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On Learning the
Past Tenses of English Verbs

DAVID E. RUMELNART and JAMES L. McCLELLAND

THE ISSUE

Scholars of language and psycholinguistics have been among the first to stress the importance
of rules in describing human behavior. The reason for this is obvious. Many aspects of
language can be characterized by rules, and the speakers of natural languages speak the language
corf-ectly. Therefcre, systems of rules are useful in characterizing what they will and will not
say. Though we all make mistakes when we speak, we have a pretty good ear for what is right
and what is wrongand our judgements of correctness--or grammaticalityare generally even
easier to characterize by rules than actual utterances.

On the evidence ti at what we will and won't say and what we will and won't accept can be
characterized by rules, it has been argued that, in some sense, we "know" the rules of our
language. The sense in which we know them is not the same as the sense in which we know
such "rules" as "i before e except after c," however, since we need not necessarily be able to
state the rules explicitly. We know them in a waj that allows us to use them to make judge-
ments of grammaticality, it is often said, or to speak and understand, but this knowledge is not
in a form or location which permits it to be encoded into a communicable verbal statement.
Because of this, this knowledge is said to be implicit.

So far there is considerable agreement. However, the exact characterization of implicit
knowledge is a matter of great controversy. One view, which is perhaps extreme but is
nevertheless quite clear, holds that the rules of language are stored in explicit form as proposi-
tions, and are used by language production, comprehension, and judgment mechanisms. These
propositions cannot be described verbally only because they are sequestered in a specialized
subsystem which is used in language processing, or because they are written in a special code
that only the language processing system can understand. This view we will call the explicit,
inaccessible rule view.

On the explicit, inaccessible rule view, language acquisition is thought of as the process of
inducing rules. The lar.guagc mechanisms are thought to include a subsystemoften called .he
leckquage acquisition device (LAD)whose business it is to discover the rules. A considerable
amount of effort has been expended on the attempt to describe how the LAD might operate,
and there arc a number of different proposals which have been laid out. Generally, though,

5
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2 RUMEL1L AT and MCCLELLAND

they share three assumptions:

The mechanism hypothesizes explicit, inaccessible rules.

Hypotheses are rejected and replaced as they prove inadequate to account for the utter-
ances the learner hears.

The LAD is presumed to have innate knowledge of the possible range of human
languages and, therefore, is presumed to consider only hypotheses within the con-
straints imposed by a set of linguistic universals.

The recent book by Pinker (1984) contains a state-of-the-art example of a model based on this
approach.

We propose an alternative to explicit, inaccessible rules. We suggest that lawful behavior
and judgements may be produced by a mechanism in which there is no explicit representation
of the rule. Instead, we suggest that the mechanisms that process language and make judge-
ments of grammaticality are constructed in such a way that their performance is characterizable
by rules, but that the rules themselves are not written in explicit form anywhere in the mechan-
ism. An illustration of thi.; view, which we owe to Bates (1979), is provided by the honey-
comb. The regular structure of the honeycomb arises from the inwraction of forces that wax
balls exert on each other when compressed. The honeycomb can be described by a rule, but
the mechanism which produces it does not contain any statement of this rule.

In our earlier work with the interactive activation mode! of word perception (McClelland &
Rumelhart, 1981; Rumelhart & McClelland, 1981, 1982), we noted that lawful behavior emerged
from the interactions of a set of word and letter units. Each word unit stood for a particular
word and had connections to units for the letters of the word. There were no separate units
for common letter clusters and no explicit provision for dealing differently with orthographi-
cally regular letter sequencesstrings that accorded with the rules of Englishas opposed to
irregular sequences. Yet the model did behave differently with orthographically regular non-
words than it behaved with words. In fact, the model simulated rather closely a number of
results in the word perception literature relating to the finding that subjects perceive letters in
orthographically regular letter strings more accurately than they perceive letters in irregular,
random Letter strings. Thus, the behavior of the model was lawful even though it contained no
explicit rules.

It should be said that the pattern of perceptual facilitation shown by the model did not
coirespond exactly to any system of orthographic rules that we know of. The model produced
as much facilitation, for example, for special nonwords like SLNT, which are clearly irregular,
as it did for matched regular nonwords like SLET. Thus, it is not correct to say that t' - model
exactly mimicked the behavior we would expect to emerge from a system which mak .use of
explicit orthographic rules. However, neither do human subjects. Just like the model, they
showed equal facilitation for vowelless strings like SLNT as for regular nonwords like SLET .

Thu. human perceptual performance seems, in this case at least, to be characterized only
approximately by rules.

Some people have been tempted to argue that the behavior of the model shows that we can
do without linguistic rules. We prefer, however, to put the matter in a slightly different light.
There is no denying that rules still provide a fairly close characterization of the performance of
our subjects. And we have no doubt that rules are even more useful in characterizations of
sentence production, comprehension, and grammaticality judgements. We would only suggest
that parallel distributed processing models may provide a mechanism sufficient to capture law-
ful behavior, without requiring the postulation of explicit but inaccessible rules. Put suc-
cinctly, our claim is that PDP models provide an alternative to the explicit but inaccessible
rules account of implicit knowledge of rules.

We can anticipate two kinds of arguments against this kind of claim. The first kind would
claim that although certain types of rule-guided behavior might emerge from PDP models, the
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models simply lack the computational power needed to carry out certain types of operations
which can be easily handled by a system using explicit rules. We believe that this argument is
simply mistaken. We discuss the issue of computational power of PDP models in Chapter 4.
Some applications of PDP models to sentence processing are described in Chapter 19. The
second kind of argument would be that the details of language behavior, and, indeed, the
details of the language acquisition process, would provide unequivocal evidence in favor of a
system of explicit rules.

It is this latter kind of argument we wish to address in the present chapter. We have
selected a phenomenon that is often thought of as demonstrating the acquisition of a linguistic
rule. And we have developed a parallel distributed processing model that learns in a natural
way to behave in accordance with the rule, mimicking the general trends seen in the acquisition
data.

THE PHENOMENON

The phenomenon we wish to account for is actually a sequence of three stags in the acquisi-
tion of the use of past tense by children learning English as their native tongue. Descriptions
of development of the use of the past tense may be found in Brown (1913), Ervin (1964), and
Kuczaj (1977).

In Stage 1, children use only a small number of verbs in the past tense. Such verbs tend to
be very high-frequency words, and the majority of these are irregular. At this stage, children
tend to get the past tense of these words correct if they use the past tense at all. For exam-
ple, a child's lexicon of past-tense words at this stage might consist of came, got, gave; looked,
needed, took, and went. Of these se. s verbs, only two are regularthe other five are generally
idiosyncratic examples of irregular verus. In this stage, there is no evidence of the use (I the
ruleit appears that children simply know a small number of separate items.

In Stage 2, evidence of implicit knowledge of a linguistic rule emerges. At this stage, chil-
dren use a much larger number of verbs in the past tense. These verbs include a few more
irregular items, but it turns out that the majority of the words at this stage are examples of the
regular past tense in English. Some examples are wiped and pulled.

The evidence that the Stagc 2 child actually has a linguistic rule comes not from the mere
fact that he or she knows a number of regular forms. There are two additional and crucial
facts:

The child can now generate a past tense for an invented word. For example, Berko
(1958) has shown that if children can be convinced to use rick to describe an action,
they will tend to say ricked when the occasion arises to use the word in the past tense.

Children now incorrectly supply regular past-tense endings for words which they used
correctly in Stagc 1. These errors may involve cithcr adding ed to the root as in corned
fierisdi, or adding ed to the irregular past tcnse torm as in canted NAmdl (Ervin, 1964;
Kuczaj, 1977).

Such findings have been taken as fairly strong support for the assertion that the child at this
stage has acquired the past-tense "rule." To quote Berko (1958):

If a child knows that the plural of witch is witches, he may simply have memorized the

I The notation of phonemes used in this chapter is somewhat nonstandard It is derived from the computer-
readable dictionary containing phonetic transcriptions of the verbs used in the simulations A key is given in Table
5



4 RUMELHART and MCCLELLAND

plural form. If, however, he tells us that the plural of gulch is gulches. we have evi-
dence that he actually knows, albeit unconsciously, one of those rules which the
descriptive linguist, too, would set forth in his grammar. (p. 151)

In Stage 3, the regular and irregular forms coexist. That is, children have regained the use of
the correct irregular forms of the past tense, white they continue to apply the regular form to
new wards they learn. Regularizations persist into adulthoodin fact, there is a class of words
for which either a regular or an irregular version are both considered acceptablebut for the
commonest irregulars such as those the cl'ild acquired first. they tend to be rather rare. At this
stage there are some clusters of exceptions to the basic, regular past-tense pattern of English.
Each cluster includes a number of words which undergo identical changes from the present to
the past tense. For example, there is a ing/ang cluster, an ing/ung cluster, an eel /it cluster, etc.
There is also a group of words ending in /d/ or /t/ for which the present and past are identical.

Table 1 summarizes the major characteristics of the three stages.

Variability and Gradualness

The characterization of past-tense acquisition as a sequence of three stages is somewhat
misleading. It may suggest that the stages are clearly demarcated and that performance in each
stage is sharply distinguished from performance in other stages.

In fact, the acquisition process is quite gradual. Little detailed data exists on the transition
from Stage 1 to Stage 2, but the transition from Stage 2 to Stage 3 is quite protracted and
extends over several years (Kuczaj, 1977). Further, performance in Stage 2 is extremely variable.
Correct use of irregular forms is never completely absent, and the same child may be observed
to use the correct past of an irregular, the base+ed form, and the past+ed form, within the
same conversation.

Other Facts About Past-Tense Acquisition

Beyond these points, there is now considerable data on the detailed types of en ors children
make throughout the acquisition process, both from Kuczaj (1977) and more recently from
Bybee and Slobin (1982). We will consider aspects of these findings in more detail below. For
now, we mention one intriguing fact: According to Kuczaj (1977), there is an interesting
difference in the errors children make to irregular verbs at different points in Stage 2. Early
on, regularizations are typically of the base+ xl form, like goed; later on, there is a large
increase in the frequency of past+ed errors, such as wented.

TABLE I

CHARACTERISTICS OF THE THREE STAGES
OF PAST TENSE ACQUISITION

Verb Type Stage 1 Stage 2 Stage 3

Early Verbs Correct Regularized Correct
Regular Correct Correct
Other Irregular Regularized Correct or Regularized
Novel Regularized Regularized

8 BEST COPY AVAllit..



LEARNING THE PAST TENSE 5

THE MODEL

The goal of our simulation of the acquisition of past tense was to simulate the three-stage
performance summarized in Table 1, and to see whether we could capture other aspects of
acquisition. In particular, we wanted to show that the kind of gradual change characteristic of
normal acquisition was also a characteristic of our distributed model, and we wanted to see
whether the model would capture detailed aspects of the phenomenon, such as the change in
error type in later phases of development and the change in difference in error patterns
observed for different types of words.

We were not prepared to produce a full-blown language processor that would learn the past
tenre from full sentences heard in. everyday experience. Rather, we have explored a very simple
past -tense learning environment designed to capture the essential characteristics necessary to
produce the three stages of acquisition. La this environment, the model is presented, as learn-
ing experiences, with pairs of inputsone capturing the phonological structure of the root
form of a word and the other capturing the phonological structure of the correct past-tense
version of that word. The behavior of the model can be tested by giving it just the root form
of a word and examining what it generates as its "current guess" of the corresponding past-tense
form.

Structure of the Model

The basic structure of the model is illustrated in Figure 1. The model consists of two basic
parts: (a) A simple patter,: associator network similar to those studied by Kohonen (1977; 1984;
see Chapter 2) which learns the relationships bc:wcen the base form and the past-tense form,
and (b) a decoding network which converts a featural representation of the past-tense form
into a phonological representation. Al: learning occurs in the pattern associator; the decoding
network is simply a mechanism for converting a featural representation which may be a near

Fixed
Encoding
Network

Pattern Associator Decoding/Binding
Modifiable Connections Network

Phonological
representation
of root form Wickelfeature

represent '.tion
of root form

FIGURE I. The basic structure of the model.

Wick eifeature
representation
of past tense

Phonological
representation
of past tense

9
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6 RUMELHART and MCCLELLAND

miss to any phonological pattern into a legitimate phonological representation. Our primaryfocus here is on the pattern associator. We discuss the details of the decoding network in theAppendix.

Units. The pattern associator contains two pools of units. One pool, called the input pool,is used to represent the input pattern corresponding to the root form of the verb to belearned. The other pool, called the output pool, is used to represent the output pattern gen-
erated by the model as its current guess as to the past tense corresponding to the root formrepresented in the inputs.

Each unit stands for a particular feature of the input or output string. The particularfeatures we used are important to the behavior of the model, so they are described in aseparate section below.

Connections. The pattern associator contains a modifiable connection linking each inputunit to each output unit. Initially, these connections are all set to 0 so that foere is noinfluence of the input units on the output units. Learning, as in other PPP models describedin this book, involves modification of the strengths of these interconnections, as describedbelow.

Operation of the Model

On test trials, the simulation is given a phoneme string corresponding to the root of a word.It then performs the following actions. First, it encodes the root string as a pattern of activa-
tion over the input units. The encoding scheme used is described below. Node activations arediscrete in this model, so the activation values of all the units that should be on to represent
this word are set to 1, and al! the others are set to 0. Then, for each output unit, the model
computes the net input to it from all of the weighted connections from the input units. Thenet input is simply the sum over all input units of the input unit activation times the
corresponding weight. Thus, algebraically, the net input to output unit i is

neti=Iajwij
I

where a, represents the activation of input unit j, and Ivo represents the weight from unit j tounit i
Each unit has a threshold, 0, which is adjusted by the learning procedure that we willdescribe in a moment. The probability that the unit is turned on depends on the amount thenet input exceeds the threshold. The logistic probability function is used here as in the

Boltzmann machine (Chapter 7) and in harmony theory (Chapter 6) to determine whether theunit should be turned on. The probability is given by

I) (ar = 1) =
1

1 +-;:iner -i5/7 (1)

where T represents the temperature of the system. The logistic function is shown in Figure 2.The use of this probabilistic response rule allows the system to produce different responses on
different occasions with the same network. It also causes the system to learn more slowly sothe effect of regular verbs on the irregulars continues over a much longer period of time. Asdiscussed in Chapter 2, the temperature, 7 , can be manipulated so that at very high tempera-
tures the iaponse of the units is highly variable; with lower values of T , the units behave more
like linear threshold units.

Since the pattern associator built into the model is a one-layer net with no feedback connec-tions and no connections from one input unit to another or from one output unit to another,

BEST COPY AVAILABLE 10
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FIGURE 2. The logistic function used to calculate probability of activation. The x-axi.; shows values of
net, ei/T , and the y-axis indicates the corresponding probability that unit i will be activated.

iterative computation is of no benefit. Therefore, the processing of as input pattern is a sim-
ple matter of first calculating the net input to each output unit and then setting its activation
probabilistically on the basis of the logistic equation given above. The temperature T only
enters in in setting the variability of the output units; a fixed value of T was used throughout
the simulations.

To determine how well the model did at producing the correct output, we simply compare
the pattern of output Wickelphone activations to the pattern that the correct response would
have generated. To do this, we first translate the correct response into a target pattern of
activation for the output units, based on the same encoding scheme used for the input units.
We then compare the obtained pattern with the target pattern on a unit-by-unit basis. If the
output perfectly reproduces the target, then there should be a 1 in the output pattern wherever
there is a 1 in tne target. Such cases are called hits, following the ce7--;ntions of signal detec-
tion theory (Green & Swets, 1966). There should also be a 0 in the output whenever there is a
0 in the target. Such cases are called correct rejections. Cases in which there are is in the out-
put but not in the target are called false alarms, and cases in which there are Os in the output
which should be present in the input are called misses. A variety of measures of performance
can be computed. We can measure the percentage of output units that match the correct past
tense, or we can compare the output to the pattern for any other response alternative we might
care to evaluate. This allows us to look at the output of the system independently of the
decoding network. We can also employ the decoding network and have the system synthesize a
phonological string. We can measure the performance of the system either at the featural level
or at the level of string of phonemes. We shall employ both of these mechanisms in the
evaluation of different aspects of the overall model.

11 BEST COPY AVAILABLE



8 RUMELHART and MCCLELIAiO

Learning

On a learning trial, the model is presented with both the root form of the verb and the tar-
get. As on a test trial, the pattern associator network computes the output it would generate
from the input. Then, for each output unit, the model compares its answer with the target.
Connection strengths are adii.sted using the classic percepiron convergence procedure (Rosen-
blatt, 1962). The perceptron convergence procedure is simply ti discrete variant of the delta rule
presented in Chapter 2 and discussed in many places in this book. The exact procedure is as
follows: We can think of the target as supplying a teaching input to each output unit, telling
it what value it ought to hrie. When the actual output matches the target output, the model
is doing the right thing and so none of the weights o. .he lines coming into the unit are
adjusted. When the computed output is 0 and the target says it should be 1, we want to
increase the probaLlity that the unit will be active the next time the same input pattern is
presented. To do this, we increase the weights from all of the input units that are active by
small 'Amount r. At the same time, tte threshold is also reduced by n. When the computed
outpvt is 1 and the target says it should be 0, we want tt. decrease the probability that the unit
will be active the next time the tame input pattern is presented. To do this, the weights from
all of the input units that are active are reduced by 1, and the threshold is increased by i. In
all of our simulations, the value of is simply set to 1. Thus, each change in a weight is a unit
change, either up or down. For nonstochastic units, it is well known t''xt the perceptron con-
vergence procedure will find a set of weights which will allow the model to get each output
unit correct, provided that such a set of weights exists. For the stochastic case, it is possible
for the learning procedure to find a set of weights that will make the probability of error as
low as desired. Such a set of weights exists if a set of weights exists that will always get the
right answer for nonstochastic units.

Learning Regular and Exceptional Patterns in a Pattern Associater

In this section, we present an illustration of the behavior of a simple pattern associator
model. The model ;- a scaled-down version of the main simulation described ie the next sec-
tion. We describe the scaled-down version first because in this model it is possible to actually
examine the matrix of connection weights, and from this to see clearly how the model works
and why it produces the basic three-stage learning phenomenon characteristic of acquisition of
the past tense. Various aspects of pattern associator networks are described in a number of
places in this book (Chapters 1, 2, 8, 9, 11, and 12, in particular) and elsewhere (Anderson,
1973, 1977; Anderson, Silverstein, Ritz, & Jones, 1977; Kohonen, 1977, 1984). Here we focus
our attention on their application to the representation of rules for mapping one set of pat-
terns into another.

For the illustration model, we use a simple network of eight input and eight output units
and a set of connections from each input unit to each output unit. The network is illustrated
in Figure 3. The network is shown with a set of connections sufficient for associating the pat-
tern of activation illustrated on the input units with the pattern of activation illustrated on the
output units. (Active units are darkened; positive and negative connections are indicated by
numbers written on each connection). Next to the network is the matrix of connections
abstracted from the actual network itself, with numerical values assigned to the positive and
negative connections. Note that each weight is located in the matrix at the point where it
occurred in the actual network diagram. Thus, the entry in the ith row of the jth column
indicates the connection w11 from the jth input unit to the ith output unit.

Using this diagram, it is easy to compute the net inputs that will arise on the output units
when an inpu! pattern is presented. For each output unit, one simply scans across its rows and
adds up all the weights found in columns associated with active input units. (This is exactly

12
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+15 . +15 . . +15

15 . 15 . . 15
+15 . +15 . +15

15 15 15
15 . 15 . . 15
r15 . +15 . . +15

15 . 15 . . 15
15 . 15 . . 15

FIGURE 3. Simple network used in illustrating basic properties of pattern mandator networks; excitatory and inhi-
bitory connections needed to allow the active input pattern to produce the illustrated output pattern are indicated
with + and . t.1..xit to the network, the matrix of weights indicating the strengths of the connections from each in-
put unit to each output unit. Input units are indexed by the column they appear in; output units are indexed by
row.

what the simulation program does!) The reader can verity that when the input pattern illus-
trated in the left-hand panel is presented, each output unit that should be on in the output
pattern receives a net iaput of +45; each output unit that should be off receives a net input of
45.2 Plugging these values into Equation 1, using a temperature of 15,3 we can compute that
each output unit will take on the correct value about 95% of the time. The reader can check
this in Figure 2; when the net input is +45, the exponent in the denominator of the logistic
function is 3, and when the net input is 45, the exponent is --3. These correspond to activa-
tion probabilities of about .95 and .05, respectively.

One of the basic properties of the pattern associator is that it can store the connections
appropriate for mapping a number of different input patterns to a number of different output
patterns. The perceptron convergence procedure can accommodate a number of arbitrary asso-
ciations between input patterns and output patterns, as long as the input patterns form a
linevly in :ependent set (see Chapters 9 and 11). Table 2 illustrates this aspect of the model.
The first two cells of the table show the connections that the model learns when it is trained
on each of the two indicated associations separately. The third cell shows connections learned
by the model when it is trained on both patterns in alternation, first seeing one and then seeing
the other of the two. Again, the reaaer can verify that if either input pattern is presented to a
network with this set of connections, the correct corresponding output pattern is recon-
structed with high probability; each output unit that should be on gets a net input of at least

2 In the examples we will be considering in this section, the thresholds of the units are fixed at 0. Threshold terms
add ar extra degree of freedom for each output unit and allow the unit to come on in the absence of input, but they
are otherwise inessential to the operation of the model. Computationally, they are equivalent to an adjustable
waght to an extra input unit that is always on.

3 For the actua. simulations of verb learning, we used a value of T Nati! to 200. This means that for a fixed value
of the weight on an input line, the effect of that line being active on the unit's probability of firing is much lower
than it is in these illustrations. This is balanced by the fact that in the verb learning simulations, a much luger
number of inputs contribute to the activation of each output unit. Responsibility for turning a unit on is simply
more distributed when larger input patterns are used.

13
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10 RUMELHART and MCCLELLAND

TABLE 2

WEIGHTS ill THE 8-UNIT NETWORK
AFTER VARIOUS LEARNING EXPERIENCES

A. Weights acquired in learning B. Wei shta acquired in leaning
(2 4 7) (: . 5) (3 4 6) - (3 6 7)
15 15 15 . -16 -16 . -16

-16 -16 -16 . -17 -17 -17
-17 -17 -17 . 17 17 17 .

16 16 16 . -16 -16 -16 .

-16 -16 -16 . -17 -17 -17 .
17 17 17 . 16 16 16 .

-16 -16 -16 . 17 17 17 .
-17 -17 -17 . -17 -17 -17

C. Weights acquired in learning
A and B together

D. Weights acquired in learning
the rule of 78

24 -24 -24 24 . 61 -37 -37 -5 -5 -3 -6 -7
-13 -13 -26 -13 -13 . -35 60 -38 -4 -6 -3 -5 -8
-23 24 1 24 -23 . -39 -35 61 -4 -5 -4 -7 4
24 -23 -1 -25 24 . -6 -4 -5 59 -37 -37 -8 -7

-13 -13 -26 -13 -13 . -5 -5 -4 -36 60 -38 -7 -7
. 13 13 26 1? 13 . -5 4 -6 -37 -38 60 -8 -7

-25 24 -1 24 -25 . 1 1 . . -50 51
-12 -13 -25 . -13 -12 . -1 -2 1 . 49 -50

+45, and each output unit that should be off sets a net input below 45.
The restriction of networks such as this to linearly independent sets of patterns is a severe

one since there are only N linearly independent patterns of length N. That means that we
could store at most eight unrelated associations in the network and maintain accurate perfor-
mance. However, if the patterns all conform to a general rule, du; capacity of the network can
be greatly enhanced. For example, the set of connections shown in cell D of Tillc 2 is capable
of processing all of the patterns defined by what we call the rule of 78. The rule is described
in Table 3. There are 18 different input/output pattern pairs corresponding to this rule, but
they present no difficulty to the network. Through repeated presentations of examples of the
rule, the perceptro,, convergence procedure learned the set of weights shown in cell D of Table
2. Again, the ma, . can verify that it works for any legal association fitting the rule of 78.
(Note that for this example, the "regular" pairing of (14 7) with (1 4 8) was used rather than
the exceptional mapping illustrated in Table 3).

TABLE 3

THE RULE OF 78

Input patterns consist of one active (1 2 3)
unit from each of the following sets: (4 5 6)

(7 8)

The output pattern paired with a given The same unit from (1 2 3) The same
input pattern consists of: unit from (4 5 6) The other unit from

(78)

Examples:

An exception:

247. 2 4 8
168. 1 6 7
3 5 7 3 5 8

147. 1 4 7

BEST COPY AVAILABLE 14
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We have, then, observed an important property of the pattern associator: If there is some
structure to a set of patterns, the network may be able to learn to respond appropriately to all
of the members of the set. This is true, even though the input vectors most certainly do not
form a linearly independent set. The model works anyway because the response that the model
should make to some of the patterns can be predicted from the responses that it should make
to others of the patterns.

Now let's consider a case more like the situation a young child faces in learning the past
tenses of English verbs. Here, there is a regular pattern, similar to the rule of 78. In addition,
however, there am exceptions. Among the first words the child learns are many exceptions, but
as the child learns more and more verbs, the proportion that are regular increases steadily. For
an adult, the vast majority of verbs are regular.

To examine what would happen in a pattern associator in this kind of a situation, we first
presented the illustrative &unit model with two pattern-pairs. One of these was a regular
example of the 78 rule [(2 5 8) (2 5 7)]. The other was an exception to the rule
[(1 4 7) (1 4 7)]. The simulation saw both pairs 20 times, and connection strengths were
adjusted after each presentation. The resulting set of connections is shown in cell A of Table
4. This number of learning trials is not enough to lead to perfect performance; but after this
much experience, the model tends to get the right answer for each output unit close to 90 per-
cent of the time. At this point, the fact that one of the patterns is an example of a general
rule and the other is an exception to that rule is irrelevant to the model. It learns a set of con-
nections that can accommodate these two patterns, but ii cannot generalize to new instances
of the rule.

This situation, we suggest, characterizes the situation that the language learner faces early on
in learning the past tense. The child knows, at this point, only a few high-frequency verbs, and
these tend, by and large, to be irregular, as we shall sec below. Thus each is treated by the net-
work as a separate association, and very little generalization is possible.

But as the child learns more and more verbs, the proportion of regular verbs increases. This
changes the situation for the learning model. Now the model is faced with a number of exam-
ples, all of which follow the rule, as well as a smattering of irregular forms. This new situation
changes the experience of the network, and thus the pattern of interconnections it contains.

TABLE 4

REPRESENTING EXCEPTIONS: WEIGHTS IN THE 8-UNIT NETWORK

A. After 20 exposures to B.
(1 4 7) -- (1 4 7), (2 5 8) - (2 5 7)

12 -12 12 -12 12 -12
-11 13 -11 13 . -11 13

-11 -11 -11 -11 -11 -11

12 -12 12 -12 12 -12
-11 11 -11 11 . -11 11

-11 -12 -11 -12 -11 -12
12 11 12 11 12 11

-11 -13 -11 -13 . -11 -13

C After 30 more exposures to D.
all 18 associations

61 -38 -38 -6 -5 -4 -6 -9
-38 62 -39 -6 -5 -4 -8 -7
-37 -38 62 -5 -5 -3 -7 -6
-4 .6 .6 62 -40 -38 -8 -8
-5 -5 -4 -38 62 -38 -7 -7
-6 -4 -5 -38 -39 62 -8 -7
20 -5 -4 22 -5 -6 -50 61

-19 8 5 -18 5 7 54 -60

After 10 more exposures to
all 18 associations

44 -34 -26 -2 -10
-32 46 -27 -11 2

-30 -24 43 -5 -5
-1 -7 -7 45 -34

-8 -3 -3 -31 44

.6 -8 -3 -31 -28
11 -2 .6 11 -2
-9 -4 7 -13 1

After a total of 500 exposures
to all 18 associations

64 -39 -39 -5 -4 -5

-39 63 -39 -5 -5 -5

-39 -40 64 -5 -5 -5
-5 -5 -5 64 -40 -39
-5 -5 -5 -39 63 -39
-5 -5 -5 -39 -39 63

71 -28 -29 70 -28 -28

-7P 27 28 -70 27 78

-8 -8
-9 -4
-2 -9
-4 11
-7 -7
-7 -10

-35 38

36 -42

-7 -7
.7 -8
-8 -7
-8 -7
-7 -8
-8 -7

-92 106

91 -106

15
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12 RUMELHART and MCCLELLAND

Because of the predominance of the regular form in the input, the network learns the regular
pattern, temporarily eoverregularizine exceptions that it may have previously learned.

Our illustration takes this situation to an extreme, perhaps, to illustrate the point. For the
second stage of learning, we present the model with the entire set of eighteen input patterns
consisting of one active unit from (1 2 3), one from (4 5 6), and one from (7 8). All of these
patterns are regular except the one exception already used in the first stage of training.

At the end of 10 expor.ses to the full set of 18 patterns, the model has learned a set of con-
nection strengths that prdeminantly captures the ''regular pattern.' At this point, its response
to tb excepaonel pattern is worse than it was before the beginning of Phase 2; rather than get-
tilts the right output for Units 7 and 8, the network is now regularizing it.

The reason for this behavior is very simple. All that is happening is that the model is con-
tinually being bombarded with learning experiences directing it to learn the rule of 78. On
only one learning trial out of 18 is it ervosed to an exception to this rule.

In this example, the deck has been stacked very strongly against the exception. For several
learning cycles, it is in fact quite difficult to tell from the connections that the model is being
exposed to an exception mixed in with the regular pattern. At the end of 10 cycles, we can see
that the model is building up extra excitatory connections from input Units 1 and 4 to output
Unit 7 and extra inhibitory strength from Units 1 and 4 to Unit 8, but these are not strong
enough to make the model get the right answer for output Units 7 and 8 when the (1 4 7)
input pattern is shown. Even after 40 trials (panel C of Table 4), the model still gets the wrong
answer on Units 7 and 8 for the (1 4 7) pattern more than half the time. (The reader can still
be checking these assertions by computing the net input to each output unit that would result
from presenting the (1 4 7) pattern.)

It is only after the model has reached the stage where it is making very few mistakes on the
17 regular patterns that it begins to accommodate to the exception. This amounts to making
the connection from Units 1. and 4 to output Unit 7 strongly excitatory and making the con-
nections from these units to output Unit 8 strongly inhibitory. The model must also make
several adjustments to other connections so that the adjustments just mentioned do not cause
errors on regular patterns similar to the exceptions, such as (1 5 7), (2 4 7), etc. Finally, in
panel D, after a total of 500 cycles through the fur. set of 18 patterns, the weights are sufficient
to get the right answer nearly all of the time. Further improvement would be very gradual
since the network makes errors so infrequently at this stage that there is very little opportunity
for change.

It is interesting to consider for a moment how an association is represented is a model like
this. We might be tempted to think of the representation of an association as the difference
between the set of connection strengths needed to represent a set of associations that includes
the association and the set of strengths needed to represent the same set excluding the associa-
tion of interest. Using this ciefinition, we see that the representation of a particular associa-
tion is far from invariant. What this means is that learning that occurs in one situation (e.g.,
in which there is a small set of unrelated associations) does not necessarily transfer to a new
situation (e.g., in which there arc a number of regular associations). This is essentially why the
early learning our illustrative model exhibits of the (1 4 7) -. (1 4 7) association in the context
of just one other association can no longer support correct performance when the larger
ensemble of regular patterns is introduced.

Obviously, the example we have considered in this section is highly simplified. However, it
illustrates several basic facts about pattern associators. One is that they tend to exploit regular-
ity that exists in the mapping from one set of patterns to another. Indeed, this is one of the
main advantages of the use of distributed representations. Second, they allow exceptions and
regular patterns to coexist in the same network. Third, if there is a predominant regularity in a
set of patterns, this can swamp exceptional patterns until the set of connections has been
acquired that captures the predominant regularity. Then further, gradual tuning can occur that
adjusts these connections to accommodate both the regular patterns and the exception. These
basic properties of the pattern associator model lie at the heart of the three-stage acquisition
process, and account for the gradualness of the transition from Stage 2 to Stage 3.
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Featural Representations of Phonological Patterns

The preceding section describes basic aspects of the behavior of the pattern associator model
and captures fairly well what happens when a pattern associator is applied to the processing of
English verbs, following a training schedule similar to the one we have just considered for the
acquisition of the rule of 78. There is one caveat, however: The input and target patterns
the base forms of the verbs and the correct past tenses of these verbsmust be represented in
the model in such a way that the features provide a convenient basis for capturing the regulari-
ties embodied in the past-tense forms of English verbs. Basically, there were two considera-
tions:

We needed a representation which permitted a differentiation of all of the root forms
of English and their past tenses.

We wanted a representation which would provide a natural basis for generalizations to
emerge about what aspects of a present tense correspond to what aspects of the past
tense.

A scheme which meets the first criterion but not the second is the scheme proposed by
Wickelgen (1969). He suggested that words should be represented as sequences of context-
sensitive phoneme units, which represent each phone in a word as a triple, consisting of the
phone itself, its predecessor, and its successor. We call these triples Wickelphones. Notation-
ally, we write each Wickelphone as a triple of phonemes, consisting of the central phoneme,
subscripted on the left by its predecessor and on the right by its successor. A phoneme occur-
ring at the beginning of a word is preceded by a special symbol (0) standing for the word
boundary; likewise, a phoneme occurring at the end of a word is followed by 0. The word
/kat/, for example, would be represented is 08, sat, and st#. Though the Wickelphones in a
word are not strictly position specific, it turns out that (a) few words contain more than one
occurrence of any given Wickelphone, and (b) there are no two words we know of that consist
of the same sequence of Wickelphones. For example, /slit/ and /silt/ contain no Wicket-
phones in common.

One nice property of Wickelphones is that they capture enough of the context in which a
phoneme occurs to provide a sufficient basis for differentiating between the different cases of
the past-tense rule and for characterizing the contextual variables which determine the subregu-
larities among the irregular past-tense verbs. For example, the word-final phoneme which
determines whether we should add /d/, /t/ or rd/ in forming the regular past. And it is the
sequence 114," which is transformed to 814# in the ing -. ang pattern found in words like sing.

The trouble with the Wickelphone solution is that there are too many of them, and they are
too specific. Assuming that we distinguish 35 different phonemes, the number of Wicket-
phones would be 353, or 42,875, not even counting the Wickelphones containing ward boun-
daries. And, if we postulate one input unit and one output unit in our model for each Wick-
elphone, we require rather a large connection matrix (4.3x1C4 squared, or about 2x109) to
represent all their possible connections.

Obviously, a more compact representation is required. This can be obtained by representing
each Wickelphone as a distributed pattern of activation over a set of feature detectors. The
basic idea is that we represent each phoneme, not by a single Wickelphone, but by a pattern of
what we call Wickelfeatures. Each Wickelfeature is a conjunctive, or context-sensitive, feature,
capturing a feature of the central phoneme, a feature of the predecessor, and a feature of the
successor.

17
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14 It UMELHART and MCCLELLAND

Details of the Wickelfeature representation. For concreteness, we will now describe the
details of the feature coding scheme we used. It contains several arbitrary properties, but italso captures the basic principles of coarse, conjunctive coding described in Chapter 3. First,we will describe the simple feature representation scheme we used for coding a single phonemeas a patte. tatures without regard to its predecessor and successor. Then we describe how
this scheme can be extended to -code whole Wickelphones. Finally, we show how we 'blue
this representation, to promote generalization further.

To characterize each phoneme, we devised the highly simplified feature set illustrated in
Table 5. The purpose of the scheme was (a) to give as many of the phonemes as possible a dis-tinctive code, (b) to allow code similarity to reflect the similLity structure of the phonemes in
a way that seemed sufficient for our present purposes, and (c) to keep the number of different
features as small as possible.

The coding scheme can be thought of as categorizing each phoneme on each of four dimen-
sions. The first dimension divides the phouemes into three major types: interrupted consonants(stops and nasals), continuous consonants (fricatives, liquids, and semivowels), and vowels.
The second dimension further subdivides these major classes. The interrupted consonants are
divided into plain stops and nasals, the continuous consonants into fricatives and sonorants
(liquids and semivowels are lumped together); and the vowels into high and low. The third
dimension classifies the phonemes into three rough places of articulationfront, middle, andback. The fourth subcategorizes the consonants into voiced vs. voiceless categories and sub-
categorizes the vowels into long and short. As it stands, the coding scheme gives identicalcodes to six pairs of phonemes, as indicated by the duplicate entries in the cells of the table.
A more adequate scheme could easily be constructed by increasing the number of dimensions
and/or values on the dimensions.

Using the above code, each phoneme can be characterized by one value on each dimension.
If we assigned a unit for each value on each dimension, we would need 10 units to representthe features of a single phoneme since two dimensions have three values and two have twovalues. We could then indicate the pattern of these features that corresponds to a particular
phoneme as a pattern of activation over the 10 units.

Now, one way to represent each Wickelphone would simply be to use three sets of featurepatterns: one for the phoneme itself, one for its predecessor, and one for its successor. To

TABLE 5

CATEGORIZATION OF PHONEMES ON FOUR SIMPLE DIMENSIONS

Place

Front Middle Back

V/L U/S V/L U/S V/L. U/S

rortrrupted Stop
Nasal

Cent. Consonant Frk. v/D f/T z a Z/i S/C
LiqlSV w/1

Vowel High E i 0 U u
Low A e I a/a W /0

Rey: N = og in sing; D 9 th in the; T = th in with; Z = z in wore; S = sh in ship;
C ch in chip; E = ee to beer; i = i to bit; 0 oa in boot; w u in but or schwa;
U = oo in b o o r ; u oo io b o o k ; A = t i in brit; e e in ber; I = i_e in bite;

--- a in bat; a = a in father; W w ow in cow; --- aw io saw; o o in hot.
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capture the word-boundary marker, we would need to introduce a special eleventh feature.
Thus, the Wickelphone fka can be represented by

[(000)(00)(000)(00)1]
[ (100) (10) (001) (01) 0 j
[ (001) (01) (010) (01) 0 1.

Using this scheme, a Wickelphone could be represented as a pattern of activation over a set of
33 units.

However, there is one drawback with this. The representation is not sufficient to capture
more than one Wickelphone at a time. If we add another Wickelphone, the representation
gives us no way of knowing which features belong together.

We need a representation, then, that provides us with a way of determining which features
go together. This is just the job that can be done with detectors for Wickelfeatures--triples of
features, one from the central phoneme, one from the predecessor phoneme, and one from the
successor phoneme.

Using this scheme, each detector would be activated when the word contained a Wickel-
phone containing its particular combination of three features. Since each phoneme of a Wick-
elphone can be characterized by 11 features (including the word-boundary feature) and each
Wickelphone contains three phonemes, there are 11x11x11 possible Wickelfeature detectors.
Actually, we are not interested in representing phonemes that cross word boundaries, so we
only need 10 features for the center phoneme.

Though this leaves us with a fairly reasonable number of units (11x10x11 or 1,210), it is still
large by the standards of what will easily fit in available computers. However, it is possible to
cut the number down still further without mucn loss of representational capacity since a
representation using all 1,210 units would be highly redundant; it would represent each feature
of each of the three phonemes 16 different times, one for each of the conjunctions of that
feature with one of the four features of one of the other phonemes and one of the four
features of the other.

To cut down on this redundancy and on the number of units required, we simply eiiminated
all thosr Wickelfeatures specifying values on two different dimensions of the predecessor and
the successor phonemes. We kept all the Wickelfeature detectors for all combinations of
different values on the same dimension for the predecessor and successor phonemes. It turns
out that there are 260 of these (ignoring the word-boundary feature), and each feature of each
member of each phoneme triple is still represented four different times. In addition, we kept
the 100 possible Wicket:zatures combining a preceding word-boundary feature with any feature
of the main phoneme and any feature of the successor; and the 100 Wickelfeatures combining a
following word boundary feature with any feature of the main phoneme and any feature of the
successor. All in all then, we used only 460 of the 1,210 possible Wickelfeatures.

Using this representation, a verb is represented by a pattern of activation over a set of 460
Wickelfeature units. Each Wickelphone activates 16 Wickelfeature units. Table 6 shows the 16
Wickelfeature units activated by the Wickelphone kAm, the central Wickelphone in the word
came. The first Wickelfeature is turned on whenever we have a Wickelphone in which the
preceding contextual phoneme is an interrupted consonant, the central phoneme is a vowel,
and the following phoneme is an interrupted consonant. This Wickelfeature is turned on for
the Wickelphone kAm since /k/ and /m/, the context phonemes, are both interrupted con-
sonants and /A/, the ventral phoneme, is a vowel. This same Wickelfeature would be turned
on in the representation of kid, p^i, map, and many other Wickelfeatures. Similarly, the sixth
Wickelfeature listed in the table will be turned on whenever the preceding phoneme is made in
the back, and the central and following phonemes are both made in the front. Again, this is
turned on because /k/ is made in the back and /A/ and /m/ are both made in the front. In
addition to kAm this feature would be turned on for the Wickelphones getr kAp, and oth-
ers. Similarly, each of the sixteen Wickelfcatures stands for a conjunction of three phonetic
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TABLE 6

THE SIXTEEN WICKELFEATURES FOR THE WICKELPHONE kAm

Feature Preceding Contest Central Phoneme Following Context

1 Interrupted Vowel Interrupted
2 Back Vowel Front
3 Stop Vowel Nasal
4 Voiced Vowel Unvoiced

S Interrupted Front Vowel
6 Back Front Front
7 Stop Front Nasal
S Voiced Front Unvoiced

9 Interrupted Low Interrupted
10 Back Low Front
11 Stop Low Nasal
12 Voiced Low Unvoiced

13 Interrupted Long Vowel
14 Back Long Front
IS Stop Long Nasal
16 Voiced Loos Unvoiced

features and occurs in the representation of a large number of Wicks (phones.
Now, words are simply lists of Wickelphones. Thus, words can be represented by simply

turning on all of the Wickelfeatures in any Wickelphone of a word. Thus, a word with three
Wickelphones (such as came, which has the Wickelphones #kA, katai, and amp,) will have at
most 48 Wickelfeatures turned on. Since the various Wickelphones may have some Wicket-
features in common, typically there will be less than 16 times the number of Wickelfeatures
turned on for most words. It is important to note the temporal order is entirely implicit in
this representation All words, no matter how many phonemes in the word, will be
represented by a subset of the 460 Wickelfeatures.

Blurring the Wickelfeature representation. The representational scheme just outlined con-
stitutes what we call the primary representation of a Wickelphone. In order to promote faster
generalization, we further blurred the representation. This is accomplished by turning on, in
addition to the 16 primary Wickelfeatures, a randomly selected subset of the simi! r Wickel-
features, specifically, those having the same value for the central feature and one of the two
context phonemes. That is, whenever the Wickelfeature for the conjunction of phonemic
features f 1, f 2, and f 3 is turned on, each Wickelfeature of the form <?f 2f 3> and
< f Lf 2?> may be turned on as well. Here "7" stands for "any feature." This causes each wad
to activate a larger set of Wickelfeatures, allowing what is learned about one sequence of
phonemes to generalize more readily to other similar but not identical sequences.

To avoid having too much randomness in the representation of a particular Wickelphone, we
turned on the same subset of additional Wickelfeatures each time a particular Wickelphone
was to be represented. Based on subsequent experience with related models (see Chapter 19),
we do not believe this makes very much difference.

There is a kind of trade-off between the discriminability among the base forms of verbs that
the representation provides and the amount of generalization. We need a representation which
allows for rapid generalization while at the same time maintains Edequate discriminability. We
can manipulate this factor by manipulating the probability p that any one of these similar
Wickelfeatures will be turned on. In our simulations we found that turning on the additional
features with fairly high probability (.9) led to adequate discriminability while also producing
relatively rapid generalization.

Although the model is not completely immune to the possibility that fwo different words

20
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will be represented by the same pattern, we have encountered no difficulty decoding any of the
verbs we have studied. However, we do not claim that Wickelfeatures necessarily capture all
the information needed to support the generalizations we might need to make for this or other
morphological processes. Some morphological processes might require the use of units which
were further differentiated according to vowel stress or other potential distinguishing charac-
teristics. All we claim for the present "oding scheme is its sufficiency for the task of represent-
ing the past tenses of the 500 most frequent verbs in English and the importance of the basic
principles of distributed, coarse (what we are calling blurred), conjunctive coding that it embo-
dies (see Chapter 3).

Summary of the Structure of the Model

In summary, our model con nod two sets of 460 Wickelfeature units, one set (the input
units) to represent the base ft A of each verb and one set (the output units) to represent the
past-tense form of each verb.

The model is tested by typing in an input phoneme string, which is translated by the fixed
encoding network into a pattern of activation over the set of input units. Each active input
unit contributes to the net input of each output unit, by an amount and direction (positive or
negative) determined by the weight on the connection between the input unit and the output
unit. The output units are then turned on or off probabilistically, with the probability increas-
ing with the difference between the net input and the threshold, according to the logistic
activation function. The output pattern generated in this way can be compared with various
alternative possible output patterns, such as the correct past-tense form or some other possible
response of interest, or can be used to drive the decoder network described in the Appendix.

The model is trained by providing it with pairs of patterns, consisting of the base pattern
and the target, or correct, ortput. Thus, in accordance with common assumptions about the
nature of the learning situation that faces the young child, the model receives only correct
input from the outside world. However, it compares what it generates internally to the target
output, and when it gets the wrong answer for a particular output unit, it adjusts the strength
of the connection between the input and the output units so as to reduce the probability that
it will make the same mistake the next time the same input pat:ern is presented. The adjust-
ment of connections is an extremely simple and local procedure, but it appears to be sufficient
to capture what we know about the acquisition of the past tense, as we shall see in the next
section.

THE SIMULATIONS

The simulations described in this vction arc concerned with demonstrating three main
points:

That the model captures the basic three-stage pattern of acquisition.

That the model captures most aspects of differences in performance on different types
of regular and irregular verbs.

That the model is capable of responding appropriately to verbs it has never seen
before, as well as to regular and irregular verbs actually experienced during training.
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In the sections du' follow we will consider these three aspects of the model's performance in
turn.

The corpus of verbs used in the simulations consisted of a set of 506 verbs. All verbs were
chosen from the kucera su.Ja Finis (1057) word list and were ordered according to frequency
of their gerund form. We divided the verbs into three classes: 10 high-frequency verbs, 410
medium-frequency verbs, and 86 low-frequency verbs. The ten highest frequency verbs were:
come (/1'm/), get ( /get/), give ( /giv/), look (/luk/), take (/tAk/), go (/g0/), have (/ha1), live
(MO, and feel (ifE1/). There is a total of 8 irregular and 2 regular verbs among the top 10.
Of the medium-frequency verbs, 334 were regular and 76 were irregular. Of the low-frequency
verbs, 72 were regular and " ---r- irregular.

The Three-Stage Learning Curve

The results described in this and the following sections were obtained from a single (long)
simulation run. The run was intended to capture approximately the experience with past
tenses of a young child picking up English from everyday conversation. Our conception of the
nature of this experience is simply that the child learns first about the present and past tenses
of the highest frequency verbs; later on, learning occurs for a much larger ensemble of verbs,
including a much larger proportion of regular forms. Although the child would be hearing
present and past tenses of all kinds of verbs throughout development, we assume that he is
only able to learn past tenses for verbs that he has already nisstered fairly well in the present
tense.

To simulate the earliest phase of past-tense learning, the model was first trained on the 10
high-frequency verbs, receiving 10 cycle, if training presentations through the set of 10 verbs.
This was enough to produce quite good performance on these verbs. We take the performance
of the model at this point to correspond to the performance of a child in Phase 1 of acquisi-
tion. To simulate later phases of learning, the 410 medium-frequency verbs were added to the
first 10 verbs, and the system was given 190 more learning trials, with each trial consisting of
one presentation of each of the 420 verbs. The responses of the model early on in this phase of
training correspond to Phase 2 of the acquisition process; its ultimate periormance at the end
of 190 exposures to each of the 420 verbs correspolds to Phase 3. At this point, the model
exhibits almost errorless performance on the basic 420 verbs. Finally, the set of 86 lower fre-
quency verbs were presented to the system and the transfer responses to these were recorded.
During this phase, connection strengths were not adjusted. Performance of the model on these
transfer verbs is considered in a later section.

We do not claim, of course, that this training experience exactly captures the learning experi-
ence of the young child. It should be perfectly clear that this training experience exeggerates
the difference between early phases of learning and later phases, as well as the abruptness of
the transition to a larger corpus of verbs. However, it is generally observed that the early,
rather limited vocabulary of young children undergoes an explosive growth at some point in
development (Brown, 1973). Thus, the actual transition in a child's vocabulary of verbs would
appear quite abrupt on a time-scale of years so that our assumptions about abruptness of onset
may not be too far off the mark.

Figure 4 shows the basic results for the high-frequencyverbs. What we see is that during the
first 10 trials there is no difference between regular and irregular verbs. However, beginning on
Trial 11 when the 410 midfrequency verbs were introduced, the regular verbs show better per-
formance. It is important to notice that there is no interfering effect on the regular verbs as
the midfrequency verbs arc being learned. There is, however, substantial interference on the
irregular verbs. This interference leads to a dip in performance on the irregular verbs. Equal-
ity of performance between regular and irregular verbs is never ain attained during the train-
ing period. This is the so-called U-shaped learning curve for the. learning of the irregular past
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FIGURE 4. The percentage of correct features for regular and irregular high-frequency verbs u a function of trials.

tense. Pei-format= is high when only a few high-frequency, largely irregular verbs are learned,
but then drops as the bulk of lower frequency regular verbs are being learned.

We have thus far only shown that performance on high-frequency irregular verbs drops; we
have not said anything about the nature of the errors. To examine this question, the response
strength of various possible response alternatives must be compared. To do this, we compared
the strength of response for several different response alternatives. We compared strengths for
the correct past tense, the present, the base +ed and the past+ed. Thus, for example with the
verb give we compared the response strength of /gAv/, /giv/, /givd/, and /gAvd/. We deter-
mined the response strengths by assuming that these response alternatives were competing to
account for the features that were actually turned on in the output. The details of the com-
petition mechanism, called a binding network, are described in the Appendix. For present pur-
poses, suffice it to say that each alternative gets a score that represents the percentage of the
total features that it accounts for. If two alternatives both account for a given feature, they
divide the score for that feature in proportion to the number of features each accounts for
uniquely. We take these response strengths to correspond roughly to relative response proba-
bilities, though we imagine that the actual generation of overt responses is accomplished by a
different version of the binding network, described below. In any case, the total strength of
all the alternatives cannot be greater than 1, and if a number of features are accounted for by
none of the alternatives, the total will be less than 1.

Figure 5 compares tl.e response strengths for the correct alternative to the combined strength
of the regularized altematives.4 Note it the figure that during the first 10 trials the response
strength of the correct alternative grows rapidly to over .5 while that of the regularized alterna-
tive drops from about .2 to .1. After the midfrequency verbs are introduced, the response

4 Unless otherwise indicated, the replanzed alternatives ar- considered the base+ed and past+ed alternatives. In a

later section of the paper we shall discuss the pattern of differences between these alternative. In most cases the
base +ed alternative is much stronger than the past+ecl alternative.
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FIGURE 5. Response strengths for the high-frequency irregular verbs. The response strengths for the correct
responses are compared with those for the regularized alternative*as a function of trials.

strength for the correct alternative drops rapidly while the strengths of regularized alternatives
jump up. From about Trials 11 through 30, the regularized alternatives together are stronger
than the correct response. After about Trial 30, the strength of the correct response again
exceeds the regularized alternatives and continues to grow throughout the 200-trial learning
phase. By the end, the correct response is much the strongest with all other alternatives below
.1.

The rapidity of the growth of the regularized alternatives is due to the sudden influx of the
medium-frequency verbs. In real life we would expect the medium-frequency verbs to come in
somewhat more slowly so that the period of maximal regularization would have a somewhat
slower onset.

Figure 6 shows the same data in a slightly different way. In this case, we have plotted the
ratio of the correct response to the sum of the correct and regularized response strengths.
Points on the curve below the .5 line are in the region where the regularized response is greater
that the correct response. Here we see clearly the three stages. In the first stage, the first 10
trials of learning, performance on these high-frequency verbs is quite good. Virtually no regu-
larization takes place. During the next 20 trials, the system regularizes and systematically makes
errors on the verbs that it previously responded to correctly. Finally, during the remaining tri-
als the model slowly eliminates the regularization responses as it approaches adult performance.

In summary, then, the model captures the three phases of learning quite well, as well as the
gradual transition from Phase 2 to Phase 3. It does so without any explicit learning of rules.
The regularization is the product of the gradual tuning of connection strengths in response to
the predominantly regular correspondence exhibited by the medium-frequency words. It is not
quite right to say that individual pairs are being stored in the network in any simple sense. The
connection strengths the model builds up to handle the irregular forms do not represent these
items in any separable way; they represent them in the way they must be represented to be
stored along with the other verbs in the same set of connections.
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FIGURE 6. The ratio of the correct response to the sum of the correct and regularized response. Points on the

curve below the .5 line are in the region where the regularized response is greater than the correct response.

Before discussing the implications of these kinds of results further, it is useful to look more
closely at tLe kinds of errors made and at the learning rates of the medium-frequency regular
and irregular verbs.

Learning the medium frequency verbs. Figure 7A compares the learning curves for the reg-
ular verbs of high and medium frequency, and Figure 7B compares the learning curves for the
corresponding groups of irregular verbs. Within only two or three trials the medium-frequency
verbs catch up with their high-frequency counterparts. Indeed, in the case of the irregular
verbs, the medium-frequency verbs seem to surpass the high-frequency ones. As we shall see in

the following section, this rest-Its from the fact that the high-frequency verbs include some of
the most difficult pairs to learn, including, for example, the go /went pair which is the very most
difficult to learn (aside from the verb be, this is the only verb in English in which the past and
root form are completely unrelated). It should also be noted that even at this early stage of
learning there is substantial generalization. Already, on Trial 11, the very first exposure to the
medium-frequency verbs, between 65 and 75 percent of the features are produced correctly.
Chance responding is only 50 percent. Moreover, on their first presentation, 10 percent more
of the features of regular verbs are conatly responder' to than irregular ones. Eventually,
after 200 trials of learning, nearly all of the features are toeing correctly generated and the sys-
tem is near asymptotic performance on this verb set. As we shall see below, during most of
the learning period the difference between high- and medium-frequency verbs is not important.
Rather, the differences between different classes of verbs is the primary determiner of perfor-
mance. We now turn to a discussion of these different types.
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FIGURE 7. The learning curves for the high- and medium-frequency verbs.

Types of Regular and Irregular Verbs

To this point, we have treated regular and irregular verbs as two homogeneous classes. In
fact, there are a number of distinguishable types of regular and irregular verbs. Bybee and Slo-
bin (1982) have studied the different acquisition patterns of the each type of verb. In this sec-
tion we compare their results to the responses produced by our simulation model.

Bybee and Slobin divided the irregular verbs into nine classes, defined as follows

I. Verbs that do not change at all to form the past tense, e.g., beat, cut, hit.

II. Verbs that change a final /d/ to /t/ to form the past tense, e.g., send 'sent, build 'built.

III. Verbs that undergo an internal vowel change and also add a final /t/ or /d/, e.g.,
feel/felt, lose /lost, say/said, tell /told.

IV. Verbs that undergo an internal vowel change, delete a final consonant, and add a final
/t/ or /d/, e.g., bring/brought, catchIcaught.6

5 Criteria from Bybee and Slobin, Ma, pp. 268-269.

6 Following Bybee and Slobin, we included buy/bought in this dais even though no final consonant is deleted.
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V. Verbs that undergo an internal vowel change whose stems end in a dental, e.g., bite/bit,
find /found, ride/rode.

VIa. Verbs that undergo a vowel change of /i/ to /a/ e.g., sing/sang, drink/drank.

VIb. Verbs that undergo an internal vowel change of /i/ or /a/ to iv e.g., sting/stung,
hang/hung.7

VII. All other verbs that undergo an internal vowel change, e.g., give/gave, break/broke.

VIII. All verbs that undergo a v wel change and that end in a dipthongal sequence, e.g.,
blow/blew, fly/flew.

A complete listing by type of all of the irregular verbs used in our study is given in Table 7.
In addition to these types of irregular verbs, we distinguished three categories of regular

verbs: (a) those ending in a vowel or voiced consonant, which take a /d/ to form the past
tense; (b) those ending in a voiceless consonant, which take a /t/; and (c) those ending in /t/
or /d/, which take a final rd/ to form the past tense. The number of regular verbs in each
category, for each of the three frequency levels, is given in Table 8.

TABLE 7

IRREGULAR VERBS

Frequency

Type High Medium Low

t bat ilt Set Spread thrust
hit cut put bid

build send spend bend lend

feel deal do flee tell sell creep
hear keep leave sleep weep
lose mean say sweep

have think buy bring catch
make seek teach

V get meet shoot write lead breed
understand sit mislead wind
bleed feed stand light grind
find fight read meet
hide bold ride

V la

Vlb

drink ring sing swim

drag hang swing dig cling
stick

VII give shake arise rise run tear
take become bear wear speak
come brake drive strike

fall free ,r choose

VIII go throw blow grow
draw fly know see

7 For many purposes we combine Classes Via and V lb in our analyses.
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TABLE 8

N'OMI3ER OF REGULAR VERBS OF r.ACH TYPE

Frequency

Type Suffix Example High Medium Low

End in dental rd/ mart 0 94 13

End in voiceless
consonant

/t/ look 1 64 30

End in voiced
consonant or
vowel

/d/ move 1 176 29

Type I: No-change verbs. A small set of English verbs require no change between their
present- and past-tense forms. One factor common to all such verbs is that they already end in
/t/ or /d/. Thus, they superficially have the regular past-tense formeven in the present tense.
Stemberger (1981) points out that it is common in inflectional languages not to add an addi-
tional inflection to base forms that already P-pear to have the :affection. Nut all verbs ending
in /t/ or /d/ show no change between present and past (in fact the majority of such verbs in
English do show a change between present and past tense), but there is a reasonably large
groupthe Type I verbs of Bybee and Slobinthat do show this trend. Bybee and Slobin
(1982) suggest that children learn relatively early on that past-tense verbs in English tend to end
in /t/ or /d/ and thus are able to correctly respond to the no-change verbs rather early. Early
in learning, they suggest, children also incorrectly generaliz-, this "no-change rule" to verbs
whose present and past tenses differ.

The, pattern of performance just described shows up very clearly in data Bybee and Slobin
(1982) report from an elicitation task with preschool children. In this task, preschoolers were
given the present-tense form of each of several verbs and were asked to produce the
corresponding past-tense form. They used the set of 33 verbs shown in Table 9.

The results were very interesting. Bybee and Slobin found that verbs not ending in rid were
predominately regularized and verbs ending in rid were predominately used as no-change verbs.
The number of occurrences of each kind is shown in Table 10. These preschool children have,
at this stage, both learned to regularize verbs not ending in rid and, largely, to leave verbs end-
ing in tld without an addi:ional ending.

Interestingly, our simulations show the same pattern of results. The system learns both to
regularize and has a propensity not to add an additional ending to verbs already ending in rid
In order to compare the simulation results to the human data we looked at the performance of
the same verbs used by Bybee and Slobin in our simulations. Of the 33 verbs, 27 were in the
high- and medium-frequency lists and thus were included in the training set used in the simula-
tion. The other six verbs (smoke, catch, lend, pat, hurt and shut) were either in the low-

TABLE 9

VERBS USED BY BYBEE & SLOBLN

Type of Verb Vetb List

Regular
Vowel change
Vowel change + rid
No change
Other

walk smoke melt pat smile climb
drink break run swim throw meet shoot ride
do buy lose sell sleep dp teach catch
hit hurt Bet shut cut 2ut beat
go make build lend
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TABLE 10

REGULAR AND NO CHANGE RESPONSES
TO t/d AND OTHER VERBS

(Data from Bybee & Slobin, 1982)

Verb Ending Regular Suffix No amine

Not rid

rid

203 34

42 157

frequency sample or did not appear in our sample at all. Therefore, we will report on 27 out
of the 33 verbs that Bybee and Slobin tested.

It is not clear what span of learning trials in our simulation corresponds best to the level of
the preschoolers in Bybee and Slobin's experiment. Presumably the period during which regu-
larization is occurring is best. The combined strength of the regularized alternatives exceeds
correct response strength for irregulars from about Trial 11 through Trials 20 to 30 depending
on which particular irregular verbs we look at. We therefore have tabulated our results over
three different time rangesTrials 11 through 15, Trials 16 through 20, and Trials 21 through
30. In each case we calculated the average strength of the regularized response alternatives and
of the no-change response alternatives. Table 11 gives these strengths for each of the different
tame periods.

The simulation results show clearly the same patterns evident in the Bybee and Slobin data.
Verbs ending in t/d always show a stronger no-change response and a weaker regularized
response than those not ending in t /d. During the very early stages of learning, however, the
regularized response is stronger than the no-change responseeven if the verb does end with
t /d. This suggests that the generalization that the past tense of t/d verbs is formed by adding
id/ is stronger than the generalization that verbs ending in t/d should not have an ending
added. However, as ',arning proceeds, this secondary generalization is made (though for only a
subset of the t/d -, Os, as we shall see), and the simulation shows the same interaction that
Bybee and Slobin (1982) found in their preschoolers.

The data and the simulations results just described conflate two aspects of performance,
namely, the tcndcncy to make no-change errors with t/d verbs that are not no-change verbs and
the tendency to make correct no-change responses to the t/d verbs that are no-change verbs.
Though Bybee and Slobin did not report their data broken down by this factor, we can exam-
ine the results of the simulation to see whether in fact the model is making more no-change
errors with t/d verbs for which this response is incorrect. To examine this issue, we return to
the full corpus of verbs and consider the tendency to make no-change errors separately for
irregular verbs other than Type I verbs End for regular verbs.

Erroneous no-change responses are clearly stronger for both regular and irregular r/d verbs.

TABLE 11

AVERAGE SIMULATED STRENGTHS OF

REGULARIZED AND NO-CHANGE RESPONSES

Time Period Verb Ending Regularized No Change

11-15 not rid 044 0 10
tid 0 35 027

1620 not rid 0 32 012
rid 0 25 0 35

21-30 not rid 0 52 011
rid 0.32 041
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Figure 8A compares the strength of he erroneous no- Change responses for irregular verbs end-
ing in rid (Types If and V) versus those not ending in rid (Types III, IV, VI, VII, and VIII).
The no-change response is erroneous in all of these cases. Note, however, that the erroneous
no-change responses are stronger for the rid verbs than for the other types of irregular verbs.
Figure 8B shows the strength of erroneous no-change responses for regular verbs ending in rid
versus those not ending in tld. Again, the response strength for the no-change response is
clearly greater when the regular verb ends in a dental.

We also compared the regularization responses for irregular verbs whose stems end in rid
with irregulars not ending intld. The results are shown in Figure 8C. In this case, the regulari-
zation responses are initially stronger for verbs that do not end in rid than for those that do.
Thus, we see that even when focusing only on erroneous responses, the system shows a greater
propensity to respond rith no c"snge to tild verbs, whether or not the verb is regular, and a
somewhat greater tendency to regularize irregulars not ending in tld .

There is some evidence in the literature on language acquisition that performance on Type I
verbs is better sooner than for irregular verbs involving vowel changesTypes III through VIII.
Kuczaj (1978) reports an experiment in which children were to judge the grammaticality of sen-
tences involving past tenses. The children were given sentences involving words like hit or hil-
ted or we or eated and asked whether the sentences sounded 'silly." The results, averaged over
three age groups from 3;4 to 9;0 years, showed that 70 percent of the responses to the no-
change verbs were correct whereas only 31 percent of the responses to vowel-change irregular
verbs were correct. Most of the errors involved incorrect acceptance of a regularized form.
Thus, the results show a clear difference between the verb types, with performance on the Type
I verbs superior to that on Type III through VIII verbs.

The simulation model too shows better performance on Type I verbs than on any of the
other types. These verbs show fewer errors than any of the other irregular verbs. Indeed the
error rate on Type I verbs is equal to that on the most difficult of the regular verbs. Table 12
gives the average number of Wickelfeatures incorrectly generated (out of 460) at different
periods during the learning processes for no-change (i.e., Type I) irregular verbs, vowel-change
(i.e., Type III-VIII) irregular verbs, regular verbs ending in tld, regular verbs not ending in tld,
and regular verbs ending in rid whose stem is a CVC (consonant-vowel-consonant) monosyll-
able. The table clearly shows that throughout learning, fewer incorrect Wickelfeatures are gen-
erated for no-change verbs than for vowel-change verbs. Interestingly, the table also shows that
one subset of regulars are no easier than the Type I irregulars. These are the regular verbs
which look on the surface most like Type I verbs, namely, the monosyllabic CVC regular verbs
ending in rid. These include such verbs as bat, wait, show, head, etc. Although we know of no
data indicating that people make more no-change errors on these verbs than on multisyllabic
verbs ending in tld , this is a clear prediction of our model. Essentially what is happening is
that the model is learning that monosyllables ending in rid sometimes take no additional

TABLE 12

AVERAGE NUMBER OF WICKELFEATURES INCORRECTLY GENERATED

Trial
Irregular Verbs Regular Verbs

Numb... type I Types III-VIII Ending in rid Not Ending in rid C.Vdd

11-15 89 8 223.9 74.1 82.8 87.3
16.20 57.6 93.7 45.3 51.2 60.5
21-30 45.5 78.2 32.9 37.4 47.9
31-50 34.4 61.3 22 9 26.0 37 3

51-100 18.8 39.0 11.4 12.9 21.5
101-200 11.8 21.5 6.4 7.4 12.7
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FIGURE 8 A: The strength of erroneous no-chanr responses for irregular verbs ending in a dental Versus those not
aiding in a dental. B: The strength of erroneous no-change responses for regular verbs ending in a dental versus
those not aiding in a dental. C: The strength of erroneous regularization responses for irregular verbs ending in a
dental versus those not ending in a dental.

inflection.8 This leads to quicker learning of the no-change verbs relative to other irregular
verbs and slower learning of regular verbs which otherwise look like no-change verbs. It should
be noted that the two regular verbs employed by Bybee and Slobin which behaved like no-
change verbs were both monosyllables. It would be interesting to see if whether no-change
errors actually occur with verbs like decide or devote.

Though the model does not explicitly encode number of syllabics, monosyllabic words 're distinguished from nul-
tisyllabic words by the fact that the former contain no Wickelphones of the form vCv. There arc no no-change verbs
in English containing such Wickelphoocs.

31
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Types Ill -VIII: Vowel-change verbs. To look at error patterns on vowel-change verbs
(Types III -VIII) Bybee and Slobin (1982) analyzed data from the spontaneous speech of
preschoolers ranging from one-and-one-half to five yt.ars of age. The data came from indepen-
dent sets of data collected by Susan Ervin-Tripp and Wick Miller, by Dan Slobin, and by Zell
Greenberg. In all, speech from 31 children involving the use of 69 irregular verbs was studied.
Bybee and Slobin recorded the percentages of regularizations for each of the various types of
vowel-change verbs. Table 13 gives the percentages of regularization by preschoolers, ranked
from most to fewest erroneous regularizations. The results show that the two verb types which
involve adding a rid plus a vowel change (Types III and IV) show the least regularizations,
whereas the verb type in which the present tense ends in a diphthong (Type VIII) shows by far
the most regularization.

It is not entirely clear what statistic in our model best corresponds to the percentage of regu-
larizations. It will be recalled that we collected response strength measures for four different
response types for irregular verbs. These were the correct response, the no-change response,
the basc+ed regularization response, and the past+ed regularization response. If we imagine
that no-change responses are, in general, difficult to observe in spontaneous speech, perhaps
the measure that would be most closely related to the percentage of regularizations would be
the ratio of the sum of the strengths of the regularization responses to the sum of the strengths
of regularization responses and the correct responsethat is,

(bare +ed +.mt +ed Z^
(base +ed + past +ed + correct)

As with our previous simulation, it is not entirely clear what portion of the learning curve
corresponds to the developmental level of the children in this group. We therefore calculated
this ratio for several different time periods around the period of maximal overgeneralization.
Table 14 shows the results of these simulations.

The spread between different verb classes is not as great in the simulation as in the children's
data, but the simulated rank orders show a remarkable similarity to the results from the spon-
taneous speech of the preschoolers, especially in the earliest time period. Type VIII verbs
show uniformly strong patterns of regularization whereas Type III and Type IV verbs, those
whose past tense involves adding a rid at the end, show relatively weak regularization
responses. Type VI and Type VII verbs produce somewhat disparate results. For Type VI
verbs, the simulation conforms fairly closely to the children's speech data in the earliest time
period, but it shows rather less strength for regularizations of these verbs in the later time
periods and in the average over Trials 11-30. For Type VII verbs, the model errs in the oppo-
site direction: Here it tends to show rather greater strength for regularizations of these verbs
than we see in the children's speech. One possible reason for these discrepancies may be the

TABLE 13

PERCENTAGE OF REGULARIZATION
BY PRESCHOOLERS

(Data from Bybee & Slobin, 1982)

Percentage
Verb Type Example Regularizations

VIII blew 80
VI sang 55

V bit 34
VII broke 32
III felt 13

IV vulva 10
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TABLE 14

STRENGTH OF REGULARIZATION RESPONSES
RELATIVE TO CORRECT RESPONSES

Rank
Order

Data
Trials
11-15

Trials
16-20

Trials
21-30

Average
Trials
11-30

Type Percent Type Ratio Type Ratio Type Ratio Type Ratio

1 VIII 80 VIII .86 VIII .76 VII! .61 VIII .71
2 VI 55 VII .80 VII .74 VII .61 VII .69
3 V 34 VI .76 V .60 IV .48 V .56
4 VII 32 V .72 IV .59 V .46 IV .56
S III 13 IV .69 III .57 III .44 III .53
6 IV 10 III .67 V I .52 VI .40 VI .52

model's insensitivity to word frequency. Typo VI verbs are, in fact, relatively low-frequency
verbs, and thus, in the children's speech these verbs may actually be at a relatively earlier stage
in acquisition than some of the more frequent irregular verbs. Type VII verbs are, in general,
much more frequentin fact, on the average they occur more than twice as often (in the
gerund form) in the Kucera-Francis count than the Type VI verbs. Ir. our simulations, all
medium-frequency verbs were presented equally often and the distinct:m.1 was not made. A
higher fidelity simulation including finer gradations of frequency variations among the verb
types might lead to a closer correspondence with the empirical results. In any case, these verbs
aside, the simulation seems to capture the major features of the data very niraqy.

Bybee and Slobin attribute the pattern of results they found to factors that would not be
relevant to our model. They proposed, for example, that Type III and IV verbs were more
easily learned because the final lid signaled to the child that they were in fact past tenses so the
child would not have to rely on context as much in order to determine that these were past-
tense forms. In our simulations, we found these verbs to be easy to learn, but it must have
been for a different reason since the learning system was always informed as to what the
correct past tense really was. Similarly, Bybee and Slobin argued that Type VIII verbs were the
most difficult because the past and present tenses were so phonologically different that the
child could not easily determine that the past and present tenses of these verbs actually go
together. Again, our simulation showed Type VIII verbs to be the most difficult, but this had
nothing to do with putting the past and present tense together since the model was always
given the present and past tenses together.

Our model, then, must offer a different interpretation of Bybee and Slobin's finding. The
main factor appears to be the degree to which the relation between the present and past tense
of the verb is idiosyncratic. ..'ype VIII verbs are most difficult because the relationship
between base form and past tense is most idiosyncratic for these verbs. Thus, the natural gen-
eralizations implicit in the population of verbs must be overcome for these verbs, and they
must *,e overcome in a different way for each of them. A very basic aspect of the mapping
from present to past tense is that most of the word, and in particular everything up to the final
vowel, is unchanged. For regular verbs, all of the phonemes present in the base form are
preserved in the past tense. Thus, verbs that make changes to the base form are going against
the grain more than those that do not; the larger the changes, the harder they will be to learn.
Another factor is that past tenses of verbs generally end in /t/ or /d/.

Verbs that violate the basic past-tense pattern are all at a disadvantage in the model, of
course, but some suffer less than others because there are other verbs that deviate from the
basic pattern in the same way. Thus, these verbs are less idiosyncratic than verbs such as
go/went, see /saw, and draw /drew which represent completely idiosyncratic vowel changes. The
difficulty with Type VIII verbs, then, is simply that, as a class, they are simply more
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idiosyncratic than other verbs. Type III and IV verbs (e.g., feel/felt, catch/cau& r), on the other
hand, share with the vast bulk of the verbs in English the feature that the pas tense involves
the addition of a t/d. The addition of the t/d makes these verbs easier than, say, Type VII
verbs (e.g., come/came) because in Type VII verbs the system must not only learn that there is a
vowel change, but it must also learn that there is .lot an addition of t/d to the end of the verb.

Type VI verbs (sing/sang, drag/drug) are interesting from this point of view, because they
involve fairly common subregularities not found in other classes of verbs such as those in Type
V. In the model, the Type VI verbs may be learned relatively quickly because of this subregu-
larity.

Types of regularization. We have mentioned that there are two distinct ways in which a
child can regularize an irregular verb: The child can use the base+ed form or the past+ed
form. Kuczaj (1971) has provided evidence that the proportion of past +cd forms increases,
relative to the number of base+ed forms, as the child gets older. He found, for example, that
the nine youngest children he studied had more base+ed reg wizations than past+ed regulari-
zations whereas four out of the five oldest children showed more past+ed than base+ed regu-
larizations. In this section, we consider whether our model exhibits this same general pattern.
Since the base form and the past-tense form are identical for Type I verbs, we restrict our
analysis of this issue to Types II through VIII.

Figure 9 compares the average response strengths for base +ed and past +ed regularizations as
a function of amount of training. The results of this analysis are more or less consistent with
Kuczaj's findings. Early in learning, the base+ed response alternative is clearly the stronger of
the two. As the system learns, however, the two come together so that by about 100 trials the
base+ed and the past+ed response altern. ives are roughly .:qually strong. Clearly, the simula-
tions show that the percentage of regula _ations that are past+ed increases with experience
just as Kuczaj found in children. In addition, the two curves come together rather late, con-
sistent with the fact, reported by Kuczaj (1977), that these past+ed forms predominate for the

Verb Types IIVIII
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0

FIGURE 9. Average response strength for base+ed and past +ed responses for verb Types II through VIII.
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most part in children who are exhibiting rather few regularization errors of either type. Of the
four children exhibiting more past+ed regularizations, three were regularizing less than 12% of
the time.

A closer look at the various types of irregular verbs shows that this curve is the average of
two quite different patterns. Table 15 shows the overall percentage of regularization strength
due to the base+ed alternative. It is clear from the table that the verbs fall into two general
categories, those of Types III, IV, and VIII which have an overall preponderance of base+ed
strength (the percentages are all above .5) and Types II, VII, V, and VI which show an overall
preponderance of past+ed strength (the percentages are all well below .5). The major variable
which seems to account for the ordering shown in the table is the amount the ending is
changed in going from the base form to the past-tense form. If the ending is changed little, as
in sing /sang or come /cane, the past +ed response is relatively stronger. If the past tense involves
a greater change of the ending, such as see /saw, or sleep /slept, then the past+ed form is much
weaker. Roughly, the idea is this: To form the past+ed for these verbs two operations must
occur. The normal past tense must be created, and the regular ending must be appended.
When these two operations involve very different parts of the verb, they can occur somewhat
independently and both can readily occur. When, on the other hand, both changes occur to
the same portion of the verb, they conflict with one another and a clear past+ed response is
difficult to generate. The Type II verbs, which do show an overall preponderance of past+ed
regularization strength, might seem to violate this pattern since it involves some change to the
end in its past-tense form. Note, however, that the change is only a one feature change from
/d/ to /t/ and thus is closer to the pattern of the verbs involving no change to the final
phonemes of the verb. Figure 10A shows the pattern of response strengths to basc+ed and
past+ed regularizations for verb Types II, VII, V, and VI which involve relatively little change
of the final phonemes from base to past form. Figure 10B shows the pattern of response
strengths to base+ed and past+ed for verb Types III, IV, and VIII. Figure 10A shows very
clearly the pattern expected from Kuczaj's results. Early in learning, base+ed responses are by
far the strongest. With experience the past +ed response becomes stronger and stronger relative
to the base+ed regularizations until, at about Trial 40, it begins to exceed it. Figure 10B show!,
a different pattern. For these verbs the past+ed form is weak throughout learning and never
comes close to the base+ed regularization response. Unfortunately, Kuczaj did not presen'
data on the relative frequency of the two types of regularizations separately for different verb
types. Thus for the present, this difference in type of regularization responses remains an
untested prediction of the model.

TABLE 15

PERCENTAGE OF REGULARIZATION

STRENGTH DUE TO BASE +ED

Verb Type Percent base+ed Examples

III 0.77 sleep/slept
IV 069 catch/caught

VIII 0.68 see/saw
II 0 38 spend/spent

VII 0.38 come/came
V 0 37 In:c/no.
VI 026 sing/sang
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Verb Types II, V, VI, and VII
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Verb Types III, IV, and VIII
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FIGURE 10. A: The pattern of response strengths to base +ed and past+ed regularizations for verb Types II, V, VI.
and VII. B: The pattern of response strengths to base+ed and past +ed for verb Types III. IV. and VIII.

Transfer to Novel Verbs

To this point we have only reported on the behavior of the system on verbs that it was actu-
ally taught. In this section, we consider the response of the model to the set of 86 low-
frequency verbs which it never saw during training. This test allows us to examine how well
the behavior of the model generalizes to novel verbs. In this section we also consider responses
to different types of regular verbs, and we examine the model's performance in generating
unconstrained responses.

Overall el'pree of transfer. Perhaps the first question to ask is how accurately the model
generates the correct features of the new verbs. Table 16 shows the percentage of Wickel-
features correctly generated, averaged over the regular and irregular verbs. Overall, the perfor-
mance is quite good. Over 90 perecat of the Wickelfeatures are correctly generated without

TABLE 16

PROPORTION OF WICKELFEATURES

CORRECTLY GENERATED

Regular .92
Irregular .54
Overall .91
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any experience whatsoever with these verbs. Performance is, of course, poorer on the irregular
verbs, in which the actual past tense is relatively idiosyncratic. But even there, almost 85 per-
cent of the Wickelfeatures are correctly generated.

Unconstrained responses. Up until this point we have always proceeded by giving the
model a set of response alternatives and letting it assign a response strength to each one. This
allows us to get relative response strengths among the set of response alternatives we have pro-
vided. Of course, we chose as response alternatives those which we had reason to believe were
among the strongest. There is the possibility, however, that the output of the model might
actual!), favor some other, untested alternative some of the time. To see how well the output
of the mode! is really doing at specifying correct past tenses or errors of the kind that children
actually make, we must allow the model to choose among all possible strings of phonemes.

To do this, we implemented a second version of the binding network. This version is also
described in the Appendix. Instead of a competition among alternative strings, it involves a
competition among individual Wickelphone alternatives, coupled with mutual facilitation
between mutually compatible Wickelphones such as AAA and k&..9

The results from the free-generation test are quite consistent with our expectations from the
constrained alternative phase, though they did uncover a few interesting aspects of the model's
performance that we had not anticipated. In our analysis of these results we have considered
only responses with a strength of at least .2. Of the 86 test verbs, There were 65 cases in which
exactly one of the alternatives exceeded .2. Of these, 55 were simple regularization responses,
four were no-change respons, three involved double marking of regular verbs, (e.g., type was
responded to with /fipt-d/), there was one case of a vowel change (e.g., slip /slept). There
were 14 cases in which two alternatives exceeded threshold and one case in which three
exceeded threshold. Finally, in six cases, no response alternative exceeded threshold. This
occurred with the regular verbs jump, pump, soak, warm, trail, and glare. In this case there were
a number of alternatives, including the correct past-tense form of each of these verbs, compet-
ing with a response strength of about .1.

Table 17 shows the responses generated for the 14 irregular verbs. The responses here are
very clear. All of the above-threshold responses made to an irregular verb were either regulari-
zation responses, no-change responses (to Types I and V verbs as expected) or correct vowel-
change generalizations. The fact that bid is correctly generated as the past for bid, that wept is
correctly generated as the past for weep, and that clung is correctly generated as a past tense for
cling illustrates that the system is not only sensitive to the major regular past-tense pattern, but
is sensitive to the subregularities as well. It should also be noted that the no-change responses
to the verbs grind and wind occurs on monosyllabic Type V verbs ending in tld, again showing
evidence of a role for this subrcaularity in English past-tense formation.

Of the 72 regular verbs in am iow-frequency sample, the six verbs mentioned above did not
have any response alternatives above threshold. On 48 of the remaining 66 regular verbs, the
only response exceeding threshold was the correct one. The threshold responses to the remain-
ing 18 verbs are shown in Table 18.

Note that for 12 of the 18 verbs listed in the table, the correct response is above threshold.
That means that of the 66 regular verbs to which any response at all exceeded threshold, the
correct response exceeded threshold in 60 cases. It is interesting to note, also, that the model
never chooses the incorrect variant of the regular past tense. As shown in Table 8, verbs end-
ing in a /t/ or /d/ take Id/ in the past tense; verbs ending in unvoiced consonants take It/,
and verbs ending in vowels or voiced consonants take /d/. On no occasion does the model
assign a strength greater than .2 an incorrect variant of the past tense. Thus, the model has

9 The major problem with this method of generating responses is that it is tremendously computer intensive. Had
we used this method to generate responses throughout the learning phase. we estimate that it would have taken over
three years of computer time to complete the learning phase alone! This compares to the 260 hours of computer time
the learning phase took with the response alternatives supplied. It took about 28 hours to complete the response
generation process in testing just the 86 low-frequency verbs used in this section of the study.
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TABLE 17

THE MODEL'S RESPONSES TO UNFAMILIAR

LOW-FREQUENCY IRREGULAR VERBS

Verb Presented
Type Word

I bid
thrust

U bend
lead

III creep
weep

IV catch

V breed
grind
wind

VI cling

dig
stick

VII tear

Phonetic Phonetic English Response
Input Response Rendition Strength

/bid/ /bid/ (bid) 0.55
/rest/ /re led/ (thrusted) 0.57

/bead/ /beaded/ (beaded) 0.28
/fend/ /lencrel/ (leaded) 0.70

ramp/ / keeps/ (creeped) 0.51
/wep/ !'Wept/ (weeped) 0.34

/wept/ (wept) 0.33

/kac/ /tact/ (catched) 0.67

/bred/ /bred 'd/ (breaded) 0.48
/Find/ /grad/ (clod) 0.44
/wind/ /wind/ (wind) 0.37

/UN/ /klird/ (dinged) 0.28
Al*N/ (clung) 0.23

/dig/ /digd/ (dined) 0.22
/stik/ /stikt/ (staked) 0.53

MT/ /terd/ (teared) 0.90

clearly learned the substructure of the regular correspondence and adds the correct variant to
all different types of base forms. These results clearly demonstrate that the model acts in
accordance with the regular pattern for English verbs and that it can apply this pattern with a
high level of success to novel as well as familiar verbs.

In addition to the regular responses, five of the responses were no-change responses. In
three cases the no-change response was to a verb ending in tld. Four of the responses followed
the pat:ern of Type III verbs, modifying the vowel and adding a final /t/. Thus, for example,
we have the past of sip rendered as sept, presumably on the model of sleep /step, keep /kept,
sweep/swept, etc. Interestingly, three of the four cases involved verbs whose base form ended in
/p/ just as in the models listed above. Even though these last responses arc, strictly speaking,
incorrect, they all indicate a sensitivity to the regular and subregular patterns of the English
past tinse.

Perhaps the most surprising result evident from the table is the occurrence of a double past
marker on the responses to seven of the verbs. Although we know of no references to this
phenomenon in the literature, we expect that children (and adults) do occasionally make this
kind of error. It is interesting, and possibly significant, that all seven of these responses
occurred to verbs whose correct past tense is the addition of a /t/. It would be interesting to
see whether children's errors of this type follow a similar pattern.

Finally, there were just four responses that involved the addition or modification of con-
sonants. These were maded as a past tense of mote, squawked as a past tense for squat, membled
as a past tense for mail, and toureder as a past tense for tour. It is unlikely that humans would
make these errors, especially the last two, but these responses are, for the most part, near thres-
hold. Furthermore, it seems likely that many of these responses could be filtered out if the
model incorporated an auto-associative network of connections among the output units. Such
a network could be used to clean up the output pattern and would probably increase the ten-
dency of the model to avoid bizarre responses. Unfortunately, we have not yet had the chance
to implement this suggestion.
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TABLE 18

SYSTEM RESPONSES TO UNFAMILIAR LOW-FREQIIINCY REGULAR VERBS

Verb
Type

Presented
Word

Phonetic
Input

Phonetic
Response

English
Rendition

Response
Rendition

End in guard /gard/ /pad/ (guard) 0.29
tld /gard'd/ (guarded) 0.26

kid /kid/ /kid/ (kid) 0.39
/kid ^d/ (kidded) 0.24

mate /tom/ /m.At'd/ (mated) 0.43
/mAd'd/ (waded) 0.23

squat /at vet/ /sket 'di (squated) 0.27
/stet/ (squat) 0.22
/stwskt/ (squawked) 0 21

End :n carp /tarp/ /karpt/ (carped) 0.28
unvoiced /kapt'd/ (carpted) 0.21
consonant drip /drip/ /dript'd/ (dripted) 0.28

/dript/ (dripped) 0.22

map /map/ /mapt'd/ (mapted) 0.24
/mapt/ (mapped) 0.22

shape /sAp/ /sApt/ (shaped) 0.43
/sipt/ (shipped) 0.27

sip /sip/ /sipt/ (sipped) 0.42
/sept/ (sePPed) 0.28

slip /dip/ /slept/ (slept) 0.40

smoke /smOt/ /sm0k t^d/ (smokted) 0.29
/smOt/ (smoke) 022

snap /snap/ /snapt 'di (snapted) 0.40

step /step/ /stept'd/ (stepted) 0.59

type hap/ /t ipt'd/ (typted) 0.33

End in brown /brwn/ /brwnd/ (browned) 046
voiced
consonant
or vowel

hug /h '8/

/bend/
/h.g/

(brawned)

(hug)

0 39

0 59

mail /mw 'I/ /mA-Id/ (mailed) 0 38
/memb ^Id/ (membled) 0.23

tour /ma /turcrr/ (toureder) 031
/turd/ (toured) 0.25

Summary. The system has clearly learned the essential characteristics of the past tense of
English. Not only can it respond correctly to the 460 verbs that it was taught, but it is able to
generalize and transfer rather well to the unfamiliar low-frequency verbs that had never been
presented during training. The system has learned about the conditions in which each of the
three regular past-tense endings are to be applied, and it has learned not only the dominant,
regular form of the past tense, but many of the subregularities as well.

It is true that the model does not act as a perfect rule-applying tnaline with novel past-
tense forms. However, it must be voted that people--or at least children, even in early grade-
school yearsarc not perfect rule-applying machines either. For example, in Berko's classic
(1958) study, though her kindergarten and first-grade subjects did often produce the correct
past forms of novel verbs like spow, mot:, and rick, they did not do so invariably. In fact, the
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rate of regular post-tense forms given to Berko's novel verbs was only 51 percent'? Thus, we seelittle reason to believe that our model's "deficiericies" are signiEcsntly greater than those ofnative speakers of comparable experience.

CONCLUSIONS

We have shown that our simple learning model shows, to a remarkable degree, the charac-teristics of young children learning the morphology of the past tense in English. We haveshown how our model generates the so-called U-shaped learning curve for irregular verbs andthat it exhibits a tendency to overgeneralize that is quite similar to the pattern exhibited byyoung children. Both in children and in our model, the verb forms showing the most regulari-zation are pairs such as know/knew and see /saw, whereas those showing the lease regularization
are pairs such as feel/felt and catch/caught. Early in learning, our model shows the pattern ofmore no-change responses to verbs ending in t/d whether or not they are regular verbs, just asyoung children do. The model, like children, can generate the appropriate regular past-tenseform to unfamiliar verbs whose base form ends in various consonants or vowels. Thus, themodel generates an rd/ suffix for verbs ending in t/d, a /t/ suffix for verbs ending in anunvoiced consonant, and a /d/ suffix for verbs ending in a voiced consonant or vowel.In the model, as in children, different past-tense forms for the same word can coexist at thesame time. On rule accounts, such transitional behavior is puzzling and difficult explain. Ourmodel, like human children, shows an relatively larger proportion of past +ed regularizationslater in learning. Our model, like learners of English, will sometimes generate past-tense formsto novel verbs which show sensitivities to the subregultrities of English as well as the majorregularities. Thus, the past of cring can sometimes be rendered crtutg or entry. In short, oursimple learning model accounts for all of the major features of the acquisition of the morphol-ogy of the English past tense.

In addition to our ability to account for the major known features of the acquisition process,there are also a number of predictions that the model makes which have yet to be reported.These include:

We expect relatively more past+ed regularizations to irregulars whose correct past formdoes not involve a modification of the final phoneme of the base form.

We expect that early in learning, a no-change response will occur more frequently to a
CVC monosyllable ending in t/d than to a more complex base verb form.

We expect that the double inflection responses (/dript^d/) will occasionally be made by
native speakers and that they will matt more frequently to verbs whose stem is ends in/p/ or /lc/.

The model is very rich and there are many other more specific predictions which can be derivedfrom it and evaluated by a careful analysis of acquisition data.
We have, we believe, provided a distinct alternative to the view that children learn the rulesof English past-tense formation in any explicit sense. We have shown that a reasonableaccount of the acquisition of past tense can be provided without recourse to the notion of a'rule' as anything more than a descripti-n of the language. We have shown that, for this case,there is no induction problem. The child need not figure out what the rules are, nor even that

10 Unfortunately, Seiko included only one regular verb to compare to her novel verbs. The verb was melt. Chil-dren were 73 percent correct oo this verb. The two novel verbs that required the same treatment as melt (molt andbodd) each received only 33 percent correct responses.
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there are rules. The child need not decide whether a verb is regular or irregular. There is no
question as to whether the inflected form should be stored directly in the lexicon or derived
from more general principles. There isn't even a question as far as generating the put-tense
form is concerned) as to whether a verb form is one encountered many times or one that is
being generated for the first time. A uniform procedure is applied for producing the past-tense
form in every case. The boy form is supplied as input to the put-tense network and the
resulting pattern of activation ii: interpreted as a phonological representation of the ptc. form
of that verb. This is the procedure whether the verb is regular or irregular, familiar or novel.

In one sense, every form must be considered as being derived. In this sense, the network can
be considered to be one large rule for generating past tenses from base forms. In another
sense, it L. possible to imagine that the system simply stores a set of rote associations between
base and past-tense forms with novel responses rnerateu by 'en -line' generalizations from the
stored exemplars.

Neither of these descriptions is quite right, we believe. Ajsociations . I simply stored in the
network but because ire have a uperpositional mmitory, similar pattern' , and into one another
and minim= each other. If then were no similar patterns (i.e., if the (4- Aural representations
of the base forms of verbs were orthogonal to one another) there wo, -,'. b' no generalization.
The system would be unable to generalize and there would be no regularization. It is statistical
relationships among the base forms themselves that letermine the pattern of responding. The
network merely reflects the steadies of the feetural representations of the verb forms.

We chose the study of acquisition of past tense in art because the phenomenon of reguLai-
ration is an example often cited in support of the view that children do respond accord'ng to
general rules of language. Why otherwise, it is sometimes asked, should they generate forms
that they have never heard? The answer we offer is that they do so because the past tenses of
similar verbs they are learning show such a consistent pattern that the generalization from the
similar verbs outweighs the relaCvely small amount of learning that has occurred on the irregu-
lar verb in question. We suspect that essentially similar ideas will prove useful :n accounting
for other aspects of language acquisition. We .-'ew this work on past-tense morphology as a
step toward a revised understanding of language ...nowledr.;-, language acquisition, and linguistic
information processing in general.
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APPENDIX

One important aspect of the Wickelfeature representation is that it completely suppressed
the temporal dimension. Temporal information is stored implicitly in the feature pattern.
This gives us a representational format in which phonological forms of arbitrary lengt1 :an be
represented. It also avoids an a priori decision as to which part of the verb (beginning, end,
center, etc.) contains the past-tense inflection. This grows out of the learning process. Unfor-
tunately, it has its negative side is well. Since phonological forms do contain temporal infor-
mativa, we need to have a method of converting from the Wickelfeature representation into
the time domainin short, we need a decoding network which converts from the Wickel-
feature representation to either the Wickelphone or a phonological representational format.
Since we have probabilistic units, this decoding process must be able to work in the face of
substantial noise. To do this we devised a special sort of decoding network 'hich we call a
binding network. Roughly speaking, a binding network is a scheme whereby a number of units
compete for a set of available featuresfinally attaining a strength that is proportional to the
number of features the units account for. We proceed by first describing the idea behind the
binding network, then describing its application to produce the set of Wickelphones implicit
in the Wickelfeature representation, and finally to produce the set of phonological strings
implicit in the Wickelfeatures.

Binding Networks

The basic idea is simple. Imagine that there are a set of input features and a set of output
features. Each output feature is consistent with cm. in of the input features, inconsistent
with certain oth..- of the input features, and neutral about still other of the input features.
The idea is to find a set of output features that accounts for as many as -tssible of the output
features while minimizing the number of input features accounted for by more than one out-
put feature. Thus, we want each of the output features to compete for input features. The
more input features it captures, the stronger its position in the competition and the more claim
it has on the features it accounts for. Thus consider the case in which the input features are
Wicke!features and the output features are Wickelphones. The Wickelphones compete among
one another for the available Wickelfeatures. Every time a particular VI ickelphone "captures" a
particular Wickelfeature, that input feature no longer provides support for other Wickel-
phones. In this way, the system comes up with a set of more or less nonoverlapping Wickel-
phones which account for as many as possi`le of the available Wickelfeatures. This means
that if two Wickelphones have many Wickelfeatures in common (e.g., k kA.) but one of
them accounts for more features than the other, the one that accounts for the most features
will remove nearly all of the support for the very similar output feature which accounts for few
if any input features uniquely. The binding network described below has the property that if
two output units are competing for a set of input features, each will attain a strength propor-
tional to the number of input features uniquely accounted for by that output feature divided
by the total number of input features uniquely accounted for by any output feature.

This is accomplished by a network in which each input unit has a fixed amount of activation
(in our case we assumed that it had a total activation value of 1) to be distributed among the
output units consistent with that input feature. It distributes its activation in proportion to
the strength of the output feature to which it is connected. This is thus a network with a

42



LEARNEPY0 THE PAST TENSE' 39

dynamic weight. The weight from input unit J to output unit i is thus given by

ar
wt./ --

aki
kJ

where k1 rr ges over the set of output units consistent with input units J. The total strength
of output unit k at time t is a linear function of its inputs at time t 1 and is thus given by

IliAak(t 1)

N(t) = Xijawkj,(t)=
1)4

where jk ranges over the set of input features consistent with output feature k, lik ranges over
the set of output features consistent with input feature A, and 11 takes on value 1 if input
feature j is present and is 0 otherwise.

We used the binding network described above to find the set of Wickelphones which gave
optimal coverage to the Wickelfeatures in the input. The procedure was quite effective. We
used as the set of output all of the Wickelphones which occurred anywhere in any of the 500
or so verbs we studied. We found that the actual Wickelphones were always the strongest
when we had 80 percent or more of the correct Wickelfeatures. Performance dropped off as
the percentage of correct Wickelfeatures dropped. Still when as few as 50 percent of the
Wickelfeatures were correct, the correct Wickelphones were still the strongest most of the
time. Sometimes, however, a Wickelphone not actually in the input would become strong and
push out the "correct" Wickelphones. If we added the constraint that the Wickelphones must
fit together to form an entire string (by having output features activate features that are con-
sistent neighbors), we found that more than 60 percent of correct Wickelfeatures lead to the
correct output string more than 90 percent of the time.

The binding network described above is designed for a situation in which there is a set of
input features that is to be divided up among a set of output features. In this case, features
that are present, but not required for a particular output feature play no role in the evaluation
of the output feature. Suppose, however, that we have a set of alternative output features one
of which is supposed to account for the entire pattern. In this case, input features that are
present, but not consistent with a given output feature must count against fir, output feature.
One solution to this is to have input units excite consistent output units actor g the the rule
given above and to inhibit inconsistent output units. In the case in which w tried to con-
struct the entire phonological string directly from a set of Wickelfeatures we uses the follow-
ing activation rule:

ak = wriA

where Ik indexes the input features that are inconsistent with output feature k. In this case,
we used as output features all of the strings of less than 20 phonemes which could be generated
from the set of Wickelphones present in the entire corpus of verbs. This is the procedure
employed to produce responses to the lowest frequency verbs as shown in Tables 17 and 18.
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