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Meta-analysis is a technique for combining the summary statistics from
previously concducted research studies. Pioneered by Gene V Glass (1976)
meta-an lysis gives not only an indication of the direction of the results of
the studies, but provides an index of the magnitude of the effect as well.
Meta-analyses are reported in terms of nean effect size, ES. There are two
types of effect sizes. An experimen. fect size is the mean of the experi-
rentel group minus the mean of the conirol group divided by the standard

deviation,

while a correlational effect size is simply a correlation coefficient,
ES = r.

Meta-analysis has been further refined by Hedges (1983), who has been developing
techniques for using effect sizes as data points and then fitting regression
models. The focus of this paper, however, will be the use of correlation
coefficients in meta-analyses and the effect of the violation of the assumption
of independence in these analyses.
1ncependence

A necessary assumption for the results of statistical analyses to be tenable
is independenc2. A1l inferential statistical tec:niques require independence of
observations. By independence is meant that the probability of including cne
subject or data point will in no way affect the probability of including any other
subject or data point. Another way of defining independence is to say that "he
value of a variable for a subject is not predictable from the value of a variable
for any other subject.

So far independence has been defined in reference to primary studies performed

by researchers who draw a random sample of subjects, measure the subjects on




variables of interest, and calculate statistics from the measu-ed data using
their hypothesized models. The meta-analysts, on the other hand, draw a sample
of studies usually from journal articles, record the numerous statistics

reported in each study, and calculate a statistic based on effect sizes or a
meta-statistic from a data set ot simple statistics. When Jjumping from the

level of individual studies to combinatory techniques, studies parallel subjects
and simple statistics parallel observations on variables. In the framework of
combinatory methodology, then, independence means that the value of any statistic
which is included should in no way be predictable from the value of any other
included statistic.

The typical study which i< chosen for inclusion in a meta-aralysis, however,
will yield more than one effect size or simple statistic. When the meta-analyst
uses all the statistics available in a particular study to calculate the mean
effect size, the assumption of independence is violated. Landman and Dawes (1982)
cutline five ways in which the assumption of inderendence can be violated in meta-
analyses. These five types of violations are as follows:

"1) Multiple measures from the same subjects, .
2) Measures taken at multiple points in time from the

same subjects, .

3) Nonindependence of scores within g single outcome
measure, .,

4) Nonindependenée of studies within a single article, .
5) Ng:?ndependent samples across articles" (pp. 506-507).

Kraemer (1983) specifically provides the caveat that "cnly one effect size
per study can be used to ensure independence" (p. 99) in meta-analyses. This
means that tlie ratio of effect sizes to studies in a meta-analysis should be
one in order to avoid violating this assumption. However, even a cursory review

of published meta-analyses reveals that the assumption of independence is, in

fact, seldom met.




Purpose

The purpose of this study was to determine the effect of the viclation
cf the assumption of independence on the distribution of r and the distribution
of Fisher's Z. 1In this Monte Carlo simulation the following four parameters were
used with the values specified:

N - the sample size within a study (20, 50, 100),

p - the number u¥ predictors (1, 2z, 3, 5),

rho{i) - the population intercorrelation among predictors

‘0, .3, .7),
rho(p) - the population correlation between predictors and
criterion (0, .3, .7).

Predictor and criterion variables were generated to conform to all possible
combinations of thc parameters specified above and then correlated. The main
parameter of interest was rho(i), since it was thé index of ronindependence when
it assumed a nonzero value in the multiole predictor cases. When only one predictor
was used or when the intercorrelation among predictors, rho{i), equaled zero, then
the assumption of indeperndence was nct violated.

Method

In this study dependent and independant correlations were generated between
criterion and predictor variables. The vaiues of the parameter p, the number
of predictors, were one, two, three, and five, and path diagrams for each case
appear in Figures 1 through 4 respectively. In these diagrams the G variables
are the common generating variables used along with error to form the X variahles
or predictors, which are in turn combined along with error to produce the Y or
criterion variables. The arrows between variables indicate the relationship
among the endogenous variables. The associated lower case letters are the

standardized regression coefficients for path analysis. The arrows which are not

oy
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Fiqure 1. Path diaaram for the one predictor case.

Path diagram for the two predictor case.
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Figure 3. Path diagram for the three predictor case.




Figure 4. Path diagram for the five predictor cace.
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connected 1ndicate exogenous variation, and those coefficients are given as well.
The following algorith derived by Knapp and Swoyer (1967) was used to
generate correlated vectors of numbers:

Y= aX + 71 - alz

where X = a vector of randomly chosen numbers from the standard normal distribution,

Z = another vector of randomly chosen numbers from the standard ncrmal
distribution, and
a = the desired correlation between X and VY.

In the unique one predictor case, the intercorrelation among predictors
could not be varied since only cne predictor was present. Therefore, independence
exists in this case. Here the X1 vector was set equal to G, a vector of randomly
chosen standard normal deviates, so the path coefficient between G and X1 is one.
The path coefficient between X1 and Y, a, was set equal to the population correlation
between predictors and criterion, rho(p). Since a = rho(p), the error coef-icient

~ r_————_—— A
for Y was71 - a orj1 - rho(p)2. The Y vector was then created as follows:

T2
Y= axl + 1 - a%z

where 7 = a vector of randomly chosen numbers from the standard normal distribution.
The vectors for X1 and Y were then correlated.

A different procedure was used for data generation in the multiple predictor
cases. In Figure 2, path coefficients a = b and ¢ = d. In Figure 3, a =b = ¢
and d = e = f, In Figure 4, a =b=c=d = e and f=9g=h=1=3. In these
three diagrams the correlations between any two predictors is equal to the product
of the path coefficients connecting those two predictors with the generating variable
or the quantity, a2, since all the coefficients between generating variables and

predictors are equal. For the correlation between two predictors to equal rho(i),

the path coefficient, a, was set equal to 1r:ho(i). Then all the X vectors were

generated as follows:




X(1) =37a6 +1'1 - az0y)
Where X(i) = a vector of values for a predictor and i assumes incremental valyes

for vectors from one to P, the number o predictors,

[=¥]
"

rho(i) = the population intercorrelation among predictors,

]

2{(i) = a vector of randomly chosen standard normal deviaies and i assumes

incremental values for vectors from one to P» «ve number of predictors,
The following points concern the gensration of the Y vectors., First it

should be noted that each y is a linear combination of the p predictors plus

error. The weight of that combination is ¢ in Figure 2, d in Figure 3, and

f in Figure 4. Second, it should be ncted that correlation coefficients can be

reconstructed from the standardized regression coefficients ip a path diagram.

In Figure 2, the co-relations between the two predictors and the criterion can be

reconstructed as follows:

1

r

yxl ¢ + abd,

r

yxz d + bac,

but since ¢ = d, and a = b =;/rho(i), the correlation between Y and any predictor,
X(1), can be written as follows:

Foe. =€+ Plie = c(1 + A(i)).

yX;

Also since ryx 1s an estimate of rho(p), that value can be substituted into the
i
equation so that it can be solved for ¢ as follows:

£ (p) = c(1 + pLi))

In Figure 3 ip parallel fashion, the correlations between the three predictors

anc the criterion can be reconstructed as follows:




r = d + abe + acf,
¥x

1
r = e+ bcf + bad,
yX

2
ryx3 = f + cbe + cad,

but since a = b = ¢ =7r;ﬁ6if), and d = e = f_ the correlation betweer Y and any
precictor, X(i), can be written as follows:

yr, 3+ 200+ 2()d = d(1 + 2,2(4)).

Als0 since ryx is an estimate of rho(p), that value can be substituted into the
i
equation so that it can be solved for d as follows:

CP) = d(1 + 2.2(4)),

In Figure 4 the Jast obvious parallel exists. The correlations between the

five predictors and the criterion can be reconstructed as follows:

ryx = f + abg + ach + adi + aej,
1

r = g + baf + bch + bdi + bej,

YX2

ryX = h + caf + cbg + cdi + cej,
3

ryx =1 +daf + dbg + dch + dej,
4

ryX = J + eaf + ebg + ech + edi,
5

but since a = b =¢ =4 = e =¥rho(i), and f = 9 =h=1=j, the correlation
between Y and any predictor, X(i), can be written as follows:

Tyx, = FHPUNE + 00 + 200)F + 5(i)F = £(1 + 4-(1)).
1

Again Fx estimates rho(p) so with the appropriate substitutions the solution
i
for f is as follows:




So far in generating the Y variables in the two,

three, and five predictor

cases, the weights of the combinatiuns, ¢, d

» and f, respectively, have solutions.

But in each case a weight for the error term “s needed.

In the Knapp and Swoyer

algorith, the value azcan be viewed as r2

» the amount of .ariance accounted for,

—
so 1 - a2 1s the amount of variance not accounted for and J1 - a2 is {he weight of
the error vector, 7.

In the three multiple predictor cases studied here, formulas for tha R2 values

are given below:

2 - i .

1 2
2

= . 2 = 2

Ry123 d;yx + d yX + dpyx 3d1/ (p)’

1 2 3
R2 2 2

= = \

y-12345 ff’yxl +f yx, * fﬂyx3 + fﬁw + f/’}x5 5f/(n),

The Y variables were generated as follows:

Y= c(X1 +Xx2) +71 - 2¢ 2(p)z,
Y= d(X1 + X2 + Xx3) +91 - 3d7 (p)z,
Y= f(XI + X2 + X3 + X4 + X5) +¥1 - 5f2(p)z.

Correlations between the criterion variables and each of the predictors were then

calculated in the multiple predictor cases

The number of replications was chosen by solving for n. in the formula for

the standard error of the mean of the correlation coefficient given below:

(1. P22
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The value for 0 was arbitrarily set at .01, which was deemed sufficiently
r
small for precision in this study. In this formula, A is the population

covrelation, rho(p), and was set equal to zero. Jhe symbol, n » Is the sample

s
size and was set equal to 20. Substituting these values into the equation
allowed n.s tne number of replications, to assume the largest value that would
be possitle among the values for paramete-s, rho(p) and ng» hat were chosen for
this study. The solution for n. the number of replications, was 500.

For each combination of N, p, rho(i), and rho(p) and for all r and 2
distributions, the means, medians, and standard deviations were calculated,
Results

The means, medians. and ;éandard deviations of the correlation coefficients
for all values of rho(i), rho(p), and the number of predictors, p, when N=20
appear in Table l._ The same information when N =50 and ﬁ = lbO'apbears in
Tables 2 and 3 respectively.

The means, medians, and standard deviations of the Fisher's Z transformation
of the correlation coefficients for all values of rho(i), rho(p), and the
number of predictors, P, when n = 20 appear in Table 4. The same information
when N = 50 and N = 100 appears in Tables 5 and 6 re~pectively,

Inspection of these tables shows that when the population correlation
coefficient, rho(p), equals zero both the mean of r and the median of r hover
around that value and neither is consistentiy higher or Jower than the other.
However, when rho{p) assumes a nonzero value the median of r js usually larger
than mean r. This is because r is a biased statistic and its distribution is
negatively skewed when rho(p) is positive. This ordering of the mecn and the
ined1an when rho(p) is not zero does not occur in the Fisher's 7 distribut.on.

As N increases both the mean of r and the mean of Z are petter ottimators
of the parameter rho(p). This follows from the Central Limit Theorem. Both

the median of r and the median of 7 tend to be better estimators of the population

13




Table 1

Means, Medians, and Standard

Devidations for Correlation Coefficients

When N = 20

rho(1)

0 3 7
prho(p) ¥ M4 SD roMd_sD rooMI S0
10 L015 007 .230

3,294 .322 .206

.7 690 .706 .126
2 0 .602 .0i1 .225 -.004 -.007 .223  .002 -.004 .234
3,300 .36 214 296 .299  .208  .297 .3i1 .209
7 .683 698 .129 692 .714 125 695 .710 .117
3 0 .001 .0603 .230 -.009 -.013 .233  .002 -.007 .78
30295 .313 213 289 305 214 .295 .316 .21
7 b .686 .703  .126  .687 .703 .126
> 0 -.002-.004 .233 98 .007 .227 .004 .000 .221
293 .309 .21¢€ / .320 208  .292 .303 .202
7 b b 694 714 120

®.ith one predictor nonzero rho(i) values are undefined.

bThis combination would generate data which are undefined.

14
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Table 2

Meens, Medians, and Standard Ceviations for Correlation Coefficients

When N = 50

rho(i)
0 .3 7
prho(p) T Md. SO rooMdosD rooMd.SD

1 0 .001 -.001 .14]
3,303 .305 .128
7 697 .705 .073
20 .005 .000 .142° --.001 -.003 .140  .004 .005 149
3294 0307 1321300 .305 131 L3084 .305 .130
.7 .697 .705 075  .694 .703 .076  .696 .703 .06o
3.0 .002 .001 .139 007 .003 .145  .001 -.002 .142
3 794301 130 295 .300 130 .295 .300 .136
7 b .696 .703  .075  .694 .700 .076
5 0 -.002-.001 .i43 -.006 -.009 .144 -.005 -.007 141
3 .299 .303 129 .300 .305 129  .295 .300 .128
7 b b .699 705 .07

%ith one predictor nonzero rho(i) values are undefined.

bThis combination would generate data which are undefined.
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Table 3

Means, Medians, and Standard Deviations for Corre]atioq_ﬁggjjjgjgg};_
T ————>=2R%drC Jeviations for Correlatio

When N = 100

rho(1)
_—
0 .3 7
r r r S
p rho(p) r Md SDr r Mdr SDr r Mdr Dr

1% 0 .008 .q05 .108
3299 .303 .09
7 .698 .701 .053 _
-004.003 .09  -.008 -.009 7o 009 .012 .097

ro
o

.3 .297  .303 .09 304 .308 .09 .303  .303 .088
.7 700 .704 .05 699 .703 053 699 703 048
3 0 -.005-.009 .098 002 .002 102 -.001 .000 .097
.3 301 .305 092 302 .305 .09 300 .302 .os88
7 b 698 701 050 695 .699 050
5 0 -.002 -.002 .099 003 .001 100 -.003 -.002 .100
.3 .295 298 093 296 302 .093 302 .306 .094
v b b 699 702 .05

AWith one predictor nonzero rho(i) values are undefined.

bThis combination would generate data which are undefined.
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Table 4

Means, Medians, and Standard Deviations for Fisher's 7 Transformation

of the Correlation Coefficients When N = 20

rho(i)
0 .3 7
) ¥ =g (o4
p rho(p) 7 d, SO, i M% s% 7 Md, S0,

19 0 .06 .007 .243
3 .317 .33 233
.7 .885 .879 237

2 0 .002 .01 .238 -.004 -.007 .235 .002 -.004 .247
.3 327 .327  .246 .321 .309  .240 .323  .321  .242
7 .873  .864 .242 .890 .895 .24 .893 .887 .230
3 0 001 .003 .244 -.009 -.013 .246 .002 -.007 .241
.3 321,324 244 313315 244 2321 0327 .242
v/ b 879 .874 .242 .880 .373 .24

[S.0]
o
1

.002 -.004 .246 .009 .007 .240 .004 -.001 .233
.3 319,319,248 .33¢ .337 240 2316 313 .23
7 b b .891 .895 .229

%With one predictor nonzero rho{(i) values are undefined,

bThis combination would generate data which are undefined.
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Table 5

Means, Medians, o tandard Deviations for Fisher's Z Transformation

of the Correlation Coefficients When N = 50

rho(i)
0 .3 .7
p rho(p) 7 MdZ SDZ i Mdz SDZ 7 MdZ SDZ

12 0 .001 -.001 .144
3 .319 .315 144
.7 .876 .877 .144
2 0 .005 .000 .145 -.001--.003 .142  .004 .005 .152
3 .309 .317 146 316 315 147 .20 .315 .146
.7 .877 .877 .45 870 .873 .147  .873 .873 .136
3 0 .002 .001 .141  ,007 .CO3 .148  .001 -.002 .145
.3 .309 .310 .146  .310 .310 .145 311 .309 .152
.7 b .874 .874 145 870 .867 .149
5 0 -.002 -.001 .146 -.006 -.009 .147 -.005 -.007 .144
30315 0313 .135 (316 .315  .145 310 .310 .143
7 b b .878 .877 .141

%With one predictor nonzero rho(i) valuss are undefined.

bThis combination would generate data which are undefined.




Table 6

Means, Medians, and Standard Deviations for Fisher's

Z Transformation

of the Correlation Coefficients When N = 100

rho( i)
0 .3 7
p rho(p) T Md, SD, I Md, SO, 7 Md, SD,
120 008 .005 .10
30311 .313 .10
.7 .870 .869 .102
2 0 .004 .003 .101 -.008-.009 .102  .009 .012 .098
3309 .32 .00 317 318 101 .36 313 098
.7 .874 .875 .100  .873 .872 .104  .872 .874 .094
3 0 -.005-.009 .099  .002 .002 .103 -.001 .000 .098
20 .313 .315 102 .315 315,103 .313 .312 .097
7 b .870 .869 .097  .863 .865 .097
5 0 -.002 -.002 .100 .003 .001 .10/ -.003 -.002 .101
.3 .308 .308 .103  .309 .311 .102  .315 .316 .105
7 b b 871 .872 .100

8With one predictor nonzerc rho(i) values are undefined.

bTh‘;s combination would generate data which are undefined.
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parameter, rho(p), as N increases as -211. goth the mean and the median are con-
sistent estimators. It should be remz-bered here that when r equals zero, Fisher's
Z also equals zero. However, when r s .3, 7 is .31; and when r is .7, Z is .867.
Inspection of the tables shows tr:t there is no discernible trend in mean r,
mean Z, median r, and median Z over lesels of rho(i) or levels of p. This seems
to indicate that nonindependence of t*- data does not affect the estimation of
the popuiation parameter, rho(p). Th®s is, of course, only for the case when the
same parameter is being estimated by ¢ 1 the data.
When evaluating the standard dev::tions they should be referenced to the
known expected values in the cases when independence is not violated. For the r

distribution, the standard error of r zan be found by substituting the values

for the parameters used in this study into the following formula:
R - :2 y
T =,/ (- Pp)d?
4 n

Therefore, the standard error of r when rho(p) is 0 and N is 20 is approximately

.224. The standard error of r when rea{p) is .3 and N is 20 is approximately .204.
The standard error of r when rho(p) *: .7 and N is 20 is approximately .114. When
rho(p) 15 0 and N is 50 the standard :~ror of r is approximately .141. When rho(p)
is .3 and N is 50 the standard error c¢f r is approximately .129. When rho(p) is .7
and N is 50 the standard deviation is approximately .072. The standard error of r
when rho(p) is 0 and N is 100 is .1. The standard error of r when rho(p) is .3
and N is 100 is approximately .09]. Finally, the standard error of r when rho (p) is
.7 and N is 100 is approximately .05:.

Inspection of Tables 1, 2, and 2 shows that all the standard deviations are
close to their expected values. The iargest deviation of the standard deviation

from its expected value was .015 anc that was in an independent case. This

deviation is of no practical concern. There is some imprcvement as N increases

20




because standard deviations are consistent estimators, but there are no apparent
changes over levels of rho(i) or p.

For the Fisher's Z distribution, the values of the standard deviations can
be found by substituting the values for the parameter ysed in this study into

the following formula:

The-efore, the standad error of Z when N is 20 is approximately .243. The
standard error of Z when N is 50 is appr imately ,146. Finally, the standard
error of Z when N is 100 is approximately .102.

Again inspection of Tables 4, 5, and 6 shows t.at all the standard deviations
are very close (o their expected values. There is some improvement in the estimates
as N increases, but there are Ao arparent changes-over either fevels 6?'rh6(i) or p.
Co.clusion

The general conclusion, then, is that nonindependence does ot affect the
estimation of either the measures of central tendency or tiae standard deviations
for correlation coefficients and for Fisher's Z transformation of the correlation

coefficients whey the same population paremeter is being estimated.

21
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