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ABSTRACT

AN INVESTIGATION OF THE FEASIBILITY OF USING THE
THREE-PARAMETER MODEL FOR

FLORIDA'S STATEWIDE ASSESSMENT TESTS

The three parametc 3111 response theory model. a

subiect of research for tt mast three decades. has recently

been successfully implemented in several large-scale testing
Programs. Other programs. including at least two statewide

assessment programs. are currently considering its adoption.
The purpose of this study was to investigate the feasibility

of its use in Florida's minimum competency testing program.
If it were to prove feasible for use. several aspects of
Florida's SSAT progran could be improved. The inclusion of
Parameters for guessing and for item discrimination make
Possible the development of highly efficient tests and more

precise measurement.

An investigation of feasibility should proceed in
several different phases. We have outlined a possible
structuring of a feasibility investigation in a previous
Paper (Hf.11s and Beard. 1984). This paver presents the
results of the phase one studies proposed in that paper. The
studies address the following questions.

1. Will existing IRT computer programs work
satisfactorily using the SSAT-II data?

2. Is the assumption of unidimensionality valid for
the SSAT-II data?

3. Do the two- and three-parameter models fit the SSAT-
II data better than the Rasch or one-parameter model?

4. A-e the guessing (c) parameters estimable for the
SSAT-IT data (using the LOGIST 4 computer program)?

5. How many examinees are needed to estimate the
parameters?

6. Can the parameter estimates be improved by
oversampling the lower end of the ability distribution?
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CHAPTER 1

INTRODUCTION

The three parameter item response theory model, a

subject of research for the last three decades, has recently
been successfully implemented in several large-scale testing
programs. Otter programs, including at least two statewide
assessment programs, Ar? currently considering its adoption.
The purpose of this study was to investigate the feasibility
of its use in Florida's minimum competency testing program.
If it were to prove feasible for use, several aspects of
Florida's SSAT program could be improved. The inclusion of
parameters for guessing and for item discrimination make
possible the development of highly efficient tests and more
precise measurement.

An investigation of feasibility should proceed in
several different phases. We have outlined a possible
structuring of a feasibility investigation in a previous
paper (Hills and Beard, 1984). This paper presents the
results of the phase one studies proposed in that paper. The
studies address the following questions.

1. Will existing IRT computer programs work
satisfactorily using the SSAT-II data?

2. Is the assumption of unidimensionalitv valid for
the SSAT-II data?

3. Do the two- and three-parameter models fit the SSAT-
II data better than the Rasch or one-parameter model?

4. Are the guessing (c) parameters estimable for the
.CAT -II data (using the LOGIST 4 computer program)?

5. How many examinees are needed to estimate the
parameters?

6. Can the parameter estimates be improved by
oversampling the lower end of the ability distribution?

In order to answer the first question we analyzed
actual SSAT-II data using LOGIST 4 (Wood, Wingersky, & Lord,
1976) to see what would happen. There was a possibility that
the easiness of the SSAT-II tests would cause problems in
the estimation of the a and c parameters. These problems
and the results of the trial analyses are given in chapter
two.

The second question is addressed in chapter three.
All currently used operational measurement models assume
unidimensionality; however, there is always the possibility
that more than one dimension is being measured in an
achievement test. The SSAT-II tests have been developed by
specifying a number of more or less separate skills, each
with several items. Such an approach could result in
serious multidimensionality. On the other hand, if there
are only a few items for each skill, if achievement of one
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skill is correlated with achievement of others, and if many
skills are included in a test (as is the case here), then a
single "superdimension" may account for most of the variance
in the scores, and the test may function as a unidimensional
measure of that superdimension. Previous analyses by King
and Hills have already indicated that the scores of the SSAT
II meet a widely-used criterion for unidimensionality. A
more elaborate investigation of that assumption is described
in chapter three.

The next inquiry explored the goodness of fit of the
one-, two-, and three-parameter models to the SSAT-II data.
The person and item parameters were estimated using LOGIST 4
and then used to estimate the responses to items of
individuals, and the proportion correct for groups of
individuals in several ability intervals. The differences
between the estimated and actual results were summarized for
each model in several ways. This study compare: in a

relatively direct way the fits of the three models to the
SSAT-II data.

The fourth question is related to the first. If
difficulties were to arise in applying the three-parameter
model to the SSAT-II data it was believed that it would
relate to the estimation of c parameters. Wingersky
(personal communication, Summer, 1984) has suggested that
since the items are so easy, there may be little guessing,
and there may be no real need for precise estimates of c
values. It might be sound to consider a two-parameter
model, involving only difficulty and discrimination, or a
modified three- parameter model using something like the
reciprocal of the number of decoys in an item as the c value
instead of estimating it from the data. The results of a
parameter estimation investigation are described in chapter
five along with a consideration of the appropriateness of
different models.

Questions five and six are dealt with in chapter six.
Studies of the optimum number of examinees to be used in
analyzing the data available from Florida's tests were
completed and are described in this chapter. The question
has a great deal of importance because the more persons in
an analysis, the more expensive it gets. For every
additional person another parameter (ability) must be
estimated. Current estimates in the literature range from a
low of 700 persons to satisfactory results only with 3 or 4
times that many. Recommendations of sample size for SSAT-II
mathematics and communications are made on the basis of the
results of empirical studies described in this chapter.

An attempt was made to improve parameter estimates by
oversampling the lower end of the achievement distribution.
Heavier sampling was done among those of extremely low
ability levels because that is where the estimation
difficulties arise and where most data are needed. This was
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investigated simultaneously with the sample size and
parameter estimation problems.

The above questions are fundamental and it appears that
the problems associated with them can be resolved
satisfactorily. They constitute the first phase of an
empirical investigation into feasibility. Severa] further
studies would seem appropriate for a second phase of the
feasibility irvestigation.
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CHAPTER 2

CONVERGENCE OF LOGIST 4 ON MINIMUM COMPETENCE TEST DATA

In evaluating the feasibility of using the three
parameter model for the Statewide Assessment Tests, a basic
question is whether the LOGIST 4 program would successfully
analyze the Florida data. Eignor reported (D. W. Eignor,
personal communication, Summer 1984) that in 1979 ETS tried
to use LOGIST 4 to estimate the item parameters for the New
Jersey minimum competency tests. He indicated that they
encountered severe convergence problems, i.e., after many
iterations the program would not reach the end. The
problem seemed to involve estimating the c parameters when
the items were so easy (as minimum competency tests tend to
be.) Eventually they tried using a two-parameter model,
ignoring guessing or fixing it at a specific value, but they
still had problems with convergence. A basic problem then,
was to whether LOGIST 4 would converge using Florida
Statewide Assessment Data (SSAT II).

The data for the March, 1984, administration of the
SSAT II were obtained. The file contained data for 127,033
cases, but from these we removed any who were taking the
test for the second time, any who were not in the tenth
grade, the normal time for taking the SSAT II, any who were
classified as deaf, hard of hearing, physically impaired,
emotionally handicapped, educably mentally handicapped, had
specific learning disabilities, or were educably mentally
retarded. The remaining group contained 94,261 cases, too
many for our purposes. A systematic sample of 9000 was
taken from this group.

The data from the tape reported each student's response
to each item. From the data we determined whether the
student had answered the item correctly, had answered
incorrectly, had omitted the item, or had not reached the
item. Omitted items are those which are not answered
correctly or incorrectly before tne last item which is
answered. Not reached items are items for which no answer
has been made after the last item for which an answer is
made. The responses were then recoded in the format
required by LOGIST 4, with a correct answer recorded as 01,
an incorrect answer as 00, an omitted response as 10, and a
not reached item as 11.

The LOGIST 4 program available to us for use on the CDC
Cyber computer is limited to 3000 cases. So we sampled once
again, creating 5 different random samples of approximately
3000 cases, with replaccment between sampling. That is, an
individual might appear in more than one sample, but he
could not appear in the same sample more than once.

The communications and mathematics item responses were
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analyzed for each of the five samples of 3000 cases by
LOGIST 4. In each of the ten cases (2 tests times 5
samples), convergence was reached, usually in about 20
stages. Thus, the problem experienced by Eignor does not
appear to occur with these data.

However, it is noticeable in these data that even with
75 items and 3000 cases, many of the c parameters were not
estimated, i. e., the program when unable to estimate a c
parameter gives the item the average c parameter of the
items for which c parameters have been estimated. The
program does not estimate the c parameter routinely when the
quantity b - 2/a is less than -2. When this quantity is
equal to or less than -2, the c parameters are poorly
determined (Wood et al., 1976). Many fewer c parameters were
estimated for the communications test than for the
mathematics test, since the average difficulty levels of the
communications items were much easier than the mathematics
items. The means and standard deviations of the a
parameters and b parameters for each data set, with
standardization on theta, appear in Table 2.1. The numbers
of c parameters estimated by LOGIST for the mathematics and
communications tests for each data set appear in Table 2.2.

It is clear from these results that LOGIST 4 can be
used to estimate a and b parameters for the SSAT II data in
the Florida Statewide Assessment Program. However, it is
also clear that the c parameters, which reflect the
probability of a person with very low ability answering an
item correctly (probably at least partly due to guessing),
will require special attention. Routine use of LOGIST 4
does not result in estimates of many of the c parameters.
The tests are so easy that few of the examinees are far
enough down the ability scale to allow us to ascertain what
the performance of a very low ability person would be. In a
later chapter we will concentrate on developing procedures
to estimate c parameters. If that is not suc'essful, we
will consider the use of a modified three-parameter model in
which all c parameters have the same nonzero value, or a
two-parameter model in which all c parameters are fixed at
zero as though there were no guessing and a person of low
ability would surely not be able to answer an item
correctly.

5

9



Table 2.1

Means and Standard Deviations of a and b Parameters for
Mathematics and Communications Tests for Each of the

Five Samples

a Parameter

Mathematics

Mean .93 .91 .93 .93 .91

S.D. .33 .32 .32 .33 .32

Communications

Mean .83 .80 .83 .63 .80

S.D. .31 .28 .28 .31

b Parameter

.28

Mathematics

Mean -1.32 -1.39 -1.32 -1.33 -1.39

S.D. 1.19 1.31 1.14 1.22 1.30

Communications

Mean -2.09 -2.11 -2.06 -2.09 -2.17

S.D. .84 .94 .82 .83 .80



Table 2.2

Numbers of Estimated c Parameters
for Mathematics and Communications Tests

for Eac of the Five Samples

Sample Mathematics Communications

1 2 0

2 2 0

3 3 0

4 2 0

5 2 0

7
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CHAPTER 3

DIMENSIONALITY OF SSAT II MATHEMATICS AND COMMUNICATIONS

Background

Dimensionality is an important aspect of item response
theory. The unidimensional theory, which we are using in
this project, assumes that only one dimension or
characteristic of the examinee is determining whether he
answers an item correctly, and that the same dimension is
involved for all examinees. If that is c_:rect, then the
desirable attributes of item response theory can be expected
to hold. If the test involves more than one dimension, the
estimate or the level of an individual on the characteristic
being measured may not depend on which items he is asked to
answer, and the parameters of the items luay not depend on
which individuals are administered the test, (It might be
useful to point out that classical test theory must make the
same assumption of unidimensionality for scores to be
meaningfully interpretable. This was largely overlo)ked for
many years by all but those who were familiar with the
concepts of factor analysis;

Unidimensionality is assumed by the Rasch (one-
parameter) model as well as by two- or three-parameter
models, so evaluation of dimensionality is not critical to
deciding whether to move from a one-parameter modal to a
two- or three parameter model for Statewide Stivient
Assessment purposes. What is found about dimensionalicy is
relevant for interpretation of total scores on the SSAT
tests, regardless of how they are analyzed. There is a
difference, however, between what happens in a one-parameter
model and in a more complex model in the lresence of more
than one dimension. The one-parameter model weights the
dimensions present approximately according to the number of
items on each. A two- or three-parameter model gives
dominant weight to the first or strongest dimension
(Reckase, 1981). In any case, it would seem pointless to
move to a more complex model from a simple model if a major
assumption of both were seriously violated. So checking of
this assumption seems particularly appropriate at this time.

It is highly probable that given enough items and
examinees, any set of data would be in violation of an
assumption of unidimensionality (Hambleton & Swaminathan,
1985). As Lord (1968) indicated when discussing the College
Board's Scholastic Aptitude Test, unidimensionality for the
SAT cannot be strictly correct, but it is probably a
tolerably good approximation. This was evidenced by a
factor analysis by Coffman which found 11 factors, but most
of the variance (16%) was on the first unrotated factor,
with only about 2% of the variance on any other factor.
Similarly with any test, the issue is not whether



unidimensionality is violated, but whether it is violated
to such an extent that the results are no longer useful.

Procedure would be simple if there were an easy and
well-accepted procedure to te,t the assumption of
unidimensionality. Unfortunately, that is not the case. In
1968, Lord, on the basis of a factor analysis by Coffman,
inferred that the Verbal test on the SAT was sufficiently
unidimensional to be worth study by item-response theory.
Similarly, Lord and Novick (1968) said that a unidimensional
space is most likely to be an ":Idequate approximation" for
tests "that appear as though they ought to be homogeneous;
for example, certain tests of vocabulary, reauing, spelling,
and some kinds of spatial ability. On the other hand, we
should expect a mathematics test made up half of arithmetic
reasoning items and half of plane geometry items to show at
least k,.2 dimensions" (p. 381). They go on to suggest that
if the first latent root of a matrix of tetrachoric
correlations with communal? ties in the diagonal is large,
and the second latent root is nearly as small as the rest,
"there is good reason to treat their data as arising from a
one-dimensional latent space" (p. 382).

In 1980 Lord pointed out the "great need for a

statistical significance test for the unidimensionality of a
set of test items" (p. 21) and gave a rough procedure based
on the latent roots of the tetrachoric item intercorrelation
matrix with estimated communalities in the diagonals. Again,
the procedure required comparing the size of the first
latent root with the second, and the second latent root with
the others.

Other authors have suggested using factor analysis
also. Hulin, Drasgow, and Parsons (1983) suggest using the
results of factor analyzing the matrix of interitem phi
coefficients with principal axes ex`taction and squared
multiple correlations as estimates of communalities.
However, they point out that this procedure will result in
spurious factors due co differences in item difficultie&.
They also indicate that the number of fAztors obtained by
factor analyzing interitem tetrach:,ric correlations provides
a valid estimate of dimensionality if the sample is
sufficiently large. With tetrachoric correlations there are
also problems of missing values and non-Gramian matrices,
and if there is guessing on the items, the assumptions of
the tetrachoric correlations are violated. Carroll is cited
by Hulin, et al. (1983) as providing a correction for the
guessing problem, but they found his correction to be
inadequate to eliminate spurious factor'. Hulin et al.
(1983) finally recommend a different rector analysis
procedure called "modified parallel analysis" based on work
by Drasgow and Lissak as "being a way for researchers to
determine whether in fact there is a latent variab:_ that is
strong enough to allow application of IRT in an item pool"
(p. 261).
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Some authors have not been willing to accept factor
analysis of interitem correlations as an appropriate
procedure for evaluating dimension;lity. McKinley and Mills
(1984), for example, after noting that "t here is no
generally accepted procedure for testing the assumption of
unidimensionality" (p. 1), go on to develop an approach
based on analysis of the residuals derived from estimating
the probability of a correct response based on an IRT model
and the observed response to the item. They argue that if
the data are one dimensional, the residuals will be random
error. So, if the correlation matrix based on the residuals
is factor analyzed, there should be no common factor.
Analysis of residuals eliminates the problem of difficulty
factors, since the residuals are on a continuous scale.
Product-moment correlations an be used, so there is no
problem with non-Gramian matrices. Divgi (1980) is reported
to have used such a procedure on the Rasch model, but
McKinley and Mills applied it to two- and three-parameter
models. They found that on their synthetic data, while
principal components analysis of tetrachoric interitem
correlations would not have discriminated between cne-
dimensional sets of data and sets Witt-. several dimensions,
the analysis of residuals was effective in making that
discrimination. For the residuals, a ratio of greater than
1.2 to 1.0 between the first eigenvalue and the second was
evidence of more than one dimension.

Hattie (1984) identified 87 different indices of
unidimensionality. He then evaluated each of them in a
Monte Carlo study of tests 15 items in length, with 1, 2,

5 dimcasions, various degrees of item discrimination,
homogeneity, difficulty, and guessing. He simulated 500
cases, with 24 replications. The results were very
discouraging for factor analysis approaches - -as well as most
of the rest of the 87 indices. For example, he stat.s,
"Indices based on component or factor analyses do not aid in
determining unidimension ty" (p. 71), and
based o. tetrachorics car . recommended" (p. 72). Also,
"Using the number of .values greater than one to
estimate the number of factors appears to lack
justificat-on" (p. 72). "...the ratio of first and second
eigenvalues [was]not [an] effective [index)" (p. 72) And,
"Overall, linear factor analysis is not appropriate for
determining unidimensionality" (p. 73). He does find a
study of residuals to be useful for the two-parameter model,
but in his study does not go as far as to recommend a cutoff
value for deciding that data are unidimensional.

Reckase (1979) studied the problems of applying
unifactor methods to multifactor tests and concluded that if
the first principal component is large relative to the other
factors "good ability estimates can be obtained from the
(one parameter and three parameter) models even when the
first factor accounts for less than 10 percl ,t of the test
variance, although item calibration results will be

10

14



unstable. For acceptable calibration, the first factor
should account for at least 20 percent of the test
variance." (page 228). He suggests that sufficient
unidimensionality for stable item parameter estimates should
be present for 50-item tests when the first eigenvalue is 10
or greater.

Hambleton and Swaminathan (1985) note that Bejar (1980)
suggested that one evaluate: 9nidimensionality by splitting a
test into subtests based on content, i.e., make a subtest of
items that appear to test a different aspect of content than
the rest of the items. For the items in that subtest,
obtain item parameter estimates twice, once by themselves
and once including them among the other items in the larger
test. Compare the two sets of item parameter estimates.

Much earlier, in 1961, Lumsden (cited in Hambleton &
Swaminathan; 1985) had suggested a similar idea for
constructing tests that would be unidimensional. He
advocated factor analyzing a set of test items and removing
items that did not measure the dominant factor. The
remaining items would be factored again, and again items not
measuring the dominant factor would be removed. This would
be repeated until a satisfactory solution was reached.
Lumsden proposed that the ratio of first-factor variance to
second-factor variance be used as the index of
unidimensionality.

Martois, Rickard, and Stiles (1985) reported that in
their analyses of data from the California Adult Student
Assessment System, the criteria proposed by Bejar and
Reckase were in serious disagreement. Out of twelve tests,
Bejar's criterion found only one to be unidimensional, but
all twelve of them met Reckase's criterion.

Procedure

Obviously the problem of determining whether a set of
data is sufficiently unidimensional for scores from the data
to be used as measures of a single characteristic of
examinees has not been satisfactorily resolved. Many
possible approaches have been advocated, and most of them
have been criticized or found inadequate upon further study.
Our approach was to pick one of the methods for evaluating
dimensionality that has been widely used and generally
accepted, even though criticized, and use it to evaluate
unidimensionality. Then to go further, we attempted to
purify the data along the lines suggested by Bejar and by
Lumsden and to determine whether "purification" of what
already appeared to be unidimensional would result in any
important change in item parameters. If no appreciable
change in item parameters resulted from purification, then
we wou 3d conclude that the data were sufficiently
unidimensional that item parameters resulting from its
analysis would not be importantly affected by whatever
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multidimensionality remained

The method for evaluating unidimensionality that we
chose was the one recommended by Reckase (1979) of computing
a principal components analysis on the phi correlations
among items and examining the percent of varianr-e
contributed by the first unrotated factor and the
relationships among the eigenvalues of the factors. If the
first factor variance is 20% or greater, and if the first
eigenvalue is large compared to the rest, with the remaining
eigenvalues being similar in size to the second, the data
would appear to be sufficiently unidimensional for the item
parameters from the threeparameter logistic model to be
satisfactory. While Martois et al. (1985) found that
Reckase's and Bejar's methods did not agree, and Hambleton
and Swaminathan pointed out the problems of using factor
analysis in determining unidimensionality, when Hambleton
and Swaminathan reported an actual study in the same text in
which they had been critical, they used Reckase's criterion
(p. 275). Combining the Reckase and Bejar approaches should
establish a conclusion on a firmer foundation than either
taken alone.

Data and Results

The data from tha SSAT II administration of March,
1984, were factor analyzed using the principal components
method, unities in the diagonals. Random samples of
approximately 750 cases were used in each analysis.
Analyses were done separately for the communications and
mathematics sections. The eigenvalues and percentages of
variance accounted for by each of the first 6 factors appear
in Table 3.1, below.

It can be seen in Table 3.1 that in each case the
percent of variance accounted for was near 20%, that the
first eigenvalue was greater than 10 and very large compared
to the second and subsequent eigenvalues, and that the first
factor accounted for a considerably larger proportion of the
variance than the second and subsequent factors. Since
items were intercorrelated using phi coefficients, the
second factor, if it exists at all, is most likely a factor
related to the difficulty values of the items. Judging from
these results, the SSAT II mathematics and communications
scores appear to be reasonably unidimensional,

To explore dimensionality further, for the mathematics
test the skill scores were factor analyzed using the
principle components method. The seven skills which were
least high3y related to the first factor were deleted,
creating a more homogeneous test. LOGIST 4 was used to
estimate the item parameters and the abilities,



Table 3.1

Eigenvalues ar. Percentages of Variance Accounted For

Mathematics Communications

Eigenvalue Percent Eigenvalue Percent

12.48 16.6 13.87 18.5
2.40 3.2 2.46 3.3
2.22 3.0 2.14 2.8
1.73 2.3 1.87 2.5
1.59 2.1 1.64 2.2
1.53 2.0 1.57 2.1

standardizing on abilities,, for both the heterogeneous test
using the odd-numbered items (to equalize length
approximately) and the homogeneous test using only the
approximately half of the items (40 items on 8 skills) which
loaded most highly on the first factor. (Twenty items on
the homogeneous test were among the odd-numbered items on
'_he heterogeneous test.) The differences between the
parameter values for these two analyses were calculated, and
the means and standard deviations of the twenty differences
obtained. Those means and standard deviations appear in
Table 3.2, below. (The statistics for the c parameters are,
of course. not very meaningful, since most c parameters are
set at the average value of the estimated c parameters in
these data.) Similarly, the means and standard deviations
of the differences between abilities estimated from the two
sets of items were calculated for a systematic sample of 158
cases. (Of the systematic sample of 158 cases, 13 persons
who obtained perfect scores on either test were deleted
leaving a reduced sample of 145 cases.)

It can be seen in Table 3.2 that the mean differences
in item parauPter values for the heterogeneous groups of
items and the homogeneous groups of items, as defined above,
are quite small, and their variability is not great. In
other words, if content multidimensionality is present in
these data, removing the half of the items that 'east
reflects the major dimension makes only slight differences
in the item parameters. Thus, whatever multidimensionality
is present is of little practical importance in estimating
item parameters. The mean difference for thetas was .03,
but the standard deviation was .39. What this implies about
dimensionality is not clear at this point. In general,
we interpret these results to indicate that the Statewide
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Table 3.2

Means and Standard Deviations of Differences
In Item Parameters

a b c

Mean .053 .043 .031
Standard Dev. .066 .111 .031

Assessment Tests meet the criterion of unidimensionality
sufficiently well that results from parameter estimation
procedures which assume unidimensionality, such as the Rasch
model or the threeparameter model, will be quite useful.

Attempts to compare item parameters and ability
estimates from heterogeneous tests and homogeneous tests of
communication skills were unsuccessful. LOGIST 4 would not
converge using only 40 items and 3000 cases on a test
composed of items as easy as the communications items in
SSAT II. The mean item p value for the mathematics items
was .81, with 16 of the 75 items having p values less than
0.75,and the smallest p being .33. The mean item p value
for the communications items was .90, with only 2 having p
values below 0.75, and those 2 were .74. The smallest p was
0.74. This suggests that the mathematics items are on the
borderline of being unanalyzable by LOGIST 4, and the
communications items are so easy that one must have a large
number, such as 75 as in the total test, in order Eor the
program to function satisfactorily.

Conclusion

Dimensionality is not an easy assumption to evaluate.
New approaches to it appear frequently. It may be that no
set of data with more than a few items is completely
unidimensional. The fundamental issue for item response
theory analyses is whether the data are so multidimensional
that misleading interpretations are produced. Our
impression from the above analyses is that the SSAT data are
sufficiently unidimensional that the advantages of item
response theory should be pursued. Nothing here suggests
that grossly misleading results will be produced due to
multidimensionality.
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CHAPTER 4

COMPARISON OF THE FITS OF THE ONE- TWO- AND
THREE-PARAMETER MODELS TO FLORIDA'S

SSAT-II DATA

The appropriateness of the one-parameter, or Rasch
model, for mul_iple choice achievement test data has been
questioned since its introduction. The Rasch model is based
on the assumption that the response to a test item is based
only on the ability of the person and the difficulty of the
item. Proponents of the three-parameter model argue that
one item parameter is insufficient, and that test data are
modeled more closely by including additional item parameters
for guessing and for item discrimination. Advocates of the
Rasch model claim that problems in estimating these two
additional parameters negate potential advantages in their
use (Wright, 1977).

Hambleton and Murray reviewed the literature on good-
ness of fit and proposed three ways for addressing the fit
of test data to an item response model. (1983, p. 72)

a. Determine if the test data satisfy the assump-
tions of the test model of interest.

b. Determine if the expected advantages derived
from the use of the item response model (for
example, invariant item and ability estimates)
are obtained.

c. Determine the closeness of fit between pre-
dictions and observable outcomes (for example,
test score distributions) utilizing model
parameter estimates and the test data.

In a separate paper (1985) Murray reviewed the litera-
ture on fit analysis a_d presented a rationale for the use
of exploratory analytic techniques without tests of statis-
tical significance. The statistical significance tests
which have been previously used have been shown to be sensi-
tive to sample size, with larger numbers of misfitting items
being found when larger sample sizes were used. The explo-
ratory techniques involve an examination of size and direc-
tion of residuals, descriptive statistics, and the identifi-
cation of particular kinds of misfit.

This study will focus on the third method above, the
closeness of fit between predictions and observable outcomes
utilizing model parameter estimates and the SSAT-II data.

The analyses completed closely parallel those done by
Hambleton, Murray, and Williams in an investigation of the
fit of the one-, two-, and three-parameter models to item
scores from the 1982 Maryland Functional Reading Test
(1983). They found larger differences between the one- and
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two-parameter models than between the two- and three-
parameter models. They concluded that the two-parameter
model was adequately fit by the data. They speculated that
the small improvement in fit gained by using the three-
parameter model was related to the easiness of the tests
which resulted in small amounts of guessing by the students
who took the tests.

The fit of '-he SSAT-II data to the Rasch model has also
been studied in previous investigations of item fit (Beard,
Julian, and Roca, 1984) and of person fit (Beard, Julian,
Richards, and Roca, 1984).

Method

The analysis of residuals has been an integral part of
tests of fit of data to the Rasch model since the first
BICAL programs were prepared by Wright and Panchapakesan
(1969). More recently, the technique has been used to test
the fit of the three-parameter model (Hambleton and Murray,
1983). The basic idea is to estimate parameters for a
psychometric model and use the parameters to estimate item
responses. The differences between the estimated and actual
responses constitute the residuals. These residuals are
then analyzed in various ways to show the amount and nature
of misfit of the data to the model. Models which more
closely fit the real data would be preferred over those
which fit it less well, all other things being equal.

Sample

A random sample of 3,000 cases was selected from the
population of 100,571 students who took the SSAT-II in the
March 85 administration. The item responses were scored as
right or wrong with omitted or not reached" items also
scored as incorrect. This sample provided the data for
separate analyses of the mathematics and communications
parts of the test. The numbers of cases in the analyses
were reduced to 2929 for mathematics and to 2768 for commun-
ications when zero and perfect scores were removed by the
computer program.

Analyses

The LOGIST 4 computer program (Wood et al., 1976) was
used to generate the person abilities and item parameters
for the one-, two-, and a modified three-parameter model
from the 3,000 SSAT-II item response records. A modified
three-parameter model was used because the LOGIST program
could estimate c parameters for only a small number of the
items. The modification consisted of fixing the "c" parame-
ters at .20 for all items. The term "three-parameter
model" will be used throughout this part of the paper to
indicate the "modified three-parameter model".
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These abilities and item parameters were then used to
estimate responses and to compute average residuals for each
item and across all 75 items by selected ability groups
using a computer program entitled RESID developed by
Hambleton and Murray (1983). The display of average re-
siduals by ability levels shows the avel_ge departure of the
data from the item characteristic curves at different inter-
vals on the ability continuum. The mathematics ability
continuum was divided into twelve intervals and the communi-
cations into ten groups in order to represent best the
distribution of log ability estimates for the two sets of
scores.

For each score interval a residual was found by compu-
ting the difference between the proportion of the examinees
answering each item correc y (P) and the proportion expec-
ted todenswer correctly b ,ed on the item characteristic
curve (P). Standardized re: ,duals were computed by dividing
each residual by the standard error cf the proportion cor-
rect.
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There was concern initially that the standardized resi-
duals might be overly inflated by small standard errors of
proportions resulting from easy test items. However, an
examination of the results showed that easier items did not
tend to yield the highest standardized residuals. This
finding is consistent with that of Murray (1985) who com-
pared the use of raw and standardized residuals extensively
and concluded that standardized residuals yielded results
which were similar to raw residuals and provided the addi-
tional benefit of taking into account sampling errors asso-
ciated with the proportion correct (P-value).

The mean absolute values of raw and standardized re-
siduals by ability intervals are shown in Table 4.1. The
mean raw residuals are inversely related to the ability
levels of the students; i. e., Lhe residuals are greater for
low ability and smaller for high ability students. This is
.rue for the one-, two-, and three-parameter models. The
raw residuals are greatest for the one-parameter model and



Table 4.1

Average Absolute Values of Raw and Standardized Residuals

Number ASS. Absolute Av. Absolute Valued

of Valued Raw Standardized
Ability Examinees Residuals Residuals

Level 1-P 2-P 3-P 1-P 2-P 3-P 1-P 2- -P 3-P

Matheratics

-2.75 9 6 16 .183 .152 .116 2.359 1.198 1.048
-2.25 45 27 50 .169 .124 .062 3.595 1.638 .973

-1.75 137 131 111 .112 .043 .040 3.547 1.139 .935
-1.25 323 325 289 .067 .024 .022 3.036 .998 .860
-.75 454 482 467 .030 .019 .016 1,619 1.034 .861

-.25 541 556 571 .025 .016 .014 1.714 1.073 .986

.25 491 494 533 .030 .011 .009 2.596 .995 .878

.75 477 432 462 .032 .009 .008 3.249 .910 .822

1.25 291 254 231 .025 .011 .011 2.420 .934 .957

1.75 124 133 134 .019 .010 .010 1.434 .763 .818

2.25 74 68 66 .015 .018 .015 1.054 .996 .898

2.75 1 21 19 .023 .018 .022 .233 .657 .694

Overall

Average .061 .038 .029 2.238 1.028 .894

N 2967 2929 2949

Comunications

-3.00 18 20 17 .203 .120 .10) 2.903 1.361 .960

-2.50 51 32 43 .173 .074 .062 3.401 .918 .871

-2.00 104 97 93 .121 .034 .031 3.249 .724 .677

-1.50 147 166 150 .068 .024 .023 2.406 .707 .685

-1.00 296 283 280 .034 .018 .017 2.049 .836 .776

-.50 464 492 484 .029 .010 .010 2.657 .768 .772

0.00 401 557 556 .031 .006 .006 3.258 .661 .650

.50 602 487 505 .026 .007 .007 4.344 .941 .863

1.00 349 341 327 .018 .007 .007 2.760 .967 .943

1.50 336 193 186 .011 .015 .016 1.862 1.418 1.464

Overall
Average .071 .032 .029 2.889 .930 .866

N 2768 2668 2641

least for the three-parameter model at almost all ability
levels; however, the differences in mean residuals among the
three models become trivial at the highest ability levels.
These data also show the tendency of small ra- residuals to
appear large when standardized by dividing by standard er-
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rors from large P-values
ter) of .025 at an ability 1
standardized residual of 2.420; wherea
parameter) of .024 at an ability level of
standardized residual of only .998.

A mean raw residual (one-parame-
evel of 1.25 yields a mean

s a raw residual ;two-
-1.25 yields a

Several descriptive analyses were done in order to
evaluate (a) the residuals for each of the one- two- and
three-parameter models for each item, (b) the distributions
of standardized residuals, (c) the average residual for
selected ability levels, (d) the association between re-
siduals and content categories, (e) the association between
residuals and difficulties of items, and (f) the association
between the items' residuals and discrimination indices.

Results

The mean standardized residuals for the one-, two-, and
three-parameter models are shown in Table 4.2 for Mathema-
tics and Table 4.3 for Communications along with the classi-
cal item analysis indices of difficulty and discrimination.
The proportions correct reflect the easiness of this minimum
competency test. The residuals are smallest for the three-
parameter model and largest for the one-parameter. In fact,
none of the 150 standareized residuals for the two- or
three-parameter models are as large as 2.00 which could be
considered statistically significant. Sixty-nine of the 150
residuals for the one-parameter model exceed this arbitrary
significance value. A casual inspection of these data would
certainly indicate that use of more item parameters improves
fit to the item responses.

The data in Ta'oles 4.2 and 4.3 also coafirm that in the
one-parameter model difficult items show greater misfit than
easier ones. For example, note item 66 in the mathematics
test. It is the most difficult item (p = .34) and also has
the poorest fit to the one-parameter model (10.155). Its
fit to the two- and three-parameter model is not signifi-
cantly large (1.579 and 1.423 respectively).

Tables 4.2 and 4.3 also show that the items within most
skill areas vary ccnsiderably in difficulty, discrimination,
and fit to the IRT models.

The distributions of fit indices for the three models
are shown in Table 4.4. The total set of indices consists
of one index for each of 75 items for each of the score
intervals, and can be arrived at by multiplying the number
of items by the number of intervals, 12 for mathematics and
10 for communications. The residuals should be normally
distributed if the data fit the model. Table 4.4 shows that
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Table 4.2

Mathematics Item Statistics

Test
Item Skill

Prop.
Correct

Absolute-Valued
Pt.Biserial Standardized Residuals
Correlation 1-p 2-p 3-p

1 1 .986 .117 .838 .837 .593
2 1 .978 .120 1.257 .447 .480
3 1 .919 .227 2.384 1.067 1.070
4 1 .875 .389 1.455 .860 .999
5 1 .948 .370 1.127 1.099 .904
6 2 .927 .262 1.628 .627 .736
7 2 .594 .427 2.913 .845 .576
8 2 .878 .383 1.311 .869 .808
9 2 .896 .312 1.748 .778 .693

10 2 .487 .468 2.140 1.230 .849
11 3 .717 .470 1.422 .971 1.189
12 3 .971 .231 .779 .959 .784
13 3 .928 .288 1.310 1.214 .706
14 3 .902 .241 2.945 1.053 .660
15 3 .958 .298 1.018 1.020 1.099
16 4 .836 .485 .834 .913 .944
17 5 .829 .453 1.126 .883 .906
18 5 .89i .402 .921 .889 .745
19 5 .851 .309 3.177 1.223 1.013
20 5 .925 .440 1.169 .810 .820
21 5 .946 .332 1.299 1.117 .986
22 6 .964 .284 .910 1.126 .673
23 6 .896 .366 1.471 1.082 .813
24 6 .950 .407 1.216 1.125 .814
25 6 .880 .515 1.094 .832 .709
26 6 .964 .304 1.202 1.198 1.174
27 4 .847 .572 1.474 1.080 1.147
28 4 .867 .429 1.241 1.343 1.351
29 4 .611 .243 7.424 1.041 1.112
30 4 .921 .252 2.036 .846 .648
31 7 .680 .489 1.653 .893 .820
32 7 .802 .377 2.266 .947 .805
33 7 .854 .429 1.019 1.124 1.105
34 7 .881 .412 1.065 1.129 1.197
35 7 .820 .340 2.498 .997 1.142
36 8 .980 .307 1.430 .982 1.003
37 8 .877 .402 1.086 .802 .628
38 8 .831 .236 4.839 1.184 .905
39 8 .912 .261 2.125 .969 .866
40 8 .826 .461 1.057 .910 .832
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(Table 2 continued)

41 9 .749 .241 5.446 .940 .972
42 9 .748 .261 5.785 .655 .856
43 9 .735 .503 1.123 1.021 .598
44 9 .806 .442 1.438 1.432 1.467
45 9 .814 .551 1.451 1.404 1.109
46 10 .803 .436 1.597 .895 .896
47 10 .834 .235 4.414 .767 .885
48 10 .828 .320 2.951 .810 .785
49 1.0 .904 .287 2.050 .755 .713
50 10 .864 .260 3.270 .976 .895
51 11 .888 .377 1.143 .884 .651
52 11 .880 .437 .582 .777 .956
53 11 .881 .269 2.700 .736 .812
54 11 .601 .411 3.216 1.201 1.074
55 11 .6E11 .534 .941 1.059 1.008
56 12 .774 .432 1.561 .788 .832
57 12 .756 .343 3.333 .952 .841
58 12 .372 .190 8.145 1.468 1.023
59 12 .878 .337 1.740 1.051 .954
60 12 .669 .482 1.595 1.089 1.031
61 13 .485 .269 7.351 .960 .918
62 13 .787 .497 .989 .911 .776
63 13 .623 .477 1.845 .877 .709
64 13 .738 .395 2.732 1.041 .747
65 13 .776 .387 2.626 .796 .982
66 14 .340 .132 10.155 1.579 1.423
67 14 .806 .470 1.948 1.842 1.114
68 14 .707 .431 2.430 .488 .514
69 14 .641 .446 2.975 1.321 .876
70 14 .781 .454 1.845 1.336 1.095
71 15 .722 .540 .844 .882 .340
72 15 .692 .439 2.484 1.901 .690
73 15 .662 .455 2.320 1.485 .770
74 15 .763 .471 1.709 1.497 1.124
75 15 .822 .471 1.206 1.201 1.313
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Table 4.3

Communication Item Statistics

Test
Item Skill

Prop.
Correct

Pt.Biserial
Correlation

Absolute-Valued
Standardized residuals
1-p 2-p 3-p

1 1 .878 .266 5.432 1.005 1.143
2 2 .930 .279 3.656 .681 1.007
3 2 .979 .323 1.651 .878 1.010
4 2 .978 .339 1.350 .688 .991
5 3 .970 .373 1.553 .710 1.008
6 5 .961 .440 .772 .860 .787
7 1 .848 .321 4.724 .505 .308
8 1 .851 .457 2.007 .775 .655
9 2 .932 .435 1.168 .936 .675

10 2 .956 .402 1.580 .562 .509
11 8 .981 .312 1.389 1.124 .746
12 8 .991 .267 1.145 1.174 .956
13 8 .963 .228 4.729 .676 .738
14 8 .910 .282 3.549 .907 .875
15 8 .946 e251 6.553 1.258 .707
16 5 .873 .411 2.759 .568 .649
17 1 .864 .5o5 1.279 .739 .778
18 7 .859 .383 3.122 .898 .496
19 7 .896 .530 .894 1.202 .947
20 5 .839 .394 3.057 .789 .691
21 5 .911 .472 1.708 .876 .986
22 5 .925 .544 .963 1.089 1.104
23 6 .865 .456 2.094 1.248 .988
24 7 .848 .473 1.325 1.226 .811
25 7 .811 .412 2.738 1.720 .964
26 6 .830 .359 4.160 1.057 1.149
27 10 .834 .399 3.841 .903 .717
28 9 .823 .398 3.479 1.378 1.432
29 9 .901 .337 3.679 .882 .857
30 9 .956 .330 6.124 1.139 .767
31 9 .832 .224 7.519 .899 .967
32 9 .973 .356 1.818 1.063 .699
33 6 .898 .507 1.104 .767 .744
34 6 .917 .454 .884 1.148 .927
35 4 .911 .372 3.008 .978 .730
36 11 .952 .507 1.027 .897 .931
37 3 .926 .482 1.086 1.134 .919
38 11 .936 .321 2.652 .458 .451
39 6 .881 .445 1.520 1.362 1.058
40 3 .907 .524 .667 .840 .614
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(Table 3 continued)

41 3 .896 .388 2.476 .777 .630
42 11 .955 .40? 1.663 .672 .756
43 3 .901 .489 1.245 .988 .972
44 11 .737 .305 7.246 1.214 1.244
45 12 .791 .304 6.061 1.254 1.436
46 12 .837 .342 4.315 1.274 1.358
47 4 .921 .485 1.780 1.147 1.296
4E 4 .942 .437 1.094 .748 .629
49 1 .896 .399 2.884 .905 .919
50 10 .928 ,403 1.850 .637 .647
51 7 .924 .581 1.442 1.536 1.056
52 4 .939 .488 1.084 .855 .793
53 11 .957 .473 .725 .911 .818
54 1 .909 .555 .867 1.117 1.027
55 10 .888 .265 5.369 1.062 .785
56 10 .931 .408 1.363 .984 1.019
57 10 .939 .300 3.013 .947 1.016
58 13 .891 .341 3.832 .886 .739
59 13 .941 .361 1.917 .545 .792
60 13 .940 .352 2.576 .738 1.009
61 13 .960 .490 .767 .736 .786
62 13 .964 .334 1.516 .952 .919
63 14 .921 .294 3.532 .794 .755
61 14 .946 315 6.689 .909 .741
65 14 .966 .441 1.358 .799 .619
66 14 .794 .318 5.907 1.048 1.249
61 14 .377 .320 4.016 .611 .799
68 15 .874 .293 5.057 1.006 .621
69 15 .736 .281 7.585 1.049 1.154
70 15 .808 .436 2.615 .552 .719
71 15 .910 .470 1.451 .782 .804
72 15 .852 .278 5.890 1.079 1.152
73 12 .920 .311 3.363 .842 .754
74 12 .910 .260 4.744 .701 .784
75 12 .789 .319 5.606 .698 .671
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Table 4.4

Levels of Absolute Values of Standardized Residuals
for the Three Logistic Test Models

Number/Percentage of Absolute Values of St. Residuals
Model 0 to 1 1 to 2 2 to 3 over 3 Tbtal

Mathematics

1-Parameter 369/41% 213/24% 101/11% 217/24% 900/100%

2-Parameter 528/59% 277/31% 67/ 7% 28/ 3% 900/100%

3-Parameter 578/64% 258/29% 55/ 6% 9/ 1% 900/100%

Onmuni:ations

1-Parameter 219/29% 191/26% 82/11% 258/34% 750/100%

2-Parameter 477/64% 213/28% 46/ 6% 14/ 2% 750/100%

3- Parameter 493/66% 205/27% 41/ 6% 11/ 1% 750/100%

Normal Dist. 6R% 27% 4% .25%

the residuals for the two- and three-parameter models ap-
proximate normal distributions with slightly fewer small
residuals and slightly more large residuals than normal.
The residuals for the one-parameter model are obviously not
normally distributed and tend toward rertahqular distribu-
tions having many more large and fewer small residuals than
would be expected for a normal distribution.

The average standardized residuals and the average
absolute values of standardized residuals are shown in Table
4.5. These values show the relationship between amount of
misfit for the three models and ability level of the exami-
nees. The numbers ot ability intervals are differer. for
math and communications because of the different distribu-
tion shapes for the two sets of scores. When the communica-
tions data were analyzed with 12 intervals AS for math, an
empty ability interval resulted because of the particular
raw to log ability score conversion. The number of students
in each of the intervals is also shown 'n Table 4.5.

The misfit ot the one - parameter model is larger than
that of the two- and three-parameter models throughout the
ability scale. The only exce,tion occurs for a cell in
which the average residual for the one parameter model was
based on oily one student.
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Table 4.5

Mean Standardized Residuals at Twelve Ability Levels
for the Three LNistic Models

Ability

Level

Number
of

Examinees

Average
Standardized

Residuals

Av. Absolute Valued
Standardized

Residuals

1-P 2-P 3-P 1-P 2-P 3-P 1-P 2-P 3-45

Mathematics

-2.75 9 6 16 1.879 .394 .117 2.359 1.198 1.048
-2.2) 45 27 50 2.948 .433 .170 3.595 1.638 .973
-1.75 137 131 111 3.200 .430 .168 3.547 1.139 .935
-1.25 323 325 289 2.859 .608 .420 3.036 .998 .860
-.75 454 482 467 1.064 .145 .280 1.619 1.034 .861
-.25 541 556 571 -.933 -.306 -.114 1.714 1.073 .986
.25 491 494 533 -2.088 -.202 -.256 2.596 .995 .878
.75 477 432 462 -2.662 -.060 -.069 3.249 .910 .822

1.25 291 254 231 -1.659 .275 .192 2.420 .934 .957
1.75 124 133 134 -.518 .419 .402 1.434 .763 .818
2.25 74 68 66 .071 .385 .450 1.054 .996 .898
2.75 1 21 19 -.032 .248 .176 .233 .657 .694

Overall

IN
Average -- .344 .231 .161 2.238 1.028 .894

N 2967 2929 2949

Communicatic

-3.00 18 20 17 2.166 .339 .103 2.903 1.361 .960
-2.50 51 43 2.297 .405 .117 3.401 .918 .871
-2.00 104 97 93 1.754 .291 .144 3.249 .724 .677
-1.50 147 166 150 .415 .091 .036 2.406 .707 .685
-1.00 296 283 280 -.534 .086 .077 2.049 .836 .776
-.50 464 492 484 -1.791 -.003 .009 2.657 .768 .772
0.00 401 557 556 -2.942 -.050 .076 3.258 .661 .650
.50 602 487 505 -3.905 .126 .083 4.344 .941 .863

1.00 349 341 327 -1.960 .434 .420 2.760 .967 .943
1.50 336 193 186 -.421 .629 .587 1.86; 1.418 1.464

Overall
Av..rage I da .492 .235 .150 2.889 .930 .866

N 2768 2668 2641
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The average standardized residuals, as contrasted to
the average absolute values, may be viewed as indicators of
bias in response estimation. If residuals, or errors, in
response estimation are randomly distributed around zero we
would expect the mean of the standardized residuals to be
near zero for each ability level. The overall mean resi-
duals for the one-parameter model are small, .344 and .492
for math and communications respectively. However, these
low means are caused by a consistent pattern of positive
residuals for low scorers and negative residuals for high
scorers. This pattern is probably caused by items being
guessed correctly by students at lower achievement levels.
For the two- and three-parameter models there was a tendency
toward negative residuals near the zero log ability level
and positive ones near the low and high extremes. The same
pattern was present in the Maryland Functional Reading Test
data (Hambleton, Murray, and Williams, 1983), but was not
discussed in that paper. The pattern would seem to result
from overestimates of ability in the middle of the range.
Further research is needed to explain this pattern of resi-
duals.

The average absolute values of standardized residuals
show a consistent pattern of larger values for the one-
parameter models with slightly smaller values for the three-
than for the two-parameter model. This pattern is generally
consistent throughout the ability range and for both math
and communications tests.

All three of the item response theory models used in
this part of the study assume unidimensionality. This as-
sumption is suspect when the model is applied to tests such
as the SSAT-II. These are minimum competency tests, each
based on 15 specific skills. If one or more of these skills
measures a trait which is substantially different from the
dominant trait of the total test, the difference might be
reflected in misfit for those skills. In order to identify
such misfit, the residuals for the three models were aggre-
gated by skills. These mean residuals by skills are shown
in Table 4.6 along with the corresponding mean p-values and
point-biserial discrimination indices.

The data in Table 4.6 show a general decrease in mean
residuals as one goes from the one- to the two- to the
three-parameter mcLels. Non.: of the mean residuals for the
two- or three-parameter models approaches the value 2.00
which might be considered significant. On the other hand,
the mean one-parameter residuals of several of the skills in
both mathematics and communications exceed this value. The
mean residuals for the one-parameter are also considerably
more variable than those of the two- and three-parameter
models.
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Table 4.6

Mean Standardized Residuals by Skill

Mean Standardized Residual
Mean

Skill

Number
One

Parameter
Two

Parameter
Three

Parameter
of
Items P-Value Pt.Biseriai

Mathematics

M1 5 .941 .245 1.412 .862 .809
M2 5 .756 .370 1.948 .870 .732
M3 5 .8./5 .306 1.495 1.043 .888
M4 5 .816 .396 2.602 1.045 1.040
M5 5 .890 .387 1.538 .984 .894
M6 5 .931 .375 1.179 1.073 .836
M7 5 .807 .409 1.700 1.018 1.014
M8 5 .885 .333 2.107 .969 .847
M9 5 .770 .400 3.049 1.090 1.000
M10 5 .845 .308 2.856 .841 .835
Mll 5 .786 .406 1.716 .931 .900
M12 5 .690 .357 3.275 1.070 .936
M13 5 .682 .405 3.109 .917 .826
M14 5 .655 .387 3.871 1.313 1.004
M15 5 .732 .475 1.713 1.393 .847

Communications

Cl 5 .870 .421 2.862 .828 .782
C2 5 .955 .356 1.881 .749 .838
C3 5 .920 .451 1.405 .890 .829
C4 5 .922 .436 1.970 .927 .873
C5 5 .902 .452 1.852 .836 .843
C6 5 .878 .444 1.952 1.116 .973
C7 5 .868 .476 1.904 1.316 .855
C8 5 .958 .268 3.473 1.028 .804
C9 5 .897 .329 4.524 1.072 .944
C10 5 .904 .355 3.087 .907 .837
Cll 5 .907 .402 2.663 .830 .840
C12 5 .849 .307 4.818 .954 1.001
C13 5 .939 .377 2.122 .771 .849
C14 5 .901 .338 4.300 .832 .833
C15 5 .836 .352 4.520 .894 .890

It appears that the misfit of the one-parameter model
is adequately taken care of by the addition of the discrimi-
nation parameter. Efforts to relate this improvement in fit
to the mean p-value and discrimination indices were not
productive except for the tendency of one-parameter misfit
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to be associated with the more difficult skills.

The subject matter of the skills and the texts of their
constituent items were examined for association with im-
provements in fit from the two- to he three-parameter
model. No obvious anomalies in item form, subject matter
content, or placement of the items within the test were
observed.

The associations between difficulties of the items and
the means of the absolute values of the residuals are shown
in Table 4.7. The items for each of the tests were arbitra-
rily divided into ..wo groups; easier and harder. The mean
absolute values of the standardized residuals were then
computed for each difficulty group for each IRT model. The
results show again the larger mean residuals for the one-
parameter model. Furthermore, the tendency of difficult
items to misfit the one-parameter model is obvious in the
larger mean residuals for the harder items than for the
easier ones. This difference is less pronounced for the
two-parameter model and is reversed for the three-parameter
math results. It appears that the use of the two-parameter
model would almost eliminate the association of difficulty
and misfit found in the one-parameter model. That associa-
tion would be virtually eliminated with the three-parameter
model.

Table 4.7

Relationship between Item Difficulty and the Absolute-Valued
Standardized Residuals for the SSAT-II

Difficulty
Level

I of

Items
1-Parameter
Mean SD

2-Parameter
Mean SD

3-Parameter
Mean SD

Mathematics

Hard(p<.8) 27 3.22 2.48 1.08 .31 .88 .23

Easy(p>.8) 48 1.68 .91 1.00 .23 .90 .21

Communications

Hard(p<.9) 31 3.87 1.93 .98 .28 .90 .28

Easy(p>.9) 44 2.20 1.58 .89 .21 .84 .17

Table 4.8 shows the relationship between item point-
biserial correlations and the mean absolute values of stan-
dardized residuals for items by IRT model. The chi-squared
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Table 4.8

Relationship Between Item Point-biserial Correlations and
Absolute-Valued Standardized Residuals for the SSAT-II

Model Residuals

Item Point-biserial Correlations

0 to .20
44=4)

.21 to .40
(9=35)

above .40
04=36)

Mathematics

One- 0 to 1.0 25% 5.7% 16.7%
Parameter 1.1 to 2.0 25% 37.1% 63.9%
Model over 2.0 50% 57.1% 19.4%

Chi-squared=12.11 df=4 p=.016 eta=.340

TWo- 0 to 1.0 50% 60% 47.2%
Parameter 1.1 to 2.0 50% 40% 52.8%
Model over 2.0 00% 00% 00%

Chi-squared=1.18 df=2 p=.550 eta=.093

Three- 0 to 1.0 50% 80% 61.1%
Parameter 1.1 to 2.0 50% 20% 38.9%
Model over 2.0 00% 00% 00%

Chi-squared=3.72 df=2 p=.156 eta=.107

Communications

One- 0 to 1.0 0.0% 0.0% 25.0%
Parameter 1.1 to 2.0 7.7% 23.3% 59.4%
Model over 2.0 92.3% 76.7% 15.6%

Chi -squared=35.13 df=4 p=.000 eta=.668

TWo- 0 to 1.0 46.2% 70.0% 65.6%
Parameter 1.1 to 2.0 53.8% 30.0% 34.4%
Model over 2.0 0.0% 0.0% 0.0%

Chi-squared=2.30 df=2 p=.320 eta=.175

Three- 0 to 1.0 69.2% 66.7% 81.3%
Parameter 1.1 to 2.0 30.8% 33.3% 18.8%
Model over 2.0 0.0% 0.0% 0.0%

Chi-squared=1.82 df=2 p=.403 eta=.156
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t _s show a statistically significant relationship for the
one-parameter model and insignificant relationships for the
two- and three-parameter models. The eta correlation coef-
ficients show that the relationship is substantial for the
one-parameter model and trivial for the two- and three-
parameter models. The relationship between item discri-
mination and fit is further shown in Figure 1. Two things
are obvious in this figure. First, the negative relation-
ship between discrimination and fit for the one-parameter
model is clearly shown. Second, the absence of such a
relationship for the two- and three-parameter model is ap-
parent. The inclusion of the a or "discrimination" parameter
in the model effectively eliminates the misfit caused by
differing item discriminations or slopes of item charact-
eristic curves. The amount of misfit, but not the relation-
ship, is reduced slightly further by the addition of the "c"
or "guessing" parameter.

Conclusions

The item response data from the mathematics and commun-
ications partF, of the SSAT-II fit the two- and three-
parameter better than the one-parameter IRT model. The
misfit of the one-parameter model appears to be related tc
the difficult! of the items and to varying discrimination
indices. Most or the misfit can be eliminated by the addi-
tion of a discrimination parameter. The addition of a
guessing parameter reduce- _4sfit slightly, but the reduc-
tion may be so small that the consequences would be practi-
cally insignificant

The three-parameter model used in this study was in
fact a modified three-parameter model in which fixed c or
"guessing" parameters were supplied to the "LOGIST" parame-
ter estimation program. The estimation of c parameters
proved to be possible for only small numbers of these items.
Therefore, the choice of models, from the standpoint of fit,
would be between the two-parameter and the modified three-
parameter models.

The failure of the three-parameter model to improve fit
significantly over the two-parameter was probably a conse-
quence of the easiness of the items. Guessing would be
minimal with such easy items. Therefore, the two-parameter
model can be recommended for the current SSAT-II test. If

the test were made substantially more difficult, then the
use of the c parameter might improve fit significantly and
should be investigated further.

The results of this part of the study are clear. The
use of the two- or three-parameter model would significantly
improve fit over the one-parameter model. However, the
practical consequences of the misfit are not precisely



w ,
al I

w

aG

Op'

A: 1-parameter,

Point-biserial Correlation

Math. D: 1-parameter, Comm.

B: 2-parameter, Math.:

Point-biserial Correlation

: 3-paraMeter,

Point-biserial Correlation

0

w

oG ,

.
cp

00

- r4

-7C

Point-biserial Correlation

4.4

X: 2-parameter, Comm.

Point-biserial Correlation

.10 78044

C4 O..

11:14 ft4,

ft4,111

IF: 3-parameter, Comm.

Point-biserial Correlation

Figure 1. Relationship Between Item Discrimination and Fit

BEST COPY AVAILABLE

31 35



known. The standardization of residuals takes into account
the sampling error of the estimated proportion correct; i.
e., when the number of subjects is small the residual is
divided by a larger number to arrive ai; the standardized
residual. However, livizion by the standard errors also
results in larger numbers, making small raw residuals appear
large, especially when the items are very easy and the
estimated proportions correct are near 1.00. Therefore,
although the results clearly show better fit for the two-
and three-parameter models, those results should be kept in
perspective with other findings showing the effects of
misfit on students' scores and the relative utility and
complexity of the models.



CHAPTER 5

ESTIMATING c PARAMETERS AND
CONSIDERATION OF THE APPROPRIATE MODEL

Problems in Estimating the c Parameter

The estimation of c parameters in the three-parameter
item response theory model is an important issue. It has
long been know that the accurate estimation of these
parameters is a difficult problem, and this is especially
true for easy items. For example, Lord (1968) wrote, "On
easy items on which even the poorest examinees do better
than chance, the value of c is poorly determined by the
data. On such items, the estimated value of c was
arbitraily (sic) fixed at the chance level, 0.20. ...Values
of c below 0.20 may arise because examinees prefer a wrong
distracter in an item to a right answer" (p. 1011). Later
i..1 the same article, Lord wrote, "It was found, however,
that many or most values of ci are rather poorly determined
by the data. . . . In the c e of the easier items, on which
even examinees with low % rbal scores performed above the
chance level of .20, ci was arbitrarily fixed at .20. The
errors in this procedure are surely much smaller for such
items than the sampling errors in the maximum likelihood
estimates, which might turn out to have some unreasonable
value such as ci= .60 or ci= -.10." (p. 1014).

The above quotations are from the first published
report of use of the three-parameter model on a published
test. Eight years later, Wood et al. (19Z6, p. 18) wrote
that Lord had shown in 1975 that the cis are poorly
determined when (bi - 2/a1) is < -2." After further study
and use of the model, estimation of the c parameters was
still a problem. TQ quote Lord again, he more recently
(1980) stated, " bi is unstable wh.41 Pi or Qi is small.
The situation is much worse when L.,..1-h ai and bi must be
estimated simultaneously. If only a few examinees answer
item i incorrectly, it is obviously impossible to estimate
ai with any accuracy" (p. 185) . He went on to say, The
problem is even more obvious for ci, which represents the
performance of low-ability examinees. If we have no such
examinees in our sample, any reasonable value of ci will be
able to fit the data about as well as any other. If we
arbitrarily assign some plausible value of ci and then
estimate ai and bi accordingly, we shall obtain a good
description of our data* (p. 186).

Several years later, Hulin et al. (1983) summarize a
study by Ree done in 1979 by stating, "Clearly, even long
tests and large samples do not necessarily allow accurate
estimation of c" (p. 100).
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Hutten (1980) explored the question of whether c
parameters would even be estimated by LOGIST 4, the most
widely used computer program for estimating the parameters
using the threeparameter model. As we shall see, that
program does not make estimates of c parameters for
individual items when it seems that those estimates might be
subject to large errors or lack of stability. In those
cases, the program gives the item a sort of average c value,
and many unestimated items may be given that same value for
the c parameter. Using twentyfive data sets of 1000
examinees on each of a number of widely used standardized
tests, such as the Stanford Achievement Series, the
Comprehensive Tests of Basic Skills, the Iowa Tests of Basic
Skills, the California Achievement Tests, and the Scholastic
Aptitude Test of the College Board, Hutten concluded that
*Although there are many indicators that ICC's are
characterized by nonzero (sic) lower asymptotes, only one
third of guessing parameters were estimable by the LOGIST
program for samples of 1000 examinees" (p. 30). She
suggested that " .it may be more practical to set the
lower asymptote to some reasonable value without attempting
more refined estimation" (p. 30).

Thissen and Wainer (1981) studied the standard errors
that would be obtained for estimates of item parameters in
the threeparameter model if unrestricted maximumlikelihood
estimation procedures were used. They concluded that ". . .

the use of an unrestricted maximum likelihood estimation for
the threeparameter model either yields results too inexact
to be of any practical use, or requires samples of such
enormous size so as to make them prohibitively expensive.
This problem arises for items that are easier than average.
This effect is the result of the huge covariance. . .

between location and lower asymptote. When an item is
relatively easy there are few observations available to
estimate the lower asymptote thus making its standard error
very large. The large covariance between lower asymptote
and location then causes this uncertainty to move partially
to the estimate of location The twoparameter model
has problems as well, but they are far less severe" (p. 7).

They go on to say, The estimates [of location] are
hopeless for easy items. This is fortunate, for it is on
items like this where the guessing parameter is not
required. This provides hope that a hybrid model that
computes a lower asymptote for difficult items and doesn't
for easy items may be useful when the assumption of no
guessing does not seem to be plausible" (p. 9). The
situation is not entirely hopeless, they point out, since
even with these large standard errors, using the entire ICC
to reproduce the data can be useful. However, the problem
is most severe when the location parameters are to be used
separately, such as their use in test equating/linking or in
computerized adaptive testing. To display the magnitude of
the problem, they point out that if the lower asymptote is
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not homogeneous, i.e., the c values for all the items are
not the same, accurate easiness values for easy items are
obtainable only with Ns of 100,000 or so.

As Thissen and Wainer point out, one solution to the
problems of the large standard errors of unrestrained
maximum-likelihood estimation is to abandon the unrestrained
approach. A Bayesian scheme would be appropriate, with
prior estimates of the parameter values constraining the
posterior estimates. This is essentially what the computer
program LOGIST 4 does. De Gruijter (1984) points out that
this, in itself, may result in biased estimates, but that
estimates are biased if the lower asymptote is fixed, also.
However, De Gruijter concludes that ". . it is clear that
reasonable parameter estimates for the three-parameter model
are possible, using prior and collateral information on the
lower asymptote" (p. 272).

Wood et al. (1976) describe the constraints in LOGIST 4
as follows:

To avoid wild fluctuations in the
oaramater estimates, the amount that each
parameter can change is restricted as
follows: [the absolute value of the
change in ci is equal to or less than]
CLAMBDA, where CLAMBDA is read in or set
to the default value of .06. Since
many of the c's are poorly determined,
any movement is severely restricted. The
restrictions are based on kn
approximation to the standard error of ci

II, on an approximate median value for
all the c denoted by e, on the proportion
correct adjusted for omits . . ., on the
value of (bi - 2/ai), on a millimum cmin
>0, and on a maximum cm <.5. The
restrictions_on the range def file bounds
on ci that ci may exceed only if its
standard error is small. The
approximation to the standard error is
the square root of the diagonal element
for ci in the inverse of Ti.

An absolute minimum of 0 and maximum of
.5 is placed onsi. In Lord (1975) it is
shown that the ci's are poorly determined
when (bi - 2/air is < -2. The ci's are
better determined when -2 < (bi-2/10 < -
1, and the ci's should be well detevnined
when lbi -2 /ai) > -1. Therefore if c < pi
they c Is automatically held fixed at c
if b

i
-2/ai becomes less than FEPS (-2, or

a user supplied value) (pp. 16-18).
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The 6 in that quotation is described several pages
later in the same document as follows:

A good value for cm is 1/A (number of
choices per item), for C is cmax. - .05,
and cmin should be the sem::: distance
below C as cma is above C. In each
stage where ill of the items are
estimated, the program computes the
median of the values (for the first
iteration of each item) to which c's
currently, allowed to vary would move if
they were completely unrestricted. If
the new median differs from 6 by more
than i .005, 6 is changed to the new
median and cmin is adjusted to keep cmin
the same distance below the new 6 as cmax
is above the new 6. (p. 20)

The criterion (b-2/a) is called the stability criterion, and
it is describeC in the user's guide for a later version of
LOGIST (Wingersky, Barton, and Lord, 1982) as follows:

The stability criterion (b-2/a) is the
ability level at which the proportion of
correct responses is only about .03 above
the lower asymptote ("c"); if there are
few examinees with ability estimates
below this level, then a stable estimate
of "c" cannot be obtained. In other
words, we cannot estimate well the "c"
paramsoler for very easy items, or for
moderately easy items with low "a"
parameters. . . .A value of -3.5 for
CRITFIXC is suggested for samples of 2000
to 3000 examinees; a value of -2.5 is
reasonable for smaller samples.
(pp. 20-21)

Nature of the SSAT Tests

The tests of SSAT II are very easy tests. The
distriJution of scores for both the mathematics test and the
communications test are highly negatively skewed, as can be
seen in Figure 5.1. The skew index for communications was
-2.4, and the index for mathematics was -1.1. This suggests
that we will have difficulty estimating c values for these
tests by means of LOGIST 4. Supporting that premonition is
Eignor's experience (personal communication, Summer, 1984)
with the New Jersey minimum competency tests. When an
attempt was made to use LOGIST 4 to estimate item parameters
for the New Jersey tests, severe convergence problems were
encountered. Even fixing c parameters, or setting them to
zero, did not alleviate the problem. If the program does
estimate c values, it may simply give most or all of the
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items the 6 value described above.

Several authors have suggested that one might
oversample at the low end of the distribution in order to
have large numbers of examinees with low scores and thereby
sufficient data to estimate ..ith some degree of accuracy the
c parameter, the probability of someone of very low ability
answering lorrectly, Lord (1968) suggested this, as did
Thissen and Wainer (1981).

Another possibility that might be explored is to reduce
the critical value of c below which ;7 is used by the program
instead of an estimate of c for the individual item. In
fact, for LOGIST 5, Wingersky et al. (1982) suggest setting
CR1TFIXC at -3.5 for samples of 2,000 to 3,000 instead of
using the value of -2 recommended for LOGIST 4.

One more possibility exists for obtaining about the
same effect as lowering the critical value of c. That is to
standardize on b parameters instead of on thetas. The usual
procedure is to standardize on thetas, since the scale is
arbitrary. However, one has the option of standardizing on
b parameters. Since these items are very easy for the
examinees, standardizing on thetas results in a negative
average b parameter. If the average b parameter is already
-1, not many of the easier items will fail to meet the
critical value of (b-2/a), and thus few individual cs will
be estimated. If we standardize on bs, the average b value
is automatically zero, and more items might have estimated
cs above the critical value.

Of course, the problem with these approaches is that if
we simply arrange to have more cis estimated but the
estimates are unstable, as Lord (1975) has indicated, we may
not have profitted much from the exercise. Still, as far as
we know, explorations of these issues have not been reported
in he literature, so their study here has not only
practical importance for SSAT II analyses of the future, but
also has a more general significance for others wno might
attempt to employ the three-parameter model using LOGIST 4
as the estimating program for the item parameters.

Therefore, this study was aimed at determining how
effective the various strategies of:

1) oversampling at the low end of the distribution,
2) using a lower critical value of c, i.e.,(b-2/a < -2), and
3) standardizing on b rather than theta,

singly and in combination, would be at causing more cis to
be estimated and fewer Us to be reported.

1r1 addition to attempting to obtain more cis, we wanted
to evaluate how well the a, b, and c values agreed from one
analysis to another. One might be distressed if he found
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that using one or more of these techniques resulted in a
much higher proportion of estimates of c values for
individual items, but the corresponding a values did not
agree with a values from other procedures, or corresponding
b values did not agree with b values using other procedures.
Furthermore, it is also possible simply to fix the c values
at zero, or at some value that more reasonably reflects the
effects of guessing and other extraneous variables, such as
1/A - .05. The former would be a two-parameter model, with
a parameters reflecting item quality and b parameters
reflecting item difficulty, and an assumption that no
guessing existed--that a person of very low ability had zero
probability of getting an item correct. The latter might be
called a modified three-parameter model, indicating that
three parameters are used, but the third is not estimated
for individual items but is set at a common fixed value for
all items based on the number of alternatives.

Data

Data from the March, 1984, administration of SSAT II
were used in these analyses. A random sample of 3000 cases
was taken from a systematic sample of 9000 cases from the
total population of 94,261 usable cases. Another sample was
drawn for each test from the 9000 case sample by eliminating
the lowest-scoring 50 cases (assuming that their scores are
so low as to represent failures in test administration
rather than sound estimates of ability), and then taking the
lowest-scoring thousand cases and a random sample of 2000
from the rest of the distribution. This procedure was
believed to provide samples heavily overrepresenting the
examinees of low ability on each measure, mathematics and
communication.

Analyses

For the representative sample, LOGIST 4 was used to
estimate item parameters for each test, communications and
mathematics. First, the standard options on the program
were used. These options standardize on thetas and set the
criterion for (b-2/a) at -2. Then the same analysis was
done standardizing on b parameters. Next, the same analyses
were done setting the criterion for (b-2/a) at -3 and,
again, at -4. For these analyses, it was observed that the
limit on the maximum a parameter of 2 was inhibiting. A
large number of a parameter values were fixed at the maximum
allowed (2.0). Therefore, the maximum on a was raised to 3.
This same set of analyses was repeated using the data which
overrepresented the low scorers.

The results of these analyses were evaluated to
determine which of the above procedures, or combinations of
them, seemed most effective at yielding increased numbers of
estimates of ci for individual items. The most effective
procedure was used, then, to provide input for new LOGIST 4
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analyses of the same data for comparisons with the results
obtained from fixing c values at 0.20, (1.0/A - .05)
representing chance, and from fixing c values at zero.

The results from the various procedures used to
increase the number of c s indicated that for the
communications test, no arrangement resulted in estimating
more than nine of the c parameters. Apparently that test is
so easy for the examinees that the population contains
insufficient members of low enough ability to estimate the
probability that a person of very low ability will answer
these items correctly.

For the mathematics test, a number of c parameters
were estimated using these devices. The number is still
fewer than half (only about one-third), so the results Ore
not entirely satisfying. Changing the standard for (b
2/a) to -4, by itself, was about as effective as -3, but
better than -2. Using a ^criterion of -2 resulted in
estimates of 12 individual c parameters, or 16%, but using
-3 resulted in estimates^of 16 individual c parameters, or
21%. Standardizing on bs instead of thetas was about as
effective as changing the standard to -3 or -4. Using the
standard of -4 and weighting the low ability end of the
sample by taking 1000 lowest scoring students and a rand-L
sample of 2000 from those scoring above these 1000 cases
resulted in the largest number of c parameters being
estimated. So the c parameters from using a standard of -4
and the nonrepresentative sample were input as fixed values
to LOGIST 4 as one of the procedures to be compared. Since
we were unable to find a way to estimate a useful number of
c parameters for the communications test, it was not further
studied.

To compare 1CC parameters resulting from fixing cs at
different values, we contrasted results from the following:

A. Use c paramete:s based on -4 as the criterion for
(b - 2/a) ald 1 nonrepresentative sample as
fixed values for a LOGIST run--a three-
parameter model.

B. Fix c parameters at (1.0/NCH - .05), i. e., at
essentially a chance value--a modified three-
parameter model.

C. Fix c parameters at zero, i. e., as they would be
fixed in a two-parameter model.

Results

As car be seen in Table 1, the mean a values and mean b
values and their standard deviations were very similar when
the c parameters were fixed at values obtained from LOGIST
and when c parameters were set at chance level (.2). The
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average a and b values and their standard deviations setting
c equal to zero were noticeably different.

Table 5.1

Means and Standard Deviations of a and b Parameters
When Fixed c is Input from LOGIST,

Set at .2, and Set at Zero

Logist ^

Estimated c c set at .2 c set at 0

a b a b a b

Mean .915 -1.385 .912 -1.370 .831 -1.578
S.D. .325 1.201 .324 1.190 .302 1.056

The correlations between estimates of a parameters
using c parameters fixed in three different ways can be seen
in Table 5.2 where "Input c" is obtained by fixing c at the
level estimated by a previous run of LOGIST 4 setting the b-
2/a criterion at -4 and oversampling low scoring examinees.

Table 5.2

Correlations between Parameter Estimates Using Different
Procedures for Fixing c Parameters

1 2 3

1. Input c .97 .82
2. c = .2 .97 .87
3. c = 0.0 .82 .87

The correlation be seen a parameters when c is set at
0.20 and when c is input from LOGIST 4 estimates is very
high, .97, but neither of these procedures for estimating c
parameters results in a parameters which are highly
correlated with those obtained from setting c equal to zero.

A

Frequency distributions of the differences between a
values based on the three procedures for determining c
parameters, and frequency distributions of the differences
between b parameters based on the three procedures appear in
Tables 5.3 and 5.4. These data clearly support the
conclusion that the results from the three-parameter model
and the modified three parameter model are quite similar,
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and they are both quite different from results from the two-
parameter model.

Table 5.3

Frequency Distributions of Differences Between a Parameters
Based on Three Procedures for Fixing c Parameters

Interval
Midpoint a-a -c c.z a"-ac c0 4c.2-ac0

<-.10 2 6 6
-.10 5 4 4

-.05 9 12 7
0 48 14 15
.05 0 6 12
.10 7 6 3
.15 1 8 9
.20 0 6 5
.25 0 2 2

>.25 3 10 12

Table 5.4

Frequency Distributions of Differences Between b Parameters
Base,' Three Procedures for Fixing c Parameters

Interval
Midpoint

b;.-bc.2 q-bc0 bc.2-bc0

<-.10 5 8 9
-.10 9 3 0

-.05 40 1 2
0 10 4 0
.05 3 7 3

.10 0 8 4

.15 0 4 10

.20 3 3 5

.25 3 11 10

.30 1 6 8

.35 0 4 11

.40 0 4 7
>.40 1 12 6
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Conclusion

From these data and analyses, it seems apparent that
the c parameters obtained from setting the standard of b-2/a
at -4 while using a nonrepresentative sample weighted at
the low end and from fixing the c parameters at chance level
are very similar, but the results from fixing c parameters
at zero differ appreciably from the other two procedures.
Since fixing the c parameters at zero flies in the face of
the fact that the items are multiple-choice items in which
it is unreasonable to expect that a person of very low
ability would have probability of zero of answering
correctly, the most sensible recommendation appears to be
the simple one of setting the c parameters at a value such
as 1/A-.05 for all the items ani relieving LOGIST 4 from
having to estimate the c parameters at all. This
recommendation is sound for the SSAT II mathematics test
based on the above analyses; it is sound for SSAT II
communications because no procedure was found that enabled
LOGIST 4 to estimate c parameters for a significant number
of items.

It should not be surprising that using 1/A-.05 as
estimates for c values corresponds fairly well with our best
estimates of c parameters by means of the LOGIST 4 program.
LOGIST 4 at best estimated c parameters for only about 1/3
of the mathematics items, and it set the c parameters to a
common value for the rest. The common value was not far
from .20. So the c values for most of the items were not
far from the c values one would set based solely on
knowledge of the number of alternative responses.

The program LOGIST 5 includes among its improvements
over LOGIST 4 modifications in the procedure for estimating
c parameters. The common c (6) is estimated by maximum
likelihood procedures; the only restrictions on c are bounds
of 0.0 and 0.5, and the fixing of c at a common value if b-
2/a is less than a critical value which has been set; and,
the c parameters which have been set at a common value due
to violation of b-2/a ate re-estimated in the last step of
the program. Whether these modifications in LOGIST would
decrease the problems of estimating c values for minimum
competency tests to an appreciable degree deserves
exploration. The program BILOG uses a Bayesian procedure to
estimate item parameters. Bayesian procedures set
constraints on item parameters in terms of prior probability
distributions instead of the less formal constraints set by
LOGIST 4. It is possible that a Bayesian approach would
result in better estimates of c parameters in minimum
competency data. This possibility also deserves
exploration.

43

41



CHAPTER 6

DETERMINING APPROPRIATE SAMPLE SIZE AND
DISTRIBUTION SHAPE

The Significance of Sample Size and Distribution Shape

The number of examinees which must be used to obtain
satisfactory estimates of item parameters is a significant
consideration in determining whether it would be wise for
the State of Florida to use one model or another of the
family of item response theory models. The fewer parameters
that are estimated, the smaller the number of examinees
needed for stable estimates of parameters. Also, some
parameters are easier to estimate stably than others. Item
difficulty seems to be rather easy to estimate satis-
factorily, but the guessing parameter seems to be quite
recalcitrant. Since the current procedures are to use
pretest samples of around 500 cases, and that does not seem
to be onerous, a relevant question is whether the use of a
more complex model than the one-parameter model would be
feasible with samples of about that size. If not, an issue
in adopting a more complex model would be the feasibility of
obtaining larger pretest samples on which to obtain item
parameter estimates.

The usual minir.tum sample sizes stated for the three-
parameter model are 1000 examinees and 40 items. Some
computer programs require more, but these numbers are those
usually suggested for LOGIST 4. However, if one were to
consider a modified three-parameter model in which the c
parameters were fixed at a specified value, such as chance,
the program would have one of its troublesome estimation
problems removed as well as having a smaller number of
parameters to estimate. As a result fewer examinees might
be needed. If one were to consider a two-parameter model,
with all c parameters set at zero, the program might also
require fewer cases. Experience with these data seems to
suggest that estimation of c parameters is impossible for
the communications test data and largely unproductive for
the mathematics data (only about 1/3 of c parameters
estimated at best). Therefore, it is important to see what
savings in numbers of examinees are feasible by eliminating
estimation r: parameter, and whether it would be
feasible to uLe pretest samples of about the size now being
used (500) when estimating parameters using LOGIST 4 and a
modified three-parameter model or a twoparameter model.

Another way to attempt to obtain stable estimates of
parameters is to oversample the extremes of the population
distribution so that more data are available for evaluation
of the asymptotes of the logistic curve. In a sense, the
problem of estimating c parameters is that there aren't
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enough low-scoring examinees to fix accurately the shape of
the logistic function at the lower end. Lord (1968), for
example, says that an item characteristic curve can be
considered as the regression of item score on ability, and
the problem of estimating ai and bi can be considered as a
problem of estimating a regression. He says, "It is well
known that data having a normal or bell-shaped distribution
of the independent variable are not nearly as efficient for
estimating a regression curve as data containing many
extreme values of the independent variable. Thus, item
characteristic curves can probably best be estimated by
using a group of examinees with rectangular or bimodal
distribution of ability" (p. 1017). In his analysis of the
SAT Verbal score he used 2,682 examinees chosen from a
larger group of 5000, using more low-scoring than high-
scoring examinees "since the sampling error of low scores is
high, due to random guessing" (p. 1018). Even then, he
suggested that a still more nearly rectangular, or even U-
shaped distribution, might have been preferable.

The distributions of SSAT II scores are highly skewed,
as has been noted earlier. The communications scores are
exceedingly skewed, much more skewed than the mathematics
scores. A result we have seen from this is that LOGIST 4 is
unable to estimate c parameters for the communications
items. The question remains, however, if we sampled from
the available population of examinees so that the low end
was greatly overemphasized, would we be able to obtain
reasonably sound estimates of the item parameters using
smaller numbers of examinees? If so, and if the State
Department of Education can identify schools or locations in
which large numbers of examinees at the low and high ends of
the ability scale can be pretested conveniently,
oversampling might be a feasible procedure for obtaining
sound item parameters efficiently.

Procedure

Before any of the studies described in previous
chapters had been done, the following procedure was planned
for this analysis. A matrix of samples would be assembled,
one dimension being sample size, the other being sample mix.
Sizes such as 3000, 2000, 1500, and 1000 would be used.
Three different mixes of abilities would be crossed with
these sample sizes. One mix would be the abilities that
naturally occur, a second would overemphasize the extremes
of , hility by a factor of 3, and the third would
overemphasize the extremes of ability by a larger factor.
It was planned that these factors might be modified
depending on the kinds of distributions that naturally
occur. The data would be analyzed in each cell using LOGIST
4 in an effort to locate the optimum sample size and mix for
future analyses of Statewide Assessment Test data.

Experience with other phases of this project guided us
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in revising our procedure. First, our previous analyses
suggested that the estimation of c parameters might not be
practical for these data. Therefore, we decided not to
pursue the estimation of c parameters throughout all levels
of analyses for these steps unless the initial ones were
encouraging. Second, it appeared that it would be necessary
to locate fairly precisely the minimum number of cases
required to make reasonably precise and stable estimates of
a and b parameters. The logistics involved in the current
trial administration of items argues for small samples. It
is relevant to obtain information on whether the current
sampling procedures for trial administrations can be
followed unaltered while using a more complex model. Third,
the extreme skew made oversampling of different degrees very
difficult. In Figure 5.1, for instance, it can be seen that
the lowestscoring 1000 out of 9000 cases would include all
the students who had answered correctly from zero to
approximately 60 out of 75 items on the communications test
while the highestscoring 2000 would all have scores of 74
or 75. To use the lowestscoring 1500 would include some
rather high scores in the "lowscoring" group. The other
alternative would be to sample from a larger number than
9000 which becomes rather cumbersome.

As a result of these considerations we did LOGIST
analyses for the fo]lowing sets of data:

For mathe:naticF, using the existing distribution we
analyzed representative samples of 3000, 1000, 750,
500, and 250. We used both LOGISTestimated c
parameters and fixed c parameters (c parameters
fixed at .20) for the samples of 3000 and 1000, but
fixed c parameters only for the samples of 750,
500, and 250. We oversampled the low end, and did
LOGIST analyses of 3000 cases with both estimated
and fixed c parameters. For a sample of 1000 we
did an analysis with estimated c parameters to
verify our anticipation that few if any c
parameters would be estimated even with
oversampling at the low end.

For communications, we did not believe that
anything we could do would result in useful numbers
of c estimates. Therefore, we did not bother with
oversampling at all or with estimating c parameters
at all. We merely tried to see what would happen
to the estimates of a and b parameters as the
sample size decreased, with c fixed, using samples
of 3000, 1000, 500, and 250 cases.

Results

We compared the means, the standard deviations, and the
intercorrelations of a and b pa,ameters using different
methods of estimating in order to see what happened as
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sample size became smaller and as we oversampled the lower
end. We assumed that the analyses ,'2ing 3000 examinees and
estimating c parameters were the most sound, and other
procedures would be evaluated in terms of how closely their
results approximated those of N=3000. As a result of work
on other aspects of this project, we had available one
analysis on N=3000. We drew another random sample of 3000
from the 9000 sample so that two samples of N=3000 could be
compared as a base line. These two samples are labeled
N3000A c-est and N3000B c-est in Table 6.1. We also ran
LOGIST 4 on these samples with c parameters fixed at .20.
Those two analyses are labeled N3000A c-fix and N3000B c-
fix. A final sample of 3000 cases was analyzed, N3000-S, c-
est, in which the lower end of the distribution was
dramatically oversampled following Lord's suggestion.

It can be seen in Table 6.1 that there is quite good
agreement between random samples using the same method with
Ns of 3000, and that estimating c parameters or fixing c
parameters at .20 makes little difference in the means and
standard deviations of a and b parameters. However, as one
might expect, oversampling at the low end increases the mean
b parameter. (Since the scale is fixed so that the mean
ability of the group is zero, and since the mean ability is
lower with greater sampling at the low end, the difficulty
of the items scales out at a higher value, i. e., less
negati-ye.) The mean a parameter is also larger when low
abilities are oversampled. Notice that the mean c parameter
value is only .18 with low abilities oversampled, but, when
c parameters are estimated, the mean c parameter is 0.24
when a representative sample is used. A lower c parameter
allows the item characteristic curve to follow a steeper
shape before becoming asymptotic, and the a parameter of the
curve is thus larger. (Consider that if the c parameter
were some large value such as .90, no a parameter could be
very large. All slopes would be flat--and the item could do
little discriminating, indeed, with all that guessing going
on,) Thus, the baseline data on samples of 3000 behaves
appropriately.

Now when we move to representative samples of 1000, the
means and standard deviations of a and b parameters are much
like those for representative samples of 3000, whether c
parameters are estimated or fixed at .20. With oversampling
at the low end, however, the mean a parameter is increased
noticeably (from .9 to 1.2), and the a parameters are more
variable (standard deviations increasing from .3 to .4.)
More dramatically, the mean b parameters are increased
noticeably more than they were for tae oversampled group of
3000. Instead of the mean b parameter of -.8 we have a mean
b parameter of about -.3 with reduced variability. So
rversampling results not only in disagreement with
representative sampling of N=3000, but also in disagreement
with the oversampled data for N=3000. Oversampling the low
end with N of 1000, thus, seems to produce results unlike
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Table 6.1

Means and Standard Deviations
of the Item Parameter Estimates

Sample a b c

N3000A c-est .93 -1.32 .24
(.33) (1.20) (.02)

N3000B c-est .91 -1.39 .24
(.33) (1.31) (.02)

N3000A c fix .91 -1.37 .20
(.32) (1.19) (.00)

N3000B c-fix .89 -1.43 .20
(.32) (1.25) (.00)

N3000-S c-est 1.02 -.85 .18
(.35) (1.06) (.03)

N1000 c-est .88 -1.48 .19
(.31) (1.29) (.01)

N1000 c-fix .87 -1.47 .20
(.31) (1.30) (.00)

N1000-S c-est 1.15 -,30 .18
(.42) (.85) (.05)

N1000-S c-fix 1.15 -.27 .20
(.40) (.85) (.00)

N750 c-fix .94 -1.38 .20
(.35) (1.35) (.00)

N500 c-fix .89 -1.52 .20
(.34) (1.60) (.00)

N250 c-fix .90 -1.89* .20
(.43) (3.08) (.00)

*Based on 74 items. Item 36 deleted from calculations due
to the extreme value estimated for the b parameter.
Note: "c-est" means that LOCIST estimated the c parameter,
and
"c-fix" means that the researcher fixed the value at a
constant of .20.
Note: "S. after the sample size indicates skewness
different from parent population (oversampling of lower end
of ability).
Note: "A" and "B" indicate two equal-sized random samples.
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those obtained with larger samples and seems unattractive as
a procedure for obtaining sound estimates of a and b
parameters.

When sample size is reduced to 750, c parameters being
fixed since they are unlikely to be estimated stably with
such small samples, the mean a parameters are quite similar
to those for N=3000. So are the a standard deviations, and
the mean b parameters. The standard d viation of the b
parameters is perhaps a little larger than for N=3000 (1.35
vs. 1.19 or 1.25). For N of 500 and N of 250 the mean a
parameters are quite similar to the sample of 3000, and the
standard deviation differs only for N of 250, and only a
small amount there (.43 vs. about .33). However, the mean
of the b parameters drops to -1.5 instead of about -1.4, and
more noticeably, the standard deviation increases from about
1.2 to 1.6 for N=500 and 3.1 for N=250.

Table 6.2 shows the correlations among most of these
estimates of a parameters. The two samples of N=3000, one
with c estimated and the other with c fixed correlate .97,
encouraging one to believe that one set of results could be
substituted for the other with impunity. When represent-
ative sampling is used, the correlations with similar
procedures between N=1000 and N=3006 are both .91. The same
value results when oversampling is used but other procedures
are similar between the sample sizes. When c is fixed, the
correlation between the results from N=3000 and N=750 is
0.88. For N=500, the correlation is .84, and for N=250 it
falls to .75. One might wonder if the relationship is
satisfactory when N is below 750, or, at most 500.

Table 6.3 shows similar statistics for the b
parameters. Pere the correlations remain satisfactorily
high until N becomes as small as 250.

Table 6.4 shows the correlations among the c parameter
estimates for those samples in which c parameters were
estimated. When representative sampling was used, the
correlations among c parameters are very high (.99) for
large samples (both N=3000). But between N of 3000 and N of
1000, the correlations drop to .61 and .55. The
correlations between analyses using oversampling at the low
end for one analysis and representative sampling for the
other are disappointingly low, all below .40. These results
add to the results of other steps in suggesting that for
these minimum competency tests, use of an estimated c
parameter may not be very helpful.

From these analyses we might conclude, then, that for
the mathematics test, oversampling at the low end seems to
result in parameter estimates that disagree markedly with
those from taking a large representative sample. Using
LOGIST 4 estimates of the c parameter seems unpromising for
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Table 6.2

Pearson Correlation Coefficients
for Mathematics a Parameters

(1)

3000
A

est

(2)

3000
A

fix

(3)

3000
S

est

(4)

1000

est

(5)

1000

fix

(6)

1000
S

est

(7)

1000
S

fix

(8)

750

fix

(9)

500

fix

(10)

250

fix

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1.02

.97

.92

.91

.90

.79

.74

.85

.85

.76

1.00

.90

.86

.91

.79

.76

.88

.84

.75

1.00

.91

.93

.85

.87

.85

.85

.69

1.00

.96

.78

.79

.85

.92

.75

1.00

.82

.82

.89

.94

.79

1.00

.90

.75

.77

.68

1.00

.75

.77

.59

1.00

.83

.84

1.00

.81 1.00

Note: All coefficients are significant (p=.001)
Note: Only samples "A" of N=3000 are shown.

these minimum competency test scores. For the b parameters,
one might comfortably use representative samples of as few
as 250, but for the a parameters he might more safely stay
above 750, or at least 500, examinees.

For the communications scores, remember that we were
unsuccessful at estimating c parameters using LOGIST 4 for
these very easy items. So we did not oversample at the low
end for these analyses, nor did we estimate c parameters.
We merely fixed c at .20, and then did analyses on samples
of 3000, 1000, 500, and 250 cases. The results for a and b
parameters appear in Table 6.5. For these data the mean a
and b parameters were near the same value for Ns of 3000,
1000, and 500, but changed appreciably for N of 250.
However, Table 6.6 indicates that the correlation between a
parameter estimates becomes rather low when N decreases
below 1000. A similar result appears in Table 6.7 for the b
parameters.
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Table 6.3

Pearson Correlation Coefficients
for mathemaaci-b Parameters

(1)

3000
A

est

(2)

3000
A

fix

(3)

3000
S

est

(4)

1000

est

(5)

1000

fix

(6)

1000
S

est

(7)

1000
S

fix

/8)

750

fix

(9)

500

fix

(10)

250

fix

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

1.00

.99

.98

.95

.95

.95

.95

.86

.95

.83

1.

,

e96

.96

.96

.96

.87

.94

.81

,. 0

.99

.99

.97

.97

.89

.92

.84

1.00

.99

.96

.97

.91

.91

.85

1.00

.96

.97

.91

.91

.85

1.00

.99

.91

.87

.73

1.00

.91

.87

.74

1.00

.77

.68

1.00

.90 1.00

Note: All coefficients are significant (p=.001).
Note: Only samples "A" of N=3000 are shown here.

From these analyses, it seems that with these very easy
minimum competency tests (skew incices below -2.2, and
minimum item p value of .74), not only are LOGIIT 4
estimates of c not feasible, but estimates of a and b
parameter; are shaky unless based on Ns of at least 1000.

Conclusions

We set out to determine whether by fixing c parameters
or by oversampling at the lower end of the distribution it
would be possible to estimate item parameters more
accurately or with smaller numbers of cases than are needea
with a full three-parameter model. We found slightly
different rusilts for mathematics and communications. For
mathematics, oversampl. v.- at the low end has a noticeable
effect on both a and b parameters. Both a and b parameters
increase, on the average, and a par3-1eters become more
variable. The correlations between c parameters obtained
with and without overrepresentation of low ability are quite

BEST COPY AVAILABLE
51

55



Table 6.4

Pearson Correlation Coefficients
---r&Ft7EFETEs c Parameters

N3000A N3000B N3000S N1000 N1000S

N3000 1.00

N3000B .99 1.00
(p=.001)

N3000S .39 .38 1.00
(p=.001) (p=.001)

N1000 .61 .55 .27 1.00
(p=.001) (p=.001) (p =. 001)

N1000S .18 .18 .70 .09 1.00
(p=.122) (p=.117) (p=.001) (p=.437)

Table 6.5

- Means and Standard Deviations (in parentheses) of
Communications ICC Parameter Estimates*

Sample a b

N3000 .831 -2.090
(.309) (.837)

N1000 .841 -2.102
(.293) (.776)

N500 .855 -2.076
(.313) (.763)

N250 .911 -1.825
(.374) (.825)

*c parameter statistics not included because c parameters
were flAed at 0.20 for all Communications LOGIST rens.
Therefore the mean is .20 with a SD of zer- in all cases.

52

56



Table 6.6

Pearson Correlation Coefficients
for Commun cations a Parameters

N3000 N1000 N500 N250

N3000 1.00

N1000 .90 1.00

N500 .76 .81 1.00

N250 .73 .71 .62 1.00

All coefficients statistically significant (p=.001)

Table 6.7

Pearson Correlation Coefficients
1757-1-E,Pions b Parameters

N3000 N1000 N500 N250

N30019 1.00

N1000 .96 1.00

N500 .85 .86 1.00

N250 .88 .84 .77 1.00

All coefficients are statistically significant (p=.001)

low, below .40. Thus, if one accepts the results from
representative sampling of N=3000 as being the most sound,
oversampling results in unsatisfactory results. It is
possible and plausible that the results from oversampling
are the most sound, however, and that the results from
representative sampling are inferior. Which is most sound
seems best answered by studies using simulated data with
known item parameters like those found for these items.
Such a procedure was not included in this research.

For mathematics, decreasing sample size without
oversampling seems quite satisfactory down to N=1000, and
even to N=750. The correlation among a parameter estimates
(.88) is reasonably high, and the estimation of b parameters
is quite satisfactory with N=750. However, the standard
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deviation of the b parameters starts to increase, and the
correlation between a parameters to decrease (.84) at N=500,
ca,:sing one to consider samples of that size too small for
estimating parameters upon which to do such things as equate
item difficulties for a pool of items. Since that is one of
t.ne main anticipated uses of item parameters, these results
suggest that for mathematics such parameters be estimated on
na fewer than 750 cases representing the target population.

For communications, not only were c parameters rarely
individually estim,table, but oversampling did not help, and
when sample sizes became smaller than N=1000, correlations
of both a and b parameters with their counterparts at N=3000
were too low to be encouraging. Thus, for communications
one would recommend larger experimental groups than for
mathematics for obtaining item parameters, with Ns of 1000
or more being appropriate. Presumably this increased sample
size requirement is a funct'Jn of the fact that the
communications items are so very easy.

For both communications and mathematics, these data
lead us to the conclusion that estimating c parameters is
probably not worth the trouble with these minimum competence
data. Most of the c parameters will be set a common value
which will be near the value at whict, one would fix them at
in advance. Thus, little is to be gained by estimation.
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CHAPTER 7

CONCLUSIONS

This set of studies was directed at answering some
basic questions about the feasibility of using a three-
parameter IRT model for the Florida Statewide Assessment
Tests in place of the one-parameter model currently in use.
Several basic questions were apparent. First, would the
available computer program, LOGIST 4, converge when applied
to these data which are so highly skewed due to the very
easy items appropriate for minimum competency tests? The
answer to that question is yes.

Second, we wondered whether the data were
unidimensional as is assumed clearly by item response theory
and implicitly by conventional theory. Again,. the answer is
in the affirmative. We see no indication that the data are
sufficiently multidimensional to pose a problem.

Third, the data should theoretically fit a model more
closely if the model contained more parameters. Indeed,
these data fit a model which includes the discrimination
parameter appreciably better than one which ignores that
parameter. Including a guessing parameter, however,
provided little gain in fit, perhaps because the items are
so easy that there is little guessing and because estimation
of guessing parameters is hazardous on such easy items.

Fourth, we tried several approaches to improve the
estimation of the guessing parameters of the items--at least
to result in individual guessing parameters being estimated
for larger numbers of items. These approaches were
generally unsuccessful. For mathematics, at best guessing
parameters were estimated for only one third of the items.
For communications, rarely were ..) lessing parameters
estimated for individual items. Thus, estimation and use of
different guessing parameters for individual items is not
really feasible for these tests using LOGIST 4. Using a
common guessing parameter for all items, ',aced on the number
of alternatives contained in the iteA, is he sound way to
approach this aspect of use of the three parameter model.
It appears wiser to do this than to resort to a two-
parameter model in which it is assumed that an individual
has no chance of answering a multiple-choice item like these
by guessing. It may be that LOGIST 5 or BILOG would be more
successful in estimating guessing parameters, but to our
know edge no one has tried those procedures on data similar
to these.

A fifth question is whether modest sized samples, 500
or so, as are currently used in obtaining estimates of item
parameters for the one-parameter model in the Statewide
Assessment Tests, can be used satisfactorily for estimating

55

59



item parameters in a more complex model. The answar seems
to be negative. One might use as few as 750 for the
mathematics test, but for the communications test we could
not recommend using fewer than 1000.

Finally, it has been suggested that better estimates of
the parameters might be obtained by oversampling low
abilities. Our analyses were not encouraging. A serious
problem is the extreme skew of the data. Unless one uses a
huge number of examinees, there simply are not enough cases
at the low end of the scale to be very helpful.
Particularly for the communications test, oversampling at
the low end did not result in more individual c parameters
being estimated. A mcre satisfying approach to this problem
might be followed, that of using synthetic data patterned
after the data of the Statewide Assessment Tests but with
known parameters. What procedure best estimates known
parameters remains to be determined.

In sum, a more complex model is feasible. It will fit
the data better. A modif4 r3 three-parameter model would be
recommended at this poi. using the difficulty and
dis rimination parameters but setting the guessing
parameters to a common value based on the number of
alternatives. The samples used to estimate the parameters
should be of approximately 1000 cases.
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