
DOCUMENT RESUME

ED 264 718 FL 015 372

AUTHOR Paillet, Jean-Pierre
TITLE Computers in the Teaching of Linguistics.
PUB DATE 84
NOTE llp.; In: Carleton Papers in Applied Language

Studies, Volume I (FL 015 370).
PUB TYPE Viewpoints (120) -- Reports - Descriptive (141)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Advanced Courses; Classroom Techniques; Computer

Assisted Instruction; *Divergent Thinking; Higher
Education; Information Processing; Interviews;
*Language Processing; *Linguistics; *Programing
Languages; Research Methodology

IDENTIFIERS Carleton University ON; *LOGO Programing Language

ABSTRACT
In an interview, a professor of linguistics at

Carleton University (Ontario) discusses his use of computers and the
programing language LOGO in a fourth-year linguistics course. LOGO
was chosen because of its similarity to natural language and its
method of structuring data. The first use was in an experimental
linguistics seminar, in which the computer was used to expose
students to a way of thinking relevant to language and to its use as
a tool for conducting linguistics experiments. The computer use was
found to be successful in promoting interactive learning and
divergent thinking, and in getting across several basic concepts to
be used in later courses. Use of computers and of LOGO in education
in general is supported because of their ability to promote divergent
rather than convergent thinking, and development of a game grammar
with even more flexibility than LOGO is seen as a next step. (MSE)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

4

US. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
lolt This document has been reproduced as

received from the person or organization
originating it.

Minor changes have been made to improve
reproduction quality.

Points of view or opintt.,s stated in this docu-
ment do not necessarily represent official NIE
position or policy.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

&Th

TO THETHE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

co Computers
1-1 in the

Teaching of Linguistics
An Interview with

Jean-Pierre PailletLir

Q.

Department of Linguistics
Carleton University

11

Professor Paillett, for the past couple of years now
you've been using the computer in fourth year courses
in Linguistics at Carleton University. Do you want
to talk a little bit about how you were using the com-
puter in these courses?

J-P. P. Yes. I started working with LOGO by myself and be-
coming acquainted with the basic principles of it,
and so on. Over the summer of '82 I decided it was
time to do something a little bit more practical. So
I arranged to use the Experimental Linguistics sem-
inar to acquaint students with LOGO. The point of
the course was not to teach them how to program,
however, but rather, first to expose them to a way
of thinking which I thought was relevant to think-
ing about language and second, to expose them to
an instrument which could be useful in doing exper-
imental linguistics. The difficulty in talking about
this is always the same, mainly that with regards

2

12

to language Lo Go or any other kind of language is
both the instrument for doing experiments and the
model of the object. That is, the structure of LOGO

in many ways is the same as the structure of natural
languages. At the same time one can use LOGO in a

very efficient fashion for doing experiments on syn-
tax and semantics. So, in the first term that I used
it, the emphasis was on getting students to practice

a certain way of thinking, what one might call proce-
dural thinking, as opposed to other kinds of thinking

which we don't have names for. This is inspired by

Seymour Papert, and the common reference for all
that is Mindstorms in which he introduces the idea
that people develop skills and aptitudes according to

what their environment gives them models for. And

if their environment doesn't offer many opportuni-

ties to become aware of procedural thinking, then

you may very well have procedural thinking but you
don't have mastery of it because you never have re-

flexive consciousness of it. And so essentially the
idea of LoGo is to provide an environment in which

you have to have reflexive consciousness of procedu-

ral thinking, in order to practice it in a conscious

manner and get mastery of it. And naturally in or-
der to understand how language works one has to

have mastery of procedural thinking. So that was

the point of the course.

Q. You keep refering to Loco specifically. How does

LOGO differ from other computer languages?

J-P. P. Ah, a good question. Loco is a cousin of LISP. LISP

was the first successful list processing language. Be-

tween these and other languages there is a fundamen-

tal difference in structureand naturally in imple-

mentation, because the structure determines imple-
mentationand in the relationship of the program-

3

13

ming language to the object it works on. In most
programming languages, the programs are objects of
a totally different nature from what they work on.
For instance, if you use FORTRAN or BASIC you have
commands that operate on numbers or that oper-
ate on strings or other objects. And the commands
themselves are not numbers or strings, or whatever;
they are a different kind.of object. In LISP or LOGO,
the representation of the commands is of the same
form as the objects they operate on, namely lists.
So this introduces a uniformity into the whole way
of thinking. One thinks of the data structures, i.e.
the objects being operated on, and the control struc-
tures, i.e. the programs, in the same way. One can
actually have data structures and control structures
interacting in homogenous fashion. One of the con-
sequences of that is that the language is not preset.
In BASIC or FORTRAN you have a number of basic
units which are the available commands and all you
can do is string them together in various ways and
that's all there is to it. In LISP or LOGO or other
list-processing languages, the way you define an op-
eration is by giving a list of sub-operations; each of
them is called a procedure. And each sub-operation
is itself a list of sub-operations, and so on. The re-
sult is the list structure. Now the things you work
on also are list structures, so that you think of the
two in the same way. Now, I don't know where to
go further with that.

Except to ask why that is a particular advantage
in terms of what you were working withnatural
language. What's the particular advantage?

J-P. P. Ah good. One fundamental property of language
is that it has what you might call a layered struc-
ture. If you do an immediate constituent analysis,

4

14

you recognize at a sort of coarse level of analysis
that a sentence is made up of a noun phrase and
a verb phrase, or a subject and a verb, or some-
thing like that, whatever terms you use. And then
when you look at the inner structure of each of these
components of immediate constituents, you find that
they're organized in the same way, and so on. That
is, the organization of any level you choose is of the
same nature. Now a list is an ideal represeutation
for immediate constituent structure. And naturally
each of the elements of a list itself is a list, and so
on, so that there is a direct correspondence between
list structure and immediate constituent analysis, for
instance. But further than that, when you describe
an operation as a list of sub-:operations, some of the
sub-operations may have exactly the same structure
as the whole thing. This is what we call recursivity.
Now recursivity is one of the fundamental properties
of natural language. From a formal point of view,
you can only observe it. From the point of view of
asking yourself questions about why language is the
way it is, you might wonder, why is language recur-
sive, what function does that serve? Now when you
study a list-processing language, you can figure out
exactly what function recursion serves in the list-
processing language. And then you can report back
the results of your inquiry. This sort of thing is right
on the surface of LOGO or LISP. It can be implemented
in other languages, but it is an artificial thing that
you introduce, and therefore you have to think of it.
With LISP or LOGO it is something that is presented
to you directly and that you can use with it.

To get back to the course, what is your overall assess-
ment at this particular point of the course? What
do you think that the students were able to get in

5

15

terms of their understanding of language that they
would not have been able to get otherwise?

J-P. P. There's nothing that you need the computer to get.
So in that sense, the answer to your question is
"nothing special". But one of the primary differences
is that students had to act, were involved directly,
and could gauge the results of their own actions. It
is, you might say, an interactive type of learning,
instead of an absorptive type of learning. Now this
depends very much on the attitude and the initiative
of the students. In the first term of last year, fall of
'82, I had an extremely active group of students, and
they jumped on it and they made it their own. In the
fall of this year I haven't had the same kind of suc-
cess in the sense that the students were not as ready
to make the thing their own as they were in the year
before. Within the limitation that this brought, I
think that I would put across a number of basic con-
cepts, recursion is one, but there are others which
are more technical in nature, such as the concept of

register, the notion of a unit, and things like that,
which I can now refer to in the second term, when
I'm doing experimental linguistics, and use directly
talking about language using terms which are inher-
ited from computer science. I inform them, say, that
linguistics and computer science are the same thing,
that the difference is one of method of approach and
not one subject matter. And so I want to import
into linguistics all the acquisitions of computer sci-
ence.

Q. You're obviously very interested in the whole issue
of the computer and education. What are your feel-
ings about the way it's being utilized right now as
opposed to its potential?

J-P. P. Well, I can't speak specifically, first because I don't

6

16

believe I'm very competent and second because it
might not be polite; however, on the whole, the
computer is being used mainly to take up the tasks
that teachers are bored with, and if the teachers
are bored with them, imagine the students. So in
a way the computer is being used to reinforce the
poorest aspects of instruction. The promise and
the difficulty with computer education is that the
sorts of things the computer could support are very
subversive. Further, it is probable that the stu-
dents who would be faced with those things would
be much more competent at them right away than
the teacher. So there are social implications and sta-
tus implications and things like that which are very
difficult to deal with.

Q. How about the potential subversiveness of the com-
puter in education?

J-P. P. Well, I would rather refer you to Seymour Papert
and the various things he said in a nice and polite,
and very suggestive, way. Here is my little contri-
bution. It is the word "education" itself which has
been subverted, because most of the things called
education are not education, but indoctrination. I
understand the etymology of "education" to be 'to
draw out'; however, the task given to most teach-
ers is not to draw out, but to pound in! And most
education is this practice. So the thing with com-
puter education is that you can use the computer to
pound in more stuff, or you can leave it open-ended.
I believe the buzz-word is divergent vs. convergent
instruction. I've never been able to do anything but
divergent learning myself, so I find it very difficult to
imagine someone really learning in a convergent fash-
ion. And that's the thing. Even with LOGO, which
is only the first bit, the first demonstration of what

7

17

computer education could be likeeven with LOGO,
which is very limited and so on --one cannot grasp
the implications within two weeks of introducing it
to students. They go all over the place. And this
requires a totally different approach and attitude on
the part of the teacher, because you can no longer
be the one who has the authority, the one who gives
the assignments, or anything like that. The teacher
can be only a resource person, and, a as resource
person, has to be very humble, because within a few
days of mastering the rudiments of LOGO, a student
can come up with questions that the teacher doesn't
have answers to. I think in that sense it's very sub-
versive because it will either be totally suppressed
or it will demand of teachers a totally different atti-
tude to their job, and it will accustom the students
from the very beginning to expect totally different
things from the teachernot authority, not know-
it-all, but openness and ability and willingness to
take on something new, and a complete dissolving
of subject-matter boundaries. Something that you
learn in your mathematics class may become rele-
vant to geography and things like that.

Q. Would you say that there is a major difference be-
tween LOGO and other languages in that LOGO en-
courages this kind of divergence as opposed to other
languages?

J-P. P. Yes. Certainly. In BASIC, to mention the reigning
model, you have a repertoire of commands which is
given to you and that is all you can do. That is ex-
actly the same thing as having those eight subjects-
6 periods a day, 8 subjectsand that's the way it
is. It's pigeon-holed to begin with. In LOGO, there's
no such thing. BASIC defines the type of data that
can be operated on before you start. LOGO has only

18

one type of datathat is listsand you decide what
your lists are going to represent. This is one of the
first things my students had to learn last year and I
noticed it was a bit baffling to them. I would write on
the board something and I would say: "Well, look,
this is a tree. Now, what's a tree?" and it took quite
a while for it to dawn on them that a tree was a cer-
tain kind of list. And now "this is a table," and it
took them just as much time to find out that a table
was another kind of list and once they got the hang
of it after two or three puzzling trials, then they saw
everything as lists. The only thing that remained
was how best, how most efficiently to represent some-
thing by a list and then everything was theirs and
they could do what they wanted. I remember a par-
ticular case with one of my students ... I had told
them "you must come up with your own projects, be-
cause I don't want to force you to do things. I want
you to know what you want to do." And this stu-
dent came up and said, "I want to program a Hang-
man game"; so I said "fine, let's go and do it." It
was 2:30 in the afternoon. We finished it past mid-
night, but we'd gone through all different sorts of
projects, all represented as lists, all compatible with
each other, and a bunch of procedures connected to-
;ether in the appropriate way that would transport
the information, and the game was actually a Hang-
man game. It would take a wordyou had to put in
some vocabularyand it would give you the usual
choice and the usual information and keep track of
how you were doing. If you won, it responded to you
in the appropriate fashion, challenged you to another
game, and then if you lost, it gave you the appro-
priate scathing remarks. And that took ten hours
from scratch, from knowing nothing about how to go

19

about it ... And LOGO is actually only the beginning.
I've been using LOGO because that's what's available,
but I see all sorts of "game grammars" as an exten-
sion of LOGO. The way LOGO is organized is that, at
any point it keeps track of how deep it has gotten
itself from the starting point. The main fundamen-
tal property of LOGO is that it is self-recursive, so
than at any particular point, if you give an instruc-
tion which names a particular procedure, it stops
everything, keeps track of where it was and pretends
that the only thing that exists in the world is that
particular procedure. When it's finished, it erases
all the information that's relevant only to the inside
of the procedure, and returns whatever result was
required. So that at any given moment, the LOGO
system knows only one thing and that is what it is
doing now. "Game grammars" work the same way.
This is called procedural organization, and anything
which can be implemented in an augmented trans-
mission network, or extended finite state automaton,
can be implemented in that fashion. This illustrates
one important principle in computer science, intro-

duced a few years ago. It's called the principle of
information hidingthat is, information should be
available only where it is necessary. Otherwise you
get things tangled up and mixed up. This is another
thing that BASIC doesn't do. Basic has the informa-
tion all over the place, and it's available everywhere.
So that BASIC programs can become extremely tan-
gled. Pascal was the first language introduced which
forced information hiding. It forces it at the expense
of flexibility. Whereas lists for LOGO make it a natu-
ral thing and do not do it at the expense of flexibility.
So the implementation of a game grammar will have
the same principle at the core, and very often when

10

20

I am working with my students, I have flashes of
what it would be like if I had a game grammar of
a more general type than just LOGO. And that's the
direction I want to go in. I could do the same thing
in a more flexible fashion, if I had something more
general than LOGO, and my thinking on the subject
has been the result of the convergence of what I was
thinking about grammars of 'anguages and my prac-
tice with LOGO.

