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Goodness-af-fit Indices In Confirmatory Factor Analysis:
The Effect of Sample Size

ABSTRACT
The present investigation examines the influence of sample size on
different goodness-of-fit indices used in canfirmitory factor analysis (CFA).
Contrary to Bentler and Bonett (1980), their incremental fit index was
substantially affected by sample size. Contrary to Joreskog and Sorbom (1981),
their goodness of fit indices provided by LISREL were substantially affected
by sample size. Contrary to Hoelter (1983), his critical N index was
substantially affected by sample size. Of the 12 indices considered, only the

Tucker-Lewis index and a conceptually similar new index were relatively
independent of sample size, and these results were consistent across two real
and two simulated sets of data. Despite the inconsistency of these findings
with previous claims, the results are consistent with the observation that the
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amount of random, unexplained variance varies inversely with sample size.
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Goodness-of-fit Indices In Confirmatory Factor Analysis:
The Effect of Sample Size

The purpose of the present investigation is to examine the influence of
sample size on different goodness-of-fit indicators used in confirmatory
factor analysis (CFA). While the present investigation is limited to CFA, the
problems, issues and results also generalize to the analysis of covariance
structures. The advantages of the use of CFA are well known and numerous
introductions to the LISREL approach used in the present investigation are
available elsewhere (e.g., Ragozzi, 1980; Joreskog & Sorbom, 1981; Long, 1983;
Marsh & Hocevar, 1985; Pedhauzur, 1982). Briefly, in CFA, responses to p
observed variables by N subjects are summarized by a (p x p) sample covariance
matrix and it is hypothesized that the corresponding population covariance
matrix can be summarized by q true but unknown parameters (Bentler & Bonett,
1780). The q parameters in the present investigation are the factor loadings,
the factor variances and covariances, and the error/uniquenesses. To the
extent that the inferred population covariance E derived from these parameters
corresponds to the observed sample covariance matrix S, the model is
supported. The praoblem of goadness of fit is how to decide whether E is
sufficiently similar to S to justify the conclusion that a specific model

adequately fits a particular set of data (Hoelter, 1983).
In the maximum likelihood approach to CFA a discrepancy or loss function

is a.nimized with respect to the q parameters such that its value approaches
Zura as the S and E become identical (Bentler & Bonett, 19803 Joreskog &
Sorbam, 1981). If all the observed variables have a multivariate normal
distribution, if the sample size is iarge, and if the model is correct, thgn N
- 1 times the minimum value of the loss function can be interpreted as a X
test statistic with degrees of freedom (df) egual to Sxpx(p+1)-4q. As
typically used the mogel is rejected if the X is large relative to the df,
and accepted if the X is nonsignificant or small. However, Bentler and Bonett
(1980) warn that the probability of detecting a false model increases with N
even when the modei is minimally false (i.e., differences between E and S are
trivial) so that for very large sample sizes nearly all models are rejgcted.
(It is important to note that for a true model the expected value of X is
equal to the df and does not vary with sample size.% Because of the
apparently restrictive assumptions underlying the X test statistic and
because of the paower of the test for large sample sizes, Marsh and Hocevar
(1985) concluded that “most applications of confirmatory factor anaiysis
require a subjective evaluation of whether or not a statistically significant

chi-square is small enough to constitute an adequate fit" (p. 567), that this
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Goodness of fit 2
subjectivity undermines some of the rigor that is possible with CFA, and that
“this issue will continue to be an important one in the future development of
this statistical procedure" (p.568).

Bentler and Bonett (1980) gote the dubious logic of inferring support for
a model from a nonsignigicant X (i.e., attempting to prove the null
hypothesis) since the X can be made small simply by reducing the sample size.
Because of this influence of samplezsize, a poor fit baged on a cmall sample
size may result in nonsignificant X , whereas a good fit based on a large
sample size may result in statistically significant X . The substantial
influence of sample size on X for a false model may lead tc a cognter-
productive practice in CFA. In order to obtain a nonsignificant X , or at
least c:n that is acceptably low, researchers may be tempted to limit analyses
to a small number of cases, or if their sample size is large to analyze only a
subsample of their data. For example, Buntler and Bonett (1980, p. 571) assert
that “one’s favorite model will stand the best chance of being accepted when
tested against the data of small samples” and Fornell (1983, p. 446) suggests
that one could “make sure the sample size is not large enough to reveal a
difference between the model and the data". As emphasized by these authars,
and by common sense, such a practice is counter-productive and Hoelter (1983,
p. 328) stated that:

wsacrificing the power of a test by utilizing small sample sizes simply

blinds the researcher to significant differences between a model and the

data® and

"testing models with large samples is alvays desirable, and the question

that needs to be addressed deals with how well a model approximates the

observed data rather than whether of not the model ﬁ%gg the data.”
Because of the substantial influence of sample size on X , researchers have
developed a variety of goodness—of-fit indices that they claim to be
unaffected by sample size, and these are among the fit indices considered in
the present investigation.
gggggggg of Fit Indicators.

X and X /df Ratig, These two indices continue to be the most frequently
used goodness-of-fit indicators. As ncted agove, the X for a false model
varies directly with sampie size, but the X for a true model does not. In
CFA the df dogs not vary with the sample size, so that the effect of sample
size on the X /df must necessarily be the same as for the X . Hence, while
these indicators do not vary with sample size for a true model, they are

substantially influenced by sample size when the model is false and this

dependence on sample size is larger for poorer models.
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Incremental Eit Indices. Bentler and Bonett (1980) proposed that valuable
information could BE obtained by comparing the ability of nested models to fit
the same data. In particular, for CFA it is useful to compare the fit of a
null model in whicl; all the P variatles are assumed to be uncorrelated with
the fit of the proposed model. If the fit of a null model is reasonable,
because the sample gize is small or because the measurad variables are
relatively uncorrelated, then the fit rf target madel will automatically be
reasonable. However, if the increment in the goodness-of-fit is small, then
there may be no basis of support for the model. Bentler and Bonett (1980)
presented two incremental fit indices. First they described the Tucker-Lewis
Index (TLI) and a more general version of this index. Second, they proposed an
alternative index, called the Bentler-Bonett Index (BBI) for purposes of the
present investigation. They specifically noted that these indices are useful
for comparing the fit of a Particular model across sampies that have unequal
sizes. They cautioned that the absolute value of these indices may be
difficult to interpret, but that vaiues of less than .9 usually mean that the-
model can be improved substantially. Much of %the value of these indices is
based on the assumption that they are indepéndent of sample size, and this
assumption will be tested in the present investigation.

Other fit indices computed by LISREL. Joreskog and Sorbom (1981) describe
three other indices that are computed by LISREL: the goodness-of-fit index
(GFI), the adjusted GFI (RGFI), and the root mean square residual (RMS). They
describe GFI as “a measure of the relatjve amount of variances and cavariances
jointly accounted for by the madel® and assert that “unlike X , GFI is
independent of the sample size" while the adjusted GFI (AGFI) “corresponds to
using mean squares instead of total sums of squares* (Joreskog & Sorbom, 1981,
P. I. 40-41). The RMS, based on the differences between the elements in the
observed and inferred covariance matrices, is easily interpreted when
correlation matrices are analyzed. For the examination of covariance matrices
RMS still has a lower-bound of zero but its upper bound is indeterminant. Thus
RMS must be interpreted in relation to the size of the variances and
covariances of the measured variables, and cannot be compared across
applications based on different variables. Joreskog and Sorbom suggest that
GFI and AGFI will generally fall between 0 and 1, but that it is possible for
them to be negative. Again, much of the value of these indicators is based on

the assumption that they are independent of sample size, and this assumption
will be tested in the present investigation.
Critical N. Hoelter (1983, P. 528) argued that “"rather than ignoring or

completely neutralizing sample size we can estimate the size that a sample b
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must reach in order to accept the fit of a given model on a statistical basis.
This estimate, referred to here as ’critical N’ (CN), allows one to assess the
fit of a model relative to identical hypothetical models estimated with
different sample sizes." Hoeiter cautioned that no firm basis could be offered
as to what constituted an adequate fit, but he suggested that a value of 200
was a reasonable starting point for suggesting that differences between the
model and data may be unimportant. The usefulnass of CN also rests on the
assumption that its value is independent of sample size, and this assumption
will be testcd in the present investigation.

The Sobel and Bohrostedt approach. For purposes of the present
investigation only two models, a null model and a target model, are fit to
each covariance matrix. However, as emphasized by Sobel and Bohrnstedt
(1985), by Bentler and Bonett (1980), and by Marsh and Hocevar (1984; 1985) in
mast substantive applications a variety of nontrivial aodels can be generated
on the basis of previous research or the logic of the data. Often these
nontrivial models will differ from each other according to strict statistical
criteria, but differences may not be of practical importance. Gaodness-of-fit
indicators in which each of the competing nontrivial models is compared to the
null model may, perhaps, provide an externally meaningful, well defined,
absolute scale for determining whether ‘he statisticzlly significant
differences are of practical importance (e.g., Marsh & Hocevar, 1984; 198%5).

Sobel and Bonrnstedt (1985) contend that the use of the null model to
determine one end-point for incremental fit indices is only appropriate for
exploratory studies in which nontrivial alternative models are unavailable.
Instead, they argue that a more parsimonious nontrivial model should be used
to define the lower-end of the goodness-of-fit index. However, there are two
important problems with their approach. First, the use of the null model to
define ane end-point of goodness-of-fit indices does not preclude the
comparison of alternative nontrivial models and need not be limited to
exploratury studies (e.g., Marsh, 1985; Marsh & Hocevar, 1984; 1985). Second,
and more importantly, if their recommendation were followed then the scaie of
their goodness-of-fit indices would be arbitrarily determined by the
idiosyncratic choice of nontrivial models in a particular study, thus
precluding inferences of practical significance of differences between
competing nontrivial models on a nonarbitrary scale. Furthermore, for the
incremental fit indices they considered and considered here, the value
obtained from the Sobel /Sohrnstedt approach is just a linear transformation of
the one based on the aull model. Whether the promise of an externally

meaningful, well-defined, absolute scale for goodness-of-fit indicators can be
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fulfilled by existing fit indices is an empirical question that is addressed
in part by the present study, but the promise cannot be fulfilled if the
Sobel /Bohrnstedt approach is adopted. It should also ke noted that if the
sample size affects goodness of fit as used in the present approach based an
the null model, it must also affect goodness of fit as defined with the
Sobel /Bohrnstadt approach.

The Present Investjoation.

For purposes of the present investigation, it is proposed that an ideal
goodness-of-fit index should:

1) be relatively independent of sample size;

2) be valid, that is accurately and consistently reflect differences in
goodness of fit for competing models of the same data (e.g., nested models)
and for the same model applied to different dataj

3) vary along an externally meaningfui, well-defined, abeolute continuum

so that its value can be easily interpreted.

The present invertigation emphasizes the examination of the first
criterion, but its violation would also undermine the second and particularly
the third criteria. In order to examine the first criterion the same three-
factor, simple-structure model was fit to data from four data sets. The first
two data sets, based on real data, were derived from large normative samples
of respories to a multidimensional self-concept (SC) instrument and to a
multidimensional instrument used to assess students’ evaluations of teaching
effectiveness {SET). Based on the a priori design of each instrument, the
selection of variables, and the results of grevious research, a three—factor
model is reasonable. However, only the SC data approximates a simple structure
so that it should be better fit by the model than should the SET data.

The third and fourth data sets are based on simulated data. In the
third, data were generated according to the model to be tested, so that E and
S differ only due to random chance. In the fourth, data were generated
according a three-factor model that did not have a simple structure. Hence,
goodneés of fit indices should be better for the third data set than for the
fourth, and also better for the third than either of the first two.

For each of the four data sets, ten random samples were generated with
sample sizes of 25, 50, 100, 200, 400, 800, and 160C, and the same three-
factor model was fit to 280 covariance matrices derived from the four data
sets. To the extent that the values of a particular index of fit are similar
acrois the seven sample sizes, then thers is support for its independence of
sample size.

Method
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The CFA Model and Analyses.

All analyses were conducted with the commercially available LISREL V
package (Joreskog & Sorbom, 1981). The target model in each of the analyses
contained 21 estimated parameters: six factor lnadings (in LAMBDA Y), three
factor variances (in PSI), three factor covariances (in PSI), and nine
error/uniquenesses (in THETA EPSILON). The first measured variable for each
factor was designated to be a reference indicator and given a factor loading
of 1.0, while loadings for the other two variables were estimated. Hence the
df (.5 x 9 x 10 -~ 21 = 23) was constant for all the analyses. In addition to
the target model, a null model was tested for each covariance matrix such that
the reproduced caovariance matrix was a diagonal matrix of variances and the
nine measured variables were posited to be uncorrelated. The df for the null
model (.5 x 9 x 10 - 9 = 34) was also constant for all the analyses. The same
null and hypothesized mndels were tested for each of 280 covariance matrices
described below. (Also, in order to test the generality of findings to be
described latter, one additional set of analyses was conducted on a 14-
variable, 4-factor model described latter).

The Data.

Ine Sample Sizes. The seven sample sizes to be ~onsidered in the present
investigation, 25, 50, 100, 200, 400, 800 and 1600, were selected to span the
range of sample sizes typically considered in CFA. Hoelter (1983) and Bentler
and Bonett (1980) each considered a sample size of 23 for a similar purpose,
and so 25 appeared to be a reasonable lower limit. The upper limit of 1400
was arbitrary, but it is apparently larger than the sample sizes typically
used in CFA. (Also, in order to test the geﬁerality of findings to be
described latter, one additional set of analyses was conducted with a sample
of 32,000).

Self-concept (SC) data., The SC data came from the normative archive of
over 4,000 sets of responses to the Self Description Questionnaire (Marsh,
1986) . For purposes of the present investigation the first three indicators
were selected from the Physical Ability, Reading, and Math scales. Previous
research (e.g., Marsh & Hocevar, 1985; Marsh, Smith & Barnes, 1985) suggests
that the simple structure model should provide a reasonable fit for this data.
A random sample cf 3175 cases was divided into sets of 25, 50, 100, 209, 400,
800, and 1600, and this process was repeated 10 times so that a total of 70
covariance matrices were created. The hypothesized and null models were fit to
the a 9 x 9 covariance matrix derived from this data set.

Students’ evaluations of teaching (SET). This data came from the cet of
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Quality instrument that was factor analyzed by Marsh (1983; 1984). For purposes
of the oresent investigation the first three items were selected fi-om the
Leaning/Value, Organization, and hworkload/Difficulty scales. Previous factor
analyses suggest that while the three factors are well defined, several of the
items load on more than one factor so that solution is not “simple.” As with the
SC data, the null and hypothesized model were fit to 70 covariance matrices.
Sieple structure sisulated data (8SSD), The nine measured variables were
defined with the random number generator from the commercially available SPSS
package (Hull & Nie, 1981). Each variable was defined to reflect only one
factor and a normally distributed random e-ror component, and the three
factors were defined to be correlated (see Appendix I). A total a 31,750 cases
were generated and divided into 70 sets of data such that each sample size was
represented by 10 covariance matrices, and the null cnd hypothesized aodels

were fit to the 70 covariance matrices.

defined as with the SSSD except that six of the nine measured variables —- two
for each factor —— were defined such that each should have had a small loading
on one fictor in addition to the one it was designated to reflect (see Appendix
I). Again a total of 31,750 cases were generated and divided into 70 sets of
data such that each sample size was represehted by 10 covariance matrices, and
the null and hypothesized models were fit to the 70 covariance matrices.
Goodness of Eit Indicators. 2 2

Six goodness-of-fit indicators — X , X /df, GFI, AGFI, RMS, and CN --
were examined that did not require results from a corresponding null model.
Two forms of an incremental fit index described by Bentler and Bonett (1980)
were used to reflect a scaled difference between the goodness of fits for the
null and hypothgsizéd models. One form is illustrated by the BB%; the
difference in X for the Null and tasted model divided by the X for the rull
model. Using this ;pproach, new incremental fit indices (see Appendix IIX)
were derived from X /df (called MB1), RMS (called incremental RMS), and TN
(called incremental CN). The range of values for these indices is strictly
bgunded by 0 and §. A second form is illustrated by the TLI; the difference in
X2/df for the Null and posited models is divided by the difference between the
X /df for the Null model and some ideal expected value —- in this Ease 1.0.
Using this approach a new incremental index was derived from the X (called
MB2). For these indices, the range of expected values is 0 to 1.0.2Technically
it is possible for these indices to be slightly negative (if the x2/df for the
null model is less than 1.0) or slightly larger than 1.0 (if the X /df for the
target model is less than 1.0) but such occurrences wiil be very rare for real
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data tested with a priori models. The set of 12 fit indicators, as defined in
Appendix II, was used to assess the goodness of¢ fit in all 280 CFas.
Results & Discussion

One-way ANOVAs (Table 1) and a visual inspection of graphs (Figure 1)
were used to assess the sample size effect on each index for the four data
sets. The effect of sample size varjes dramatically depending on the index. Of
the 12 indices considered, only the TLI and the conceptualiy similar MB2 are
relatively independent of sampie gize. For the other 10 indices, the sample
size effect varies with both the sample size and “he data set. For 7 of these
10 indices -- all but X s X /df, and CN -- most of the sample gize effect
occurs for the smallest sample gizes (25, 50, 100 & 200). The: sasple gize
effect for all but TL! and MB2 also appears to vary with the data being
cgnsigercd. In particular, the sample size effect for all the indices except
X 5 X /df, TLI and MB2 are substantially larger for the SSSD data that was
simulated to be best fit by the model than for the SC and/or SET data.

~;;;;rt Table 1 and Figure 1 About Here

Though not the primary focus of the present investigation, the four data
sets were constructed so as to vary in their ability to be $it by the target
model. In particular, the SSSD data were sis:iated to be best fit by the
emodel, and the SC data were selected so as to be better fit by the model than
were the SET data. This ordering is accurately reflected by X , X /df, GFI,
AGFI, CN, TLI and MB2, but not by BBI, MBi, incremental RMS, incresental CN —-
all of which are incremental indices. (Note that the RMS was not considered
since it is dependent on the size of variances and covariances in the

particular application and S0 is clearly not comparable across applications
unless analyses are based on the correlation matrices.) It was also assumed
that the fit for the target model should always be better than for the
Corresponding null model. However, AGFI and occasionally 6FI had negative
values for the target model whereas the corresponding null models always had
positive values. Thus, at least for these cases, GFI and AGFI did not accurately
reflect differences in the ability of the two models to fit the same data. These
findings suggest that the five incremental indices other than TLI and MB2, and
perhaps GFI and AGFI, in addition to being substantially influenced by sample
size, may not validly reflect real differences in goodness of fit.

Contrary to claims by Bentler and Bonett (1981), their BBI is
substantially related to sample size in all four data sets. Contrary to Claims
by Joreskog and Sorbom (1981), their ™! and AGFI are both substantially
atfected by sample size in all four data sets (as well as the RMS that is also
provided by LISREL). Contrary to claims by Hoelter (1983), his CN is
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substantially related to sample size in all four data sets. Furthermore, all
the other indices except for TLI and MB2 were also substantially affected Ly
sample sizes. While the empirical findings are clear, two important questions
renaint Why are BBI, GFI, AGFI, RMS, and CN so substantially affected by
sasple size? Why are the TLI and MB2 relatively unaffrcted by sample size?

The substantial effect of sample size on BBI, GFl, AGFI, RMS, and CN is
consistent with the otservation that the standard errors of the observed
variances and covariances becomes smaller as sample sizes become larger. Data
to be fit contains variance that can be explained by the target model
(explained variance), systematic variance that cannot be explained by the
model (uniqueness), and random variance that cannot be fit by the model
(error). The proportion of random error decreases systematically with sample
size (i.e., standard errors becose smaller), so that the proportion of
variance that can be explained and the uniqueness must increase with sample
size. The relation between explained and random variance is most clear for the
SSSD data since it was created to have no uniqueness. Thus this explanation of
the sample size effect can be examined most easily for this data.

For the SSSD data, the RMS reflects only random variance and the amount
of random variance is inversely related to sample size. Thus RMS aéso varies
inversely with sample size. The BBI is based on the ratic of the X s for the
null and target model, but for the SSSD da%a the X2 fpr the null model varies
substantially with sample size while the X for the target model does not.
Thus BBI must also vary with sample size. CN is based on the unstated
assumption that the proportion of random variance will not vary with sample
size, but this assumption is false. For the SSSD data with n=25 CN is small
(41) because the préportian of random variance is relatively large, whereas
for n=1600 CN is much larger (3114) because the proportion cf random variance
is relatively small. If the SSSD were tested with a sample size of 41 and the
proportion of random variance was the same as it was in a sample size of 25,
then Holter’s claim of the independence of CN and sample size would be
satisfied. However, as empirically demonstrated in the present investigation,
the claim is false, and this is because the proportion of random variance will
not be the same in samples of 25 and 41. [Note also that i a covariance
matrix based on 1400 cases is used but LISREL is told that it is based on monly
100 cases, a much smaller X will be obtained than if a covariance based on a
random sample of 100 of the 1600 cases is used.) GFI and AGFI, as measures of
the relative variance that is accounted by the target model, will also vary
with sample size since the amount of random variance that is unexplained by
the model varies with sample size. Hence, RMS, GFI, AGFI, CN, and BBI ali vary
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with sample size because the proportion of random variance varies with sample
size. For real data the situation is complicated by the existence of
uniqueness in addition to random and explained variance. However, even though
it may be difficult to separate random error and uniqueness, the propartion of
random variance still depends on sample size so that the logic of the present
explanation generalizes to these data as well.

A comparison of the BBI and MB1 with TLI and MB2 suggests why the first
two are so much more affected by sample size. Both gets of indices have the
same numerators (see Appendix II), but the denominator of BBI and MBi is based
on the fit of the null model whereas the denominator of the TLI agd HBZzis the
difference between the null model and the expected value oé the X or X /df.
Ig the present study these expected values —- df for the X or 1.0 for the
X /df -- are constant, but the size of this constant in relation to the value
for the null model varies with sample size. For small sample gizes this
constant is relatively larger compared to the value for the null madel, and
this provides some contiol for the sample size effect. Additional research is
clearly warranted to further examine this suggested explanation and to test
the generality of the findings in different applications.

The Generality of the Sample Size Effect.

Based on findings of this study two features of the sample size effect
are clearly illustrated. First, the sample size effect is small or n=agligible
faor TLI and MB2, but is substantial fgr tge other 10 fit indices. Second, for
7 of these 10 indices -~ all expect X , X /df and CN -~ the sample size effect
is weaker, though still statistically significant, for the larger sample sizes
(400, 800 & 1600). However, the findings are limited to seven sample sizes
and to a single target model, and these limitations to the generality of the
findings are worrisome. Consequently, two additional sets of analyses were
conducted to test the generality of these findings. First, one additional
sample based on 32,000 cases from the CSSD data -- 20 times the largest number
of cases considered in the present investigatioh ~- was fit with the same
target model . Second, a new data set like the CSSD was constructed for 14
measured variables designed to reflect four factors, and the sample size2
effect on the different fit indices was determined for this new data set .

The purpose of the 32,000-case analysis was to determine the behavior of
the fit indices when the sample size was extremely large. Although the
interpretation of the values is difficult for many of the indices that are
approaching their optimum values for n=1400, only tge TLI gnd MB2 appeared be
unaffected by this large jump in sample size. The X and X /df for the 32,000

cases were substantially larger (poorer) compared to values for 800 and 1400
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cases, CN was substantially larger (improved), and the other indices --
except TLI and MB2 -- were marginally impraved (see footnate 1). These
findings support the generality of the findings summarized earlier, but do not
indicate whether or not the indices will continue to change as sample size
approaches infinity.

The purpose of the new data set with 14 variables was to explore the
generality of the sample size effect found with the 9 variable model. While
the sample size effect was statistically significant for all fit indices, the
size of the effect was substantially smaller for the TLI and MB2 than for any
other fit indices (see footnote 2). Furthermore, the group based on samples =§
sizes of 25 was the only group to differ significantly from any other group for “
TLI and MB2, whereas nearly all possible pair-wise comparisons between different "g

samples sizes were statistically significant for the other indices. These
results also support that the generality of the findings summarized earlier.
Summary

The promise of an externally meaningful, well-defined, absolute scale
does naot appear to be fulfilled by most of the goodness-of-fit indices
considered in the present investigation. First, when the variables to be fit
and the model to be tested are held constant, values for 10 of the 12 fit
indices are substantially affected by sample size. Furthermore, this sample
size effect cannot be easily characterized fince it varies depending on the
particular index, the data set that is bei , considered, and the range of
sample sizes being considered. Second, when the model to be tested and the
sanple size are held constant, the fit indices may not be comparable across
different data sets. In particular, the SSSD data was constructed so that it
would be best fit by the target model, but of the incremental fit indices,
only the TLI and MB2 accurately reflected this difference. Since only the TLI
and MB2 performed satisfactorily in this investigation, no absolute criteria
of what value constitutes an acceptable fit seems justified for any of the
other indices (e.g., the .90 suggested by Bentler & Bonett for BBI, the 200
sgggested by Hoelter for CN, or the value of 2.0 soz«times suggested for
X /df). On the basis of this investigation it is recommended that: a) ]
additional research is conducted with the TLI and MB2 to further test their xﬁ
characteristics; and, b) pending the outcome of further research, at least one h
of these two indices should be used, along with the X test of statistical
significance and the examination of paraméter estimates in relation to

substantive issues, to assess goodness of fit.
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Goodness of fit 12

-- A single 9 x 9 covariance matrix was derived from a new sample of
32,000 cases for the CSSD data (see Appendix I) and was fit with the same 3-
factor model as the other 280 covariance matrices. The values for the 12
ggodness—af-fit indices defined in Appendix II are as follows: X (3159),
X /df (i31.5), GFI (.970), AGFI (.943), RMS (.074), CN (395.1), BBI (.927),
MBL (.890), incremental RMS (.774), incremertcal CN (.894), TLI (.891), MB2
(.928). Compared to indices for samples of 800 and 14600 with the same CSSD
data (see Table 1), the values for the TLI and MB2 did not differ, values
for GFI, AGFI, RMS, BBI, MBi, incgementa% RMS, and incremental CN were
marginally improved, values for X and X /df were substantially poorer, and
the value for CN was substantially improved.
2

== Procedures similar to thase used for the CSSD data were used to
generate 14 rarndom variables that reflected 4 correlated factors. The first
nine variables were defined as with the CSSD data, and the fourth factor was
defined by five additional variables that were constructed to reflect it.
The data was fit with a simple structure model even though the simulated
structure was complex. For just this analysis, 10 sets of 14 variables were
generated with sample sizes of 25, 100, 400, and 1600. LISREL was used to
derive the 12 goodness-of-fit indices for each of the 40 covariance
matrices, and one-way ANOVAs and visual inspections were used2to assess2the
sample size effect. F-ratios for the 12 fit indices were: X (238), X /df
(238), GFI (404), AGFI (403), RMS (153), CN (268), BBI (304), MB1 (304),
incremental RMS (91), incremental CN (322), TLI (20), MB2 (14). A student-
Newman-Kuels (Hull & Nie, 1981) test of pair-wise differences for the TLI
and MB2 indicated that the mean value based on n=25 was significantly
different from all other sample sizes, but that no other pair-wise
differences were statistically significent. For each of the other 10
indices, nearly all of the possible pair-wise differences were statistically
significant. These statistical analyses, and inspection of plots similar to
Figure 1, indicate that TLI and MB2 are substantially less affected ty

sample size than any of the other 10 fit indices.
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The following set of compute statements were used with SPSS (Hull & Nie,

1981) in order to create 31,750 sets of nine variables (x1 - x9) to

represent the SSSD and CSSD data sets. Subsequent CFA analyses were based on

70 covariance matrices

these nine variables.

compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
CSSD Data
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute
compute

compute

v =

f1
£2
£3
x1
X2
X3
x4
x5
%6
x7

v = norsal (1)

f1
£2
£3
x1
X2
x3
x4
xS
%6
x7
x8
x9

normal (1)
.2
A
.6 X
R
.7 % £1
.8 % £1
6 % £2
.7 % £2
.B X 2
.6 % £3
.7 % £3
.8 % £3

-- 10 for each of 7 sample sizes —— derived from

X v + narmal (1)

v + normal (1)

v + normal (1)

f1 + normal

+

+ + + 4+ o+ o+ o+

normal
normal
normal
normal
normal
normal
normal

normal

(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)

.2 X v + narmal (1)

.4 X v + normal (1)

o6
.2
.2
.8
.2
.2
.8
.2
.2
.8

X v + normal (1)

b ¢

X
X
X
X
X
X
X
X

§2 + .6 X £1 + normal (1)
3 + .7 X §1 + normal (1)

f1
f1
3
f2
f1
L ¥4
3

+

+ 4+ + + + +

normal

b6 X £2 + normal (1)
.7 X £2 + normal (1)

normal

.6 X £3 + normal (1)
.7 X £3 + normal (1)

normal

(1)

(1)

(1)
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Appendix II

A total of 12 goodness-of-fit indicators were considered in the
present investigation, and are described below. The first six indices
require information from tests of only the hypothesized model, and are
called stand-alone indices for purposes of this investigation. The
rest are based on difference in goodness-of-fit for the hypothesized
model and its corresponding null model, and are referred to as
incremental indices. Incremental index were derived according to the
form (x-y)/y where x refers to the goodness—of-fit for either the
hypothesized model or the null model, whichever is expected to be
largest, and y refers to the goodness of fit for the other. This set
of indices is called form 1 incremental indices for purposes of the
present investigation. A second set of incremental indices was
derived according to the farm + or - (x-y)/(y-1) where x and y refer
to the goodness of fits for the target and null models respectively, 1
is an ideal or optimum value for x. These are called form 2
incremental indices for purposes of the present investigation.

Stand Alone Indices.
2
1) X (see Joreskag & Sorbom, 1981)
2
2) X /dfT where dfT =L .9xpx (ptl) J -q
-1 2 -1 2
S)GFI =1 -C (tL (E xS -1) /(tLE S )
(see Joreskog & Sorbom (1981, p. 1.40).
4) AGFI =1 - [p x (p+1)/2dfTJ x (1 - GFD)

(see Joreskog & Sorbom (1981, p. I1.40).
2 1/2
) RMS =L 2EE (s.[ - o.[) / px (p+1)] where
i i

s and o are elements in S and E
il it

(see Joreskog & Sorbom (1981, p. I.41).
1/2 2 2
6) CN = [[z + (2xdf -1 J /[2 x X /{(N~11] +1 where
cril T T

FJ ir = the critical value from a normal curve table for a given
cri

prabability level -- 1.96 in the present investigation (see Hoelter,

1983, p. 31).
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Goodness of fit 15

2 2 2 2
7) Incremental Form 1 index for X = BBI = (X - X T Y/ (X ) where
o o
the subscripts o and T refer to the null and target models (see
Bentler & Bonett, 1980).
1 2
8) Incremental Form i index for - X /df (MB1) =

2 2 2
C (X /df ) = (X /d¢ )1 /70 (X /7d€ 1
a o T T o 0

L]

b
9) Incremental Form 1 index %or RMS (RMS = RMS )/ (RS )

o T o

(CN_ - €N )/(CN )
T o T

L]

b
10) Incremental Form 1! index for CN

b 2
11) Incremental Form 2 index for X (MB2) =
2 2 2
(X - X Y/ (X ~ df ) where df is the
o T o T T

2
expected value of X when the target model is true.
2
12) Incrementai Form 2 index for X /df = TLI =

2 2 2
L (X /df ) = (X /df )Y /C (X /df - 11
o 0 T T o 2o

where 1 is the expected value of X /df when the target model is true.

1
We know of no previous descriptions of these goodness of fit indicators.
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Table 1
Mean and Standard Error (SE) of 12 Goodness of Eit Indicators For Seven Sample
Sizes in four Data Sets
Sample Sizes
n=25 n=50 n=100 n=200 n=400 n=800 n=1600 Total F-ratio
Indicator
2
1) X
1M 35.5 34.06 37.65 34.52 48.43 49.26 70.60 44,30 14.2xx
SE 4.46 2.71 3.18 3.19 1.75 3. 4,60 1.95
2 M S6.04 78.20 119.464 210.77 414.43 738.89 1439.03 435.53 983.2x%
SE  4.49 4,47 7.09 5.95 13.12 25.76 29.04 56.42
I M 24.84 25.33 24.27 23.34 24.79 23.54 23.38 24.23 .1
SE 2.30 1.84 «99 1.95 1.86 3.18 2.99 o
4 M 30.90 73.03 35.52 45.05 62.00 95.%70 189.81 70.23 140,5%%
Sg 2.27 3.22 2.37 2.69 9.12 S5.19 9.11 6.63
2) X /d¢
1 M 1.48 1.42 1.57 1.44 2.02 2.09 2.94 1.85 14.2%x
SE .19 .11 .13 .13 .07 .16 .19 .
2 M 2.34 2.26 4.90 8.78 17.27 30.79 S9.96 18.20 983.2%%
SE .19 . .30 29 . 1.07 1.21 2.38
I M 1.04 1.06 1.01 .97 1.03 .99 .98 1.01 o1
SE .10 . .1 .08 .08 .13 . 1i .
4 M 1.29 1.37 1.28 1.88 2.58 3.97 7.91 2.93 140,.5%%
SE .09 . . . 11 .21 . . .28
3) Goodness of Fit Index (GFI)
1M «.638 735 .847 211 . 927 . 961 . 970 .856 60.1%X
SE . 030 . 025 .014 . 006 . 005 . 003 . 002 .015
2 M 279 . 398 430 .49 . 491 474 . 478 422 21.6%%
SE .020 .020 .020 .009 .010 .011 . 006 .009
I M .781 . 880 938 <967 . 983 <991 . 996 . 934 231.0%x
SE 011 . 005 . . 003 001 . 001 . 001 .09
4 M 750 .849 213 « 740 956 . 964 . 964 .906 91.5%
SE 016 .013 . 006 .004 . 004 002 . 002 .009
4) Adjusted Goodness of Fit Index (AGFI)
1M . 322 903 .714 .833 . 865 . 927 . 944 729 60.1%%
SE .0R6 . 047 027 .011 .010 . 006 . 003 .028
2 M -e 392 -.127 -.068 -.034 -.028 .013 . 020 -.082 21.56%%
SE .038 .037 . 037 .018 .019 . 020 .011 .018
I M .989 <773 .884 . 939 « 968 « 984 «992 .876 234.4%
SE . 020 . 009 .011 . 006 . 002 .002 . 001 .017
4 M 913 .718 .837 .887 .919 . 934 . 934 .823 91.2%
SE . 030 . 024 012 . 007 . 007 . 004 . 004 .018

+
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Table 1 continued

Sample Sizes

n=25 n=50 n=100 n=200 n=400 n=800 n=1600 Total F-ratio
Indicator

S9) Root Mean Square Residual (RMS)

1M - 437 317 0239 176 . 164 121 .108 «223 53.2%%
SE . 030 . 022 .017 .010 . 007 .005 . 004 .014

2 M .031 . 025 .024 . 022 .021 »021 . 020 .023 5. 1%
SE . 004 . 002 .002 . 001 .001 .001 . 001 . 001

Ky . 189 . 137 . 096 . 068 . 049 .036 .024 .0B6 141.1%
. SE . 009 - 004 . 005 <004 .002 .002 - 002 . 007

4 M . 246 . 168 . 122 . 099 . 086 .078 . 079 125 62.87
SE .014 . 013 « 005 .004 . 005 .03 . 002 . 00E

6) Critical N

1M 31.2 61.6 109.6 241.1 324.9 680.6 419.4 337.8 80.9x%
SE 3.7 6.8 8.6 i9.8 11.6 74.% 59.9 40.0
2 M 18.6 26.3 34.2 38.0 38.8 43.5 44,3 34.8 42.2%x .
SE 1-4 1-8 1-9 1-1 1-2 1.6 0-9 1-2 ;-.
3IM 41.0 79.9 195.3 357.7 667.5 1456.5 3114.1 844.6 30.2% é
SE 3.1 S5.8 41.8 34.2 62.7 124.9 15.0 144.1 :
4 M 33.0 63.9 113.8 178.0 268.2 335.7 334.8 189.9 78.9%x
SE 2.8 8.5 7.6 10.5 23.7 13.9 15.1 14.9

2
7) X Bentler-Beonett Index (B®I)

1M . 777 . 883 . 930 « 986 975 . 987 . 991 930 82.1%x
SE . 020 . 007 «006 .003 . 001 .001 .001 . 009

2 M .82C . 896 .893 «900 « 902 912 <913 .889 20.5%
SE .016 . 009 - 005 .003 .003 . 003 . 002 .005

3 M . 633 . 745 .830 «907 . 948 974 . 987 .861 67.3%%
SE .028 . 022 .022 .008 . 004 . 003 . 001 .016

4 M <615 . 710 o775 .846 .883 <915 913 .808 81.6%
Sg .Cl1 . 023 .014 .009 .011 . 004 . 004 .014

8) X /df Incremental Fit Index 1 (MB1)

1M « 666 . 824 .894 « 949 « 762 . 981 . 986 .895 82.1%x
SE .030 .011 . 009 - 009 .002 .002 . 001 .014

2 M . 730 . 784 832 « 2390 .850 .867 .870 .827 20.5%
SE .024 .014 .008 .004 . 005 <035 . 003 . 007

I M .451 617 . 745 .861 . 921 .61 . 981 791 67.3%%
SE . 042 . 033 . 032 .012 . 006 . 005 . 002 .024

4 M - 423 . 964 « 662 « 769 .824 .873 . 869 732 81.6%
SE . 016 . 035 .021 .013 .016 . 007 . 006 .020

?) Incremental RMS

1M . 731 . 808 .862 .894 .897 . 924 . 932 .864 B84.9%x
SE .013 .010 . 009 .006 .003 . 003 . 003 . 009

2 M .809 . 797 .834 .842 .848 .853 . 852 833 3.1%
SE . 020 . 023 .010 .006 . 004 .003 . 003 .005

I M .97 . 607 . 681 « 754 .823 .868 912 .738 49.8%%
SE .031 . 031 .024 «G17 . 007 .008 . 006 .018

4 M 467 « 975 .628 .702 . 734 .770 . 798 662 35.5%% ,
SE . 026 031 . .020 .011 .013 . 006 . 007 .04 4
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Table | zentinued
Sample Sizes

n=25 n=50 n=100 n=200 n=400 n=800 n=1600 Total F-ratio
Indicator

10) Incremental Critical N

1M « 667 .822 .893 <949 « 962 .981 . 786 .894 84.6%%
SE . 030 .011 . 009 . 005 . 001 . 002 .001 .014

2 M <709 769 .825 .838 .841 .857 860 .814 23.6%%
SE .024 = .014 .008 .004 « 005 . 005 « 003 . 008

3 M <479 637 <760 .869 926 964 .982 .802 70.6%xx%
SE .038 . 031 . 030 011 . 005 « 005 .002 . 022

4 M «451 .988 .681 .781 .839 .880 +877 «728 89.0%%
St . 015 . 033 .020 .013 .012 . 006 . 006 .019

11) Tucker-Lewis Index (TLI)

1M .877 <946 <959 . 984 .981 <990 991 <961 4.2%
SE . 048 .017 . 009 « 005 . 001 . 001 .001 . 00%

2 M .825 .839 8467 .864 . 860 .871 .872 836 2.2
SE « 026 .014 .008 . 004 « 005 . 005 . 003 . 005

3 M 1.013 <975 .988 1.0i0 . 998 1.001 1.001 .998 .1
SE « 106 . 041 . 035 .017 . 006 . 005 . 002 .017

4 N . 852 . 860 . 862 . 878 . .Q‘:. . 902 . 884 . 874 . 1
SE . 093 . 075 « 027 .013 N7 007 . 006 . 017

2
12) X Incremental Fit Index 2 (MB2)

1M « 924 « 966 974 . 989 . 787 <993 994 975 4.2%
SE .029 .011 . 006 . 003 . 001 .001 001 . 005

2 M .868 «895 <912 .910 « 907 .9214 914 <906 1.7
SE .017 . 009 « 006 . 003 . 003 . 003 .002 . 003

3 M 1.001 .986 994 1.010 « 999 1.001  1.000 .998 .1
SE -048 .023 .021 011 . 004 .003 .001 .008

4 M 910 915 <916 923 <924 935 <923 921 .1

. SE .042 .040 .016 .008 011 .004 . 004 . 009
a

Null

1t M 156.3 288.6 8.4 1024.2 1942.3 3820.7 7593.5 2194.8 5341.%%
SE 8.3 15.5 20.3 23.9 48.2 38.7 66.7 301.3

2M_  315.0 546.9 11i1.4 2102.4 4213.1 B8345.8 16565.1 4745.6 21341%%
SE 11.5 17.4 30.7 31.4 36.8 93.3 70. 660.4

3 M 68.1 102.6 147.3 255.8 472.6 915.5 1797.8 937.1 1915%x
SE 4.0 6.9 5.0 14.4 12.9 14.4 27.9 70.3

4 M 80.3 114.2 158.9 296.7 543.4 1127.6 2179.2 642.9 1665.%%
SE 9.5 7.2 8.2 18.6 12.7 26.4 33.6 86.1

2 2

The X for the null model is presented to illustrate the substantial effect
that sample size has on its value.
¥p<.05; %% p < .01,
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Figure 1. The sample size effect for selected fit indices in each of the
four data sets. Since the form of the sample size effect was similar for X
and ledf, for BBI and MB2, and for TLI and MB2, only the first of each of
these pairs is presented. However, the values for the fit indices not

included in Figure 1 are presented in Table 1.
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