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Goodness-of-fit Indices In Confirmatory Factor Analysis:

The Effect of Sample Size

ABSTRACT

The present investigation examines the influence of sample size on

different goodness-of-fit indices used in confirmatory factor analysis (CFA).

Contrary to Bentler and Bonett (1980), their incremental fit index was

substantially affected by sample size. Contrary to Joreskog and Sorbom (1981),

their goodness of fit indices provided by LISREL were substantially affected

by sample size. Contrary to Hoelter (1983), his critical N index was

substantially affected by sample size. Of the 12 indices considered, only the

Tucker-Lewis index and a conceptually similar new index were relatively

independent of sample size, and these results were consistent across two real

and two simulated sets of data. Despite the inconsistency of these findings

with previous claims, the results are consistent with the observation that the

amount of random, unexplained variance varies inversely with sample size.
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Goodness-of-fit Indices In Confirmatory Factor Analysis:

The Effect of Sample Size

The purpose of the present investigation is to examine the influence of

sample size on different goodness-of-fit indicators used in confirmatory

factor analysis (CFA). While the present investigation is limited to CFA, the

problems, issues and results also generalize to the analysis of covariance

structures. The advantages of the use of CFA are well known and numerous

introductions to the LISREL approach used in the present investigation are

available elsewhere (e.g., Bagozzi, 1980; Joreskog & Sorbom, 1981; Long, 1983;

Marsh & Hocevar, 1985; Pedhauzur, 1982). Briefly, in CFA, responses to p

observed variables by N subjects are summarized by a (p x p) sample covariance

matrix and it is hypothesized that the corresponding population covariance

matrix can be summarized by .c; true but unknown parameters (Bentler & Bonett,

1980). The q parameters in the present investigation are the factor loadings,

the factor variances and covariances, and the error/uniquenesses. To the

extent that the inferred population covariance E derived from these parameters

corresponds to the observed sample covariance matrix S, the model is

supported. The problem of goodness of fit is how to decide whether E is

sufficiently similar to S to justify the conclusion that a specific model

adequately fits a particular set of data (Hoelter, 1983).

In the maximum likelihood approach to CFA a discrepancy or loss function

is sAimized with respect to the q parameters such that its value approaches

zero as the S and E become identical (Bentler & Bonett, 1980; Joreskog &

Sorbom, 1981). If all the observed variables have a multivariate normal

distribution, if the sample size is large, and if the model is correct, the2 n N

- 1 times the minimum value of the loss function can be interpreted as a X

test statistic with degrees of freedom (df) equal to .5 x p x (p + /) - q. As

typically used the model is rejected if the X is large relative to the df,
2

and accepted if the X is nonsignificant or small. However, Bentler and Bonett

(1980) warn that the probability of detecting a false model increases with N

even when the model is minimally false (i.e., differences between E and S are

trivial) so that for very large sample sizes nearly all models are reje2 cted.

(It is important to note that for a true model the expected value of X is

equal to the df and does not vary with sample size.) Because e. the
2

apparently restrictive assumptions underlying the X test statistic and

because of the power of the test for large sample sizes, Marsh and Hocevar

(1985) concluded that "most applications of confirmatory factor analysis

require a subjective evaluation of whether or not a statistically significant

chi-square is small enough to constitute an adequate fit" (p. 567), that this

4
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subjectivity undermines some of the rigor that is possible with CFA, and that

"this issue will continue to be an important one in the future development of

this statistical procedure" (p.568).

Bentler and Bonett (1980) no to the dubious logic of inferring support for
2

a model from a nonsignificant X (i.e., attempting to prove the null

hypothesis) since the X can be made small simply by reducing the sample size.

Because of this influence of sample
2
size, a poor fit based on a :small sample

size may result in nonsignificant X , whereas a good Zit based on a large

sample size may result in statistically significant X . The substantial

influence of sample size an X for a false model may lead to a counter-

productive practice in CFA. In order to obtain a nonsignificant X , or at

least cl't!% that is acceptably low, researchers may be tempted to limit analyses

to a small number of cases, or if their sample size is large to analyze only a

subsample of their data. For example, Bentler and Bonett (1980, p. 571) assert

that "one's favorite model will stand the best chance of being accepted when

tested against the data of small samples" and Fornell (1983, p. 446) suggests

that one could "make sure the sample size is not large enough to reveal a

difference between the model and the data". As emphasized by these authors,

and by common sense, such a practice is counter-productive and Hoelter (1983,

p. 328) stated that:

"sacrificing the power of a test by utilizing small sample sizes simply

blinds the researcher to significant differences between a model and the

data" and

"testing models with large samples is alHays desirable, and the question

that needs to be addressed deals with how well a model looroximetes the

observed data rather than whether of not the model fits the data."

Because of the substantial influence of sample size on X , researchers have

developed a variety of goodness-of-fit indices that they claim to be

unaffected by sample size, and these are among the fit indices considered in

the present investigation.

Goodness of Fit Indicators.
2 2
X and X /df Ratio. These two indices continue to

be
the most frequently

used goodness-of-fit indicators. As noted above, the X for a false model

varies directly with sample size, but the X for a true model does not. In

CFA the df doe2 s not vary with the sample size, so that the effect of sample

size on the X /df must necessarily be the same as for the X . Hence, while

these indicators do not vary with sample size for a true model, they are

substantially influenced by sample size when the model is false and this

dependence on sample size is larger for poorer models.
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Insamtat#1 Eit Indium: Bentler and Bonett (1980) proposed that valuable

information could be obtained by comparing the ability of nested models to fit
the same data. In particular, for CFA it is useful to compare the fit of a

null model in which all the p variables are assumed to be uncorrelated with
the fit of the proposed model. If the fit of a null model is reasonable,

because the sample size is small or because the measured variables are

relatively uncorrelated, then the fit rf target model will automatically be
reasonable. However, if the increment in the goodness-of-fit is small, then
there may be no basis of support for the model. Bentler and Bonett (1980)
presented two incremental fit indices. First they described the Tucker-Lewis
Index (TLI) and a more general version of this index. Second, they proposed an
alternative index, called the Bentler-Bonett Index (BBI) for purposes of the
present investigation. They specifically noted that these indices are useful
for comparing the fit of a particular model across samples that have unequal
sizes. They cautioned that the absolute value of these indices may be

difficult to interpret, but that vAlues of less than .9 usually mean that the
model can be improved substantially. Much of the value-of these indices is
based on the assumption that they are independent of sample size, and this
assumption will be tested in the present investigation.

Other 4it indices c2m2ute§ by LISREL, Joreskog and Sorbom (1981) describe
three other indices that are computed by LISREL: the goodness-of-fit index

(GFI), the adjusted GFI (AGFI), and the root mean square residual (RMS). They
describe GFI as "a measure of the relative amount of variances and covariances

2jointly accounted for by the model" and assert that "unlike X , GFI is
independent of the sample size" while the adjusted GFI (AGFI) "corresponds to
using mean squares instead of total sums of squares" (Joreskog & Sorbom, 1981,
p. I. 40-41). The RMS, based on the differences between the elements in the
observed and inferred covariance matrices, is easily interpreted when
correlation matrices are analyzed. For the examination of covariance matrices
RMS still has a lower-bound of zero but its upper bound is indeterminant. Thus
RMS must be interpreted in relation to the size of the variances and
covariances of the measured variables, and cannot be compared across
applications based on different variables. Joreskog and Sorbom suggest that
GFI and AGFI will generally fall between 0 and 1, but that it is possible for
them to be negative. Again, much of the value of these indicators is based on
the assumption that they are independent of sample size, and this assumption
will be tested in the present investigation.

Critical N. Hoelter (1983, p. 528) argued that "rather than ignoring or

completely neutralizing sample size we can estimate the size that a sample
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must reach in order to accept the fit of a given model on a statistical basis.

This estimate, referred to here as 'critical N' (CN), allows one to assess the

fit of a model relative to identical hypothetical models estimated with

different sample sizes." Hoelter cautioned that no firm basis could be offered

as to what constituted an adequate fit, but he suggested that a value of 200

was a reasonable starting point for suggesting that differences between the

model and data may be unimportant. The usefulness of CN also rests on the

assumption that its value is independent of sample size, and this assumption

will be tested in the present investigation.

The Sobel eag pghrhgtedt mrochs. For purposes of the present

investigation only two models, a null model and a target model, are fit to

each covariance matrix. However, as emphasized by. Sobel and Bohrnstedt

(1985), by Bentler and Bonett (1980), and by Marsh and Hocevar (1984; 1985) in

most substantive applications a variety of nontrivial models can be generated

on the basis of previous research or the logic of the data. Often these

nontrivial models will differ from each other according to strict statistical

criteria, but differences may not be of practical importance. Goodness- of-fit

indicators in which each of the competing nontrivial models is compared to the

null model may, perhaps, provide an externally meaningful, well defined,

absolute scale for determining whether the statistically significant

differences are of practical importance (e.g., Marsh & Hocevar, 1984; 1985).

Sobel and Bonrnstedt (1985) contend that the use of the null model t.o

determine one end-point for incremental fit indices is only appropriate for

exploratory studies in which nontrivial alternative models are unavailable.

Instead, they argue that a more parsimonious nontrivial model shoulJ be used

to define the lower-end of the goodness-af-4it index. However, there are two

important problems with their approach. First, the use of the null model to

define one end-point of goodness -of -fit indices does not preclude the

comparison of alternative nontrivial models and need not be limited to

exploratory studies (e.g., Marsh, 1985; Marsh & Hocevar, 1984; 1985). Second,

and more importantly, if their recommendation were followed then the scale of

their goodness-of-fit indices would be arbitrarily determined by the

idiosyncratic choice of nontrivial models in a particular study, thus

precluding inferences of practical significance of differences between

competing nontrivial models on a nonarbitrary scale. Furthermore, for the

incremental fit indices they considered and considered here, the value

obtained from the Sobel/lohrnstedt approach is just a linear transformation of

the one based on the null model. Whether the promise of an externally

meaningful, well-defined, absolute scale for goodness-of-fit indicators can be

7
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fulfilled by existing fit indices is an empirical question that is addressed

in part by the present study, but the promise cannot be fulfilled if the

Sabel/Bohrnstedt approach is adopted. It should also be noted that if the

sample size affects goodness of fit as used in the present approach based on

the null model, it mast also affect goodness of fit as defined with the

Sobel/Bohrnstedt approach.

flip Emstat IamtstiestionL

For purposes of the present investigation, it is proposed that an ideal

goodness-of-fit index should:

1) be relatively independent of sample size;

2) be valid, that is accurately and consistently reflect differences in

goodness of fit for competing models of the same data (e.g., nested models)

and for the same model applied to different data;

3) vary along an externally meaningful, well-defined, absolute continuum

so that its value can be easily interpreted.

The present investigation emphasizes the examination of the first

criterion, but its violation would also undermine the second and particularly

the third criteria. In order to examine the first criterion the same three -

f actor, simple-structure model was fit to data from four data sets. The first

two data sets, based on real data, were derived from large normative samples

of responses to a multidimensional self-concept (SC) instrument and to a

multidimensional instrument used to assess students' evaluations of teaching

effectiveness (SET). Based on the a priori design of each instrument, the

selection of variables, and the results of previous research, a three-factor

model is reasonable. However, only the SC data approximates a simple structure

so that it should be better fit by the model than should the SET data.

The third and fourth data sets are based on simulated data. In the

third, data were generated according to the model to be tested, so that E and

S differ only due to random chance. In the fourth, data were generated

according a three-factor model that did not have a simple structure. Hence,

goodness of fit indices should be better for the third data set than for the

fourth, and also better for the third than either of the first two.

For each of the four data sets, ten random samples were generated with

sample sizes of 25, 50, 100, 200, 400, 800, and 1600, and the same three -

f actor model was fit to 280 covariance matrices derived from the four data

sets. To the extent that the values of a particular index of fit are similar

across the seven sample sizes, then there is support for its independence of

sample size.

Method
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The CFA Model and Analyses.

All analyses were conducted with the commercially available LISREL V

package (Joreskog & Sorbom, 1981). The target model in each of the analyses

contained 21 estimated parameters: six factor loadings (in LAMBDA Y), three

factor variances (in PSI), three factor covariances (in PSI), and nine

error/uniquenesses (in THETA EPSILON). The first measured variable for each

factor was designated to be a reference indicator and given a factor loading

of 1.0, while loadings for the other two variables were estimated. Hence the

df (.5 x 9 x 10 - 21 = 24) was constant for all the analyses, In addition to

the target model, a null model was tested for each covariance matrix such that

the reproduced covariance matrix was a diagonal matrix of variances and the

nine measured variables were posited to be uncorrelated. The df for the null

model (.5 x 9 x 10 - 9 = 36) was also constant for all the analyses. The same

null and hypothesized models were tested for each of 280 covariance matrices

described below. (Also, in order to test the generality of findings to be

described latter, one additional set of analyses was conducted on a 14-

variable, 4-factor model described latter).

The Data.

Tne Sample Sizes. The seven sample sizes to be rmensidered in the present

investigation, 25, 50, 100, 200, 400, 800 and 1600, were selected to span the

range of sample sizes typically considered in CFA. Hoelter (1983) and Bentler

and Bonett (1980) each considered a sample size of 23 for a similar purpose,

and so 25 appeared to be a reasonable lower limit. The upper limit of 1600

was arbitrary, but it is apparently larger than the sample sizes typically

used in CFA. (Also, in order to test the generality of findings to be

described latter, one additional set of analyses was conducted with a sample

of 32,000).

Self-concept (SC) pates. The SC data came from the normative archive of

over 4,000 sets of responses to the Self Description Questionnaire (Marsh,

1986). For purposes of the pretent investigation the first three indicators

were selected from the Physical Ability, Reading, and Math scales. Previous

research (e.g., Marsh & Hocevar, 1985; Marsh, Smith & Barnes, 1985) suggests

that the simple structure model should provide a reasonable fit for this data.

A random sample of 3175 cases was divided into sets of 25, 50, 100, 200, 400,

800, and 1600, and this process was repeated 10 times so that a total of 70

covariance matrices were created. The hypothesized and null models were fit to

the a 9 x 9 covariance matrix derived from this data set.

gtudents' evaluations of teaching ,SET). This data came from the cet of

4,471 sets of class-average responses to the Students' Evaluation of Educational

9
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Quality instrument that was factor analyzed by Marsh (1983; 1984). For purposes

of the present investigation the first three items were selected from the

Leaning/Value, Organization, and workload /Difficulty scales. Previous factor

analyses suggest that while the three factors are well defined, several of the

items load on more than one factor so that solution is not "simple." As with the

SC data, the null and hypothesized model were fit to 70 covariance matrices.

agog Itcystmg gigglgted data IESSEL The nine measured variables were

defined with the random number generator from the commercially available SPSS

package (Hull & Nie, 1981). Each variable was defined to reflect only one

factor and a normally distributed random error component, and the three

factors were defined to be correlated (see Appendix I). A total a 31,750 cases

were generated and divided into 70 sets of data such that each sample size was

represented by 10 covariance matrices, and the null end hypothesized models

were fit to the 70 covariance matrices.

Complex gtrgEtgcg giggited pats (pSHIL The nine measured variables were

defined as with the SSSD except that six of the nine measured variables -- two

for each factor -- were defined such that each should have had a small loading

on one factor in addition to the one it was designated to reflect (see Appendix

I). Again a total of 31,750 cases were generated and divided into 70 sets of

data such that each sample size was represeAted by 10 covariance matrices, and

the null and hypothesized models were fit to the 70 covariance matrices.

GpsdngsE gf Eit Indiaatocgs.
2 2

Six goodness-of-fit indicators -- X , X /df, GFI, AGFI, RMS, and CN --

were examined that did not require results from a corresponding null model.

Two forms of an incremental fit index described by Bentler and Bonett (1980)

were used to reflect a scaled difference between the goodness of fits for the

null and hypothe2 sizld models. One form is illustrated by the BBI; the

difference in X for the Null and tested model divided by the X for the null

model. Using this approach, new incremental fit indices (see Appendix II)
2

were derived from X /df (called MB1), RMS (called incremental RMS), and CN

(called incremental CN). The range of values for these indices is strictly

bo2 ulded by 0 and 1. A second form is illustrated by the TLI; the difference in

X
2
/df for the Null and posited models is divided by the difference between the

X /df for the Null model and some ideal expected value -- in this case 1.0.

Using this approach a new incremental index was derived from the X (called

MB2). For these indices, the range of expected values is 0 to 1.0.2Technically

it is possible for these indices to be slightly negative (if the X
2
/df for the

null model is less than 1.0) or slightly larger than 1.0 (if the X /df for the

target model is less than 1.0) but such occurrences will be very rare for real

10
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data tested with a priori models. The set of 12 fit indicators, as defined in
Appendix II, was used to assess the goodness of fit in all 280 CFAs.

Results & Discussion

One-way ANOVAs (Table 1) and a visual inspection of graphs (Figure 1)
were used to assess the sample size effect on each index for the four data
sets. The effect of sample size varies dramatically depending on the index. Of
the 12 indices

considered, only the TLI and the conceptually similar MB2 are
relatively independent of sample size. For the other 10 indices, the sample
size effect varies with both the sample size and the data set. For 7 of these2 210 indices -- all but X , X /df, and CN -- most of the sample size effect
occurs for the smallest sample sizes (25, 50, 100 & 200). Ths. sample size
afloat for all but TLI and M82 also appears to vary with the data beingcon2sidered. In particular, the sample size effect for all the indices except2
X , X /df, TLI and M82 are substantially larger for the SSSD data that was
simulated to be best fit by the model than for the SC and/or SET data.

Insert Table 1 and Figure 1 About Here

Though not the primary focus of the present investigation, the four data
sets were constructed so as to vary in their ability to be fit by the target
model. In particular, the SSSD data were sisulated to be best fit by the
model, and the SC data were selected so as to be better fit by the

2
model than

2were the SET data. This ordering is accurately reflected by X , X /df, GFI,
AGFI, CN, TLI and MB2, but not by BBI, MB1, incremental RMS, incremental CN --
all of which are incremental indices. (Note that the RMS was not considered
since it is dependent on the size of variances and covariances in the
particular application and so is clearly not comparable across applications
unless analyses are based on the correlation

matrices.) It was also assumed
that the fit for the target model should always be better than for the
corresponding null model. However, AGFI and occasionally GFI had negative
values for the target model whereas the corresponding null models always had
positive values. Thus, at least for these cases, GFI and AGFI did not accurately
reflect differences in the ability of the two models to fit the same data. These
findings suggest that the five incremental

indices other than TLI and MB2, and
perhaps GFI and AGFI, in addition to being substantially influenced by sample
size, may not validly reflect real differences in goodness of fit.

Contrary to claims by Bentler and Bonett (1981), their BBI is
substantially related to sample size in all four data sets. Contrary to claims.
by Joreskog and Sorbom (1981), their b: and AGFI are both substantially
affected by sample size in all four data sets (as well as the RMS that is also
provided by LISREL). Contrary to claims by Hoelter (1983), his CN is

11
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substantially related to sample size in all four data sets. Furthermore, all

the other indices except for TLI and MB2 were also substantially affected by

sample sizes. While the empirical findings are clear, two important questions

remain: Why are BBI, GFI, AGFI, RMS, and CN so substantially affected by

sample size? Why are the TLI and MB2 relatively unaffracted by sample size?

The substantial effect of sample size on BBI, GFI, AGFI, RMS, and CN is

consistent with the otservation that the standard errors of the observed

variances and covariances becomes smaller as sample sizes become larger. Data

to be fit contains variance that can be explained by the target model

(explained variance), systematic variance that cannot be explained by the

model (uniqueness), and random variance that cannot be fit by the model

(error). The proportion of random error decreases systematically with sample

size (i.e., standard errors become smaller), so that the proportion of

variance that can be explained and the uniqueness most increase with sample

size. The relation between explained and random variance is most clear for the

SSSD data since it was created to have no unicweness. Thus this explanation of

the sample size effect can be examined most easily for this data.

For the SSSD data, the RMS reflects only random variance and the amount

of random variance is inversely related to sample size. Thus RMS also varies
2

inversely with sample size. The BBI is based on the
2

ratio of the X s for the

null and target model, but for the SSSD data the X for the null model varies

substantially with sample size while the X for the target model does not.

Thus BRI must also vary with sample size. CN is based on the unstated

assumption that the proportion of random variance will not vary with sample

size, but this assumption is false. For the SSSD data with n=25 CN is small

(41) because the proportion of random variance is relatively large, whereas

for n=1600 CN is much larger (3114) because the proportion cf random variance

is relatively small. If the SSSD were tested with a sample size of 41 and the

proportion of random variance was the same as it was in a sample size of 25,

then Halter's claim of the independence of CN and sample size would be

satisfied. However, as empirically demonstrated in the present investigation,

the claim is false, and this is because the proportion of random variance will

not be the same in samples of 25 and 41. Mote also that if a covariance

matrix based on 1600 cases is used but LISREL is told that it is based on only
2

100 cases, a much smaller X will be obtained than if a covariance based on a

random sample of 100 of the 1600 cases is used.] GFI and AGFI, as measures of

the relative variance that is accounted by the target model, will also vary

with sample size since the amount of random variance that is unexplained by

the model varies with sample size. Hence, RMS, CFI, AGFI, CN, and BBI all vary

.12
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with sample size because the proportion of random variance varies with sample

size. For real data the situation is complicated by the existence of

uniqueness in addition to random and explained variance. However, even though

it may be difficult to separate random error and uniqueness, the proportion of

random variance still depends on sample size so that the logic of the present

explanation generalizes to these data as well.

A comparison of the BBI and MB1 with TLI and MB2 suggests why the first

two are so much more affected by sample size. Both sets of indices have the

same numerators (see Appendix II), but the denominator of BBI and MB1 is based

on the fit of the null model whereas the denominator of the TLI and MB2 is the
2 2

difference between the null model and the expected value of the X or X /df.
2

In
2

the present study these expected values -- df for the X or 1.0 for the

X /df -- are constant, but the size of this constant in relation to the value

for the null model varies with sample size. For small sample sizes this

constant is relatively larger compared to the value for the null model, and

this provides some control for the sample size effect. Additional research is

clearly warranted to further examine this suggested explanation and to test

the generality of the findings in different applications.

Thg §enecglity gf the Samag ftze Effegts.

Based on findings of this study two features of the sample size effect

are clearly illustrated. First. the sample size effect is small or clgligible

for TLI and MB2, but is substantial fo2 r the other 10 fit indices. Second, for

7 of these 10 indices -- all expect X , X /df and CN -- the sample size effect

is weaker, though still statistically significant, for the larger sample sizes

(400, 800 & 1600). However, the findings are limited to seven sample sizes

and to a single target model, and these limitations to the generality.of the

findings are worrisome. Consequently, two additional sets of analyses were

conducted to test the generality of these findings. First, one additional

sample based on 32,000 cases from the CSSD data -- 20 times the largest number

of cases considered in the present investigation -- was fit with the same

target model . Second, a new data set like the CSSD was constructed for 14

measured variables designed to reflect four factors, and the sample size
2

effect on the different fit indices was determined for this new data set .

The purpose of the 32,000-case analysis was to determine the behavior of

the fit indices when the sample size was extremely large. Although the

interpretation of the values is difficult for many of the indices that are

approaching their optimum values for n=1600, only the TLI and MB2 appeared be
2 2

unaffected by this large jump in sample size. The X and X /df for the 32,000

cases were substantially larger (poorer) compared to values for 800 and 1600
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cases, CN was substantially larger (improved), and the other indices --

except TLI and MB2 -- were marginally improved (see footnote 1). These

findings support the generality of the findings summarized earlier, but do nct

indicate whether or not the indices will continue to change as sample size

approaches infinity.

The purpose of the new data set with 14 variables was to explore the

generality of the sample size effect found with the 9 variable model. While

the sample size effect was statistically significant for all fit indices, the

size of the effect was substantially smaller for the TLI and MB2 than for any

other fit indices (see footnote 2). Furthermore, the group based on samples

sizes of 25 was the only group to differ significantly from any other group for

TLI and MB2, whereas nearly all possible pair-wise comparisons between different

samples sizes were statistically significant for the other indices. These

results also support that the generality of the findings summarized earlier.

Summary

The promise of an externally meaningful, well-defined, absolute scale

does not appear to be fulfilled by most of the goodness-of-fit indices

considered in the present investigation. First, when the variables to be fit

and the model to be tested are held constant, values for 10 of the 12 fit

indices are substantially affected by sample size. Furthermore, this sample

size effect cannot be easily characterized Once it varies depending on the

particular index, the data set that is bei 4 considered, and the range of

sample sizes being considered. Second, when the model to be tested and the

sample size are held constant, the fit indices may not be comparable across

different data sets. In particular, the SSSD data was constructed so that it

would be best fit by the target model, but of the incremental fit indices,

only the TLI and MB2 accurately reflected this difference. Since only the TLI

and MB2 performed satisfactorily in this investigation, no absolute criteria

of what value constitutes an acceptable fit seems justified for any of the

other indices (e.g., the .90 suggested by Bentler & Bonett for BBI, the 200

suggested by Hoelter for CN, or the value of 2.0 smetimes suggested for

X /df). On the basis of this investigation it is recommended that: a)

additional research is conducted with the TLI and MB2 to further test their

characteristics; and, b) pending the outcome of further research, at least one
2

of these two indices should be used, along with the X test of statistical

significance and the examination of parameter estimates in relation to

substantive issues, to assess goodness of fit.
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-- A single 9 x 9 covariance matrix was derived from a new sample of

32,000 cases for the CSSD data (see Appendix I) and was fit with the same 3-

factor model as the other 280 covariance matrices. The values for the 12
2

goodness-of-fit indices defined in Appendix II are as follows: X (3155),
2
X /df (:31.5), GFI (.970), AGFI (.943), RMS (.074), CN (395.1), BBI (.927),

MB1 (.890), incremental RMS (.774), incremental CN (.896), TLI (.891), MB2

(.928). Compared to indices for samples of 800 and 1600 with the same CSSD

data (see Table 1), the values for the TLI and M82 did not differ, values

for GFI, AGFI, RMS, BBI, MB1, incremental RMS, and incremental CN were
2 2

marginally improved, values for X and X /df were substantially poorer, and

the value for CN was substantially improved.

2
Procedureli similar to those used for the CSSD data were used to

generate 14 random variables that reflected 4 correlated factors. The first

nine variables were defined as with the CSSD data, and the fourth factor was

defined by five additional variables that were constructed to reflect it.

The data was fit with a simple structure model even though the simulated

structure was complex. For just this analysis, 10 sets of 14 variables were

generated with sample sizes of 25, 100, 400, and 1600. LISREL was used to

derive the 12 goodness-of-fit indices for each of the 40 covariance

matrices, and one-way ANOVAs and visual inspections were used
2
to assess

2
the

sample size effect. F-ratios for the 12 fit indices were: X (238), X /df

(238), GFI (404), AGFI (403), RMS (153), CN (268), BBI (304), M81 (304),

incremental RMS (91), incremental CN (322), TLI (20), MB2 (16). A student-

Newman-Kuels (Hull & Nie, 1981) test of pair-wise differences for the TLI

and MB2 indicated that the mean value based on n=25 was significantly

different from all other sample sizes, but that no other pair-wise

differences were statistically significant. For each of the other 10

indices, nearly all of the possible pair-wise differences were statistically

significant. These statistical analyses, and inspection of plots similar to

Figure 1, indicate that TLI and MB2 are substantially less affected by

sample size than any of the other 10 fit indices.

15



Goodness of fit 13

Appendix I

The following set of compute statements were used with SPSS (Hull & Niel

1981) in order to create 31,750 sets of nine variables (xl - x9) to

represent the SSSD and CSSD data sets. Subsequent CFA analyses were based on

70 covariance matrices -- 10 for each of 7 sample sizes -- derived from

these nine variables.

SSSD Data Set

compute v = normal(1)

compute fl = .2 * v + normal (1)

compute f2 = .4 * v + normal (1)

compute f3 = .6 * v + normal (1)

compute xl = .6 * fl + normal (1)

compute x2 = .7 * fl + normal (1)

compute x3 = .8 * fl + normal (1)

compute x4 = .6 * f2 + normal (1)

compute x5 = .7 * f2 + normal (1)

compute x6 = .8 * f2 + normal (1)

compute x7 = .6 * f3 + normal (1)

compute x8 = .7 * f3 + normal (1)

compute x9 = .8 * f3 + normal (1)

CSSD Data Set

compute v = normal(1)

compute fl = .2 * v + normal (1)

compute f2 = .4 * v + normal (1)

compute f3 = .6 * v + normal (1)

compute xl = .2 * f2 + .6 * fl + normal (1)

compute x2 = .2 * f3 + .7 * fl + normal (1)

compute x3 = .8 * fl + normal (1)

compute x4 = .2 * fl + .6 * f2 + normal (1)

compute x5 = .2 * f3 + .7 * f2 + normal (1)

compute x6 = .8 * f2 + normal (1)

compute x7 = .2 * fl + .6 * f3 + normal (1)

compute x8 = .2 * +2 + .7 * f3 + normal (1)

compute x9 = .8 * f3 + normal (1)

16
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Appendix II

A total of 12 goodness-of-fit indicators were considered in the

present investigation, and are described below. The first six indices

require information from tests of only the hypothesized model, and are

called stand-alone indices for purposes of this investigation. The

rest are based on difference in goodness-of-fit for the hypothesized

model and its corresponding null model, and are referred to as

incremental indices. Incremental index were derived according to the

form (x-y)/y where x refers to the goodness-of-fit for either the

hypothesized model or the null model, whichever is expected to be

largest, and y refers to the goodness of fit for the other. This set

of indices is called form 1 incremental indices for purposes of the

present investigation. A second set of incremental indices was

derived according to the form + or - (x-y)/(y-I) where x and y refer

to the goodness of fits for the target and null models respectively, I

is an ideal or optimum value for x. These are called form 2

incremental indices for purposes of the present investigation.

Stand Alone Indices.

2
1) X (see Joreskog & Sorbom, 1981)

2
2) X /df where df =C .5 x p x (pig) 3 - q

T T
-1 2 -1 2

3) GFI = 1 - E (tE (E x S - I) /(tE E S )

(see Joreskog & Sorbom (1981, p. 1.40).

4) AGFI = 1 - Cp x (p+1)/2df 3 x (1 - GFI)
T

(see Joreskog & Sorbom (1981, p. 1.40).

2 1/2
5) RMS = C 2 E E (s - o ) / p x (p+1)3 wherea a

s and o are elements in S and Ea a
(see Joreskog & Sorbom (1981, p. 1.41).

1/2 2 2
6) CN = CCz + (2 x df - 1) 3 /C2 x X /(N -1)) +1 where

criC T T

z = the critical value from a normal curve table for a given
cri C

probability level -- 1.96 in the present investigation (see Hoelter,

1983, p. 31).
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Incremental Form 1 Indices.

2 2 2 2
7) Incremental Form 1 index for X = BBI = (X - X )/ (X ) where

o T o

the subscripts a and T refer to the null and target models (see

Bentler & Bonett, 1980).

1 2
8) Incremental Form 1 index for X /df (MB1) =

2 2 2
C (X /df ) - (X /df )3 /C (X /df ]

a o T T o o
1

9) Incremental Form 1 index for RMS = (RMS - RMS )/(RMS )
o T o

1

10) Incremental Form 1 index for CN = (CN - CN )/(CN )
T o T

Incremental Form 2 Indices.

1 2
11) Incremental Form 2 index for X (MB2) =

2 2 2
(X - X )/ (X - df ) where df is the

o T o
2

T T

expected value of X when the target model is true.

2
12) Incremental Form 2 index for X /df = TLI =

2 2 2
C (X /df ) - (X /df )3 IC (X /df - 1]

o o T T o a
2

where 1 is the expected value of X /df when the target model is true.

1

We know of no previous descriptions of these goodness of fit indicators.
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Table 1

?jean and Standard Error (SE) of 12 Goodness of Fit Indicators For Seven Sample

Sizes in Eour pata gets

F-ration=25
Indicator

2
1) X

n=50 n=100

Sample Sizes

n=200 n=400 n=800 n=1600 Total

1 M 35.55 34.06 37.65 34.52 48.43 49.26 70.60 44.30 14.2**
SE 4.46 2.71 3.18 3.19 1.75 3.82 4.60 1,95

2 M 56.04 78.20 119.64 210.77 414.43 738.89 1439.03 435.53 983.2**
SE 4.49 4.47 7.09 5.95 13.12 25.76 29.04 56.42

3 M 24.84 25.33 24.27 23.34 24.79 23.64 23.38 24.23 .1

SE 2.30 1.84 2.55 1.95 1.86 3.18 2.59 .86

4 M 30.90 73.03 35.52 45.05 62.00 95.30 189.81 70.23 140.5**
SE 2.27 3.22 2.37 2.60 5.12 5.19 9.11 6.63
2

2) X /df

1 M 1.48 1.42 1.57 1.44 2.02 2.05 2.94 1.85 14.2**
SE .19 .11 .13 .13 .07 .16 .19 .C9

2 M 2.34 2.26 4.90 8.78 17.27 30.79 59.96 18.20 983.2**
SE .19 .19 .30 .25 .55 1.07 1.21 2.38

3 M 1.04 1.06 1.01 .9- 1.03 .99 .98 1.01 .1

SE .10 .08 .11 .08 .08 .13 .11 .04

4 M 1.29 1.37 1.118 1.88 2.58 3.97 7.91 2.93 140.5**
SE .09 .13 .10 .11 .21 .22 .38 .28

3) Goodness of Fit Index (GFI)

1 M .638 .735 .847 .911 .927 .961 .970 .856 60.1**
SE .030 .025 .014 .006 .005 .003 .002 .015

2 M .279 .398 .430 .4q,9 .451 .474 .478 .422 21.60
SE .020 .020 .020 .009 .010 .011 .006 .009

3 M .781 .880 .938 .967 .983 .991 .996 .934 231.0**
SE .011 .005 .006 .003 .001 .001 .001 .009

4 M .750 .849 .913 .940 .956 .964 .964 .906 91.5*
SE .016 .013 .006 .004 .004 ,002 .002 .009

4) Adjusted Goodness of Fit Index (AGM

1 M .322 .503 .714 .833 .865 .927 .944 .729 60.1**
SE .056 .047 .027 .011 .010 .006 .003 .028

2 M -.352 -.127 -.068 -.034 -.028 .013 .020 -.082 21.6**
SE .038 .037 .037 .018 .019 .020 .011 .018

3 M .589 .775 .884 .939 .968 .984 .992 .876 234.4*
SE .020 .009 .011 .006 .002 .002 .001 .017

4 M .513 .718 .837 .887 .919 .934 .934 .823 91.2*
SE .030 .024 .012 .007 .007 .004 .004 .018

21
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n=25
Indicator

5) Root Mean

n=50

Sample

n=100

Sizes

n=200 n=400

(RMS)

n=800 n=1600 Total F-ratio

Square Residual

1 M .437 .317 .235 .176 .164 .121 .108 .223 53.2**
SE .030 .022 .017 .010 .007 .005 .004 .014

2 M .031 .025 .024 .022 .021 .021 .020 .023 5.1*
SE .004 .002 .002 .001 .001 .001 .001 .001

3 M .189 .137 .096 .068 .049 .036 .024 .086 141.1*
. SE .009 .004 .006 .004 .002 .002 .002 .007

4 M .246 .168 .122 .099 .086 .078 .079 .125 62.87
SE .014 .013 .005 .004 .005 .003 .002 .008

6) Critical N

1 M 31.2 61.6 109.6 2A1.1 324.9 680.6 619.4 337.8 80.9**
SE 3.7 6.8 8.6 19.8 11.6 74.9 59.9 40.0

2 M 18.6 26.3 34.2 38.0 38.8 43.5 44.3 34.8 42.2**
SE 1.4 1.8 1.9 1.1 1.2 1.6 0.9 1.2

3 M 41.0 79.9 195.3 557.7 667.5 1456.5 3114.1 844.6 30.2*
SE 3.1 5.8 41.8 34.2 62.7 124.9 515.0 144.1

4 M 33.0 65.5 113.8 178.0 268.2 335.7 334.8 189.9 78.9**
SE 2.8 8.5 7.6 10.5 23.7 13.9 15.1 14.9
2

7) X Bentler-Bonett Index (BM

1 M .777 .883 .930 .966 .975 .987 .991 .930 82.1**
SE .020 .007 .006 .003 .001 .001 .001 .009

2 M .82C .856 .893 .900 .902 .912 .913 .885 20.5*
SE .016 .009 .005 .003 .003 .003 .002 .005

3 M .633 .745 .830 .907 .948 .974 .987 .861 67.3**
SE .028 .022 .022 .008 .004 .003 .001 .016

4 M .615 .710 .775 .846 .883 .915 .913 .808 81.6*
SE .011 .023 .014 .009 .011 .004 .004 .014
2

8) X /df Incremental Fit Index 1 (MB1)

1 M .666 .824 .894 .949 .n62 .981 .986 .895 82.1**
SE .030 .011 .009 .005 ,002 .002 .001 .014

2 M .730 .784 .831 .350 .850 .867 .870 .827 20.5*
SE .024 .014 .008 .004 .005 .005 .003 .007

3 M .451 .617 .745 .861 .921 .961 .981 .791 67.3**
SE .042 .033 .032 .012 .006 .005 .002 .024

4 M .423 .564 .662 .769 .824 .873 .869 .712 81.6*
SE .016 .035 .021 .013 .016 .007 .006 .020

9) Incremental RMS

1 M .731 .808 .862 .894 .897 .924 .932 .864 84.9**
SE .013 .010 .009 .006 .003 .003 .003 .009

2 M .809 .797 .834 .842 .848 .853 .852 .833 3.1*
SE .020 .023 .010 .006 .004 .003 .003 .005

3 M .517 .607 .681 .754 .823 .868 .912 .738 49.8**
SE .031 .031 .024 .017 .007 .008 .006 .018

4 M .467 .575 .628 .702 .734 .770 .758 .662 35.514
SE .026 .031 . .020 .011 .013 .006 .007 .014

2"4
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Sample Sizes

Indicator
n=25 n=50 n=100 n=200 n=400 n=800 n=1600 Total F-ratio

10) Incremental Critical N

1 M .667 .822 .893 .949 .962 .981 .986 .894 84.6**SE .030 .011 .009 .005 .001 .002 .001 .014

2 M .709 .769 .825 .838 .841 .857 .860 .814 23.6**SE .024 .014 .008 .004 .005 .005 .003 .008

3 M .479 .637 .760 .869 .926 .964 .982 .802 70.6**SE .038 .031 .030 .011 .005 .005 .002 .022

4 M .451 .588 .681 .781 .839 .880 .877 .728 89.0**SE .015 .033 .020 .013 .012 .006 .006 .019

11) Tucker-Lewis Index (TIM

1 M .877 .946 .959 .984 .981 .990 .991 .961 4.2*SE .048 .017 .009 .005 .001 .001 .001 .007

2 M .825 .839 .867 .864 .860 .871 .872 .856 2.2SE .026 .014 .008 .004 .005 .005 .003 .005

3 M 1.013 .975 .988 1.010 .998 1.001 1.001 .998 .1SE .106 .041 .035 .017 .006 .005 .002 .017

4 M .852 .860 .862 .878 .884 .902 .884 .874 .1SE .093 .075 .027 .013 .017 .007 .006 .017
2

12) X Incremental Fit Index 2 (M82)

1 M .924 .966 .974 .989 .987 .993 .994 .975 4.2*SE .029 .011 .006 .003 .001 .001 .001 .005

2 M .888 .895 .912 .910 .907 .914 .914 .906 1.7SE .017 .009 .006 .003 .003 .003 .002 .003

3 M 1.001 .986 .994 1.010 .999 1.001 1.000 .998 .1SE .048 .023 .021 .011 .004 .003 .001 .008

4 M .910 .915 .916 .923 .924 .935 .923 .921 .1SE .042 .040 .016 .008 .011 .004 .004 .009

X
2

Null

a

1 M 156.3 288.6 538.4 1024.2 1942.3 3820.7 7593.5 2194.8 5341.*tSE 8.3 15.5 20.3 23.5 48.2 38.7 66.7 301.3

2 M 315.0 546.9 1111.4 2102.4 4213.1 8365.8 16565.1 4745.6 21341**SE 11.5 17.4 30.7 31.4 36.8 53.3 70.3 660.4

3 M 68.1 102.6 147.3 255.8 472.6 915.5 1797.8 537.1 1915**SE 4.0 6.9 5.0 14.4 12.9 14.4 27.9 70.3

4 M 80.3 114.2 158.9 296.7 543.4 1127.6 2179.2 642.9 1665.**SE 5.5 7.2 8.2 18.6 12.7 26.4 33.6 86.1

a 2
The X for the null model is presented to illustrate the substantial effect

that sample size has on its value.

* p < .05; ** p < .01.
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Figure I. The sample size effect for selected fit indices in each of the
2

four data sets. Since the form of the sample size effect was similar for X
2

and X /df, for BBI and MB2, and for TLI and MB2, only the first of each of

these pairs is presented. However, the values for the fit indices not

included in Figure 1 are presented in Table L.
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