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COMPETENCE FOR SOLVING AND UNDERSTANDING PROBLEMS

James G. Greeno and Walter Johnson

University of Pittsburgh

Pittsburgh, Pennsylvania

U.S.A.

The authors discuss the relation of knowledge for solving problems to understanding of
general principles In a subject-matter domain. Theoretical representations, called

"conceptual competence," are presented to represent principles that we believe are
understood implicitly by individuals. Implications for problem-solving procedures can be
derived from these principles. In a task for which process models have been developed, we
relate the process models to the formulations of general principles that are reflected in the
process.

An important development in the study of problem solving has been the analysis of processes and

knowledge that are specific to a r rbject-matter domain. Detailed models, with supporting data, have

been developed for solving problems in basic physics (Larkin, McDermott, Simon, & Simon, 1980),

high-school geometry (Anderson, 1983, Greeno, 1978), and elementary arithmetic word problems

(Briars & Larkin, 1984, Kintsch & Greeno, 1985, Riley, Greeno, & Heller, 1983) as well as procedures

for calculation (Brown & Burton, 1978, Resnick, 1983). These models contrast with earlier analyses

of problem solving, especially by Newell and Simon, which characterized general problem-solving

methods, applied in situations where the problem solver has a minimum of experience or training.

The more recent studies of domain-specific problem solving have direct relevance to the psychology

of education. A student's learning is often tested by presenting problems to the student. Models of

the knowledge required for solving the problems, then, provide hypotheses about the knowledgl. that

students acquire in order to succeed in the instruction they are given in courses. The processes and

knowledge structures included in models of successful problem solving can be considered as objectives

for instruction, in that they show a set of specific cognitive structures and procedures that can be the

targets of instruction.
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Indeed, models of problem solving In school subjects already are providing a basis for new

instructional methods and materials. The development of a process model -- especially If It is In the

form of a computer pro& amoften requires forming explicit hypotheses about some aspects of

knowledge that usually remain tacit. Then, with those more specific Ideas about knowledge that

students should acquire, new instruction can be designed that focuses on the specific processes and

structures that have been identified in the model.

These theoretical developments have provided clearer ideas about strategic knowledge, problem

representation, and structural understanding, and they are significant advances in the psychology of

problem solving and instruction. However, 3n important problem is not reached by these advances

The problem is the relation of knowledge for solving problems to understanding of general principles

in the subject- matter domain. The ability to solve problems or answer questions is fine, as far as it

goes, but in almost all cases, we care more about understanding at a level that is conceptually deeper

than the specific problems and questions that we use In learning exercises and texts We are primarily

concerned with whether students come to understand general concepts and principles

The models of problem solving that have been constructed do not include representation of general

principles of the domain. In the remainder of this paper, we describe a theoretical project In which we

ars exploring a way of characterizing understanding of general principles and its relation to knowledge

used in solving problems.

We are working on theoretical representations that are called conceptual competence We want to

represent principles that we believe are understood Implicitly by Individuals By Implicit understanding

we mean that the principles play a significant functional role in individuals' knowledge for problem

solving, although individuals do not necessarily know how to state the principles or explain their

significance. The principles are the basis for judging that procedures are correct. Principles include

constraints on correct procedures as well as justifications for procedural components Individuals can

learn to perform correctly without understanding the underlying principles of correctness, but there

are many cases in which there is evidence that individuals also have understanding For example, in

the domain of counting, Gelman and Meck (1983) have found that preschool children can distinguish

between c t and incorrect counting done by a puppet, even when the puppet uses nonstandard

correct pros.. lures, and Gelman and Gallistel (1978) found that preschool children can generate

modified counting procedures in response to special constraints. Such performance provides strong



evidence that children's knowledge is not restricted to 'mechanical" cognitive procedures, but that

they also know what makes the procedures correct--although this understanding is implicit.

In our analyses, we formulate the general principles of a domain in a way that allows us to derive

their implications for procedures.

PRINCIPLES
(cardinality, order

1-to-1 correspondence)
in the form of ACTION SCHEMATA

HEURISTIC RULES
for planning

(SACERDOTI)

goal: procedures
"how many?" for counting

Figure 1: Components of a Competence Analysis

1

For example, in an analysis of counting, principles of cardinality, order, and one-to-one

correspondence were formulated as schemata for actions, and a logic of planning was used to derive

procedures of counting. The analysis shows how the procedures are c3nstramed and justified by the

principles.

The kind of theory used in these analyses Is like the theory that Chomsky (1965) developed to

represent implicit understanding of syntactic rules. Following Chomsky, we refer to our hypothesis as

a form of competence. There are some important distinctions between our analysis and Chomskys,

which are discussed after presenting some of our results.

In the remainder of this paper, we consider a specific task, solution of word problems in elementary

arithmetic. Some examples of the task are:
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(1) Jay had eight books, then he lost three of them, now how many or them does he
have?

(2) Four boys and nine girls are on the playground, how many boys and girls are there
altogether?

(3) Kay has six apples and she has four oranges, how many more apples than oranges
does she have?

Solution of problems like these inciudes understanding the text and performing a calculation.

Models of these processes have been developed by several investigators, and the models differ in J

theoretically interesting way.

In one class of models (KIntsch & Greeno, 1985, Riley, Greeno, & Heller, 1983), processes of

language understanding construct quite complete representations, and the problem solutions are

obtained with very simple knowledge of operators. In another class of models (Briars & La:kin, 1984),

the representations formed from understanding the language are much less detailed, and the problem-

solving operators include more zopt.isticated knowledge to distinguish the different problem situations

that occur. We refer to the first class or models as being, schema based, and the second class as

being propositional, because the representations formed in the second class consist of quite simple

propositions.

START CHANGE RESULT

CID ala
SPECIF.

VSPECIF.

CM
QUANT. SPECIF. OBJECTS QUANT. OBJECTS OBJECTS QUANT

3LESS

ACTIONS: COUNT AND PLACE EIGHT BLOCKS (START)
COUNT AND TAKE AWAY THREE (CHANGE)
COUNT BLOCKS THAT REMAIN (RESULT)

BOOKS

Figure 2: Schema-Based Representation of Problem (1)
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For example, to solve problem (1) the schema-based model constructs a representation that is

shown in Figure 2, as a semantic network. This is constructed using a schema in the model that

represents changes in quantities--events that either increase or decrease the amount of some single

quantity, such as Jay's books. The model uses 3 subschema that represents sets in a standard way,

with the kind of objects in the set, a specification, and the quantity of the set. It also uses standard

structures to represent relations among sets, in this case, one set is the start set, one Is the cnange,

and one is the result. The schema-based model uses different schemata for representing different

kinds of relational structures. It has a schema of subset-set relations for representing combinations

such as problem (2), and a schema of set differences for representing comparisons such as problem

(3).

With a schematized representation such as Figure 2 shows, the solution of the problem can be

obtained either with knowledge of arithmetic or by counting operations. The models that have been

implemented simulate solutions by counting. For problem (1), the model counts a set of eight blocks,

then takes three away from the set, and finds the answer by counting the blocks that remain.

PROPOSITIONAL MODEL:

"Had eight books" Count and place eight blocks

"Lost three of them" Count and take away three blocks

Now how many" Count blocks that remain

Figure 3: Solution of the Propositional Model to Problem (1)

The propositional model does not form a schematized representation of the problem, but only forms

propositions corresponding to the text. These do not include symbols that refer to the sets of books,

or to any relations among the sets. The propositions include cues that cause the model to perform

actions. For example, "had eight books" triggers a procedure that counts eight blocks and puts them

in a special place, "Lost three of them" causes the model to count three of the blocks in the special

place and take them away. "Now how many" causes the model to count the blocks that are in the

special place.



The difference betwen the models is not very significant on simple problems like problem (1). The

difference is more interesting for more difficult problems.

(4) Jay had some books, then he lost three of them, now he has five of them left, how
many books did Jay have In the beginning?

1 he schema-based model constructs a representation with three sets, like the one shown before,

except that the quantity of the start set is unknown, and the change and result sets have known

quantities. When Vie starting quantity is unknown, the schema-based model constructs a new set of

relations involving sets and subsets.

START

SET CHANGE

CHANGE RESULT

SET 2

QUANT. JAY QUANT.
.-

( SET 3 )/ 1 \
BOOKS ) QUANT.

\...

ACTIONS COUNT AND PLACE: S BLOCKS (SUBSET)

COUNT AND PLACE 3 BLOCKS (SUBSET)

COUNT ALL TUE BLOCKS (SUPERSET)

Figure 4: Schema-Based RepremtatIon of Problem (4)
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In this case, the start set is the superset and the change and result are subsets. The final

representation is shown in figure 4. The model finds the answer by counting out objects to form the

two subsets and then counts the total number of objects.

PROPOSITIONAL MODEL. (work backward)

"Now he has five"

*He lost threes

Count and place five blocks

Count and place three more blocks
(opposite of take-away)

*How many in the beginning" Count all the blocks

Figura 5: Solution of the Propositional Model to Problem (4)

The solution to problem (4) by the propositional model uses knowledge about relations between

operations The model includes knowledge that taking things away and putting things somewhere are

opposites, and that to find a state that was present before an action, you can perform the opposite

of the action that was performed. With this relatively complex knowledge about actions, the model

uses now he has five of them" to count out five blocks, then uses "then he lost three of them' to

count out three more blocks (the opposite of the action specified in the proposition), and finds the

answer by counting all the blocks.

These two models provide an interesting example of the tradeoff between complexity of information

and complexity of procedures. The schema-based model constructs representations with more

complex information, and needs less complex procedures to solve the problems. The propositional

model has less information In ;ts representations, and therefore requires more complex knowledge of

procedures to obtain solutions.

We now return to the concept of competence, The two process models of word problem solving

illustrate the point made earlier that process models provide important information about performance

but lack representations of the understanding of general principles. We believe that the important

mathematical principles involved in word problems are the principles of set theory, principles of

cardinality, subsets, complementary sets, unions, disjoint sets, and set differences. Performance of

the models is consistent with the principles, but there is no explicit representation in the models of

the principles or how the principles relate to the representations and procedures.
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Cardinality (number implies a set)

Subset, complementary sets

Union, disjoints

Set difference

Flgurs 6: Principles in Word Problems

In our analyses, we postulate competence of two kinds--linguistic competence and operational

competence. Linguistic competence is uaderstanding of principles related to forming representations.

Operational competence is understanding of principles related to the actions that are performed to

solve the problem.

Problem Problem Actions to

Text Representation
---0...

Solve Problem

Figure 7: Components of Problem Solving Process

Figure 1 shows the main components of the problem-solving process. The three components here

are the parts that are included in the process models, where problem texts are given as input, problem

representations are constructed, and then problem-solving operators are used to find the solutions

LINGUISTIC COMPETENCE OPERATIONAL COMPETENCE

(CONCEPTUAL)
WORD MEANINGS

(PROCEDURAL)
COMPOSITION

RULES
(MONTAGUE)

PROBLEM
TEXT

(CONCEPTUAL)
SCHEMATA FOR ACTIONS

PROBLEM
REPRESENTATION

(PROCEDURAL)
PLANNING

HEURISTICS
(SACERDOTI)

ACTIONS TO
SOLVE PROBLEMS

Figure 8: Components of Competence Analysis of Word Problem Solving

The additional components in Figure 8 correspond to the competence analysis.
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As we said earlier, in the analysts of compet'ence general principles are formulated in a way tnat

allows their use in deriving properties of process models. The analysis requires at least two

components. tne principles and a system, for the derivations. We refer to our formulation of the

principles as conceptual competence and the derivational system as procedural competence.

In linguistic competence, the principles of set, theory are included in knowledge of word meanings.

We use the formal system of Montague grammar which provides a way to express word meanings and

a set of rules for the composition of the meanings of words into meanings of phrases and sentences.

I hese rules provide the system for deriving expressions based on the conceptual competence of word

meanings.

In operational competence, principles that relate sets to procedures are represented as schemata for

actions. These are general structures that incorporate relations between actions and conditions in

wa,s than ,:c,rrespond to general principles of counting and relations between sets and numbers.

Derivations of procedures are obtained by using planning heuristics, which satisfy goals that are taken

from the representations and plan a set of actions that satisfy the goals (Sacerdotl, 1977).

LINGUISTIC COMPETENCE

Stronger form Weaker form

Numerals imply existence of sets; e.g.

"Jay has eight books" "Jay has eight books"

3(X)18(X) A Yx(xEX book(x)) A Vx(xEX has(Jay,x))) has (Jay, 8 (books))

"of" means subset, e.g.:

"He lost three of them"
r3y13(y) A subset,(Y,X) A VY(YEY=lose(JaY.3))J)

"More" means complement

"Altogether" means union

"More than," less than'
means difference

"He lost three of them"
lost (Jay, 3 (of
(8 (books))))

Figure 9: Two Forms of Linguistic Competence
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We have formulated two versions of competence, corresponding to the two kinds of process models

that have been deve!oped. In one version, knowledge of set-theoretic principles is included in the

linguistic competence A principle of cardinality is expressed in the meanings of numerals. The

expression for the meaning of a numeral includes an existential quantifier. The thing that exists Is a

set, so that a term such as "eight" means that there is a set with cardinality 8. Principles of subset,

complementary set, union, and so on, are also expressed in word meanings. For example, a subset

relation is understood as the meaning of "of," so that "three of them" means that a set with

cardinality 3) is a subset of some previously mentioned set. A complement relation is understood as

the meaning of "more" in a sentence such as "he found five more books." A union relation is

understood as the meaning of "altogether," and a relation of set difference is understood as the

meaning of "more than" and "less than." These assumptions of competence lead to representations

like those of the schema-based process models that we described earlier.

In the other version of competence, meanings of numerals and other terms do not include set-

theoretic properties and relations. For example, the meaning of a numeral is a kind of adjectival

modifier that applies to the kind of thing that is mentioned, so for example, "eight books" is

syntactically similar to "red books" (although of course their semantics are quite different). The

representations that are derived are propositionally coherent but do not include the set-theoretic

meanings of the terms.

OPERATIONAL COMPETENCE

Linguistics is Linguistics is
Stronger: Weaker:

Basic concepts of counting Additional concepts
and number are different

reversibility,
inclusion

are needed for interpretation.

Figure 10: Two Foims of Operational Competence

We have also formulated two versions of operational competence, corresponding to the two versions

of linguistic competence Recall that operational competence represents principles as schemata for
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actions, so that planning can be applied to obtain procedures. When linguistic competence is Strong,

operational competence can be quite simple. Only basic concepts of numbers and counting are

needed, because the information about goals and sets of objects is already in the representations.

When linguistic competence is weak, a more complex version of operational competence is needed.

1 he representations do not specifically refer to sets and their relations, so additional procedures must

be produced to interpret the representations before counting can be performed. These additional

procedures of interpretation requ,re concepts such as the reversibility of actions, and inverse relations

of inclusion and containment, familiar from the classic studies of Piaget.

The two analyses that we are developing could be considered as competing hypotheses about

competence in the domain of quantitative language and problem solving. We do not view them that

way. Instead, it seems reasonable to expect that the system with weaker linguistic competence

represents understanding by young children, and as they develop and learn, they acquire components

of the stronger linguistic competence. Indeed, there is evidence that supports this view. We have

used the method introduced by Markman (1979) to investigate children's understanding of sets.

Markman showed that when situations are described using class terms (e.g., "trees" or "soldiers"),

children perform less well in quantitative tasks than when descriptions include collection terms (e.g.,

"forest" or "army"). We interpret this as indicating that collection terms invite representations that

include references to sets, which assist the children in arriving at correct conclusions. We have

studied performance with word problems, varying the wording so that in one version there are only

class terms, but in another version collection terms are used as well. In our preliminary data, this

variable has a facilitating effect on performance of 6-year-old children, but not for 7- or 8-year-old

children. A reasonable conjecture is that understanding of the number-set relation is still problematic

for the younger children, but not for the older ones, whose difficulties are caused by other factors of

competence.

Discussion

The problem raised initially is the relation between cognitive processes and understanding of general

principles. The question can be put. "What do process models tell us about what students (or other

people) really understand?"

We have described the beginning of an attempt to answer that question. We have analyzed a task
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for which process models have been developed, and we have found ways to relate those process

models to formulations of general principles that are reflected in the processes.

We mentioned earlier that our analysis follows that of Chomsky in the domain of language syntax.

Like Chomsky, we have characterized implicit understanding, which he called competence, in a way

that allows the derivation of specific performance. In Chomsky's system, the derivations produce

sentences of a language that are consistent with its grammar. In our system, one set of derivations

produce representations with meanings that are consistent with settheoretic principles, the other

de ivations produce procedures that are settheoretically correct. We are hopeful that this kind of

analysis will provide a valuable new dimension in the analysis of problem solving. The initial results

seem promising.
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