-1.7aj(ei - bj)

where ei is the proficiency parameter for person i, aj is the item

discrimination parameter, bj is the item difficulty, and cj can be

interpreted as the probability that a person with very low ability gets item j

correct. (Model parameters were estimated using BILOG [Mislevy and Bock,

1982]; details are provided in a separate report on scaling.) In applyil, a

model of this kind, it is assumed that the only examinee characteristic that

affects item response is a single latent variable, 0.

1.2 Robustness of IRT Estimation Procedures

In practice, the assumption of unidimensionality, required for the

application of conventional IRT models, will always be violated to some degree.

In order to make a more objective determination as to what constitutes an

important departure from unidimensionality, we need to know more about the

robustness of the IRT estimation procedures to violations of the unidimension-

ality assumption. Unfortunately, little work has been done in this area.

Reckase (1979) and Drasgow and Parsons (1983) investigated the results of

estimating the three-parameter logistic model, using LOGIST (M. S. Wingersky,

1983), under violations of the unidimensionality assumption. (The

one-parameter and two-parameter logistic models were also examined by Reckase,
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1979, and Drasgow and Parsons, 1983, respectively.) Reckase's study was based

on five actual data sets and five data sets constructed to have specific

factor structures. He concluded that LOGIST estimates "the first principal

component when it is large reletive to other factors goon ability

estimates can be obtained ... even when the first factor accounts for less

than 10 percent of the test variance, although item calibration results will

be unstable. For acceptable calibration, the first factor should account for

at least 20 percent of the test variance" (p. 228). Drasgow and Parsons

(1983) made use of a hierarchical model with a general latent trait as well as

five group factors to simulate various kinds of latent structures. One of

their conclusions was that, in the simulated data designed to resemble

"moderately heterogeneous achievement tests and attitude assessment

instruments" (p. 193), LOGIST still recovered the latent trait and provided

acceptable estimates of the item parameters (p. 198). There is no reason to

believe that the effects of multidimensiona?!.ty on BILOG (Mislevy and Bock,

1982), which was used to scale the NAEP data, would differ from the results

obtained with LOGIST (Mislevy, personal communication, October, 1985). These

findings suggest that IRT scaling procedures can produce, satisfactory ,,esults

under moderate departures from unidimensionality.

2. Methods of dimensionality assessment for dichotomous data

The traditional psychometric approach to the assessment of dimensionality

is through factor-analytic methods. Factor analysis often produces

satisfactory results when each of the variables is the score on a multi-item

test. When each of the measures is the response to a dichotomously scored item,

however, it is now well known that linear factor analysis of Pearson (phi)
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correlations does not, in general, yield a correct representation of the

dimensionality of the item pool (see, e.g., Carroll, 1945, 1983; Hulin,

Drasgow, and Parsons, 1983; McDonald and Ahlawat, 1974, Mislevy, in press).

The fundamental problem is that in computing phi correlations, item responses

are treated as true dichotomies. In applying a linear factor analysis model,

_ we are hypothesizing that dichotomous variables are linear combinations of

continuous latent variables with infinite range, a mathematical impossibility.

In fact, the regression of a dichotomous item on a continuous latent variable

must be nonlinear. The best linear approximation to the nonlinear regression

will depend on the region in which the data are most dense (Mislevy, in press);

that is, it will be related to the item mean, or difficulty (as defined in

classical test theory). From this perspective, it is not surprising that

linear factor analysis of dichotomous items often produces a second factor,

typically called a difficulty factor, that is related to item difficulty, but

appears to be unrelated to any substantive prcperty of the items. There can,

iv fact, be more than one such spurious factor (as is the case for items that

form a perfect Guttman scale), but ordinarily, only one is substantial in

size.

A related problem with the phi coefficient, which can be regarded as

another manifestation of the departure from the assumptions of classical

factor analysis, is that its magnitude is determined in part by the relative

values of the means of the two variables, which in this case are the item

difficulties. Regardless of the underlying relationship between the items,

the phi coefficient can reach unity only if the two items have identical

proportions correct.
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As an alternative to phi coefficients, tetrachoric correlations between

items can be obtained. In computing tetrachorics, it is assumed that the item

responses are functions of underlying continuous variables that have a

biva Late normal distribution. The model dictates that, for each item,

individuals who have values greater than a certain threshold on the underlying

response variable get that item cor:ect; individuals with values lower than

the threshold get it wrong. Using the bivariate normality ammumption, the

correlation between the unobserved continuous variables can be inferred from

the 2 x 2 table of item responses. Of course, tetrachoric correlations do not

provide a valid measure of association if bi'ariate normality does not hold.

Furthermore, the occurrence of guessing violates the above model, which

postulates that the probability that an individual gets an item right is a

function only of his value on the underlying response variable. When guessing

does occur, factor analysis of tetrachorics can produce spurious factors (see

Carroll, 19'6, 1983; Hulir Drasgow, and Parsons, 1983). Adjustments for

guessing are theoretically possible, but often lead to unacceptable results in

practice. (Attempts to adjust for the effects of guessing in the NAEP analyses

are discussed in section 3.2.1.) Additional problems are inaccuracies in the

computation of tetrachorics as they approach +1 or -1, the large standard

errors of the coefficients, and the occurrence of non-Gramian matrices of

sample tetrachorics, even when data are complete. (In the 7ase of the NAEP

analyses, in which a large proportion of data are m4 sing by design, the

negative eigenvalues tend to comprise a large proportion of the trace of the

tetrachoric matrix; see section 3.1.2 and Table 3.)
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It is clear that conventional factor analysis of phi and tetrachoric

correlations is not a satisfactory means of investigating dimensionality.

Unfortunately, no uniformly accepted statistical procedures for dimensionality

assessment exist for the case of dichotomous variables. As a result, a vast

literature on the subject has developed, particularly during the last ten

yn--s, as the use of IRT models has increased. xne methods which have gained

attention recently are briefly described here; more detailed reviews of

dimensionality assessment are given by Hattie (1984, 1985), Hulin, Drasgow,

and Parsons (1983, Chapter 8), and Mislevy (in press).

Factor-analytic methods that have been proposed to overcome the problers

described above include factor analysis of iteu parcels, nonlinear factor

analysis, the generalized least squares methods developed by Christofferson

(1975) and Muthen (1978) and the full-information maximum likelihood method of

Bock (Bock, Gibbons, and Muraki, 1985).

Factor analysis of item parcels is achieved by grouping items into

meaningful subtests (the so-called parcels) and then applying conventional

factor-analytic methods to the parcel scores. This method was applied by Cook

and Eignor (1984) to a portion of the NAEP data collected in 1979-1980 and by

Cook, Eignor, Dorans, and Petersen (1985) to SAT data. One practical problem

with tolls approach is that it may be difficult to classify certain items a

priori. Furthermore, if the item parcels differ in average difficulty, the

obtained factor structure may be influenced to an undesirable degree by item

difficulty, as in the dichotomous case (Kingston and Dorans, 1982). A more

fundamental drawback is that this approach does not assess directly the

properties of individual items. Because item scores do not enter the
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analysis, it is possible for items that measure a property other than the one

of interest t' go undetected. Finally, the application of this approach to

the complete NAEP data set Is virtually ruled out because examinees do not all

receivt the same items (see rection 3.1). (The Cook and Eignor [19841
.

analysis was based on a subset of examinees who had been administered the same

items.)

In a series of publications, McDonsld presented a theory of nonlinear

factor analysis (e.g., McDonald, 1967, 1983). In McDonald's model,

P(xij ''' 1 ( 9), the zonditional probability that an examinee answers an item

correctly, given his observed vsctor of latent traits, 0, is expressed as a

nonlinear function of the latent traits. Foz example, in one version of the

model, 2(xii = 1 I 2) is expressed as a weighted sum of polynomial functions of

the latent traits. Simulation studies of the effectiveness of nonlinear factor

analysis as a method of dimensionality assessment have led to inconsistent

findings. Hamuleton and Rovinelli (in press) found that a one-factor polynomial

model wIth linear and quadratic terms'provided a good fit to : simulated

unidimensional data set, unlike a one-factor linear model. Furthermore, a

two-factor polynomial model provided a good fit to two-dimensional simulated

data. Based on this and other findings, Hambleton and Rovinelli concluded

that nonlinear factor analysis is one of the most promising methods for

assessing .the dimensionality of dichotomous data. On the other hand, Hattie

(1984) concluded that the sum of absolute residual covariances from nonlinear

factor analysis was not an effective index of dimensionaltY5 because results

from the unidimensional and multidimensional data sets were not sufficient0r

distinct.
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Christofferson (1975) developed a factor-analytic method for dichotomous

data that involves expressing the expected proportion correct for each item

and for the joint proportions correct for each pair of items as a function of

item thresholds (see above and section 3.4, below) and factor loadings. The

weighted distance between the observed and modeled values'of these proportions

is then minimized using generalized least squares (GLS) methods.

Christofferson's solution makes use of the information contained in the

three -and four-way margins of the n-wa contingency table of item responses

(see Christofferson, 1975, Appendix 2; mislevy, in press), unlike conventional

factor analysis of phi or tetrachoric correlations, which makes use of only

the one-and two-way marginals. Solving for estimates of the thresholds and

loadings requires numerical integration and is therefore computationally

burdensome. Muthen (1978) developed an alternative GLS method that reduces

the computat )nal requirements to some degree. However, application of both

Christofferson's and Muthen's methods is currently limited to about 25 items.

Bock developed e factor-analytic approach for dichotomous data, called

full-information factor analysis (Bock, Gibbons, and Muraki, 1985) because it

. uses information contained in the joint frequencies of all orders of the item

responses. This method, detailed in section 3.4 below, makes use of the

marginal maximum likelihood methods of Bock and Aitkin (1981) for estimating

the parameters of the common factor model.

In addition to factor-analytic approaches, a number of other methods of

dimensionality assessment have been proposed. For example, Bejar (1980) has

recommended comparing the estimated item difficulties (i.e., the estimates of

the bj of equation 1) obtained by calibrating a complete set of test items
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to those obtained by performing the calibration separately within content

areas. (Bejar [1980] also proposed an additional procedure, which involves

computing, for each content area, a scaled score correspondin; to each of the

two sets of item parameter estimates, and then comparing the results obtained

by fitting a one-factor model to each of the two sets of scores.) Although

Bejar's (1980) application of the method appeared to yield useful results,

Hambleton and Rovinelli (in press) found that the method was unable to

discriminate between one-and two-dimensional simulated data sets. Another

method that has been proposed is analysis of the residual differences between

observed responses and the estimated probabilities of correct responses

according to the unidimensional item response model deemed appropriate (e.g.,

equation 1). Various methods of residual analysis have been proposed; reviews

are given by Traub and Wolfe (1981) and Hattie (1985). The rationale is that

if the model fits well, the data can be assumed to be consistent with

undimensionality. A major drawback is that large residuals may be the result

of model violations other than multidimensionality. Hambleton and Rovinelli

(in press) concluded that indices based on the size of average residuals

obtained after fitting one-, two-, and three-parameter logistic models were

not capable of detecting multidimensionality. It should be noted that

Hambleton and Rovinelli did not report any investigation of the pattern of

residuals.

3. Methods used to assess the dimensionality of NAEP reading data

The proposed methods of dimensionality assessment differ in terms of

the assumptions needed, the hypothesis tested, and the statistical artifacts

that affect interpretation. Rather than selecting a single method of



dimensionality assessment for the NAEP reading data, we applied four different

techniques, described in this section. For descriptive purposes, we included

principal components analysis (PCA) of phi and tetrachoric correlations, as

described in section 3.2. As an experimental analysis, we also applied PCA to

the image correlation matrix, a method based on the work of Guttman (1953) and

Kaiser and Cerny (1979), described in section 3.3. Bock's fullinformation

factor analysis, discussed in section 3.4, was applied to a subset of the data.

Finally, we used the method of Rosenbaum (1984a, 1984b), described in section

3.5, which involves examination of the partial association for each pair of

items, conditional on the total score on the remaining items. Prior to a

discussion of these methods, the properties of the NAEP data base art.

described.

1.1 Properties of NAEP data

3.1.1 Items included in dimensionality analyses

All reading items that were included in the IRT scaling and

were also spiraled with other items (see section 3.1.2 and scaling report)

were used in the dimensionality analyses. All subjects who responded to one or

more of these items were included. The number of subjects and items available

for the analyses is shown in Table 1.* As indicated, there were about 100 items

per grage. Twentyfive of the items included in the analyses were administered

to all three grages. The range and mean of the proportions correct for each of

the three grages and for the 25 acrossgrage items are given in Table 1. As

shown, the number of students per grage was roughly 26 to 29 thousand,

corresponding to weighted frequencies of over 3 million. As a result of the

number of items and subjects in the datelbre, certain analyses were ruled out



Table 1

Number of Items and Students Available for

Dimensionality Analyses

Grage
Number of

Items
Proportions Correct Number of Students

Minimum Maximum Mean Unweighted Weighted

9/IV 108 .04 .93 .50 26,087 3.5 million

13/VIII 100 .09 .98 .63 28,405 3.3 million

17/IX 95 .21 .96 .70 28,861 3.4 million

Across Grages
(Common Items) 25 .13 .90 .53 83,353 10.2 million
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because they were too costly or exceeded computing capabilities. In other cases,

dimensionality analyses were performed on only a subset of items to minimize the

cost and the computational burden.

Ninetyfour percent of the NAEP reading items included in the analyses were

multiple choice items with three to six response choices. The mainder were

essay items in which the respondent was asked to react to a reading passage.

Essay items were scored on a scale of 1 to 5, which was later dichotomized. All

items were classified by reading experts on the basis of objecti"7e (deriving

information vs. integrating and applying information), stimulus (short lr long

reading passage, document, or picture), and content (fictional story, poem,

informational passage, social studies, science, arts and humanities, or life

skills). These item properties, as well as a further classification of the items

based on the work of Mosenthal (1985),'were used in attempting to interpret

analysis results. (A subset of reading items that were designed to assess study

skills were not included in the dimensionality analysis because they were not

scaled using IRT. That these items differed from the remaining reading items was

suggested examination of the item content, as well as empirical evidence: For

a subset of examinees, numberright scores on blocks of study skills items and on

blocks of conventional reading items were obtained. The attenuationcorrected

correlations between study skills blocks and conventional reading blocks tended to

be lower than iur.roorrelations between conventional reading blocks. Many of the

items which led to departures from unidimensionality in Jungeblut's [19841 analyses

of the 1979-1980 NAEP data were study skills items [Jungeblut, personal

conmunication, October, 1985].)



3.1.2 Missing late pattern

A new feature of the year 15 NAEP design was the use of balanced

incomplete block (BIB) spiralling to assign test items to booklets (see Messick,

Beaton, and Lord, 1983; Beaton, 1984). BIB spiralling combines the features of

conventional spiralling and multiple matrix sampling. As in ordinary multiple

matrix sampling, each item is administered a prescribed number of times,

although examinees receive different subsets of items. BIB spiralling has the

additional feature that each pair of items is assessed a prescribed number of

times. In NAEP, reading items were first grouped into blocks, consisting in

most cases of 8 to 12 items, which were then assigned to test booklets according

to a design that conformed to these criteria. This resulted in a set of

approximately 60 different test booklets per grage, which were assigned to

respondents in a random sequence.

A major advantage of BIB spiralling is that it permits the estimation of

inter-item correlations. However, the resulting matrix of correlations, referred

to here as the BIB matrix, has an unusual pattern of missing data. In the case

of the NAEP reading data, the number of respondents available to estimate

correlations between items in the same block is, in most cases, nine times the

number of respondents available for the estimation of correlations between items

that fall within different blocks. Furthermore, the correlations of items in one

block, say, A, with those in another block, B, are not in general based on the

same group of respondents as the correlations of Block C items with Block D

items. Because of the spiralling procedure used to assign booklets to

respondents, the missing data that result from the implementation of a BIB design

can be regarded as random. However, in using a BIB correlation matrix rather
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than a conventional correlation matrix, we are implicitly making the assumption

that the correlations between items are not subject to context effects. If, for

example, the population correlation between two items, i and j, varied depending

on whether k were administered with i and j, then the sample correlation of i

and j in the presence of k would not be an eetimate of the same population

parameter as the sample correlation of i and j in the absence of k. Computation

of a BIB matrix would involve averaging these sample correlations, which would

be undesirable.

Even if the assumption of no context effects is justified, there are

other ways in which the properties of the BIB matrix differ from those of a

conventional correlation matrix. For example, the standard errors of the

withinblock correlations are smaller than those of the betweenblock

correlations. Also, the BIB matrix may have negative eigenvaluec, unlike a

conventional correlation matrix. As detailed in sectior. 3.1 and Tables 2 and

3, both phi and tetrachoric matrices of NAEP items had negative roots in most

cases. For analyses that required a matrix that was at least positive

semidefinite, an adjustment procedure, described in Appendix 1, was applied.

Although thetc is no indication that analysis results were affected in any major

way by the use of BIB matrices or their adjusted counterparts, the statistical

properties of these matrices are not fully understood at present.

In addition to the BIB missing data, which can be regarded as random,

there are two major categories of nonrandom missing data: omitted items and

items that the respondent was administered but did not reach. Unanswered

items occurring after the last valid response within a block were considered

"not reached." (In administering the items, each block was timed separately.)
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Unanswered items that occurred prior to the last valid response (and' were not a

result of the BIB design) were coded as omits. The category of omitted items was

defined to include as well any items marked, "I don't know," which was a response

alternative for all multiple choice items. The treatment of not reached and

omitted items 'at each of the dimensionality analyses is discussed in sections 3.2-

35

3.2 Principal component analysis of inter-item correlation matrices

Despite the drawbacks described in section 2, principal component

analyses (PCA) of the phi and tetrachoric matrices for each grage were

conducted for descriptive purposes. In addition, analyses including all

respondents were performed, based on the 25 items common to all three grages.

It can be argued that the results of these analyses represent a "worst case;"

that is, because the analyses tend to produce spurious factors, msults that

were free of artifacts would re expected to be more consistent with

unidimensionality.

Items that were not reached were excluded from the analysis; omitted items

were scored as incorrect. For each of the four phi matrices, Table 2 gives the

range of inter-item correlations, the median correlation, the first five

eigenvalues and the percent of the trace they represent, and, as an index of the

degree to which the matrix departed from positive-definiteness, the sum of the

negative eigenvalues as a percent of the trace of the matrix. The range of

sample sizes (N) on which the correlation coefficients were based (see section

3.1.2) is also given. The corresponding information for the tetrachoric matrices

is given in Table 3. The results in Tables 2 and 3 are based on analyses that
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incorporated the respondents' sampling weights (see Lego, Burke, Tepping, and

Hansen (1985). Unweighted analyses yielded almost identical results.

It is clear that, for each of the eight matrices, there is a large first

root, constituting between 17 and 25 percent of the trace for the phi matrices

and between 30 and 40 percent for the tetrachoric matrices (but note that the

negative roots constitute up to 27 percent of the trace for tetrachoric

matrices). The second root is always less than onefourth of the first.

Following the sharp dropoff between the first and the second, the remaining

roots trail off gradually. These findings are reassuring in that they are

consistent with a large first dimension. (The size of the first component may

appear small to those who are unaccustomed to examining the results of

item level factor analyses. In interpreting these findiags, however, it is

important to consider that the median interitem correlations are low:

between .14 and .19 for the four phi matrices and between .27 and .35 for the

tetrachoric matrices. Results of PCA of phi matrices computed from simulated

unidimensional data showed that the first root typically constituted 25 to 30

percent of the trace; see section3.3 and Table 5.) The loadings on the

first principal component were not related in any obvious way to the item

classifications discussed in section 3.1.1.

3.2.1 Application of guessing corrections to tetrachoric

correlations

When it is possible for items to be answered correctly

through guessing, the magnitude of observed tetrachoric correlations is

related to item difficulty (e.g., see Hulin, Drasgow, and Parsons, 1983,



Table 2

Eigenvalues and Descriptive Statistics for Phi Matrices

Grage 9/IV (108 items)
First 5 Roots Pct. of trace Descriptive Statistics

23.9 22 Range of N 149, 5502

3.3 3

2.5 2 Range of r -.18, .53
2.4 2 Median r .19

2.2 2 Neg. roots as pct. of trice 3

Grage 13/VIII (100 items)
First 5 Roots Pct. of trace Descriptive Statistics

17.0 17 Range of N 160, 4502
2.6 3

2.5 2 Range of r -.15, .60
2.2 2 Median r .14

2.1 2 Neg. roots as pct. of trace 2

Gra,e 17/IX (95 items)
First 5 Roots Pct. of trace Descriptive Statistics

17.5 18 Range of N 167, 4659
3.1 3

2.3 2 Range of r -.16, .68
2.1 2 Median r .16

2.0 2 Neg. roots as pct. of trace 2

All Grages Combined (25 items)
First 5 Roots Pct. of trace Descriptive Statistics

6.3 25 Range of N 607, 8862
1.5 6

1.2 5 Range of r .29, .57
1.1 5 Median r .18

1.0 4 Neg. roots as pct. of trace 0



Table 3

Eigenvalues and Descriptive Statistics for Tetrachoric Matrices

Grage 9/IV (108 items)
First 5 Roots Pct. of trace Descriptive Statistics

39.5 37 Range of N 149, 5502
6.6 0

4.7 4 Range of r -.46, .81
3.7 3 Median r .35

3.4 3 Neg. roots as pct. of trace 27

Grage 13/VIII (100 items)
First 5 Roots Pct. of trace Descriptive Statistics

30.0 30 Range of N 160, 4502
4.3 4

3.8 4 Range of r -.34, .81
3.4 3 Median r .27

3.3 3 Neg. roots as pct. of trace 21

Grage 17/IX (95 items)
First 5 Roots Pct. of trace Descriptive Statistics

32.0 34 Range of N 167, 4659
3.9 4

3.3 3 Range of r -.38, 90
3.0 3 Median r .31

2.8 3 Neg. roots as pct. of trace 19

All Grages Combined (25 items)
First 5 Roots Pct. of trace Descriptive Statistics

10.0 40 Range of N 607, 8862
1.6 6

1.2 5 Range of r .05, .80
1.2 5 Median r .33
1.0 4 Neg. roots as pct. of trace 0
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pp. 249-255). To eliminate this problem, Carroll (1945) suggested that the

frequencies in the 2 x 2 tables of responses for each pair of items be

adjusted to "remove" the effects of guessing and that tetrachorics be computed

on the basis of these adjusted frequencies. In Carroll's model, it is assumed

that guessing is random and that the probability of getting an item right by

guessing is therefore equal to the reciprocal of the number of response

choices. It is also implicitly assumed that, for each pair of items, the

probability of getting one item right by guessing is independent of the

probability of making a correct guess on the other item. To determine whether

it would be a useful strategy for NAEP data, Carroll's correction was applied

to the item responses for grage 13/VIII, setting gj, the hypothetical

probability of guessing right on item j, equal to the reciprocal of the number

of response choices for item j, excluding the "I don't know" alternative. For

essay items, gj :ts set to O. The results were clearly unsatisfactory: It

was found that 16 percent of the tetrachoric coefficients were rendered

incomputable because of negative adjusted cell frequencies. Several other

corrections were investigated, but deemed unsatisfactory, including a

modification of Carroll's correction in which the input gj values were

adjusted so as to avoid the occnrrence of negative adjusted cell frequencies

and a correction in which each gj was set equal to the estimated lower

asymptote, cj (see equation 1) of the item from the IRT item calibration.

Note that Bock; Gibbons, and Muraki [19851 describe a modification of

Carroll's correction that apparently produces satisfactory results.)
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3.3 Principal components analysis of the image correlation matrix

Guttman (1953) developed a theory for the structure of quantitative

variates called image theory. Image theory is based on the partitioning of a

variable into two add; ,rive segments: the part that can be predicted through

least squares linear regression of that variable on all the remaining variables,

called the image, and the error of prediction, called the anti-image. Thus,

unlike common factor theory, image theory provides an explicit definition for

the common part of a variable. Another difference from the traditi-Jnal

factor-analytic approach is that the anti-images may have non-zero covariances.

Guttman shows that common factor theory may be viewed as a special case of image

theory. The relation between image theory and other factor-analytic approaches

is further examined by Harris (1962) and re,iewed by Walk (1972).

Suppose that n varibles are to be observed. The decomposition of the

original variates into images and anti-images can be expressed as

Y [2 ]

where z is the n x 1 vector of observable random variables, standardized to

have mean zero and unit variance, v is the n x 1 vector random variable of

images defined in equation 3, below, and u iu the n x 1 vector random variable of

anti-images, or errors of prediction. (When referring to a finite sample of

variables, Guttman used the terms partial image and partial anti-image. The

qualifier, "partial" will not be used here.) The n x 1 vector random variable

v of images can be expressed as

[3]



The weight matrix W is defined as

W = I - S2 R-1 [4]

where R is the correlation matrix of the original variates, z, and

S2 = [(flag (R -1)]-1 [5]

The off-diagonals of W contain the regression weights for predicting each of

the variates z from the remaining n - 1 variates. The diagonals of W are equal

to zero because the regression of a variate on itself is not of interest.

The principles of image theory are usually applied in practice by

factor-analyzing G, the covariance matrix of the images, given by

G = E(vv') = E (Wz) (Wz)'

E(Wzz'W') = W E(zz')

Fr (I §2F1) (/ §2

gm R + S2 R-1 S2 - 2S2

[6]

The jth diagonal element of this matri.c is the variance of the jth image,

-Mich is equal to the squared multiple correlation coefficient (SMC) obtained

by regressing the jth variate on the remaining n - 1 variates. In this sense,

G resembles the "reduced correle:ion matrix" of common factor analysis with

SMCs used as communality estimates. The off-diagonals of G, however, tend to

be sl:ghtly smaller than those of the reduced correlation matrix (Kaiser,
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1963); furthermore, G is always Gramian (assuming data are complete), unlike a

correlation matrix with SMCs inserted in the diagonal.

As an alternative to the analysis of the 2 matrix, Kaiser and Cerny

(1979) recommended principal component analysis of the image correlation

matrix, G *, given by

G* = D-1/2 G D-1/2 [7]

where

p = diag (2) = I S2 [8]

Kaiser (1970; see also Kaiser and Cerny, 1979) conjectured that image

analysis would be wellsuited to the factor analysis of dichotomous data. He

noted that because the images are least squares predicted values of one

variate based on the remaining n 1 variates, "a crude appeal to the Central

Limit Theorem suggests that the images will be sensibly multivariate normal, a

setup which is well known not to produce difficulty factors" (Kaiser, 1970,

p. 407. Although McDonald and Ahlawat (1974) expressed doubt about the

utility of this approach, some unpublished work by Meredith (personal

communication, September, 1985) provided partial confirmation of Kaiser's

conjecture.

As an experimental approach to dimensionality assessment, principal

component analysis of the image correlation matrix was applied to the NAEP

data for gragcs 9/IV, 13/VIII, and 17/IX and to the 25 acrossgrage items.

Modification of the standard equations of image analysis was required because,

in the case of NAEP data, the matrix R of weighted phi correlations is not
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positive definite (see section 3.2 and Table 2) and therefore can not be

inverted. An adjustment procedure, detailed in Appendix 1, was used to obtain

a singular approximation to the matrix of inter-item correlations and a

pseudo-inverse of this adjusted matrix. Following this, the pseudo-inverse

matrix R was then substituted for R-1 in the formulas for W and S2 (equations

3 and 4), as recommended by Kaiser and Cerny (1978). Analogues of the

matrices G, G *, and D (equations 6, 7, and 8) were computed using these

modified forms of W and S2.

The first five roots of the image correlation matrix are given in Table 4

for the three grages and for the across-grage analysis. For the three within-

grage analyses, the first roots are between 14 and 47 percent larger than

those for the Pearson matrix. There are at least two possible reasons for

this. One distinction between the two PCA methods, which applies regardless

of whether the data are dichotomous, is that the PCA of the Pearson matrix

Involves the correlations of observed values on the original variates z

(equation 2), whereas PCA of the 9* matrix involves the correlations of the

common parts, v, of the items as defined in equations 2-5. This difference

would be expected to result in larger first roots for the image approach.

Furthermore, in the present application of image analysis, the problems

associated with linear factor analysis of dichotomous data are to some degree

ameliorated by using a matrix of correlations between weighted sums of

dichotomous item scores. This, of course, was the basis for Kaiser's

conjecture that the image approach would work well in the dichotomous case.

It is somewhat surprising that the second roots are also substantially larger

for the image matrix than for the Pearson matrix. This is most obvious in
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Table 4

Eigenvalues of the Image Correlation Matrix

Grage 9/IV (108 items)

First 5 Roots Pct. of trace

27.3 25
9.5 9

3.7 3

3.2 3

2.7 3

Grage 13/VIII (100 items)

First 5 Roots Pct. of trace

23.2 23

9.5 9

3.9 4

2.8 3

2.6 3

Grage 17/IX (95 items)

First 5 Roots Pct. of trace

25.8 27
5.7 6

4.3 4

3.4 4

3.3 3

All Grages Combined (25 items)

First 5 Roots Pct. of trace

18.0 72

2.0 8

1.i 5

0.7 3

0.6 2
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grage 13/VIII, where the second root of the image correlation matrix is more

than three times as large as the second root of the Pearson matrix.

For each of the three within-grage analyses, a solution conforming to the

principles of simple structure could be obtained using Promax rotation

(Hendrickson and White, 1964). In order to interpret the factors, the

relatian between the loadings for the rotated solutions and the classifica-

tions of reading items described in section 3.1.1 was examined. No clear

pattern emerged, however. Furthermore, for items that were administered to

more than one grage, there was no consistency across grages in the

configurations of loadings.

Results for the 25 items that were administered to all three grages were

substantially different from the within-grage analyses. The first root of the

image correlation matrix constituted more than seventy percent of the trace, a

finding that appears consistent with unidimensionality. The first root was

nearly three times the size of the first root of the Pearson matrix; the

second root grew only slightly in this case. It is likely that results of

this analysis differed from those of the within-grage analysis because the

across-grage correlation matrix was better-behaved. The sample sizes were

larger and there were no negative correlations or negative roots.
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To aid in interpreting the rasults of the four image analyses, PCA of the

image correlation matrix was applied to several simulated data sits generated

from a unidimensional model. The simulation studies were conducted as

follows: (1) Assuming a three-parameter logistic model, NAEP reading items

were calibrated with the LOGIST program (M. S. Wingersky, 1983) using actual

NAEP data. Thirty of these items were randomly selected for this simulation

run. (2) One thousand pseudo-random values from a normal distribution with

mean zero and unit variance were then generated. These represent theta or

proficiency values for N = 1000 examinees. (3) For each examinee, the

three-parameter logistic function (equation 1) was used to obtain the n x N =

30 x 1000 values of Pij, the probability that person i gets item j correct.

The item parameters aj, bj, and cj, were obtained from step 1 and the 8i

values from step 2. (4) Corresponding to each value of Pij, a pseudo-random

value Uij was generated from a uniform distribution on the interval [0,1]. If

Uij was less than Pij, item j was scored as correct for person i; otherwise it

was scored as incorrect. The correlation matrix of these simulated data was

then obtained and the image procedure applied.

Table 5 shows the first five roots of the phi and image correlation

matrices for one of the simulated data sets. Results were much more dr.matic than

for the within-grage analyses of the actual NAEP data; the findings bore a closer

resemblance to the across-grage analysis of 25 items. Whereas the first root of

the phi matrix was only about one quarter of the trace in the simulation, the

first root of the image correlation matrix was about 80 percent of the trace.

Other simulated unidimensional data sets produced similar values. If the size of

the first root is used as a criterion, the image analysis technique is superior
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Table 5

First Five Eigenvalues of Correlation and Image
Correlation Matrices for Simulation Data

(30 items with NAEP item parameters)

Phi Matrix Image Correlation Matrix

First 5
Roots

Pct. of
Trace

First 5
Roots

Pct. of
Trace

7.7 26 23.8 79

1.7 6 2.6 9

1.1 4 0.5 2

1.0 3 0.5 2

1.0 3 0.4 1

Correlation of Loadings on Second Principal
Component with Proportions Correct

.85 .65
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to PCA of the phi matrix in revealing the true unidimensional structure

underlying the data. However, as in the case of the phi matrix, the loadings

of items on the second principal component of the image correlation matrix

have substantial correlations with the proportions correct for the items: the

correlations were .85 for the phi matrix and .65 for the image correlation

matrix. Because it is evident that the results of the PCA of the image

correlation matrix are not free of statistical artifacts, no further attempt

was made to interpret the Promax solutions. (It should also be noted that no

simulation studies of the performance of image analysis under multidimension-

ality were conducted.)

3.4 Bock's full-information factor analysis

Another factor-analytic method that was applied to the NAEP data is

Bock's full-information factor analysis (Bock, Gibbons, and Muraki, 1985; see

also Mislevy, in press), which is implemented in the TESTFACT program (Wils'in,

Wood, and Gibbons, 1983). Unlike the methods described in sections 3.2 and

3.3, this method does not require the computation of correlation coefficents,

but operates instead on the n-way contingency table of item responses. In

contrast to factor analysis of correlation coefficients, which makes use of

only the pairwise joint frequencies of item responses, Bock's full-information

solution uses information contained in the joint frequencies of all orders.

In applying this method, a particular model for the item responses must be

assumed. In the case of the NAEP data, the selected model was a multivariate

generalization of the three-parameter normal ogive in which each item is

allowed to load on multiple factors. The model can be, developed by first
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assuming that underlying the response of person i to item j is a response

process variable defined as

Yij

K

/ Ijk eki vj
k=1

[9]

where Oki represents the value of the kth latent variable (factor), k =

1, 2, ... K, for the ith individual, i = 1, 2, N, Xjk is the

lording of the jth item, j = 1, 2, n, on the kth latent variable, and

it a residual term associated with item j. The observed score of the

ith.examinee on the jth item, xii, takes on a value of 1, indicating a

correct score, if yij exceeds Ti, the threshold for the jth item. If

it is assumed that the residuals vj are independently distributed as N(0,

9), the conditional probability that the ith examinee gets the jth item

correct, given that his values on the latent variable are equal to Ai

can be expressed as

K
y Xikeki

kml )2] dyP(xij is 1 I
1 r-' exp [-1/2 (

Fi(Ai)

[10]

This is a multivariate generalization of the twoparameter normal ogive model

(see Lord and Novick, 1968).
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This model can be modified to allow for the possibility of guessing by

substituting

Fl (12i) = cj + (1 cj) Fj(9i) [11j

for Fi(21.),. where cj represents the probability that an individual

with very low ability gets the item correct. This multivariate generalization

of the threeparameter normal ogive model was applied in the NAEP analyses.

The cj parameters were estimated using BILOG (Mislevy and Bock, 1982) and

then input to the TESTFACT program. NAEP items that were cod as "not

reached" (see section 3.1.2) were not included in the analysis. Omitted

items, on the other hand, were scored correct with probability cj. Under

this strategy, examinees who omit an item have the same theoretical probability

of getting the item correct as examinees who guess in the absence of any

information.

Incorporating the item response function, 11(90, defined in

Equation 11, the marginal probability of the sth response pattern can be

expressed as:

Ps - P(x Ics) = Fl (12)x8i{l Fl
(9)}1xsif(9

)d2 [12]
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where xsj is the response to the jth item in the sth response pattern, s = 1,

2, ... S, and S < min (2n, N) is the number of response patterns. It is

further assumed in this application that f(9) is the multivariate normal

distribution with mean 0 and covariance matrix I. Now, if it is assumed that

the counts of the distinct response patterns follow a multinomial distribution,

the likelihood of the matrix X of observed counts rs of distinct response

patterns can be expressed as:

N! rl r2
!P(10 - P P Ps

rl r2 rs 1 2

where Ps is given by Equation 12.

The quantities Ps are estimated using numerical integration techniques.

The marginal maximum likelihood method of Bock and Aitkin (1981), which is

based on earlier work by Bock and Lieberman (1970), is then applied to

Equation 13 to obtain estimates of the factor loadings and thresholds for each

item (see Bock, Gibbons, and Murall, 1985; Mislevy, in press).

If sample size is sufficiently large, a test of the fit of the K-factor

model relative to a general multinomial alternative can be obtained using a

chi-square approximation to the likelihood ratio test. The model can be

re-estimated and the test repeated for successive values of K. The difference

between these chi-square statistics is also distributed as chi-square (under

the hypothesis that the more restrictive model is correct) and can be used to

test the improvement in model fit that is achieved by allowing the number of

latent variables to increese. The test of change in model fit has been shown

to perform well even when the frequency table is sparse (Haberman, 1977).



Because the TESTFACT program is very expensive to run, fullinformation

factor analysis was applied only to 42 items for grage 13/VIII. These items,

which were chosen to maximize the chances of detecting multidimensionality,

were intended to represent four distinct item types: reading comprehension,

vocabulary, life skills and essay. The comprehension, vocabulary, and essay

items all referred to passages the examinee was asked to read. Some passages

were fictional stories; others pertained to an academic content area, such as

science or social studies. The life skills items were based on documents that

might be encountered in everyday life, such as a portion of a telephone

directory, a grocery store coupon, or an advertisement.

The analysis was based on the raw rather than the weighted frequency

table of item responses. Because sampling weights have little effect on

variances and covariances, they are unlikely to have much effect on factor

analysis results (Bock, personal communication, November, 1985).

In applying the chisquare test for the number of latent variables or

factors, it was necessary to take into account the effects of multistage cluster

sampling (see Lago et al., 1985) or the variability of the test statistic. In

adjusting the significance tests, it was assumed that the design effect

was equal to two. Research conducted with previous NAEP surveys led to the

conclusion that this was a reasonable estimate of the design effect for this type

of test statistic (Johnson, 1980). This means that an estimate of the variability

of the test statistic under the NAEP sample design can be obtained by computing

the variance of the statistic under simple random sampling assumptions and then

multiplying the obtained value by two. Because the log likelihood chisquare

statistics are proportional to sample size, a design effect can be incorporated
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simply by dividing the chi-square values by the design effect. Incorporating

this adjustment, the chi-square test corresponding to the change from the one- to

the two-factor solution was not signAficant, indicating that the one-factor

solution could be retained. The single factor accounted for about 39 percent of

the total variance. Reading comprehension items, particularly those that

involved fictional stories, tended to havr the highest factor loadings. Life

skills items had the lowest loadings.

3.5 Rosenbaum's test of unidimensionality, monotonicity, and conditional

independence

Rosenbaum (1984a) proves a theorem that states that if item

characteristic curves are nondecreasing functions of a single latent variable,

then conditional (local) independence of item responses, given the latent

variable, implies certain relations among the item responses. Specifically,

the conditional covariances between all monotone increasing functions of a set

of item responses, given any function of the remaining item responses, will be

non-negative. This theorem can be used to develop statistical tests of whether

an observed data set is consistent with the assumptions of monotonicity,

unidimensionality, and conditional independence. (See Holland, 1981, Holland and

Rosenbaum, in press, and Stout, 1984, for further discussion of tests of this

kind.)

As a special case of Rosenbaum's theorem, we can test the partial

association for each pair of items, given number-right score on the remaining



items, using the Mantel-Haenszel (1959) test, a conventional procedure for

analysis of discrete data. In this case, we are examining the conditional

covariance between monotone item summaries which are simply responses to a single

item. The function on which we are conditioning is the number-right score on the

remaining n - 2 items. To perform the Mantel-Haeuszel test for a particular

item pai r, a 2 x 2 table of item responses is constructed for each of the K

possible values of number-right score on the remaining items. Let nijk be

the observed count in the ith row, jth column, and kth table, where

i = 1, 0; j = ] 0; and k = 1, 2, ... K. Tha Mantel - Haenszel te t statistic

is given by

Z =
nll+ E(n11+) 1/2

[14]

where E(n114.) and V(n11 +) denote the hypergeometric expectation and variance

of n(11+), given by

K

E(n11+) 2
k=1

nl+k n+lk
[15]

K nl+k nO+k n+lkn+Ok
V(n114.) = 2 [16]

101 n2
++k (n++k 1)

and the plus subscript indicates summation over that subscript. The

approximate significance level is obtained by referring Z tc the lower tail of

the standard normal distribution. A statistically significant result

indicates that z.a pair of items has a negative partial association and is

thus inconsistent with the hypothesized model.
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The MantelHaenszel approach was programmed to accommodate the

complexities of BIB spiralling in the following way: Suppose that we are

interested in assessing the conditional covariance between items Xi and

X2 and that, because of BIB spiralling, certain students who received items

X1 and X2 also received X3, X4, and X5, whereas others received X5 and X6.

The test of association between X1 and X2 is then based on seven 2 x 2 tables:

four corresponding to the possible score values for X3 + X4 + X5 and three for

the possible scores for X5 + X6. Because of the spiralling method used to

assign booklets to respondents (see section 3.1.2), the fact that respondents

did not all receive the same items or even the same number of items does not

impair the validity of the method. Items that were omitted or were

administered but not reached (see section 3.1.2) were scored as incorrect.

Because of the cost of computations, the Rosenbaum method was applied to

only a subset of the NAEP items: those in blocks H, K, M, N, and 0. The

number of items per grage was 56 for grage 9/IV, 53 for grage 13/VIII, and 55

for grage 17/IX. The number of hypothesis tests, which is equal to the number

of item pairs, was 1540, 1378, and 1485 for grages 9/IV, 13/VIII, and 17/IX

respectively. In order to evaluate the findings of this method, a decision

must be made about the appropriate alpha level at waich to test these multiple

hypotheses. Whereas on one hand, we would like to control the overall Type I

error rate at an acceptable level, we do not want to maintain such rigorous

Type I error control that a rejection of the hypothesis of unidimensionality

would be impossible. As it turns oot, even if the alpha for each hypothesis

test is set at 01, a liberal alpha level for so large a number of tests, the

number of statistically significant negative partial associations is only 4
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Table 6

Results of Rosenbaum Analyses

Within -Grage Anayses

Grage

9/IV 17/IX13/VIII

Number of items 56 53 55

Number of item pairs 1540 1378 1485

Number of significant
negative partial associations:

a = per comparison 4 4 6

a = .05 per comparison 31 29 26

Across-Grage Analyses

Grage pair

9 & 13 9 & 17 13 & 17

Number of comparigons 24 24 24

Number of significant
negative partial associations:
a = .05 per comparison 0 0 0
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for grage 9/IV, 4 for grage 13/VIII, and 6 for grage 17/IX. If alpha is set at

.05 for each test, the number of stat4.stically significant results is 31, 29,

and 26 for the three grages, respectiNely (see Table 6). Therefore, it is

reasonable to retain the hypothesis that the item responses can be represented

by a monotonic unidimensional latent variable model with conditional

independence. It should be noted that application of the Rosenbaum method

does not provide a test of the fit of the threeparameter logistic model or of

any other specific model.

In applying the Rosenbaum method, no modificaticns were incorporated to

reflect NAEP's complex multistage cluster sampling scheme (Lego et al., 1985).

That is, raw rather than weighted frequencies were used in the analysis and no

jackknifing or design effect adjustment was used in computing the significance

probabilities of the MantelHaenszel statistics. As orz,ed in section 3.2,

weighted and unweighted correlation matrices for the NAEP data are virtually

identical, suggesting that the weights would make 'ittle difference in the

Rosenbaum analyses. Furthermore, the design effect for these tests is likely

to be greater than one, as in 3.4. Adjustment of the significance tests would

then lead to a reduction in the number of item pairs found to have negative

partial associations, thus reinforcing the original conclusion about

dimensionality.

3.5.1 Acrossgrage analyses

In addition to determining whether it was reasonable to

regard the reading items as unidimensional within each grage, it was of

interest to investigate whether unidimensionality would hold if respondents
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from all three grages were included. Of the entire set of items available for

dimensionality analyses (Table 1), 25 were administered to all three grages.

Twenty-four of these 25 were in the item blocks (H, K, M, N, 0) used for the

Rosenbaum analyses. A method developed by Rosenbaum (1984b), which is a

variant of the approach described above, was applied to these 24 items. The

procedure provides a test of whether the item responses of two groups of

examinees is consistent with a difference in the distritation of a

unidimensional latent variable. A rejection of this hypothesis would mean

that it was necessary to postulate the existence of additional dimensions. As

a first step in the analysis, an indicator variable is created to represent

group membership, wit!, the higher value associated with the group hypothesized

to have generally higher values on the latent variable. If the pattern of

item responses is consistent with the hypothesized model, the conditional

covariances of each item with the indicator variable will be non-negative, as

described in 3.5.

For the NAEP data, a separate analysis was conducted for each pair of

grages, as follows: An indicator variable representing grage was created,

with a value of 1 indicating the higher grage and the value of 0 corresponding

to the lower grage. The partial association of each of the 24 items with

grage was t :en assessed, using the Mantel-Haenszel (1959) test, as described

in 3.5. With an alpha of .05 for each of the 24 hypothesis tests per grage

(see Table 6), no significant negative partial associations of items with the

dummy-coded grage variable were found. This means that, as we would expect

intuitively, students in higher Rages were more likely than students in lower

grages to answer items correctly, conditional on number-right score on the
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As an e.11erimental method, a factor-analytic approach based on Guttman's

image theory was also applied. Principal component analysis of the image

correlation matrices yielded larger first roots than PCA of the corresponding

phi matrices, but larger second roots as well. Application of image analysis to

simulated unidimensional data showed that principal component loadings had a

substantial correlation with the proportions correct for the items. Thus,

the image approach does not avoid the artifacts associated with the application

of linear factor-analytic methods to dichotomous data.

remaining items. These results are consistent with unidimensionality of the

item pool.

4. Conclusions

Overall, the four dimensionality analyses of the NAEP reading items

indicate that it is not unreasonable to treat the data as undimensional. As a

preliminary approach, principal component analyses of phi and tetrachoric

correlation matrices were computed for each of the three grages and for the 25

across-grage items. The first roots obtained from these analyses were sizeable,

ranging from 17 to 25 percent of the trace for the phi matrices and 30 to 40

percent for the tetrachoric matrices. (For simulated unidimensional data, the

first root of the phi matrix typically constituted 25 to 30 percent of the

trace.)

Application of Bock's full-information factor analysis to a subset of the

grage 13/VIII data led to a satisfactory fit with a one-factor model. The first

factor accounted for 29 percent of the total variance. Reading comprehension

items involving fictional stories had the highest loadings on this factor; life

skills items had the lowest.
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Finally, the Mantel-Haenszel approach developed by Rosenbaum led to a

retention of the hypothesis that the data can be represented by a unidimensional

latent variable model with conditional independence. In addition to analyses

within each grage, tests were conducted to determine whether data for each pair

of grages were consistent with a difference in distribution of a unidimensional

latent variable. Again, the hypothesis of unidimensionality was retained.

Although categorization'of the NAEP reading items is useful for test

development and reading research, the dimensionality analyses reported here do

not provide strong empirical evidence for the existence of multiple limensions.

Especially when considered in light of the robustness research discus ed in

section 1.1, the results do not contraindicate the applicatior of unid mensional

item response theory models to the reading data.
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Appendix 1

A Procedure for Obtaining a Gramian Matrix that Approximates a

BIB Correlation Matrix for NAEP Items

1. Start with the weighted (i.e., incorporating sampling weights)

BIB covariance matrix.

2. Substitute zeroes for the negative eigenvalues. (The negative

eigenvalues constituted 4, 2, and 2 percent of the trace of the missing data

covariance matrix for grages 9/IV, 13/VIII, and 17/XI, respectively. There

were no negative eigenvalues for the across-grage matrix.)

3. Now obtain the "reconstructed" covariance matrix, c*, using the

following equation:

c
*

D* Q',

where Q is the matrix of normalized eigenvectors of the original covariance

matrix and D
*

is a diagonal matrix of eigenvalues, with zeroes substituted fer

the negative eigenvalues. 9*-= 9 p*-1g' is the pseudo-inverse of C*, where

the elements of D* -1 are the reciprocals of the corresponding elements of D*

for positive elements of p* and zeroes for zero elements of p*.

4. It is now possible to obtain a reconstructed correlation matrix, 11*,

corresponding to C*, using ordinary methods. The pseudo-inverse of R* can be

obtained as follows:

R* = S C*-S,

where s is a diagonal matrix of the square roots of the diagonal elements of

C*.



It is delirable to begin with tha covariance matrix in Sten 1 because

operating on the correlation matrix, R, directly will produce a reconstru-ted

R that does not heve ones on the dia6.,nal.

The medians of the residuals obtained by subtracting elements of R* from

elements of the original R were .007, .002, and .003 for grages 9/IV, 13/VIII,

and 17/IX, respectively. In addition, the eigenstr..ctures fcr the R* matrices

were r2ry similar to those for the original Vs. foe meth,d is inexpensive

and is not difficult to program. An alternative method of B. Wingersky

(1984) produced smaller residuals, but was prohibitively expensive to execute.
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