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Mental Models in Programming

Abstract

A production system moael (GRAPES) has been developed that simulates problem-

solving and learning in the domain of wrnting recursive functions. Protocol analyses and

simulations by the model suggest that students typically use representations of example
program solutions to gwide t.err problem-solving on initial recursion problems  This process
of problem-solving by analogy to examples leads to acquisition of new production rules that
generalize across example and target problem features Two experiments are rfeported
which indicate that prowviding subjects with nsightful representations of example programs

and guiding subject through an “ideal” problem-solving strategy facilitates learning
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The Role of Mental Models in Learning to . rogram

Over the past few years the GRAPES research project at Carnegie-Mellon has
concerned uself with specifying a detailed process model of the development of problem-
solving skill in programming (Anderson. Farrell. & Sauers. 1984: Anderson. Pirolh. & Farrell.
in press: Pirolli & Anderson. In press) Our theory of problem-solving and learning of
programming was developed n the context of the GRAPES production system (see Sauers &
Farrell. 1982. for details) which was designed to emulate certain aspects of the ACT" theory
of cognitive architecture (Anderson. 1983). In this paper. we present some of our findings
for a subset of programming. namely learning to program recursive functions. We will focus
on four issues: (a) the process of wnting programs by analogy to exa’mples. (b) the
formation of generalizations from analogy processes. (C) which repres;ntations (i.e., mentai

models) of program examples facilitate learning. and (d) how guided use of such mental

models in problem-solving facilitates !earning.

Recursive functions are ones that are defined in terms of themseives A standard
example of recursion in mathematics s the factorial function. fim = n x fin-1). orn > 0
(called the recursive case because it involves the recursive call fin-1)). and f(0; = 1 (called
the base or terminating case) The computation of factorial 1s cariied out by suspending
the calculation of n x f(n-1) unul fin-1) 1s carned out. wvhich n turn requires that (n-%) x
fin-2) be suspended until fn-2) 1s carrned out and so on untl f(0) is reached Despite the
formal simplicity and elegance of recursive functions. we have observed that many students
have great difficulty learming to code sucij functions. This difficulty seems to be due in large
part to the unfamilianty of recursion to most students (Anderson et al in press) While
there are many everyday conceptual analogs to other programmuing constructs such as

iteration (e g.. cashiers processing customers: there are few f any simple eve-yday

conceptual analogs 1o recursion




3 Mental Models in Programming

So how do students learn the unfamiliar procedure of generating recursive programs?

Qur hypothesis 1$ that the prnimary means available to students is learning from examples.
By this we mean two things. First. students solve initial problems by modifying the solutions
of examples they are given. Second. learning mechanisms summarnize solutions to these

imtial problems into new problem-solving operators which can apply 10 future problems.

An “ldeal” Strategy for Coding Recursion

Before discussing how nowices program recursion. we present what is arguably the
ideal strategy for coding recursive functions. This strategy i1s based on protocol analyses of
expert programmers (see Anderson et al. n oress) Figure 1 presents a hierarchical goal
tree -2presenting the problem-soiving goals our GRAPES simulation swill step through in
executing this general strategy  Each box in Figure 1 represents a programming goal.
Arrows show the decomposition of goals into subgoals. The strategy depicted in Figure 1
involves (a) refimng the semantics and coding the terminating cases of the function and (b)
refining the semantics and coding the recursive cases. This latter step nvolves .a set of
subgoals for (a) characterizang the result of a recursive call (e.g.. f(n-1) for the factonal
function). (b) characterizing the result of the function (e g.. fin)) and (¢) determining the

relationsiip between (@) and (b) (e.g.. fin) = n x fin-1)

It 1S noteworthy that most standard texts on programming 40 not give any instruction
that that suggests this general strategy for coding recursive functions. Typically. texts
describe how recursive functions work. give lots of examples and may offer general
considerations (e g.. ‘start sith the easiest cases’s A lack of instruction In coding strategy
. one of the many hurdles that students face in learming about the unfamiliar procedure of

recursion (Anderson et al n press)
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Writing Recursive Functions
by Analogy to Examples

Our GRAPES model of learning to program recursion 1s largely based on protocol
analyses of six nowvices. A ubiquitous phenomenon among these subjecis s tne use of
recursive program examples to guide solutions to the first recursion problems encountered
Our GRAPES model of problem-solving by analogy to examples consists of a set of
production rules which. (a) establish a partial match of the current problem features to those
of the example and (b) map features of the example solution to solution steps In the ‘current
pfob!em. This approach to analogy shares many common features with other recent theories
of problem-solving by analogy (Carbonell. 1983: Gick & Holyoak. 1980. 1983.. Holyoak n

press) : s

To llustrate this process more concretely. we will triefly consider portions of a
GRAPES simulation of a subject (SS) solving her first recursion problem. SS was iearning
from Siklossy s (197€) text “Let's Talk LISP”. Her first problem was to write SETOIFF. a
function that takes two lists and returns ail the members of the first list that are not in the
second list Her solution was heavily guided by a recursion examole that immediately
preceded the SETDIFF problem in the text. This example was INTERSECTION1 a function
that takes two lists and returns all elements *hat occur n poth lists The INTERSECTION1
example consisted of four conditionai clauses ‘The logic of the function s oresented n
Figure 2° If the first set 1s empty tien return the empty set f the second set :s empty tnen
return the empty set: if the first member of the first set i1s a ‘member of the second 3et
‘hen return a set consisting of the first memoer iggeg 'o tne rasull of a recursie call *o

INTERSECTION1 otherwise just return ihe resuit of the recursive cat

SS clearly stated that she was using the INTERSECTION1 conditional clauses as a

guide for the SETDIFF solution SS's protocoi suggested that sne usea a nierarcnical

D O e L P & 3




5 Mental Models 1n Programming
represention of the INTERSECTION1 conditionatl clauses (see Figure 3). Our GRAPES model
when presented with tne goal to wnte SETDIFF and the reoresentation of INTERSECTION{
illustrated in Figure 3 performs the same basic problem-solving steps as subject SS. A
portion of the goal tree developed by GRAPES in solving SETDIFF s presented in Figure 4.
GRAPES first perforined a partial match of INTERSECTION1 and SETDIFF- both are
recursive functions and take two sets. Next. GRAPES mapped the conditionali clauses of

INTERSECTION1 onto code for SETDIFF.

The code for INTERSECTIONt and SETDIFF differs i many respects and several
solution mappings made by SS faled on first attempt Problem-sclving by analogy i1s not a
straightforward copying of code and often requires search for , the nght example

representations to mao from example 1o target problem.

Generalization from Problem-Solving by Analogy

The GRAPES model learns by creat:ng new production rules based on problem-solving
experience using the mechanisms of knowledge compilation (Anderson. 1982° Anderson.
Farrell. and Sauers. 1984 Neves & Anderson. 1981). Essenually. knowledge compilation
creates production rules that summarize several problem-éolvmg steps and that no longer
make reference to example information. The interaction between these learning mechanisms

and proolem-solving by analogy is ilustrated in Figure 5 .f exampte features f. ¢, . ¢

are matched to features f,. f,".... f ' of the target problem and example solution

components S,. s s, are mapoed to target solution steps s, . s. s.. then GRAPES

- 1

PUNRE

vl learn 2 new production rule of the form |IF features f, & f°

;& .. & f ' THEN

perform s,” & s," & ... & s’

One of the productions learned by our GRAPES simulation of SS for example is

C1 IF the goal is to code a recursive function on *wo sets SET1 and SET2
THEN code a conditional structure




and set subgoais to code four condiional ciauses
1. when SET1 1s empty
2. when SET2 is emoty
3. when the first element

of SET1 is a member of SET2
4. the else case.

|
1
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Production rule C1 is a compilation of the oroblem-solving steps outlined in Figure 4. It
essentially states that a recursive function taking two sets should be coded by four
conditional clauses Our protocol analyses and simulations of subsequent recursion problems
coded by SS (see Anderson et al.. in press: Pirolli & Anderson. in press) suggest that SS
had learned C1. Production C1 can be used successfully to code some. but by no means
all. recursive functions. This production sets up a plan that has Ittle in common with the
strategy outlined in Figure 1. To a large extent. SS's dnfficulttes‘ with iater recursion
problems can be traced to her mapping of a poor representation of INTERSECTION1 onto
her SETDIFF solution (see Anderson et al.. in press: Prroili & Anderson. in press). In the
next section we outline how altering subjects representions of program examples can

faciiitate learming to program recursion

The Effects ot Mental Models of Frograms
on Learning Recursion

Qur protoco! analysis and simulations of novices indicate that the particular example
representailons used by students in problem-solving by analogy have a iarge impact on the
early learning of programming recursion 't students would only use the ‘right”
representations in analogy then we would expect to see rapid learning ‘Nhat are the
“nght” representations? Our hypothesis 1S that the -ight representation encoces the oroplem
In terms of the gc<nerai concepts neegea 'o Jefine ne generar strategy for coding recursion
tsee Figure 1) Such a representation ..ould encode recursive functions as consisting of
terminating cases and recursive cases The representation would also nave (0 inciude the

nonon that the resuits of recursive cases .e g fin, are obtaned by assuming that ‘he
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results ot recursive calls (e g.. fin-1)) can be found.

In a recent experiment. we tested our hypothesis that providing students with the i
above representations would facilitate learning. We contrasted a mental model of recursion l
that employed the above representation (Structure model) with a model of recursion :hat
emphasized how recursive functions are evaluated (evaluation model). As noted before. this

evaluation model corresponds 10 the standard model taught in programming texts.

Two groups of subjects learned the basic functions. predicates. conditional structures
and definitional syntax of a LISP-like language called SIMPLE (Shrager & Pirolli. 1983). All
programming tasks centered on manipuiating a stored database of 18 entries in a book
library. The entries i this database could be identified by a numbe; (id number). a key ‘
word (title). and could be categorized as science. religion. or fiction books. All recursion
problems came from a space of 16 functions characterized by four dimensions with two
values on each dimension Each function could: (a) take a list of titles or an id number as
nput. (b) return a list of science or non-science items. (C) return the output list with items
'n the same or the reverse of the order they are encountered in recursion. (d) skip items

that are the opposite of what i1s being collected or return the current accumulated result

when first encountering an opposite

One group of subjects istructure group. N=10) was oresented with nstruction
emphasizing the structure model of recursion. This nstruction included the following
descnption:

A recursive function definition consists of two components: (1) A

definition of one or more terminating conditional statements in which a

simple answer is returned. (2) A definition of one or more recursiv

cases in which the answer to the current problem is solved by assuming

LRIC J
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8 Mental Models n Programming
that the answer to a simpler version of the problem can be found.

Two examples were then discussed in the context of this description. The first was a
non-programming example from mathematicss X" = Xx X™' forn > 0. and X° = 1.
The second example was a SIMPLE function. SORT. which sorted an input hst of book ttles
such that all science books were at the beginning of the list. In order to insure that
subjects did not use the actual code of this example to analogize from. we removed the
SORT code from view (leaving the general description of recursion and the mathematical

example at subjects’ disposal).

The second group (evaluation group. N=9) received a set of instructions paraphrased
from a LISP text that emphasized the evaluation model of recursion, These instructions
included the following description.

A recursive function is one which uses itself in its own definition.
Such a function solves a complicated problem by handing a simpler
version of the problem to a copy of itself. This process may Se
repeated. When a function copy solves a simpler problem, the answer is
substituted back into a more complex copy.

The evaluation group was presented with the same examples as the structure group
(defintions of X" and the SIMPLE program SORT). however these were discussed in the
context of how they worked by showing traces and exolanations of sequences of recursive
calls Both groups of subjects had to first wrte four recursive functions correctly .with
feedback for errors (training phase) from :he space of 16 functions outlined oreviousiy
When they reachea the cnterion of being able to generate all four recursive functions
without error they then moved to the transfer phase 'n this phase they attempted !0 .rite

ail 16 functions with no feeagback

As predicted. structure groud subjects took significantly 'ess time tc correctly write thewr
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first four funcions n the traming phase (M = 57 4 min) than evaluation group subjects (M
= 85.3 min). Interestingly. the groups did not differ in either time to wnte functions or
number of incorrectly coded functions n the transfer phase We take this as evidence for
the notion that in the training phase both groups ieached the same tevel of proficiency.
However. our data suggests that the structure group got to this state in a more efficient
manner because they had learned a general strategy for strucCturing their code very early on

in the training phase

Further Facilitation of Learning Recursion:
Stepping Students through the “Ildeal” Model

The SIMPLE experiment illustrates the advantages of having an insightful mental mocel
* L)

of recursicn to guide problem-solving by analogy. However. as we mentioned with reference
to subject SS's performance mapping a representation of an example program is not a
straightforward process. Further verbal specificaion of how to think about programs is
usually open to misundersianding on a student's part. Our GRAPES learning theory predicts
that a more direct approach to teaching programming involves guiding ihe student's problem-
solving steps along correct solution patas during the act of pragram wriing nself (Anderson.
Boyle. Farrell. & Reiser. 1984). Not only must students have an insightful mental model
they must be stepped through appropriate use of the mode! in problem-soiving. In the

context of learming recursion. this involves stepping the stujent through the generai strategy

outlined n Figure 1,

Recently members of the GRAPES research grouo molemented and tested a
computer-based system tor tutoning LISP At the neari of ‘s LISP twtor s a GRAPES

production system mode! of "ideal” strategies for soiving programming problems  The LISP

e aires
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10 Mental Models in Programming
tutor uses this moagel to determine if a student’s programming behavior 1S on a cosrect
solution path. and to generate tutorial interventions (see Anderson. Boyle. fFarrell & Reiser

1984 for details of "..!3 system).

Figure & presents a view of the LISP tutor on a terminal screen. The student tvpes
code diretly into the middle window. Quenes and explanations from the LISP tutor appear
in the top window. As the student types code to solve a programming problem. the tutor
compares the code to it's internal GRAPES model. For the most part. if the student 1S on
a correct solution path, the tutor remains silent. At cntical design pointz (for example.
designing the recursive cases of a recursive program) the tutor will intervene. presenting
examples. queries and explanations to guide the student through a ,program design. In
addition to the “ideal” models for program solutions. the LISP tutor also knows about
common mistakes made by students and the underlying cau.ses of those mistakes. When
such student "bugs” are recognized. the tutor intervenes by asking questons or gwing

explanations that lead btzck to the correct solution path

In a recent test of the.LlSP tutei. students of a LISP programming course were
divided into two groups. one that interacted with the LISP tutor (N=10) another that worked
in a standard LISP environment (N=10) Members of these groups were matched on prior
programming experience grades on a prerequisite PASCAL course and SAT scores  Both
groups received the same texts lectures. and solved tihe same problems in a test of
programming skill (coding. debugging. and evaluaung LISP functions) presented :mmediately

or:or to learming recursion there was no significant difference :n test scores

Tk2 recursion section of thus course consisted of 18 preolems hawng a wiae range of
afficuty  The text used by both grouos for recursion emphasized the struciure moae! of

-ecursion outiined n the pievious 3ecuon However overail pertormance ‘or students
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‘nteracting wth the LISP tutor was superior to those w~ho did not interact with the tutor
The LISP tutor group took significantly less time (M = 5.76 hours) to code the 18 recursion
problems than the non-tutored group (M = 9.01 hours). Further. the LISP tutor group
scored higher on a test of coding. debugging. and evaluating recursive functions. (M = 760
out of a possible 14 points) than the non-tutored group (M = 4.78). Although all students
were instructed with an insightful mental model of recursion. those who were guided in using
this model in problem-solving achieved a higher level of programming proficiency and got to

that state in less time.

Summary

Our analysis of learming recursion suggests the following conclusiops:

1. Because recursion s a novel and difficult concept. subjects typically use
representations of example solutions 10 guide thewr solutions for the nitial
recursion problems they encounter.

2. Problem-solving by analogy leads to the iearning of new production rules that
generalize across the example and target solutions.

3. Learning recursion can be faciltaied by instructing students in a mental modei of
recursion that emphasizes the key concepts necessary for a general strategy for
coding recurswe functions Students use this model 1o represent example
solutions map this representation onto a target prob’.m. and knowledge
compilation summarnzes thiIs mapping nto new productions that generate the
general strategy for coding recursion.

4 Learning recursion can be further faciltated by guiding students direcily along
the correct solution path predicted by the GRAPES model of the generai strategy
for coding recursion.

LIRS
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Figure 1:  The hierarchical goai tree for a
general strategy for a rarge subset of recursive functions Each box s a
programming goal Arrows point from goals to subgoals. Each subgoal of a
goal must be sausfied for a goai to be satisfied

WRITE
recursive
function
CODE \CODE :
terminating recursive
cases cases
REFINE CODE REFINE CODE
semantics terminating semantics recursive
of cases of cases
terminating recursive
cases cases
CHARACTERIZE CHARACTERIZE COMPARE
resultof result of result of
function recursive call function

toresult of
recursive call
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Figure 2:  The iogic of the conditional structures of
the INTERSECTION1 and SETDIFF functions. £ach arrow points from a
condition to an action of a conditional clause.

INTERSECTION1 (SET1, SET2) IS
SET1 empty oy i

SET2 empty —m0—n—> 0

First of 3 Recursive step
SET1 in SET2
ELSE _— Add first of SET1

t0 recursive step
SETDIFF (SET1. SET2) IS
SET1 empty ———

SET2 emptly — — SETH

First of : 3 Add first of SET1
SET1 in SET2 to recursive step

ELSE _ Recursive step

17




16 Mental  dels in Pregramming

Figure 3: A portion of the hierarchical representation of the
INTERSECTION1 example used by SS in soiving SETDIFF

Recursive-function

isa

has-arguments

INTERSECTIONT

CICICORS

SR

"(null set2)" ()"
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Figure 4: A portion of the hierarchical goal produced by GRAPES in simulating
SS's solution of SETDIFF by analogy to INTERSECTION1

WRITE
SETDIFF
COMPARE MAP
SETDIFF SETDIFF
to to
INTERSECTION 1 INTERSECTION1
MATCH MATCH
RECURSION TWO SETS

MAP MAP MAP MAP
CLAUSE-1 CLLAUSE-2 CLAUSE-3 CLAUSE-4
REFINE CODE

ACTION| | RELATION

AN

CODE CODE ]

empty(set1) return( {})
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Figure S:

MATCH
Example to
target

MATCH
f1tott’

MATCH
f2 to 2’

MATCH
fntofn’

Problem-solving by analogy mnvolves (a) establishing a partial
match of example features f to target problem features f ' and (b)

mapping example solution components s to target problem solution steps

s'. Learming mechamsms compile such problem-solving into new

productions that generalize across example and target.

MAP
Example to
target

MAP
sitost’

MAP
s2tos2’

Mental Models in Programming

MAP
s3tos3’
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Figure 6: A typical screen from the LISP tutor

In examples A and B what do you have to do to get the resuit |

of fact called with n?

PRESS: IF YOU WANT TO:

1. Multiply n by one less than n. y

2. Multiply n by fact of one less than n.

3. Add n to the resuit of fact called with one less than n.
4. Have the tutor choose.

Menu Choice: 2

CODE FOR fact

(defun fact (n)
(cond ((zerop n) 1)
<RECURSIVE-CASE >))

EXAMPLES
. fact (n) fact (n-1)
A. (fact 1) = 1 (fact 0) = 1
B. (fact 3) = 6 (fact 2) = 2




