DOCUMENT RESUME

ED 264 850 IR 011 937

AUTHOR Lopez, Antonio M., Jr.

TITLE Computer Literacy Training Modules for Special
Educators. Bulletin 1749.

INSTITUTION Louisiana State Dept. of Education, Baton Rouge.

SPONS AGENCY Office of Special Education and Rehabilitative
Services (ED), Washington, DC.

PUB DATE 85

GRANT G008400622

NCTE 37p.

PUB TYPE Guides - Classroom Use - Guides (For Teachers) (052)
EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS Computer Assisted Instruction; *Computer Literacy;

Computer Software; *Curriculum Development;
Elementary Secondary Education; Instructional
Innovation; Learning Modules; *Microcomputers;
Programing; *Programing Languages; Resource
Materials; *Special Education; State Programs;
Teaching Methods

IDENTIFI1ERS *BASIC Programing Language; *Computer Uses in
Education; Louisiana

ABSTRACT

Designed to provide Louisiana special educators with
the background information they need to develop a computer literacy
curriculum for use with their students, this document is divided into
four training modules: (1) Introduction to Computer Literacy and
Computer History; (2) Introduction to Computer Hardware and Software;
(3) Introduction to Computer Programming with BASIC; and (4)
Evaluation of Application Software. To assist teachers in identifying
their skills development, lists of objectives and related activities
introduce each module. Modules 1 and 2 present information on the
concept of computer literacy, the history of computers and computer
use, computer hardware and software, computer assisted instruction
(CAl), and programming languages. Module 3 provides step-by-step
instructions for writing a computer program in BASIC and addresses
the nature of computer programing as a problem-solving procedure.
Module 4 presents suggestions for evaluating computer software and
identifies three basic stages in ar. evaluation: the classification,
description, and observation stages. Finally, a chart is included
vhich lists the characteristics of five types of CAl software--drill
and practice, tutorial, testing, simulation, and dialog. (JB)

AR AR ARk ARk AR R R R R Rk AR AR R R R R A A AR R R R R R R AR KRR R AR R RN AR R AR R SRR RR AR AR AR

* Reproductions supplied by EDRS are the best that can be made
* from the original document.

*
%

RERRR R R R R AR R R AR AR R L AR R AR AR A AR A AR AR R R R AR R R AR R AR R AR AR R AR IR R AR AR AR

Q

& SRR IC 0 g Aoy AN A3 TATop e g SN 2 2R B WA AV Smae¥elh o P, TV
e e S A R A WO R AT AN PR q?;!ﬁf‘.-.&f??;?s ;
: .

A\]

Computer Literacy Training Modules

U.S. DEPARTMENT CF EDUCATION

fO r OERT
EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

Special Educators gt petorbeadoe

' Mmnor changes have been made to improve
reproduction quality

® Points of view or opinions stated in this docu-

Developed by oo e s
Antonio M. Lopez, Jr., Ph.D.

ED264850

£,

\
1 A . gt fq -

s .
G e i 1

S

x5

- “4 RS e et
)
2 (U‘y%»

L3

o)
PSP
s v B B Jir fun B Sl ek

“PERMISSION TO REPRODUCE THIS
1985 MATERIAL HAS BEEN GRANTED BY

Bulletin 1749 Sa_Ebatb

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."”

Louisiana State Department of Education
Thomas G. Clausen, State Superintendent

Office of Special Educational Services
Irene M. Newby, Assistant Superintendent

P

- -
\ECR 011937

&,

A e Csl . . R -

-\':% toe WA g 73 ;.";;z,- flg 1 - -~ R e J(‘is’ o ¢ A3 r
o - T g Y R LN & I s

‘§’- o P s S o TR Y 5 PR R S e . & me Ty,

FOREWORD

The Computer Literacy Training Modules have been developed under a federal
treining grant to ensure that every effort is made to provide Louisiana's

exceptional students with the educational advantages of the technological

revolution. :

The advent of the microcomputer in the classroom has proven to be a
challenge for educators. The modern technology of the microcomputer has
added many options for instruction and for new instructional materials.
Teachers and administrators are now faced with many decisicns concerning
such crucial areas as long-~range planning, selection and evaluation of
educational software, and curricular development.

We, as educators, will need to identify specific computer literacy skills
that will be useft]l to us as we work toward addressing these concerns for
successful integration and appplication of computer technology to the
instruction and administration of exceptional students. It is our hope that
these training modules will be & valuable tool to special educators.

Sincerely,

»

A .

Lo
vz)./’/z-?)zm A/ Claveer

Thomas G. Clausen, Ph.D.

ACKNOWLEDGMENT

The development of the Computer Literacy Training Modules was supported by
PL 94-142, Handicapped Training Grant, No. G008400622, (Project No.
029HH40009), Part D, from the Office of Placement and Assistance Management,
Office of Special Educational Services and Rehabilitative Services, U.S.
Department of Education. However the opinions expressed herain do not
necessarily reflect the opinion or policy of the U.S. Department of
Education, and no offical endorsement by the U.S. Department of Education
should be infe.red.

b

Computer Literacy Training Modules

Antnnio M. Lopez, Jr., Ph.D., Author
Mathematical Sciences Department

Loyola University
New Orleans, Louisiana

State Depariment of Education Advisory Committee

Mr. Donald E. Butcher, Project Director
Louisiana Learning Resources System

Mr. Steve Vidrine, LANSER Coordinator
Office of Special Educational Services

Dr. Catherine Nelson, Bureau Director
Bureau of Interagency Coordination

Dr. Charlene M. Bishop, Director
Lonisiana Learning Resources System

Ms. Shirley McCandless, Administrative Officer

Management Information Services

State Advisory Committee

Dr. Dan Trimble

Supervisor of Special Education
Madison Parish Schools
Tallulah, LA

Mr. Leo Stanford, Supervisor
Pupil Appraisal Services
Calcasieu Parish Schools
Lake Charles, LA

Dr. Shirley T. Becnel, Principal
Westgate School
Metairie, L/

Ms. Evelyn Sisco, Teacher
Pineville High School
Pineville, 1A

Ms. Sharon Bell

Educational Program Researcher
Orleans Parish Schools

New Orleans, LA

Mr. Warren Figueiredo, Teacher

Louisiana School for the Visually

Impaired
Baton Rouge, LA

Dr. William F. Grady, Professor
Educational Technology
Adminstration and Foundations
Louisiana State University
Baton Rouge, LA

Dr. Dorothy Judd, Assistant Professor
Department of Education

Southeastern Louisiana University
Hammond, LA

Mrs. Patricia Faser
Associate Professor
Computer Science Department
Southern University

Baton Rouge, lA

Mrs. Lou Price, Principal
Northwest State School
Bossier City, LA

Module 1
Module 2
Module 3

Module 4

TABLE OF CONTENTS

Introduction to Computer Literacy and Computer History..........
Introduction to Computer Hardware and Software.........ccoeesee.
Introducticn to Computer Programming with BASIC.......ccceeeenns

Evaluation Application Software.......oceeeeeverccsorescscnscnnscs

(992

‘e o
.

R MODULE |
Introduction to Computer Literacy and Computer History

Objectives

To define computer literacy and discuss the various
interpretations of the definition.

To demonstrate an awareness of the computer's impact on society

by listing:

1. Three devices in the home that contain computers.

2. Five kinds of businesses that use computers and briefly

explaining how each one uses the computer.

3. Three governmentai{ agencies that use computers and briefly .-
explaining how each one uses the computer.

To demonstrate knowledge of the pre-computer era by:

1. Identifying at least three early calculating devices.

2. Associating names with contributions of at least three major
figures.

To demonstrate knowledge of the development of the computer by:
l. Listing the major characteristics of each oi the five
generations of computers.

2. Associating names with contributions of at least three major
figures.

Activities

keep track ¢f information and to control other machines.

2. Discuss the statement, "Local, state, and Federal
governments could not function without computers."

3. State at least one way each of the following government
agencies uses computers: IRS, DOD, NASA, FBI, and USPS.

4. Discuss how computars could be used in education and
medicine.

5. Show pictures of eariy calculating devices and discuss their
impact on society.

5. Demostrate the use of a slide rule.

7. Show pictures of vacuum tubes, transistors, and integrated
circuits and discuss the impact of each technology on the
computer.

8. <Compare and contrast the computer gernerations in physical
sizes of equipment, electrical energy used, calculating speed,
and cost.

9. List the names of the computer manufacturers that you know.
10. List those abilities that you would like future computers
(those beyond the Fifth generation) to have.

|
\
|
l. Give examples of computers used in numerous organizations to

Introduction to Computer Literacy and Computer History

Computer literacy is not a static concept, but a dynamic
one. As technology changes the world in which Yyou live, so does
your level of understanding and appreciation for that technology
change. The purpose of this module is:the establishment of a
foundation for future growth in computer literacy. The Louisiana
Task Force on Computer Literacy in its "Position Paper on
Computer Literacy" (July 1983) defined computer literacy as the
knowledge of the capabilities, limitations, applications, and
implications of computer technology. Furthermore, the Task Force
stated that a computer-literate person is one who understands
what a computer is, who can use it to solve some problems, who
can converse in computer-related terms, and who understands the
impact of the computer on jobs and society. In fall 1984, a
Computer Literacy Curriculum Guide Writing Committee was formed
in response to the decision by the Louisiana State Board of
Elementary and Secondary Education that freshmen entering high
school in 1985-86 must have one-half credit in Computer Literacy
as a graduation requirement. This guide, Bulletin 1739, was
piloted during spring 1985 and revised during summer 1985 for
final publication. Teachers of computer literacy should
familiarize themselves with this guide before proceeding further
with this training module.

Presently, there are two major schools of thought involving
what should or should not be in a computer literacy course. The
"bone of contention” involves the role of programming. At one
extreme there is the group that would not have programming
involved in a computer literacy course at all. While at the
other extreme there is the group that would have programming
playing a major part (50% or more) of the computer literacy
course. Analogies abound but the first group usually uses the
Auto Mechanic Model to explain its position; that is, in order
to drive a car you do not have to be an auto mechanic. Hence,
you are to infer that in order to be computer literate you do
not have to be involved with programming the computer, just able
to use existing programs. The second group usually uses the
English Literacy Model as its analogy; that is, in order to be
literate one must be able to read and write English. Hence, you
are to infer that in order to be computer literate you must be
able to read and write a programming language. The approach that
will be taken in these training modules will be one of
compromise between the two extremes. This is the position that
has been suggested by Bulletin 1739.

A change in technology always has a large impact on
society. Consider, if you will, the social impact of the
Industrial Revolution, the explosion of the Nuclear Bomb, and
the flight of the Space Shuttle. The Computer Revolution is no
different. It began in the late 40's due in part to a change in
technology, using a vacuum tube to store on/off information.
Since that time developments in technology have come about very
quickly. One expert in the computer industry said that if the

auto industry had grown as quickly as the the computer industry

1-2 7

had grown in the last 30 years, a Rol!s Royce would cost $2.50
and get 2 million miles to the gallon of gasoline. You can
probably get a better grasr of the impact of the Computer
Revolution if you can imagine today's world with no computers.
There would be no digital clocks to wake you up in the morning;
no microwave ovens to cook your breakfast; no transportation
capabilities like jet airplanes and rail systems like BART; even
some of our cars would not function because they have
computer-controlled ignition systems. There would be no
telephone system as we know it; getting a check cashed at a bank
would be out of the question, and most of the electrical plants
would have to be closed because they would be too dangerous to
operate. This list goes on and on, and it can make many days of
interesting discussions in any classroom.

All of these facts notwithstanding, you must look for the
roots of the revolution not in the technology but in the goals
that society has set for itself. To quote Benjamin Franklin,
"Necessity is the mother of invention." Since the time of the
ancients, society has been interested in counting things. By
counting how many sheep you had, how many baskets of wheat were
in your barn, and so forth you could determine how wealthy you
were. The abacus is probably the oldest instrument known to have
been used for counting, and there is a path of development in
counting devices that can be traced to the humble beginnings of
the abacus. Western civilization seems to have been more
interested in the development of counting devices that might use
current technology to improve the speed and accuracy of the
computation. Thus came the invention of Napier's Bones as a
mechanical aid to multiplication. This device was the forerunner
of the slide rule which most engineering students used until the
proliferation of the electronic calculator. A forerunner of the
electronic calculator was an adding and subtracting machine that
used gears. This device was invented by Blaise Pascal in 1642
when he was only 18 years oid. He invented it to help his father
count the taxes that were being collected.

Although computers as you know them have been in existence
since the late 1940's, computers existed in the minds of
inventors long before they were actually capable of being built.
In 1822, Charles Babbage is said to have designed a machine that
exhibited the basic components of today's modern computer
systems. This machine was called the Analytical Engine. It was
programmed by using cards that had holes punched in them. The
first programmer of the Analvtical Engine was a woman, Lady Ada
Augusta Lovelace, daughter of Lord Byron, the English poet.
Unfortunately, both Babbage and Lovelace were ahead of their
time. The technology of the day could not suppcrt the
development of the invention.

The next technological advance came in 1890 when Herman
Hollerith, an employee of the U.S. Census Bureau, tackled the
problem of speeding up the tabulation of the census reports.
Hollerith used a card about the size of a doliar bill, and he

defined a methcd of coding that would allow information to be

1-3

8

stored by punching holes in the 80 columns and 12 rows that were
on each card. This code is called Hollerith code. In the 1880
census, counting the population of the United States had taken
seven and one-half years. Using the Hollerith code and a machine
that read and tabulated the information that was on the cards,
the 1890 census was done in two and one-half years.

By 1944, the use of electricity fostered the development of
the machine that Charles Babbage had envisioned more than a
century earlier. The machine was the MARK 1, and it was
developed by a research team at Harvard University led by Howard
Aiken. The MARK I was the first electromechanical computer
because it used electromagnetic relays and mechanical counters
in it operation. It was followed in 1947 by the ENIAC, the first
electronic computer. This computer was developed by a research
team under the direction of J. Presper Eckert and John Mauchly
at the University of Pennsylvania. As time progressed these
machines were improved for commerical use. By 1951, Eckert and
Mauchly had produced and sold the first commer ical computer
called the UNIVAC I. About this time another computer company
called IBM was moving from its tabulating business machines into
the new world of computers.

The computer world is divided into generations. The first
generation is typically between 1942-58, and its machines are
characterized by their vacuum tube technology, the great amounts
of electricity that they needed, the great amounts of heat that
they produced, and the great amounts of area that they occupied.
The second generation went from 1959-63. Its machines were
characterized by their transistor technology. They required less
power, and physical space than the previous generation of
machines and they produced less heat. Furthermore, they were
much more reliable and did not break down as often. The third
generation began in 1963 and ended sometime in the early 1970's.
The change in technology that brought about this generation and
subsequent generation was the integrated circuit. Integrated
circuits were first made with only a few hundred transistors
embedded into a small piece of silicon, but today we have
integrated circuit with over 100,000 transitors embedded into
the same sized piece of silicon. Fourth generation computers
came about because of better integrated circuits that were more
powerful than those found in third generation computers. Four th
generation computers were made between the early 1970's and
about 1980; they are characterized by VLSI circuits (Very Large
Scale Integration). We are living in the Fifth generation of
computer systems. It will take us a while to look back and
decide what will characterize this generation. However, as the
experts see it now, it will most likely be the integration of
the hardware and software elements of the machine in its
original design.

1-4 9

MCDULE 2
Introduction to Computer Hardware and Software

Objectives

To demonstrate a knowledge of computer hardware by:

l. Classifying computers by categories of mainframe,
minicomputer, and microcomputer. .

2. Naming the basic components of a computer -- CPU, Input,
Memory, and Cutput.

3. Explaining the differences between RAM and ROM.

4. Explaining the use of three input and three output devices.
5. Using the computer keyboard.

To demonstrate a knowledge of computer software by:

l. Distinguishing between system software and application

sof tware.

2. ldentifying the categories of educational software.

3. Explaining the difference between lower level programming
languages and higher level programming languages such as BASIC,
COBOL, FORTRAN, and Pascal.

4., ldentifying three kinds of applications software that would
be used in a small business.

Activities

l. Give examples of mainframe, minicomputer, and
microcomputers.

2. Given a diagram of a computer, label the parts as CPU,
Input, Memory, and Output.

3. Classify each item in a list of memory characteristics as
pertaining to either RAM or ROM.

4, Classify a list of devices as either input, output, or
input/output device.

5. Compare the keyboards of different brands of computers.
6. Locate the special function keys, numeric keys, and
alphabetic keys on the keyboard.

7. Boot the computer system available.

8. Distinguish between administrative, computer assisted
‘nstruction, and programming uses of computers in education.
$. Write an output statement in BASIC, COBOL, FORTRAN and
Pascal. '

1. Explain the educational uses of such application software
packages 2s an electronic spreadsheet, database management
system, and a word procescsor.

Introduction to Computer Hardware and Software

A typical definition of a computer is "an electronic
machine that performs rapid, complex computations without much
human intervention." Even with precise meanings for the words
"rapid," "complex," and the "degree" of human intervention, the
notion of what a computer really i35 remains nebulous. You must
look beyond the outside of the machine to understand what a
computer is. There are three categor.es cf computers:
mainframes, minicomputers, and microcomputers. Although what
distinguishes these categories is the cost of the equipment,
fundamentally these machines have the same basic components;
that is, input, output, memory and a central processing unit
(CPU). These basic components are called hardware. Hardware is
any physical component of a computer, either mechanical or
electronic. On a mainfirame computer, there will be card readers,
very fast printers, magnetic tape drives, and much more, but on
a microcomputer there are keyboards, slow printers, and cassette
tape drives. Since microcomputers are the typical computers of
education, you will concentrate on the components of this
machine. In a microcomputer system, the typical hardware that
you can see without physically opening the box consists of a
keyboard, a video display screen, a disk storage system, a
printer, and other special-purpose devices.

Keyboards are said to have "standard typewriter" features,
but the only feature that really is standard is the placement of
the alphabetic letters. The special symbhol keys such as colon,
plus sign, and others are usually in different places on
different keyboards. There are also different "special function"
keys that appear i1n different piaces on the keyboard for
different computers. Examples of these are the escape key (ESC),
the control key (CTRL), the caps lock keys (CAPS), and the clear
screen key (CLEAR). The other point to note is that these keys
sometimes take on different meanings when an application program
is being run on the computer. In addition to these facts, the
keys themselves can be different. Several microcomputers use
"chiclet" keyboards. The keys on this microcomputer look like
pieces of Chiclet Gum, and if someone is a touch typist, this
particular keyboard is very hard to use because the keys are
separated by more distance than those on a normal keyboard.
However, handicapped students that have the problem of striking
too many keys at a time on other keyboards wiil find the chiclet
keyboards easiers to use. Finally, some keyboards have user
definable function keys. These usually appear on the keyboard as
Fl, F2, F3, and so forth. The actual number of special function
keys on a keyboard varies. Again, with d:fferent applications
programs, these special function keys might take on different
meanings.

The videc display screens are just as varied as the
keyboards. You can have white characters on a black background,
you can have black letters on a white background, you can have
yellow or amber l=stters on a black baclground, or you can
control the color of the letters and background ynurself.

2-2

Studies have shown that the green or amber lettering on a black
background are easier on the eyes for those people that use the
video display screen for long periuds of time. The diagonal
sizes of the screens also vary, with 4", 9", 12", and 23"
diagonals being the most common for monitor types of screens.
There are smaller liquid crystal display units on the portable
or hand-held microcomputers. In the older versions of
microcomputers, the number of characters that could fit onto a
line of the screen varied. Some microcomputers displayed 49
characters per line, others displayed 63 characters per line
normally, but you could press a couple of keys and get enlarged
characters at 32 characters per line. Today, most microcomputer
manufacturers have settled on 80 characters per line with 24
lines on a screen. All of these points should be considered very
carefully when selecting a video display screea for the visually
impaired.

A disk storage system is used to keep information that is
not being used by the microcomputer at the present moment.
Floppy disk storage devices are the most common on microcomputer
systems today; however, many people are starting to need and use
the greater storage capacity of the hard disks that may be
installed on most microcomputer systems. Presently, floopy
diskettes, the medium that is used in a floppy disk storage
device, come in sizes of 3 !/«", 5 1/4", and 8". It should be
noted that the storage capacity of the floppy diskette is not at
all proportional to the physical size of the¢ diskettz. When
blank floppy diskettes are purchased they must be initialized
(formatted) on the computer that is going to use them so that
they will be capable of holding information. The initialization
process varies from microcomputer to microcomputer but, in
general, the floppy diskette is organized into concentric
circles called tracks. These tracks are "sliced" like pieces of
pie into areas that are called sectors so that information can
be retrieved via unique disk storage addresses of track ancd
sector. The information that is stored on the floppy diskette is
in magnetic/non-magnetic dots called bits (Blnary digiTS). It
takes 8 bits to represent any key that you might press on the
keyboard. Technically, 8 bits are called a byte but in common
usage it is often called a character. For ease of calculation,
bytes are grouped together in a measurement called K. AK or
kilo is approximately 1000 and exactly 1024. This latter number
has to do with a power of two which represents the bit because
it can be either on or off. Thus, if you say that the capacity
of your floppy diskette is 144K, you are implying that it can
store approximately 144,000 characters, but you know that it
actually stores a little more, 147,456 characters. Again, the
storage capacity of an actual diskette depends on the
microcomputer on which it is to be inicialized; furthermore,
today some microcomputers use both sides of the diskettes
(double sided as opposed to single sided), and they compact the
dots closer together (double density as opposed to single
density). The storage principles behind the hard disk are those
of the floppy disk storage device with the exception that the
hard disk cannot be removed by the user of the microcomputer. As

2-3

12

et o s
H l

a result, hard disks are more precisely tooled for higher
density and faster disk rotational speeds. This all makes for a
larger storage capacity, in fact, millions of bytes or
mega-bytes which are symbolized by MB. Common capacities for
hard disk units on microcomputers are 5MB, 10MB, and 20MB.
Although hard disks can make educational computer systems more
desirable for special educational uses, they are more expensive
and it takes longer to copy the data stored on the hard disk
(because there is so much of it). This activity of making corpies
of your programs and information that you have stored on a disk
storage device is calied making a backup. It is a good idea to
back up both floppy systems and hard disk systems periodically.

Printers can be relatively expensive items. They vary in
the quality of their printing, their speed, and their capacity
for a line of writing. You could spend hours upon hours
discussing the different kinds of printers that can be found in
today's marketplace. Educational printers tend to be dot matrix
printers. These printers are relatively fast and reliable with
heavy usage. The characters that are formed by these printers
are literally formed by dots. In Figu.e 1 that is attached to
this module, you can see an enlarged dot matrix printing at the
top followed by a normal dot matrix printing of the same
information. The visually impaired student might find the former
printing easier to read than the latter one. The third type of
printing is called correspondence quality, and it is compressed
dot matrix. That is, the dots are put so close together that
they do not seem to be dots at all. The final examp!e is that of
letter quality. Letter quality printers tend to be slower than
the dot matrix printers and the size of their characters are
fixed. Larger type fonts are available. One final printer that
should be mentioned is the graphics printer. Graphics printers
are usually dot matrix printers that have & greater capacity for
controlling their printing dots; thus, drawings are easy to
produce. Attached to this module is Figure 2 which was printed
on a graphics printer.

The keyboard is an example of an input device, the video
display screen and the printer are examples of output devices,
and the disk storage devices are examples of input and output
devices. In addition to these common pieces of hardware, there
are a great many different kinds of special purpose devices that
you can have on a microcomputer system. These pieces of hardware
are also characterized as input, output, and both input 2and
output devices. Examples of special purpose input devices are
card reader, light pen, mark sense reader, joystick, mouse,
graphics tablet, voice recognition, and so forth. Examples of
| other special purpose devices that are used for ouput are
| plotters and voice synthesizers. input and output special
| purpose devices are magnetic cassette recorders and modems.

Special needs require special equipment, so a typical
microcomputer configuration in one environment may not be a
typical microcomputer configuration in another environment. The
beauty of microcomputers is that they can be tailored to fit
special needs.

2-4

Q -

~ ERIC 13

Even after noting all of these devices, you are still not
finished with the hardware because for once, what you see is not
all that you really get. If you were to open the micracomputer
and look inside (NOT RECOMMENDED! This might void any warranty.)
then you might be surprised to see that there is a lot of air in
the box. The largest amount of hardware that you would see
inside the box would be the power supply unit. This is the
"heart" of the microcomputer because without electrical power, a
microcomputer is just an expensive paper weight. The "brain® of
the microcomputer is its central processing unit (CPU). The CPU
is a chip of silicon less that a quarter of an inch square. It
contains the equivalent of tens of thousands of discrete
electrical components such as transistors, capacitors,
resistors, and diodes. Also inside the microcomputer, are rows
and rows of memory chips. There are two types: Read Only Memory
(ROM) and Random Access Memory (RAM). ROM is permanent memory,
and it is not lost when the microcomputer loses electrical
power. The information in ROM is fixed by the microcomputer
manufacturer. Usually ROM tells the microcomputer what to do as
soon as it is turned on; however, on smaller microcomputers ROM
also contains the programming language of BASIC. RAM is
temporary memory. It can be erased and altered at will. It
vanishes completely if power is cut off even for a fraction of a
second. The most important thing to remember is that the amount
of RAM determines how large an application program you can have
on your microcomputer. RAM is also measured bty K. Early
microcomputers (circa 1976) had 4K RAM but today the minimum
amount of RAM sold is 64K with upper limits going beyond 512K.

Al though much time and effort has been spent on the
hardware aspect of microcomputers in this module, hardware
without software is just as useless as hardware without
electrical power. Software is the instructions necessary to have
a microcomputer perform a useful task. There are two general
types of software: system software and application software.
System software is of less direct concern to you, except insofar
as it determines what applications software can be run. System
software is often copied into the microcomputer's RAM from a
diskette when the microcomputer is turned on; however, on
smaller microcomputers system software is found in ROM. Examples
of system software are DOS (Disk Operating System) and CP/M
(Control Program for Microcomputer). Each microcomputer
manufacturer has its own system software; for example, some
Tandy computers use LDOS while others use MS-DOS. IBM has PC DOS
and MS-DOS for its microcomputer. Some manufacturers would like
to see system software standardized, but the chances of that
happening at the moment are slim.

Since the purchase of a particular kind of microcomputer
hardware implies the purchase of the system software necessary
to use that hardware, you will naturally be more concerned with
the application software than system software. Application
software is a series of instructions written in a programming
language which performs a useful task such as allowing you to

2-5

14

program the computer in a high level programming language such
as BASIC or allowing you to use the computer as a word processor
to write papers. Presently, the application software that is
being used on microcomputers in an educational environment fall
into three general categories: Administrative Applications,
Computer Assisted Instruction, and Programming Languages.

Administrative software is software that is being adapted
for educational uses mainly from commerically available business
software. Examples of this kind of software are electronic
spreadsheets, database management packages, and word processors.
With electronic spreadsheet, software classroom teachers can
better manage their classes by maintaining gradebooks with
current class averages as well as current individual averages.
With database management software, principals can store and
retrieve information concerning permanent teachers, subsitute
teachers, and job applicants. Furthermore, this software can
help them produce more accurate reports for local, state, and
federal officials. However, without doubt the number one
administrative application software package has to be word
processing. Using a word processor, you can produce
"individualized" school correspondence that is letter perfect
for each student's parents. Articles can be prepared for
publication and so can books. The text for a document appears on
the video display screen as it would appear if it had been typed
with a typewriter; however, before printing the document
misspellings can be corrected, paragraphs moved, word structures
altered, and the entire document repaginated. Once you have used
a word processing software with your microcomputer, you will
throw away your typewriter and with it your white-out.

There are many kinds of computer-assisted instruction (CAI)
software but most educators would agree to classify the
different kinds as Drill and Practice, Tutorial, Testing,
Simulation, and Dialog. Drill and Practice software presents
exercises to the student to reinforce learning gained from
another source--the teacher. The approach is strictly a
supplemental one. The teacher introduces and explains new
concepts and the microcomputer is used to exercise the students
understanding of those concepts by providing exercises. This
kind of software should provide the student with immediate
feedback after the student has answered a question. It should
also keep track of how the student in doing on that particular
lesson so that a score can be presented at the end of the drill.
Tutorial software is similar to the drill and practice software
with the exception that the tutorial software goes beyond just
giving the student the correct answer when an incorrect response
has been made. Tutorial software attempts to explain to the
studert when and how the error was made. Testing software allows
teachers to compose tests for their students. These tests may
then be printed out on a ditto master, or students can take
their "personalized" version on the microcomputer. Basically,
the teacher generates a pool of questions from which the
computer selects a certain number at random. If the test is
printed out, then the answer sheet is also printed. If the test

2-6

15

is taken on the computer then the computer grades the student's
responses. There are a number of good authoring programs on the
market today, but they usually can produce only true/false,
multiple choice, or matching qQuestions. At present there are no
testing programs that will read and evaluate an English paper.
Simulation programs allow microcomputers to imitate real
situations in a physical or social system. In this way, students
may observe how changing different variables will affect the
overall operation of the system. An administrative application
software package that is also a good simulation package is the
electronic spreadsheet. The dialog software allows students to
interact with a microcomputer and discover for themselves the
lesson that is being taught. The student is not drilled,
tutored, or tested. Instead, the computer questions the student
about general items of interest and based upon the student's
response, the computer produces another question that will lead
the student closer to the subject that is to be taught. Dialog
software is very difficult to write, and as a result, there is
not too much of it available for microcomputers. However, the
PLATO system which was originally designed to run on mainframes
has already been moved to minicomputers, and there are projects
under way to move certain topics to microcomputers.

The last kind of educational software to be considered is
programming languages. The lowest level of programming a
computer is machine language programming. In this language it is
important to understand bits, bytes, and hexadecimal coding. The
advantage of machine language programming is that its execution
by the computer is very fast since there is no translat.on
needed; that is, you are programming in the langauage that is
directly understood by the machine that you are using. You
should note that the machine language for a microcomputer that
has a 6502 microprocessor as its CPU is different from the
machine language for a microcomputer that has a 68000
microprocessor as its CPU. One stzp higher in the hierarchy of
programming languages is assembly language programning. Assembly
language varies from machine to machine just like machine
language but instead of programming with bits, bytes, and
hexadecimal codes, assembly language allows you to use
mnemonics; letter codes and labels that represent hexadecimal
codes and memory addresses. For example, in machine language on
a 6809 microprocessor a GOTO a user-defined function at memory
location 0300 would be 7E 0300 and in assembly language this
would be IJMP USRI. The advantage of assembly language coding is
that it is easier for the programmer to remember the mnemonic
JMP for "jump to" instead of the hexadecimal code 7E which does
the same thing. Further removed from machine language are the
high level programming languages. Some examples of these are
BASIC, FORTRAN, COBOL, and Pascal. Each of these languages has
its own colorful history, and the first three are so called
because they are acronyms; BASIC stands for Beginners All
Purpose Symbol Instruction Code; FORTRAN stands for FORmula
TRANslation; and COBOL stands for COmmon Business Oriented
Language. Pascal is a language that was named in honor of Blaise
Pascal. Each of these languages was developed with a special

2-7

16

purpose in mind so it would not be appropriate to say that there
is one best high-level programming language. Furthermore, there
are many more high level programming languages than have been
listed here. In fact, at last count there were well over 70 high
level langauges being used throughout the computer industry
today. As a particular example, you should note the work of
Seymour Papert with his language of LOGO. LOGO was invented at
MIT for the purpose of teaching very small children who could
not even read or write how to use the computer to learn more
about their world. LOGO uses a symbol on the video display
screen called a "turtle" and allows the child to command the
activities of the turtle. By entering the word FORWARD 10 or the
abbreviation FD 10 you cause the turtle to move 10 units
forward. To turn the turtle to the right 45 degrees, the child
enters RIGHT 45 or RT 45. There have been some very successful
stories told about the use of this programming language with
handicapped students.

As a final point in this module, you are asked to look at
Figure 3 which is attached. This figure gives you the different
views of application software. The programmer see the
programming instructions that are necessary for the computer to
preform a useful task for the user. The programmer is also aware
of the support that is necessary from the system software and
the programming language software that is being used. (Your
example is written in BASIC.) On the other hand, the user of the
application software sees only the questions that are being
asked and it is hoped the user will respond correctly to those
questions. After the user has responded, the computer saves the
user a lot of time by calculating, manipulating, and organizing
the necessary facts for a subsequent report. All of this and all
that was covered previously must be understood in order for a
user to properly evaluate an application software package. The
evaluation procedure will be covered latter in Module 4.

2-8

17

i:-’l RTINS P I FEE g T TR O OO O 'S OV S0 OO 08 I L G HN 3
[60 T gl S0 OV T O I AN SEUNLE O NS ST O B of |2 ORI U B
SIETW OV BTl e L™ P & e TG T 4

DR« ANTORTCO M. LOFEZy JR.
MATHEMATICAL. SCTIENCES
LOYOLA UNIVIKRSTITY EOX O3
NEY CRLLANGs LA 70118

InterOffice Memo
To: Marketing Council
Re: Opus Project Budget
From: Leo MacHillan

Here is a summary of the budget “or the Opus Project for the calendar

year. Please note that despite a large increase in expensas in the
third quarter, we still have managed to stay within our proposed budget.
Opus Budget

This demonstrates letter quality printing on a daisy wheel
printer. There are different type fonts for the printer. Each daisy
wheel costs about $25.

Ficore 1

18 BEST COPY AVAILABLE

- . -.‘
Inter dank COTp. Inte. - & Oorp. e

HiRise Construction Co.
$ x 1000 F Hikise Constzuctien Ce.

120 Indstry M.
Jefferson, La. 70144

Dear Bobd,

Vo heve the infermation en the dond package
that you are intarested in using. It looks
1ike it vill meet your requirenents. Enclesed
i3 a copy of the prepesal.

1 hovz alse enclosed & graph of ty funde
aistribution ovar the mext tusive nonthe.

If you heve ary eastions give m & call.

Richard
frnual Budget
Jan Fed na { for
Emp. [12.4] 2.5]22.8
fquip] 3.5 | 3.5} 3.8 - COR O PROKCT
Rent | 6.8 | 6.8 | 6.8
va. |13} 1711.% Loen Dept
Jan'tf .1 Jd1 Q2 Loan Dept
sply | 3] A} ata UQ . :“U:
2714 Finance
SOLUTIONS ol ey
a8 214 | lnspect.
Inter bonk Corp. S=—=—=— Tt 222 | narketing
Rarketing Departaent Johvson | 2723 | 1nspect.
Klein 2726 | naketing
e

Intar Ak Corp. T
“Conloen® Project Staffing

Fiavee 2 BEST COPY AVAILABLE

19

ProgrAMME R View:

1 REM DEFRECIATION FROGRAM
10 CLS{INFUT*WHAT IS THE COST OF YOUR ASSET*:iC
20 INFUT*WHAT IS THE USEFUL LIFE IN YEARS':N
30 INFUT*WHAT IS THE EXFECTED SALVAGE VALUE*;S
10 A= (C-S)/N
S0 I=N
55 CLS:FRINTTAE(20) *DEPRECIATION SCHEDULE® tFRINT®YEAR®ITAE(10)°*STRAIGHT LIt
*iTAE(30)*SUM OF YEARS DIGITS®
60 FOR Y=1 TO N
70 D=(2xIx(C-S))/(NX(N+1))
80 FRINTTAE(2)YS; TAE(13)A: TAE(3S)D
%0 I=I-1
9% NEXT Y
100 END erroNS -
0
m IV
ﬁoGﬁﬂ
User View:
eRED 8Y
GQuesTIONS ARE ASKED BY AnSY
THE PROGRAM. Qucs”““

WHAT IS THE COST OF YOUR ASSET? 10000 ‘(”———-
WHAT IS THE USEFUL LIFE IN YEARS? 10
WHAT IS THE EXFECTED SALVAGE VALUE? 500

VEFRECIATION SCHEDULE

YEAR STRAIGHT LINE SUM DOF YEARS DIGITS
1 950 1727 .27
2 950 1554,55
3 950 1381,.82
4 350 1209.09
5 950 1036.36
6 950 863.636 ;?
7 950 690,909 EPORT
8 950 518,182 ,
9 950 345,455 -
10 950 172,727 Potobace.b &y 7MeE

PRocRAM FoR T™ME USEK

3]

E MANY VIEWS OF éfsglﬁr7f241471215'

FiaurE 3

MODULE 3
Introduction to Computer Programming with BASIC

Objectives

To demonstrate understanding of BASIC progranming by:

l. Using the computer in the Command,- Edit, and Run modes,

2. Entering instructions, erasing, listing, and running
programs,

3. Using arithmetic operators and understanding their hierarchy

of operation, |
4. Undersianding the three basic programming constructs of |
sequence, selection, and looping, .

5. Analyzing a given problem and writing the steps in this

solution so that a computer can execute the solution,

6. Writing simple programs using LET, INPUT, READ, DATA, PRINT, B
GOTO, IF...THEN..., FOR...NEXT, and END.

Activities

Display a string of characters by using the PRINT command.
Identify the line number, BASIC keywords, and variables in a

rogram.
Debug and modify an existing program by adding or deleting

1
2
P
3
lines.

4. Assign values to variables using the LET and INPUT
statements.

5. Replace two or more LET statements with INPUT statements.
6. Design an interactive program using INPUT and PRINT
statements.

7. Write a simple looping program with a FOR...NEXT.

8. Translate a set of problem solution steps to the
corresponding BASIC program statements.

9. Write a selection program using an IF...THEN...

10. Evaluate an arithmetic expression which includes a
combination of two or more arithmetic operations.

1

Introduction to Computer Programming with BASIC Lo

In general, there are three operating modes for a computer:
the Command mode, the Edit mode, and the Run mode. In the
Command mode, the computer responds to instructions as soon as
they are typed in to the computer and the ENTER or RETURN key is
pressed. In the Edit mode, the computer does nct respond to
instructions that are entered but takes those instructions and
places them into RAM for further reference and eventual
execution in the Run mode. Instructions in the Command mode do
not have line numbers, and instructions entered in the Edit mode
have line numbers. The Run mode takes those instructions in RAM
and executes them starting with the lowest line number that was
entered regardless of when it was entered. .-

Example l: Enter each of the following into the computer:
PRINT 5 + 19
PRINT "DISPLAY THIS NOW!"

The arithmetic operators that can be used in computers are
+ for addition, - for subtration, * for multipilcation, and /
for division. The order of operation is multiplication and
division first, moving from left o right and then adZition and
subtraction also moving from left to right. Parentheses may be
used to alter this order because whatever is enclosed i~
parentheses is calculated first. Besices the arithmetic
operators, computers have a number of "built-in" functions much
like our present day calculators. These include the
trigonometric, the logarithmic, and the square root functions,
as well as many more.

Example 2: Enter each of the following into the computer:
PRINT SIN(0)
PRINT ABS(5 - 30)
PRINT RND(.5)

The Command mode has three instructions that are used in
conjunction with activities that are being done in the other two
modes. The conmand NEW is used before typing in a program into
RAM to erase any old program that might be in RAM. The command
LIST is used to display the program that is in RAM at the time.
The command RUN causes the computer to do whatever the program
that is in RAM at the time tells it tc do.

The Edit mode can be simply illustrated by typing a line
number and one of the statements in the previous examples. Once
that has been done nothing will happen that you can see. The
instruction that you typed into the computer has been placed

3-2

22

into RAM for iater execution when you type the word RUN (which
gets the computer into the Run mode) and press the ENTER key.

Example 3: Enter and RUN the following:

10 PRINT "A RANDOM NUMBER BETWEEN 0 AND 1 IS"
20 PRINT RND(.5)

As long as we have single step "thoughts" that we warnt
accomp:ished by the computer, the programm.ng effort is not very
complicated. However, the depth of human thought is far from a
single step. As a result we need to connect single step thoughts
together to form more complicated procedures that a computer can
follow. We can do this graphically with the understanding that
with each graphic symbol there is associated at least one
computer instruction. Throughout this module we will use a
graphic method to demonstrate the "flow" of a program. This
method is called flowcharting, and the symbols that we will use
are as follows:

Flowchart symbo! BASIC statement(s)

LET

PRINT
INPUT
READ

IF L) THEN L

FOR ... NEXT ...

’

These blocks are connected by directional arrows called flow
arrows.

In programming there are three basic constructs --
sequential, selection, anc looping. In a sequential program,
when a RUN command is issued the computer begins executing
program instructions found in RAM from the lowest numbered line
in ascending order. In BASIC, a variety of instructions can be
used tc implement a sequential construct.

3-3

23

Example ¢: Enter and RUN the following:

10 LET A = 2
20 LET B = 6 .

30 LETC = A+ B

40 PRINT "THE SUM OF "; A;" AND "; B;" IS "; C
50 END

Example 5: Enter and RUN the following:

10 INPUT "ENTER A NUMBER ";A

20 INPUT "ENTER ANOTHER NUMBER " ;B

30 LETC = A +B

40 PRINT "THE SUM OF "; A;"™ AND "; B;" IS "; C
50 END

Example 6: Enter and RUN the following:

10 READ A,B
20 DATA 2, 6

30 LETC = A + B

40 PRINT 'THE SUM OF "; A;" AND "; B;" IS "; C
50 END

The flowcharts to each of these programs look very familiar.

Example & Example 5 Example 6
INPUT READ
A=2 A A,B

¥

vl @
Eg 6~
D/

C=A+B

sA+B PRINT

C

PRINT
/") :
= >

The selection ttructure represents a branch point at which
the course of execution depends upon some specific condition,
The selection structure always has two exits--a TRUE branch and

3-4

24

a FALSE branch. In BASIC, the selection construct is implemented
by the IF ... THEN ... instruction.

Example 7: Enter and RUN the following:

10 READ A$

20 DATA ELEPHANT

30 PRINT "1 AM THINKING OF AN ANIMAL."
40 INPUT "WHAT ANIMAL 1S IT";B$

50 IF A$ = B$ THEN GOTO 80

60 PRINT B$;"??? NO, THAT'S NOT IT!"

70 END

80 PRINT "YES, THAT'S IT. LUCKY GUESS!"
90 GOTO 70

The flowchart for this program is

mse” |

BRANCH

The idea of repeating a certain set of instructions is
called a loop. It is an idea that is central to computer
programming and is probably the single most important concept
invovled in understanding programs. Each loop structure has a
counter that counts how many times what is in the loop is to be
performed. What is in the loop structure is called the body of
the ioop. Any statement or structure may appear in the body of a
loop. In BASIC, the looping construct is implemented by the FOR
... NEXT set of instructions.

3-5

25

Example 8: Enter and RUN the following:

10 FOR N =1 TO 10
20 PRINT N

30 NEXT N

40 £ND

Example 9: Enter and RUN the following:

10 INPUT "ENTER A POSITIVE NUMBER LESS THAN 2060";M
20 PRINT "THE SUM OF THE NUMBERS FROM ! TO ";M

30 LET S =0

40 FOR N =1 TOM
50 LET S = S + N
60 NEXT N

70 PRINT "IS ";S
80 END

'n orde: to do something substantial with the instructions
that we have learned, we must be able to write programs that
will perform some meaningful task; that is, we must be able to
solve a particular problem.

PROBLEM-SOLVING PROCEDURFE:

Step 1. Get a clear understanding of the problem.

Al though this is probably the most obvious step in problem
solving, it is the one that gives the greatest amount of
difficulty. All computer problems are word problems, so you must
clearly determine the givens and what is to be found. In
computer terminology, this is called INPUT and OUTPUT
respectively.

Step 2. Select a method of solution.

There may be several ways of getting from INPUT to OUTPUT,
in which case you must now selecxy the method that you would like
to employ. On the other hand, there may be only one way oi
getting from INPUT to OUTPUT, so you may not have any
alternative. Finally, there may be no method known to yonu on how
to get from INPUT to OUTPUT, so you must realize that the
computer cannot help you since it can only do what you tell it
to do. There are a variety of names given to this particular
problem-solving step; some are PROCESSING, PSEUDOCODE,
STRUCTUKED ENGLISH, ALGORITHM, and so forth.

Step 3. Draw a picture of your solution.

Actually, you want to refine the structure of your solution
presented in Step 2, so you draw a "road map" to follow i1n a
step-by-step journey from INPUT to OUTPUT. Successful completion
of this c¢tep guarantees that you have solved the problem irn such
a fashion that the solution can be implemented on a computer.
There are several ways of drawing pictures of your st'ution. One
such way is a FLOWCHART. A FLOWCHART is helpful when a problem

3-6

26

is relatively small and you just want to document your
progression from one instruction to the next. Large "real world"
problems make FLOWCHARTS impractical except maybe to explain
some intricate point of the solution. In such cases, you might
use a HIERARCHY CHART, a DESIGN DIAGRAM, or a DATA FLOW DIAGRAM.
Since the problems that you will be solving are relatively
small, you will be trained on FLCMCHARTS.

Step 4. Convert the picture into a computer language.

This step is better know as PROGRAMMING or CODING. A
program is a picture that has been translated into a particular
programming language. It may surprise you at this point, but the
hard part of the programming process is the development-of the
picture. You will be converting your FLOMCHART into the
programming language of BASIC. Once you have learned the
"vocabulary" and the "grammatical rules" of BASIC (an easy task
compared with learning a human foreign language), the
translation of the picture is quite straightforward. It is very
important that you separate the two stages of this procedure,
and not try to translate into BASIC until you know exactly-what
it is that has to be done, that is, Steps I, 2, and 3. A common
mistake for beginners, which makes writing larger "real world"
programs more difficult than it has to be, is to try to skip
Steps 1, 2, and 3 and go to Step 4 immediately.

Step 5. Run the program on the computer and check the answer.

Two kinds of errors can occur when running a computer
program: syntax errors and logic errors. Syntax errors are the
easiest to handle since the computer itself will indicate that
something is wrong with a particular line of the program. Syntax
errors occur because you have violated the vocabulary or the
grammatical rules of the particular language that you are using.
Logic errors are usually more difficult to find. You know that
you have a logic error when the answer that the computer gives
you is not the answer that you expected. This is somewhat like
asking the computer to sum 2 and 3 and having the computer say
that it is 6. Something went wrong in the program. In running
any computer program, you must make up some TEST DATA that you
will provide as INPUT to the program. This TEST DATA should be
chosen because you know the OQUTPUT for it so if the computer
does not give you the OUTPUT that you expected, then you have a
logic error in your program. If you have a logic error in your
program, you may have to reconsider your progression from Step 1
to Step 4 in this problem-solving procedure. Either you made a
mistake in one of these steps or your TEST DATA is invalid. The
process of eliminating syntax or logic errors from your program
is called DEBUGGING. DEBUGGING is really an art, and the more
you do it the better you become at it.

Example 10: Write a BASIC program that will accept from the user
a price of an item and a discount rate, calculate and display

the amount of discount and the amount paid for the item.
Solution:

3-7

27

o
E‘;’.m

Step 1. INPUT: Price of the item (P)
Discount rate (D)

OUTPUT: Amount of discount (S)
Amount paid (C)

Step 2.
Upon request the user will enter the price of the item (P).

Upon request the user will enter the rate of discount (D) as a
decimal value; in other words, a 50% discount will be entered as
..

The amount of discount (S) is calculated by taking the product
of the price of the item (P) and the rate of discount (D). This
is, S=P*D.

The amount paid for the item (C) is calculated by taking the
amount of discount (S) and subtracting it from the price of the
item (P). This is, C=P-S.

Display the amount of discount (S).

Display the amount paid (C).

End the program.

INPUT
["7)
$=Psd

_

¢<p-S

P %'r‘
R!
Y

END

Step 4.

10 INPUT "ENTER THE PRICE OF THE ITEM ";P
20 INPUT "ENTER THE RATE OF DISCOUNT AS A DECIMAL NUMBER ";D
30 LET S = P * D

3-8

28

40 LET C =P - §

50 PRINT "THE AMOUNT OF DISCOUNT IS ";S e
60 PRINT "THE AMOUNT PAID IS ";C

70 END

Step 5.

As INPUT use 100 for the price and .25 for the rate of discount.
Consequently, you would expect the amount of discount to be 25
and the amount paid to be 75.

Example ll: Write a BASIC program to simulate a flip of a coin.
Solution:

Step 1. INPUT: None from the user.
OUTPUT: A statement that it was a head or a tail.

Step 2.
Invoke the built-in function to get a random number between 0
and 1.

If this number is less than .5, call it a head; otherwise, call
it a tail.

End the program.

Step 3.

N=RND(S)

END
Step &.

10 LET N = RND(.5)

20 IF N < .5 THEN GOTO 50
30 PRINT "IT WAS A TAIL."
40 END

50 PRINT "IT WAS A HEAD."
60 GOTO 40

Step 5. Run this program several times so that you can see that
both heads and tails are being produced.

3-9

29

Example 12: Modify the BASIC program in the nrevious example so
that it simulates the flip of the coin 10 times.
Solution:

Step 1.

INPUT: None from the user.

OUTPUT: Ten statements, one for each flip, indicating the
outcome.

Step 2. .
Introduce into the previous example a loop that counts the 10
times that this simulation of a flip is going to occur.

Step 3.
Step 4.
10 FORC =1 TO 10
20 LET N = RND(.)5)

30 IF N < .5 THEN GOTO 60
40 PRINT "IT WAS A TAIL."
50 GOTO 70

60 PRINT "IT WAS A HEAD."
70 NEXT C

80 END

There are, of course, more difficult programs, and these
basic constructs are used to make more complicated structures.
This training module has been designed to introduce you to the
wor Id of BASIC programming and not to make you BASIC
programmers.

3-10

30

wemendal
Bataar=d

MODULE &
Evaluating Application Software

Objectives

To demonstrate an ability to assess the need for a particular
application software package.

To demonstrate an understanding of application software
requirements.

To demostrate an awareness of ethical and legal problems caused
by copying application software packages.

To demonstrate an ability to evaluate the appropriateness of a
particular software package for a particular group of students
in a particular environment.

Activities

l. Given a popular application software package, explain its
purpose and possible uses.
2. List sources from wh . ch application software can be
obtained.
3. After examining an application software package, rate the
following:

(a) readability of screen format

(b) number of keystrokes for control functions

(c) readability of report formats
k. For a particular application software package, state the
requirements for:

(a) additional interface cards

(b) video screen size

(c) printer type and size

(d) system software

(e) main memory

(f) disk storage

(g) other peripheral devices
3. List at least two sources of public domain software.
6. List reasons for copyright laws and explain how these laws
affect application software.
7. Examine an educational software package and determine its
appropriateness for a particulsr grade and subject.

4-1

31

Evaluating Application Software

There is a big difference between buying software for
today's mainframes and today's microcomputers. You can liken
buying software for a mainframe to buying a house, while buying
software for a microcomputer is more like buying a car. The
clear difference is cost, but there is also the important
difference of access and distribution. Furthermore, mainframe
purchases have life expectancies of 10 years, while
microcomputer software might last a year or two at best before
the next generation is available. For example, in 1982 VISICALC
was the leading electronic spreadsheet program, but by 1983
LOTUS 1-2-3 had taken over the lead. These differences
notwithstanding, evaluative procedures for application ftware
have been around for a long time and so have the problems. Many
years ago a cartoon appeared in a magazine concerning the
design, development, and implementation of application software
for the large computer mainframes of the period. The cartoon is
worth resurrecting because it provides a charming and humorous
insight as to why it is so difficult to get the right software.
This cartoon classic is called "The Swing," and it appears as
Figure | in this module.

Believe it or not problems with software are pretty much
the same now as they were 20 years ago except now more people
are being exposed to the software problems and, of course, are
forming their own opinions as to the usefulness of the software.
Software evaluation involves three fundamental considerations:
Hardware, Software, and People.

In the evaluative process, the hardware consideration is
rather straightforward. You either have the microcomputer
configuration that will run the software package or you do not.
This is probably the single most frustrating aspect of software
evaluation because schools are usually being limited to the type
of hardware that can be purchased. Somehow it always seems as if
the software package that you saw and liked at an inservice
workshop that you attended does not work on the microcomputer
that you have in your school. This situation is very common. If
you were to list the top 10 educational software packages by
virtue of sales alone, you would see that four different
microcomputers systems would be required to assure you of the
hardware capability of running them all. Some software
manufacturers have realized this problem and are providing
particular versions of educational software packages for each of
the four leading microcomputer manufacturers. However,
supporting multiple versions of educational software for a
variety of hardware is a costly venture for the smaller software
manufacturers, and the profits from the educational software
sometimes do not justify the effort. Consequently, a very nice
reading package that runs on the IBM PC might not have a version
that runs on the APPLE Ile. It is also important to understand
that even though the floppy diskettes for two different brands

4-2

'y

of microcomputers may be the same physical size, the information
on a diskette for one microcomputer is formatted differently
from that of the other. For example, a floppy diskette that
operates on the TRS-80 Model % will not operate on the Commodore
64 even though they are both 5 1/4" floppy diskettes.

Software considerations for an application package are the
system software under which the application package will operate
and the programming language in which the application is
written. If a disk system is required to use the application,
does the application require the support of the hardware
manufacturer's system software or does it use an operating
system that is available for that hardware but from a different
manufacturer? For example, the TRS-80 Model % uses LDOS as its
operating system but you can buy CP/M for this microcomputer
from an independent software manufacturer. Purchasing an
educational application for the TRS-80 Model & does not
guarantee that the program will operate under LDOS. It may
require CP/M in order to operate. This can get even more
complicated with microcomputers like the IBM PC which can use PC
DOS, MS-DOS, CP/M and more. The programming language of the
application is also important because this language might have
to be invoked before the application can be run. Those
applications written in machine !anguage or assembly language
are usually automatically executed by their system software.
However, there are several educational packages that require one
to get into BASIC before the application can be run.

In considering both the hardware and the software issue in
educational software evaluation, the main problem arises when
either the advertising is not specific enough to allow the
purchaser to determine whether or not the application package
will operate properly on his microcomputer system, or the
purchaser does not understand the information that is being made
available in the advertising. This last issue serves as an
introduction to the people consideration in software evaluation.
There are many old adages that apply here about people, but it
will probably be most helpful if you remember just two: "If all
else fails, READ THE INSTRUCTIONS." and "You can please all of
the people some of the time, and some of the people all of the
time, but you can't please all of the people all of the time."
Software manuafacturers realize this last point all too well
because they actually target their software to provide an "80
percent solution." To complicate matters, there are about five
different sources for educational software, and each has a
different purpose for producirg its software. The sources for
educational software are Hardware Manufacturers, Textbook
Publishers, Educational User Groups, Independent Software
Houses, and Classroom Teachers. Thus, it is a foregone
conclusion that all teachers will not evaluate educational
software packages in the same manner, so the only way for
software manufacturers to produce a successful educational
product is to provide a package that does MOST of what ALL the

4-3

33

teachers would want it to do.

Educational software evaluation dees not have a long
history nor does it have a proven record of quality control. In
the March 1981 issue of The Mathematics Teacher (publication of
The National Council of Teachers of Mathematics -- NCTM), the
headline on the editorial page read, "Software Reviews Are
Coming." The first such review appeared in the next issue, but
it was not until October 1981 that a steady stream of software
reviews began appearing in each subsequent issue. During that
same period, the National Science Foundation funded a project
for the dissemination of sottware evaluations by the Northwest
Regional Educational Laboratory. This project was called
MicroSIFT. Both NCTM and MicroSIFT have published evaluator's
guides for educational software evaluation. The NCTM guidelines
are meant to assist teachers in conducting their own
evaluations. The MicroSIFT guidelines are much more formal and
rely on experts in the particular fields.

In general, there are three basic stages in an evaluation:
the classification stage, the descriptions stage, and the
observation stage. In the classification stage, you look at the
software package to determine the nature of the educational use
(administrative, CAl, or programming). Furthermore, if it is
CAI, then you must determine what type of CAl it is (drill and
practice, tutorial, etc.). Finally in this stage, you must
assure yoursel: tnat the educational package operates correctly
without any problems on the appropriate microccmputer system and
that the manufacturer has given sufficent documentation for this
proper operation. In the description stage, you identify the
factual information necessary for someone to use this software.
You identify the manufacturer's name and address, a HOT-line
telephone number if available, the grade level of the software
(i.e., this is appropriate for visually impaired children in
third grade), the appropriateness of the subject matter, the
mode of instruction (i.e., drill and practice, tutorial, etc.),
the required hardware configfuration, the required system
software, the instructional objectives, and any prerequistes
that might be necessary. In the observation stage, the software
should be used by someone in the intended audience (i.e. a
visually impaired child in the third grade) and observational
notes taken. A checklist for each of the different types of CAI
is given as Figure 2. However, general characteristics that you
should be aware of are as follows: (1) User interfaces require
little effort (few keystrokes or simple screen navigation); (2)
User does not have to memorize commands, functions, or processes
(You do not want the student to have to refer to the manual
continually in order to use a drill and practice software
package); (3) The software is not frustrating to use because it
is too slow or dull; (4) The software prevents the user from
accidental problems, that is, deletions, quick exits, and other
functions that may erase data or files (Any deletions or exits
from the program should be double checked by the software before

44 -

34 .

<

the function is executed.).

Finally, you should realize the pedagogical problems of
evaluating educational software by asking yourself certain
questions. Is the computer useful in the educational process
which this software attempts to teach? Is the software
intrinsically fun to use so that the students will want to use
it over and over again? Does the :>ftware enable the users to
practice what they are learning? Does it allow for variation and
experimentation so that learning becomes internalized? Can you
or a student modify the software? Would you purchase this
software for your own children?

4-5

The. SL.UH\C\

k~L_x;iyf Luk\f
—
N VETAS
I. As PRoPosED BY THE 2. As speciFied 10 THE
ProsecT Stronsor ProseeT RequesT

_\K)v \J

——mmt sl I
/0 AN
3. As vesianed vy Tie . As Provuce BY THE
Senior. ANALysT Procrammers
M
G———— -i -~
/218
5. As (sTaLed AT e 6. WHaT THE USER
UsER's sITE WANTED
FlQOfC 1
~
36

-
L e
o - Ci o e e eemten e ermen s et et wie = mma v = e o e e a e e e e e e J .

Evaluating CAI Software

Drill and Practice:
1. Identifies prerequisite skills or required knowledge through
pretesting.

2. Reinforces skills previously taught.

3. Varies exercises by generating data randomly so as to avoid
user boredom or memorization.

4. Branches to easier or more difficult tasks based upon the
user's responses.

5. Provides explanation of process being drilled and provides
correct answers for incorrect user responses.

Tutorials

1. Bears full task of instruction, incorporating user responses.
2. Presents initial, basic instruction to teach & skill,
concept, or process.

3. Assumes that the user has little or no prior instruction in
the subject matter being taught.

4, Presents information, directions, and processes in clear,
sequential steps.

Testing:

1. Allows for the collection, storage, retrieval, and report of
student test scores and class records.

2. Provides randomly generated tests from a pool of test
questions and with each test provides the answer key.

3. 1f the testing is done on the computer, the software should
also provide monitoring of the time for each student's response,
diagnoses of the student's responses and progress, and suggested
follow-up instruction.

Simulation:

1. Replicates the vital aspect of a real situation.

2. Provides for sufficient user involvement to make experience
meaningful.

3. Requires the user to do problem solving and decision making
by sugpgesting "what if" possibilities.

4. Presents activities too difficult, dangerous, expensive, or
inconvenient for users to experience firsthand.

Dialog:

1. Provides for problem-solving experience which goes beyond
either simple or typical word problem application.

2. Requires the user to apply accepted principles to determine
responses.

3. Provides the user an opportunity to create or analyze
variations of the problem based upon input from the user.

4. Includes an explanation or graphic illustration of the
resultant situation from the responses made in the solving of
the problem.

5. Develops an appreciation and understanding of algorithms.

F:aurez

37

»

