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Abstract

This article describes a Bayesian framework for estimation

in item response models, with two-stage prior distributions on

both item and examinee populations. Strategies for point and

interval estimation are discussed, and a general procedure based on

the EM algorithm is presented. Details are given for

implementation under one-, two-, and three-parameter logistic IRT

models. Novel features include minimally restrictive assumptions

about examinee distributions and the exploitation of dependence

among item parameters in a population of interest. Improved

estimation in a moderately small sample is demonstrated with

simulated data.
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Introduction

Simultaneous estimations of many parameters can often be

improved, sometimes dramatically so, if it is reasonable to consider

one or more subsets of parameters as exchangeable members of

corresponding populations (Efron & Morris, 1975; James & Stein,

1961; Kelley, 1927; Lindley & Smith, 1972). The idea is that while

each observation may provide limited information about the

parameters it is modeled directly in terms of, it also contributes

information about the oopulations to which they belong. Knowledge

about the populations, generally superior to knowledge about

individual parameters, can in turn be brought to bear in the

estimation of any individual parameter. Novick et al. (1972) and

Rubin (1980), for example, provide Bayes and empirical Bayes

solutions respectively to the problem of predicting student

performance in a given law school when data are available for

several law schools. Both studies obtained more stable estimates in

small schools and improved crossvalidation results when compared to

independent estimation within schools.

Analogous procedures for the IRT setting have begun to appear

in the psychometric literature. Bock and Aitkin (1981), Rigdon

and Tsutakawa (1983), and Thissen (1982) address the problem of

incidental examinee parameters by integrating over a population

density to produce marginal likelihood functions for item

6
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parameters. Reiser (1981) and Mislevy and Bock (1981) extended

this model by positing prior distributions for item parameters.

Swaminathan and Gifford (1982, 1984, in press) employ twostage

priors for examinee parameters and selected item parameters, then

obtain the joint posterior mode for all individual parameters.

Andersen and Madsen (1977), Mislevy (1984), and Sanathanan and

Blumenthal (1978) provide maximum likelihood solutions for the

parameters of examinee population distributions, conditional on

item parameters. Finally, Bock and Aitkin (1981) and Bock and

Mislevy (1982) derive posterior means and standard deviations of

the parameters of individual examinees, conditional on item and

examinee population parameters.

The aformentioned procedures can all be expressed as special

cases of a morn comprehensive Bayesian framework for estimation in

item response models. Working along lines first suggested by

Lindley and Smith (1972), we begin by introducing a model for item

responses that employs two levels of prior distributions on bah

item and examinee parameters. A general discussion of theoretical

and practical considerations in estimating the parameters of such a

model, including an EM computing algorithm (Dempster, Laird, &

Rubin, 1977), follows. Procedures specific to logistic item

response models (Birnbaum, 1968; Rasch, 1960a; Lord, 1980) are then

detailed. We illustrate the techniques with simulated data and

conclude by discussing possible extensions of the procedures.

7
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The General Form of the Model

Let e denote examinee ability and p(010 its density,

conditional on examinee population parameters T. If e follows a

normal distribution, for example, T (pe,ne2 ), the mean and

variance. T is assumed in turn to follow density p(r). In the

same manner, let denote the parameter(s) of a test item and

p(tin) denote its density, conditional on item population

parameters n; n in turn follows density p(n). Independence over
1110 4NO

examinees and items is assumed, given t and n.

Let d
ij

take the value 1 if examinee i is administered item j

and 0 if not. For n items of interest, let di mg (dil,...,din), and

for N examinees, let D (dl,...,dN). Let uij denote the response

of examinee i to item j, taking the value 1 if the item was

adminstered and answered correctly, and 0 otherwise; define ui and

U in analogy to di and D. Denote by uulp,e,0 the likelihood of

of the possibly incomplete matrix of responses of subjects with

abilities 9 - (el,...,eN) to items with parameters S

By Bayes theorem, the posterior density of e, F, T, and n, given

realized observations U is given by

p(e ,t ,T ID,U) a UlD,E) ) p(E) IT) p(t) p( In) p(n)
MO AO AO AO AO AO AO A/ AO AO A/ AO AO *A AO 00

(2.1)
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After the forms of the likelihood function L and the prior

densities p(6 1t) and pain) have been chosen, the highest level

prior densities p(t) and p(n) have been specified, and the data U

have been observed, (2.1) contains all information available about

the parameters in the model. The sheer incomprehensibility of a

joint distribution of possibly thousands of variables, however,

demands summary in terms of salient attributes, to be used in

constructing point and interval estimates, for example.

The joint mean of the posterior has the desirable property that

tie value for each component retains the same value in any marginal

distribution obtained by integrating (2.0 over any subset of

remaining components. Posterior modes, which do Jot exhibit this

invariance, are more often seen in practice in complex problems such

as the one at hand, since they prove easier to obtain. Generally

speaking, a parameter's marginal posterior mode is a better

approximation of its posterior mean than is its joint mode (O'Hagan,

1976). This is especially so when "nuisance" parameters appearing

in the joint posterior, along with the parameters of interest, are

poorly determined. Examinee parameters 6 follow this

description in the present context, and we shall integrate over

their distribution routinely to obtain

9
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,T ID,U) 10 t ge (r,u) d8 (2.2)

The reduction in dimensionall.ty thus achieved assures that the

marginal modes of the remaining item and population parameters will

better approximate their means.

In principle, it is also possible to integrate over item

parameters as well in order to obtain the marginal distributions of

item and examinee populatiun parameters alone:

p(T ,n ID,U) a I I p(0 ,t ,T ,nID,U) de g . (2.3)
NI NI 00 00

The numerical integration required to effect (2.3), however, is not

tractible for any but trivial problems with currently available

computing machinery. An alternative suggested by Leonard (1982)

is to approximate the marginal density of T and n as follows:

p(r,n1D,U) p(T,n,
T yT1

ID,U)11.11
-1/2

.9

t0
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with E denoting the modal value of E from (2.2), evaluated at

particular values of T and n. In practice one would evaluate this

expression at a grid of possible values of T and n in order to

approximate their posterior marginal density, subsequently obtaining

the mean and variance if desired. The approximation has the effect

of replacing the integration in (2.3) with conditional

maximizations, one for each point in the grid.

If item population parameters are not of interest, they can

also be integrated out to yield

p(E 1D,U) c p(6 ,E ,T ,n ID,U) de do (2.4)
n 6

The remaining item parameters and examinee population parameters are

typically of primary interest in the educational setting, although

for many examinees and all but very short tests, their marginal

modes under (2.2) and (2.4) will differ little.

11
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An EM Algorithm for Parameter Estimation

This section provides a framework for parameter estimation in the

general model outlined above, based on a variation of Dempster, Laird,

and Rubin's EM algorithm introdu_td by Bock an Aitkin (1981) in the

context of marginal maximum likelihood (MML) estimation oc ttem

parmeters. The posterior density function in our model, marginalized

with respect to 6, can be written as

,T ,,n ,U) L(UID,0,0 p(8 IT) d0} {p(t)p(On)p(n)}
6

(3.1)

The first bracketed expression on the right takes the form of the

marginal likelihood of observed responses from a random sample of

examinees from a population with density p(8 IT), while the second

can be thought of as the prior distribution for and T. We now

focus our attention on the first tem.

By maximizing the first term of (3.1) with respect to

parameters of interest, Bock and Aitkin (1981) obtain MML estimates

of given p(6IT) and Mislevy (1984) obtains MML estimates of T

given L(10,6,0. Both presentations employed the expedient of

approximating integration over 8 by summation over a finite grid of

points X , q 1,...,Q, with associated weights A(X
q
IT) as follows:

12
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log L(UID,E,T) = E log E L(uildi,Y ,t)A(Xn) . (3.2)

i q 4 4

Three methods were suggested for spec4fying points and weights.

First, when ge IT) takes the form of a normal density or a mixture

of normal densities, optimal points and weights for a given Q may be

found in Stroud and Sechrest (1966). Second, a Monte Carlo approach

generates a random sample of equally-weighted points rrom WIT).

Third, a grid of Q equally-spaced points can be specified a priori

and assigned weights proportional to p(NIT).

Bock and Aitkin (1981) show that with the discrete

approximation of the likelihood function, partial derivatives of the

marginal likelihood, in which A's are not observed but must be

inferred from item responses, can be written in forms quite similar

to their counterparts in e related "complete data" problem in which

individual A's are known. Under the assumption of iid 0's, we may

write the partial derivative of the complete data log likelihood,

namely

log L(UID.OA,T) = log L(UID,6,0 + log p(6IT) , (3.3)

with respect to a typical parameter v from or T in the form

13
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(3.4)

for an appropriately defined gradient function f
v
, where N

ij
is the

number of attempts to item j by examinee i and r
ij

is the number of

those that are correct. It can be shown (e.g., Mislevy, 1984) that

the corresponding deri"ative of the marginal log likelihood (3.2)

can then be approximated as

where

and

with

a log L(UID,g,T)

av
- E f ,R ,x ,g,T)

q
v q q q

(3.5)

_£ (3.6)
Nqj

r = E (3.7)

i

14
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L(u Id XeE)A(X
q
IT)

ft

P(X
q
1U ,d ,E,T)

E L(u Id .X
q
,0A(X

8
IT)

(3.8)

An application of Bayes theorem will be recognized in (3.8), yielding

a value approximately proportional to the posterior density of e

given ul, di, F, and T. The upshot is that the first derivatives

(3.5) of the marginal likelihood are identical in farm to the first

derivatives (3.4) of the complete data likelihood, with expressions

for subjects evaluated at e with observed data r
ij

and N
ij

replaced

by similar expressions evaluated at quadrature points X with

pseudo-data rqj and i . Likelihood equations are obtained by

setting the partial derivatives (3.5) to zero.

It will be notcd that r
q
and N depend on and T. Solution

q

must proceed iteratively in EM cycles, which, with integration

approximated by summation, take the form described by Dempster et al.

(1977, Section 4.1.1) for missing values under multinomial sampling.

In the E-step, (3.6) and (3.7) are evaluated with provisional

t t
estimates of E and T . This gives the expectations of r and N

.q .q

conditional on the data and the provisional parameter estimates.

In the U -step,
t+1

and T
t+1

are obtained by solving (3.5) with

with r
q

and R treated as known. Cycles continue in this manner
q

until changes become negligible. An indication of the precision

15
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of estimation is given by the following approximation of the Fisher

information matrix

a log L(uildi,E,T) a log L(uilli,S,V

H (
a (E DT )(

A A

evaluated at (E,T).

3(E,T)'

(3.9)

The EM algorithm is readily extended to Bayes modal estimation

(Dempster et al., 1977, p. 6). All of the foregoing procedures are

applied as before, except that the marginal likelihood equations

(3.5) are replaced by socalled "Lindley equations"; for a typical

element v of E or t,

a log pa,TID,U) a log p(UID,F,T) a log p(qn)

0
av av av

a log(t)

av
(3.10)

The treatment of item population parameters n, which do not appear

in (3.5), depends nn whether they are to be integrated out or jointly

estimated. Integrating them out modifies the form of the prior for

E from p(Eln) to I p(Eln)p(n) dn. Estimating them requires the
ID de de de

solution of additional equations

16
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a log paln)p(n)

0 =
an

(3.11)

Under regularity conditions, posterior densities in Bayes

estimation tend to multivariate normality as sample size increases.

Asymptotically, the mean is equal to the mode, which is equal to

the maximum likelihood estimate. The precision matrix, or the

inverse of the covariance matrix, is given by the negative matrix

of second derivatives of the log posterior, evaluated at that point.

When n has been integrated out in the problem at hand, this

matrix: takes the form

where

a
2

log L(UID,C,T) a
2

log p(C)p(T)

a(c,T)' aa,T) a(c,T)'

pa) = I p(t In) p(n) do

Employing the well-known result on Fisher's information matrix

E(

(3.12)

a2 log(datalx) a los(dotalx) a log(datalx)

) ' E [( )]ax ax' ax 3x

17
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tKendall & Stuart, 1973, pp. 8-10) and substituting observed values

for expectations, we avoid calculating second derivatives of the

log likelihood via the approximation

8 log p(E)p(T)

A In - H
a(E,T)

(3.13)

where H is given in (3.9). When n is estimated jointly with E and

T, the precision matrix is similarly approximated as

B

a2 log p(T)p(E12)

'11-77F,75-3(7)7--
(symmetric)

a
2

log p(T)p(Eln)p(n) a
2
log P(T)p(Eln)p(n)

a ) 8n an'

(3.14)

It should be pointed out that solutions of the Lindley equations

are local extrema or saddle points of the posterior. Whether they

are local maxima can be determinc by examining the shape of the

posterior in the neighborhoods of solutions, either empirically or

though the matrix of second derivatives, which will be negative

definite at local maxima. Whether a local maximum is a global

maximum follows in certain cases from the form of the posterior

18
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(e.g., a member of the exponential family), but must be determined

..mpirically in most cases by starting the iterative solution from

a aumber of different initial values.

Procedures for Some Logistic Models

The balance of the article implements the procedures in the

context of logistic item response models. The following sections

provide details on functional forms for the likelihood and prior

distributions, and on the corresponding forms of the fitting

equations. For the first stage of priors, a multivariate normal

density will be posited for item thresholds, log slopes, and logit

asymptotes; both a mixture of normal components and a nonparametric

approximation in the form of a histogram will be provided for

examinee abilities. For the second stage, both diffuse and natural

conjugate priors will be provided in all cases.

The Likelihood Function

The three-parameter logistic mcdel for dichotomous items

(Birnbaum, 1968) gives the probability of a correct response to

item j from examinee i as

Pj(6i) = P(uij = 116i,aj,bj,cj)

cj + (1 - ci)T[Daj(0.
1

- b )] '

19

(4.1)
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where !(x) is the logistic function 1/(1 + exp(-x)). D is a scaling

constant, taken as 1 by some writers for convenience and as 1.7 by

others (e.g., Birnbaum, 1968) so that the units of the model will

approximate those of normal ogive IRT models (Lord, 1952). One may

obtain the two-parameter logistic model from (4.1) by fixing cj a 0,

and the one-parameter model (Rasch, 1960) by additionally fixing

aj - 1.

Indeterminacies of scale and origin are apparent in (4.1). If

for any scalars m and x we define 8* - m0 + x, - mb + x, and

a* a a/m, then P(u - 1I8*,a*,b*,c) - P(u - 118,a,b,c). In this

article we will specify higher-level prior distributions Olga

resolve these indeterminacies.

Rather than obtaining a posterior for a, b, and c directly, we

work with the transformed item parameters

and

a is log aj

13 a b

y = log(cj/(1 - cj)) .

20
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It is readily inferred that as exp a
i

cjand 7(y
i
). While this

formulation does not permit the boundary values of 0 and 1 fo c ,

i

it serves our purposes adequately by allowing c's arbitrarily close

to these values. Non-positive a's are also disallowed; careful

examination of fitted and empirical response curves will obviously

be required in applications where faulty items and incorrect keys

can occur.

Reparameterization achieves two ends. The first is a more

rapid attainment of large-sample results. The impediment against

normality represented by the finite range of c, for example, is

removed by re-expression in terms of Y. The second is convenience

in specifying higher level prior densitites. With unrestricted

ranges for all parameters, the imposition of multivariate normal

priors on parameters within items but independent across items is

not unreasonable. This may be the simplest way to allow for the

possibility of dependence among parameters a, b, and c in a

population of items.

Letting represent (al, 01, yi,...,an, En, yn), the Lindley

equations for item parameters take the form

a log IA a log pa In)
0 .

aE aE

Formulas for the second term appear in the following section.

Those for the first term are approximated as

21
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3 log
3aj

L
B (exp a

i
)(I - c

i
q

) E (;d - i
qi
Pd )Wd (X, - bj) ,

K

(4.3)

a 1 AL -D(1 - c ) (;d FT P )Wd a 2i dsii38i
q

3 log L , f: ;,,. 0 NI0
3y

C4 ,.. Lnj- Amicirdii.ci io

i J q 4

where Nqj and ;
qi

are given in (3.6) and (3.7) and

Wqj d d- Ep* (1 - P* )]/rP
qi

(I - Pd )]

with

Pqj cj + (1 - cj;T[Daj(Xk - b1)]

and

Pqj T[Daj(Xk - bj)] .

(4.4)

(4.5)

Given Nqj and ;cd, the equations (4.1) corresponding to

parameters of different items are independent. This means that

the M-step task of finding zeros of (4.2), along with additional

22
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Lindley equations for examinee- and possibly item-population

parameters, need not address all 3n equations for item parameters

simultaneously. Zeros for the parameters of a given item may be

obtained rapidly by methods such as Newton-Raphson iterations, which

require second derivatives of the log posterior, or Davidon-

Fletcher-Powell iterations, which do not.

Structures on Item Parameters

Let the prior distribution on the ;arameters for item j be

given by Ej = (xj,Evyj) MVN(h,y, where 11c mg (pa,110,11y)

Hence (ii ,y plays the role of the item population parameter n

in the more general notation of the preceding section. Assuming

independence over items, the joint prior density of item parameters

is then given by

a Iy-n/2
II exp{- 2 (Ej h)} (5.1)

j

and the log prior density by

log p(OuyIE) = - 2 log 1y - E (&. - pr)'E1Ui -

(5.2)

23
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The partial derivatives of (5.2) with respect to the parameters for

item j are obtained as

a log p( )

1 i2 13
-0E (ii - pa) - at (Ei - pa) - OE (Yj - Py)

21 22 23
-at (3i - pa) - at (Ei - pa) - aE (Yj Ily)

31 32 3
at (xj - pa) - at (0j - Po) - aE (Yj - Py)

(5.3)

These terse are added to the partial derivatives of the log

likelihood (4.3)-(4.5) and the results set to zero to give the

Lindley equations for the parameters of item j.

In IRT models with independent unimodal prior distributions

on item parameters, the contribution of prior information in the

Lindley equation for a given parameter depends upon its distance

from the center of the distribution of parameters of its same type.

That is, parameters of a given type "shrink" toward a single point,

namely the mean of parameters of that type, by amounts inversely

proportional to the information available each individually.

24
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It will be seen in (5.3) that under the structure proposed here,

the contribution of the prior also depends on the distance of the

item's parameters of other types from the centers of their

respective populations. Parameters of a given type now shrink

toward a plane, namely their conditional expectations given the

values of the items' parameters of other types.

Let us suppose further that (ut,Et) follows the natural

conjugate prior distribution for the mutlivariate normal, namely

multivariate normal for u giver. E ar..1 inverted Wishart for E
t t t

(Ando and Kaufman, 1965):

9E t

) 1Et -11011+1)/

P 2 L

2 r(- _ - -)b
. t

+ tr E, 1H]}

whence

log p(licy = - (m + 1)/2 loglY

1 , -1k, , 1

2

-1

2
y u y b - tr E

t t .t t t
)

.t

25

(5.4)

(5.5)
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Here b and m is a scalars (m > 2p for a pr'per distribution under

the p-parameter IRT model), yt is a vector, and H is a 3-by-3

positive symmetric matrix--all to be specified in such a way as to

H corresponds to the covariance of m - p values of t and 5%

corresponds to the average of the b values of t.

the indeterminacies of scale and origin in the two- and three-

parameter models can be conveniently resolved at this point by

specifying that p(uvEt) is null everywhere except where ua in 0

and us O. Only the latter constraint enters into the one-

parameter model.

If u and E are to be estimated jointly with t and r, partial

derivatives must first be obtained for all terms in the log

posterior in which they appear, namely log pqjtcy (5.2) and

log p(u ,E ) (5.5):

a log p(E lucIt) a log p(ut,It)

30 3u

1 -1
{E b(ut u)}j

26

(5.6)
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log palticEt) 8 log p(licy

3E 3E
.t .t

T
1 1

+ m + 1) It + S + n(! tt)(!
:

b(lit Tt)(tt //)E1

c- n1

"J

S ag E (t C)(t -

Equating to zero and stmplifying yields the Lindley equations

27

(5.7)

(5.8)

(5.9)
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+ byt

(5.10)u 0
-E n + b

E (n + m + 1)-1(S + n(C - U )(C U )1

+ b(u - y '01 y 14) . (5.11)

A familiar theme in Bayestan estimation appears in (5.10), where a

mean is estimated as a weighted average of a sample mean and a prior

mean. It should be pointed out that E in (5.8) will generally not

be equal to the :Ample mean of the item parameter estimates that

would hftve been obtained under joint maximum likelihood (JILL)

estimation. This is because the item parameters ti are being

estimated at the same time, and each is shrinking back from its JMI,

value in inverse proportion to the amount of information about it;

items therefore contribute toward the estimation of the item

population mean in direct proportion to the amount of information

about them.

28
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To emulate maximum likelihood estimation of u
E

and E
E,

again

jointly with E and t, one may specify that H 0 and m is 2, and

omit the quadratic term involving yc in and after (5.4). This gives

an improper diffuse prior, justifyable along the lines of invariance

with respect to reparameterization (Jeffreys, 1961). The partial

derivatives and Lindley equations simplify in obvious ways.

If modal values of E and T marginalized with respect to u
E

and
.

and E
E

are desired, these latter parameters may be integrated out

and then Lindley equations for item parameters modified in the

following manner. Focusing on the relevant terms of the posterior,

we can write

1U
'E

) p(U E )

1E0-(114n14)/2 exp{ -} tr EZiES + H + n( - U0a -

+ b(U y
t
)(u - Y )1) (5.12)

Integration over E yields q multivariate-t distribution for h

(Ando and Kaufman, 1965):



where

and
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1)1% + ni

b+n

S +11

n + 1
nb

2
(y

t
- 0(y

t
0'

- -
(n + b)
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By using the constant of integration for the multivariate-t, e

obtain for the marginal distribution of t the following quantity:

p(0 a !c11/2

The terms to be added to the partial derivative of the log marginal

likelihood to obtain a Lindley equation for t , now marginalized with

respect to p
t

and Et, become
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a log p(t) C1
! It

---
n + 1 j

+ n 4m

This result is similar in form to (5.3), the contribution when pt and

Et are estimated jointly with F.
. -

Structures on Examinee Parameters

This section presents details for two types of prior

distributions on examinee parameters t, namely a nonparameteric prior

in the form of a histogram and a mixture of homoscedastic normal

distributions in unknown proportions. The latter choice includes

the familiar standard normal prior as a special case.

Recalling the form of the posterior distribution for F, n, and

T, or

p(t ,T 11D ,U) { I Loo,e,op(eit) de} {p(t)} {p(tin)p(n)}

(6.1)

we note that (1) contributions to the Lindley equations for t come
NO

from the marginal likelihood and from its prior and (2) these

contributions are the same regardless of whether n is being
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estimated jointly or integrated out. Both partial derivatives and

Lindley equations for T are presented here, the former because they

are needed to approximate the information matrix and the latter

because the partial derivatives often simplify after being equated to

zero. Detailed calcdlations of the contributions from the marginal

likelihood are omitted, as they may be found in Mislevy (1984).

A nonparametric solution: If p(6 It) is a smooth continuous density,

it may be approximated by a discrete distribution over a finite

number of points X , q 1, Q Letting pq denote the density

at point X , we approximate the log marginal likelihood as

where

N

log L(UID,t,t) a E lag h(ui)

Q
h(u ) E L(u Id X ,Op

q q
(11

(6.2)

The continuous density p(e IT) is thus replaced by a multinomial

distribution with parameters pl,...,pQ_I, with
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Q-1

pQ = 1 - E pq .

q=1

It can be shown that the partial derivative of (6.2) with respect

to pq is

a 3p
q i

. 1-
n (u )[L(u Id X

q'
E) - L(u Id ,X

Q
,E)1

The natural conjugate prior for the multinomial is the

Dirchlet distribution, which takes the following form:

Mk -1

P(P1 °°°°° PQIlmi ''''' mc)
a

n Pk

which implies that

' log
p(p1m) m - 1

-9 - q 1,...Q - 1

pq pq
P
Q

Prior belief about pl p
Q

are thus expressed as values of the

proportions (M1 - 1) /M +,...,(MQ 1)/M+, where M+ = EMq - 1.
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The forms given above provide first derivatives that lead to

a positive definite matrix of second derivatives, and are thereby

useful in estimating parameters by Newton or quasi-Newton algorithms

and in computing posterior variances. Simpler and more intuitively

appealing Lindley equations result, however, for all Q p's with

their sum restricted to unity:

where

+ (M - 1)

P +
N +M

E p(X
q
lu ,d ,,p)

E L(u Id ,X ,t,p)p
q q

q 1,...,Q , (6.4)

E E L(ui )pr

r i

The posterior density at point X , therefore, is a weighted average

of its prior density and the expectation of its density conditional

on the data and the densities themselves.

To obtain maximum likelihood estimates, we may take a uniform

diffuse prior with Mq E 1. An alternative diffuse prior with
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Mq E -1 may be preferred, however, on the grounds of robustness with

respect to the choice of quadrature points (Novick & Jackson, 1974,

p. 347 ff.).

It is possible to resolve the indeterminacies of the IRT model

at the point, by specifying that the distribution p(pIM) can take

nonzero values only when the following equality constraints are

satisfied:

and

EXp
q

qq

E X
2
p = 1

q
qq

Values of M specified in an informative prior should satisfy these

constraints as well.

A mixture of normal ,components. Suppose that the distribution

is a mixture of K normal components, with means p =

and common variance o
2

. Let p = (p1,...00 be the unknown

proportions of the mixture. Define the marginal probability of

response pattern u given and t (p,p,o
2
) as
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The log marginal likelihood for N examinees is then written as

log L(UID,t,T) = E log h(ui) . (6.5)

Approximating integration by summation over a fixed grid of

equally-spaced quadrature points -X,...,XQ9

where

log L(UID,E,t) E log E pk E L(111.13yfk(N)
i k q

L(ui IX
q
) = L(u

1
Id

i'
X g T) .
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Taking as the parameters specifying proportions,

partial derivatives of (6.5) are then obtained as

and

where

log L -1 R 1 R
apk, Pk kq Kq ,

,

(6.6)

log L a-2 R
q "

(6.7)

log L
+ 1
----E E N (Xq - 2

aa
2

20
2

2a
4
k q

kq
E h-1(u )p

k
L(u IX

q
)f
k
(X

q
) .

(6.8)

A natural conjugate prior for T is Dirichlet-normal-inverse
CO

gamma:
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2 Mk
-1

-(1k Yk)
2

p(p,p,a )(6 { H p
k

}{ H exp [

2
])

2a

{a
-(v/2+1)

exp (
2a

-(Pk yk)
log p(p,p,a

2
) E (4k - 1) log pk + E

k 2a
2

2

(6.9)

- (v/2 + 1) log a - (8/202) . (6.10)

Here M, y, v, and s are the parameters of the prior distribution,

to be supplied by the user. M can be thought of as the number of

examinees in each of the components from a sample of size M
+

E Mk - 1; y can be thought of as anticipated locations for the

means of the components. v and s are the parameters of the

inverted gamma distribution, possibly more easily specified after
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one has in mind a mean and variance of such a distribution that

incorporates prior belief about o2:

and

2 mean
2

v +4
variance

mean variance
s

2(mean + variance
2

)

The indeterminacies of the IRT model can also be resolved at

this point, by specifying that the total mean and withincomponent

variance take specified values, say 0 and 1. That is, p(r) is zero

except where

and

E PkPk °
k

a 2 a 1
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When K 1, a standard normal density is effectively specified for e

by this procedure.

Lindley equations are now obtained as the sums of partial

derivatives of the log marginal likelihood (6.5) and the log prior

(6.10). Again writing equations in terms of K p's constrained to a

sum of one, we obtain

and

+ (Mk 1)

Pk'
N +M

Pk
E + 1

E RkqXq Yk
SL---------___

E E Rk (X Pk)

2

E (Pk Yk)
2

802 .kqqqk
N + (v/2 + 1)

(6.11)

(6.12)

(6.13)

A diffuse prior may be obtained from (6.9) by omitting the term

involving p and setting ML = 1, s - 0, and v 0. Partial

derivatives and Lindley equations simplify in obvious ways.
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A Numerical Example

Satisfactory procedures for item parameter estimation have been

available for some time for both large and small samples under the

one-parameter logistic (Basch: IRT model and for large samples of

both persons and items under the three-parameter logistic (Birnbaum)

IRT models. The same cannot be said about small samples under the

three-parameter model, and it is to tnis problem we apply the

procedures of tne proceeding sections.

A perusal of the recent literature on Bayesian item pm-meter

estimation suggests that such efforts were motivated not so much tt

the larsuit of mOmimum mean squared error or by a conviction thaL

all unknowns should be expressed in probabilistic terms, but rather

by a more practical desire to ubtain "reasonable" item parameter

estimates in particular, finite ones.

Lae essential difficulty with parameter estimation under the

three-parameter model is that the parameters of a given item are

often poorly determined by the data at hand; appa)ently discrepant

triples (a, b, c) can trace similar response curves in the region of

the ability scale where the sample of examinees is to be found.

Such poor resolution is manifest as a likelihood surface nearly flat

along one or more dimensions, yielding unstable maximum likelihood

estimates (MLE's). A trivially higher likelihood may be produced,

for example, by taking a t.articular item's values of a and c to be

200 and .6 rather than the more reasonable values of 2 and .25.
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Extreme and infinite parameter estimates can be avoided by

using a single-stage Bayesian prior, but not without introduc'ng an

additional hazard. A fully-specified prior will indeed have the

desired effect of pulling extreme but ill-determined values ...,ward

the center of the prior distribution. If the prior has been poorly

specified, however, this center may be far from the actual center of

the parameter vaides of interest; estimates of all such parameters

will be biased in the same direction. These "ensemble biases" have

serious implications for subsequent estimation of examinee individual

or population parameters, for while such estimation is resistant to

random errors in item parameters, it reflects in direct measure

systematic, errors In a's and b's, and, through the systematic errors

in a's and b's they imply, systematic errors in c's as well.

As a means of overcoming these difficulties, one may introduce

the second-stage prior distributions. Experience suggests that item

responses of small samples of examinees (less than 2000, say) to

short tests (less than 40 items) provide sufficient information to

approximate the central tendencies or item parameters through pt,

so that its prior may be diffuse, but not to estimate the

convariance matrix E so that its prior must be informative. The

BILOG computer program (Mislevy & Bock, 1982), for example, fixes Et,
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at user-specified values, so that item parameters shrink toward the

center of their distribution at c rate cent lolled by the user, but

that center is estimated from the data.

Some of these effects can be illustrated with an analysis of a

simulated data set, with responses of 1000 simulated examinees

selected at random from a unit normal population to 20 test items.

The parameters of the items were also generated from independent

normal distributions; for the a .1 log a, the mean and variance were

0.0 and .5; for 0 g. b, .5 and 1.0; and for y logit c, -1.39 and

.16. Item parameters were estimated in two ways:

1. Marginal maximum likeihood (MML). Using the BILOG computer

computer program, the following likelihood equation was

maximized with respect to item parameters t and weights p
q

at ten equally spaced quadrature points Xq between -4 and

+4:

L II E p(uila,o,y,xc)pq

n I p(u la,60,0) g(e) de
e

2. Bayes estimation. To obtain Bayes modal estimates of item

parameters, a posterior of similar form was maximized:
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p(a,0 y,p
9
p IU,E ) II E ) Pq

, t r q

p(a,S,T(114,Eg)

This is the "floating priors" option of BILOG; the mean

vector p
g

of item parameters is estimated concurrently

with the item parameters themselves, but a prior covariance

matrix is supplied by the user. BILOG defavlt values of

1.00, 4.00, and 0.25 were employed for Ems, .10, and En.

(These values are intended to lo1 sufficiently mild to

affect most parameters minimally when the data supply

information about them, but keep all estimates within

"reasonable" ranges.) Off-diagonal elements of E
g
were

set at zero.

The value of -2 log L under the MML solution was found to be

22,295, while the value obtained by substituting the Bayes estimates

into the likelihood function was 22,300. This trivial difference

implies that the Bayes estimates explain the observed data nearly

as well as MML estimates.
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Indeed, with a few exceptions (more on these below), MML and

Bayes estimates of a and 0 were quite similar, with a's tending

to be shrunken slightly toward their estimated mean of .21.

Estimates of asymptotes were more significantly affected, as

seen in Figures 1 and 2. These figures plot generating and

estimated values of c, MML and Sages solutions respectively, against

generating values of the quantity b 2/a, a hueristic index based

on the observation that less information is obtained about c as

items become easier or less reliable (Lord, 1975). Items with high

values of this index are seen to have estimated c's near their

generating values under both estimation procedures, but certain

items with low values are regressed strongly toward the estimated

mean of about .21. To anthropomorphize, we might say that the

Bayes solution felt true c's for these items were probably more

similar zo the c's that it could estimate well than to the atypical

and unstable MML values based on sparse information.

Insert Figures 1 and 2 about hereOMM
It is instructive to consider the estimated a'a and b's of

these items, to see how item parameters can "trade off" against one

another. Values for the six items showing the largest differences

between MML and Bayes estimated c's are shown in Table 1. The

following results may be observed:
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OININICIII.
Insert Table 1 about here4101.1111

Item 1 is relatively easy, so that the increased c value

obtained by the Bayes solution has little effect on the estimated

a and b. As it turns out, the generating c for this item was lower

and more atypical than either MMLI or Bayes obtained, but since most

of the examinees were well above the chance level, it did not really

matter. Item 4 is similar, in that a large degree of shrinkage of

the estimated c on an easy items has little effect on the other

parameters. This time (and, the model assumes, more often than not)

the Bayes estimate is closer to the true value.

Item 2 shows an extremely high c under NHL shrunken back by

Bf.yes procedures to a lower, more nearly correct, value. While the

estimated a's are similar, the estimated b under Bayes is

correspondingly reduced somewhat, again closer to its true value.

The point here is that spuriously over-estimated c's induce

spuriously over-estimated b's, a result guarded against in two ways

when priors are enforced on both parameters.

Items 3 and 6 show items with high MML a estimates being

shrunken back toward their mean under Bayes, and extreme c's

correspondingly regressed. Both items are relatively easy, but

it is seen that pulling down a spuriously high c (item 3) affects

b whereas increasing a spuriously low c (item 6) does not.
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Finally, item 5 shows an atypically low c regressing toward

its mean, causing a corresponding shift in elm from its mean.

The estimated b's are similar under both models.

Discussion

Maximum likelihood (ML) estimation is justified by its

asymptotic properties alone. Taking the data for each parameter at

face value no matter how sparse, ML will often yield infinite or

implausible parameter estimates in small samples. Thissen and

Wainer (1982) suggest that at least for certain parameters, a sample

size of 10,000 examinees can be a small sample in the context of the

three-parameter logistic IRT model; estimation procedures therefore

stand to profit from the incorporation of additional information.

The hierarchical Bayesian framework given in the present article

supplied such informatics in a very modest way. In effect, it

quantifies beliefs such as

1. if the items for Which we can reasonably estimate c's

yield values between .1 and .3, then the items for which

less information is available probably has c's in this

range as well;

2. if most of the items have a's between 1/3 and 3, then the

a for this particular item is probably not 957;

3. if all of the other examinees seem to have 6's between -3

and +3, the 6 for this examinee is probably not 4, even

though he did correctly answer both items he was presented.
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Such strictures are implied by the assumption that parameters

belong to respective well-behaved populations, the higher-level

parameters of which little or nothing need be assumed. The effect

of this so-called assumption of exchangeability is to "shrink"

estimates from where they would have been under ML toward the

centers of the respective populations. (This is always true for

unimodal prior distributions, though with multimodal priors certain

parameters may be shrunk towa-d local modes rather than the global

mode.)

When it is not reasonable to assume a common population,

however, exchangeability is violated. Graphic examples of the

absurdities that can result are suggested by proponents as well as

critics of "shrunken" estimators. Should one expect to obtain

better estimates of the true batting averages of baseball players,

for instance, by including data on the price of wheat? The point is

that shrinking estimates toward a common center is justified only

when a common population best represents the extent of our prior

knowledge. The imposition of exchangeability across all units, and

estimation procedures that require it, are not strictly appropriate

when additional information differentiating the units is at hand.

It is in fact this latter case that typically prevails in

educational and psychological measurement. Already known, or

available more economically than responses from examinees, is

information from several sources:
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1. Cognitive processing requirements of items can be specified,

at least to some degree. Mental rotation items, for

example, can be characterized in terms of the number of

degrees the target object has been rctated; differential

calculus items, an example discussed by Fischer (1973),

can be characterized in terms of the derivations rules they

demand for solution.

2. Surface features of items can be identified which can

suggest a need for distinguishing subpopulations of items.

Free-response and multiple-choice items in the same test

may be distinguished, for example, as may be analogy items .

from vocabulary items in the SAT.

3. Item content can be often be identified. In a test of

reading comprehension, one might wish to differentiate items

associated with narrative passages, poetry, and documents.

4. Quantitative information, such as percents-correct from

pretesting may be available.

5. Examinees may be differentiated with respect to

qualitative features such as sex, educational program,

or racial/ethnic background; or with respect to quantitative

variables such as scores on previously-administered tests.

More comprehensive Bayesian procedures would provide for the

utilization of such information. They would also provide for means
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of determining Shen such information makes material differences in

item and population parameter estimates.
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Tat .e 1

Generating and Estimated Parameters of Selected Items

a

Item True MML Bayes True MML Baye9 True MML Bayes

1 1.1 1.2 1.3 -.4 -.4 -.3 .11 .14 .17
2 .5 .4 .4 .2 .8 .6 .19 ,28 .24

3 .9 1.5 1.1 -1.3 -.6 -1.0 .26 .4 .27
4 1.4 1.2 1.4 -1.0 -1.2 -1.0 .17 .03 .19
5 1.5 2.2 2.4 -.3 -.2 -.2 .13 .12 .14
6 2.5 4.5 3.4 -1.1 -1.2 -1.1 .18 .03 .18
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V

-Le As

b - 2/a

generating value of c

o estimated value of c

Figure 1. Generating and MML estimated values of c, against
generating b - 2/a.
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a

.Lo as

b 2/a

generating value of c

o estimated value of c

Figure 2. Generating and Bayes estimated values of c, against
generating b - 2/a.
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