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ROBUSTNESS OF REGRESSION ESTIMATES FOR

ORDPERED DICHOTOMOUS VARIABLES

ABSTRACT

The purposé of this paper is to examine the validity of regression
estimates when skewed dichotomous scales are used as independent
varie;bles. When Pearson product-moment correlations are used to
measure zero-order associations involving dichotomous variables, the
resulting coefficients underestimate the true .associations. As a result,
using product-moment correlations involving dichotomous variables in
regression equations apparently yields biased partial regression
estimates. The analysis reported here was based on fifty sets of
simulated data with 500 cases and four independent variables in each set.
We found that tetrachoric and polyserial correlations for associations
involving dichotomized variables yield more accurate estimates of the
regression coefficients based on the under*lyinﬁ continuous data than did

product-moment correlations for the same dichotomous variables.




ROBUSTNESS OF REGRESSION ESTIMATES FOR

ORDERED DICHOTOMOUS VARIABLES

One of the most frequently used measures of association is the
product-moment correlation coefficient. Not only are correlation
coefficients used by themselves as bivariate measures of association, they
are frequently used In matrix form as input into mulfivariate an'alyses
such as .fac;tor analysis or multiple regression. While no assumptions are
required for the computation of a product-moment correlation, the
interpretation of the resulting coefficient certainly depends on whether
or not the data fit an appropriate statistical model (Carroll, 1961). In
particular, the product-moment correlation measures a linear relationship
between two continuous variables. When a product-moment correlation is
used to estimate the degree of association between two categorical
variables with underlying continuities, the possible range of values for a
product-moment correlation may not be from -1.0 to +1.0, but is
dependent on the marginal distributions. The true association between
two categorical variables will be underestimated with a product-moment
correlation (Carroll, 1961: Ferguson, 1941; Muthen, 1983a, 1983b;
Pearson, 1900, 19()‘4, 1913).

Muthen (1983a) vividly illustrated the underestimation of the
association between two categorical variables when estimated with
product-moment correlations. Muthen began his illustration with two
continuous variables whose true correlation was .50. He then
categorized the same data into two, three. four, and five categories with

varying degrees of skewness. Such variables are those one would
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encounter, for example, if one used an agree-disagree questionnaire
format or a Likert scale to measure some underlying continuous

attitudinal scale.  For two dichotomous variables with zerro skewness

(i.e., a 50/50 split) Muthen showed that the product-moment correlation

was .33, and»decreased to a mere .10 when a variable split 90/10 was
correlated with a variable split 10/90. Thus, the degrees of association
among all categorical variables are underestimated with product-moment
correlations, but the 'greatest underestimation occurs with highly skewed
dichotomous variables‘.

Associatioﬁ‘s“among categorical variables are more appropriately
measured by tetrachoric or polychoric correlations (Carroll, 1961: Muthen
1983a, 1983b; Pearson, 1913; Pearson and Pearson, 1922). Such
correlations are estimates of population correlations among latent,
continlous response variables (Brown and Benedetti, 1977; Muthen,
1983b),. and are calculated with reference to threshold values estimated
from the marginal distributions. The use of these correlations may be
thought of as robustifying the correlations against categorization and
skewness, or "stretching” the correlations to assume values between -1.0
and *1.0 (Muthen, 1983b5.

A related instance of an underestimation of association otcurs when
product-moment correlations are used to measure the degree.of
association between continuous and ordered categorical variables. Such
associations are more appropriately measured with polyserial correlations
(Jaspen, 1946; Olsson, Drasgow, and Dorans, 1982; Pearson, 1913). As
before, the degree of underestimation is greatest when one of the

variables is a dichotomy and both variables are highly skewed.
a
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For a long time it hkas been known that p‘roduct’—moment correlations
underestimate associations among ordered categorical data. When
product-moment correlations are used to measure associations among such
data, énd then used in matrix form as input into multivariate analyses
such as factor analysis or multiple regression, the consequences are less
clear. Muthen (1983a) and Olsson (1979) have demonstrated in factor
analytic models that the use of tetrachoric in place of product-moment
correlations produced ﬂrnor‘e satisfactory solutions. Using pr‘oduct-momen‘t
correlations and standard estimation procedures in such situations
resulted in downwardly biased estimates of the factor loadings of the
categorical variables, and also frequently resulted in a gr‘eate.r‘ number of
factors.

The question immediately arises whether multiple regression
est{mates will also be affected by the choice of zero-order measures of
association for ordered categorical variables. Consider, for example,‘ an
equation with two independent variables, in which the depgndent variable
and the first independent variable are measured on continuous scales,
while the second independent variable is a skewed dichotomous scale with
a 70/30 split. Furthermore, consider that the population correlations
among all three variables are .50, .50, and .50. The resulting
stand.ar‘dized regression equation would be:

Yoo .33,\'] * .33,\(2.

If product-moment correlations had been used to measure the zero-order
associations for all three variables, the resulting correlation coefficients

would have been .50, .38, and .38, respectively (Muthen, 1983a), and

oL
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~ the resulting standardized regression equation would be:

Y o= .42)(1 22X

9
Using product-moment correlation coefficients would thus underestimate
the true .influence of the dichotomous variable (Xz) on the dependent
variable. Furthermore, the regression coefficieht for the continuous
independent variable (X1) w0u»|d OVeresti.rnate its true effect, since the
est.imated correlation between the two independent variables is less than
the true level of their association.

While appropriate estimation procedures for measuring associations
involving dichotomous (or other ordered polychotomous) independent
variables have been known for some time, the complexity of the
calculations involved has prevented their use in practice. New
developments, however, now make their calculation relatively easy
(Joreskog and Sorbom, 1983; Muthen, 1982). Even so, such associations
are still often measured with product-moment correlation coefficients.
Such zero-order correlations, however, are known to be biased, and
apparently yield biased partial regression estimates. Accordingly, the
purpdse of this paper is to examine the robustness of regression

estimates when skewed dichotomous variables are included among the

independent regressors.
METHQDS

There are, of course, a wide variety of models that could have
been estimated in this study. Here we chose only one. The model used

here contained four independent variables. Two of the variables
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(X1 and X2) may be considered, say, social background variables
measured on continuous scales, and only weakly or modestly related to
the dependent variable, "which is often the case in reality. The other
two var‘iables: (X3 and X4) are more strongly related to the
dependent yaria_ble and to each other.

The assessinent of the robustness of regression coefﬁcienfs
estimated from product—momenf correlation coefficients for dichotomous
variables was based on the analysis of fifty sets of simulated data. Fach
of these sets contained 500 cases with data for five standard normal
variables. The averages of the productm@m&g{ correlations among these

A
3

. . i .
continuous variables are shown in Table 1.

Using the continuous variables, the regression equation was
estimated with each of the fifty sets of data. For each independent
variable, the fifty estimated regression coefficients were then averaged.
The averages for the continuous-data regression coefficients represent
the most accurate estimates of the influence of the‘“four‘ independent
variables on the dependent variable. Accordingly’? these averages were
the standard against which subsequent estimates were compared in order
to determine the effect of categorization and correlation type on |
regression estimates.

After estimating the regression equations with continuous data, two

independent variables (X3 and X4) wetre dichotomized in three
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different patterné: both were split 50/50, both were split 80/20, and the
first one was split 80/20 while the second was split 20/80. The zero-
order associations among these variables, for each of the various methods
of dichotomizing the variables, were first estimated with product-moment
correlations and the regression equations estimated with SPSS>< (SPSS,
Inc., 1983)}. The zero-order associations were then re-estimated with a
mixed matrix of product-moment, tetrachoric, and polyserial correlatfons,
as appropriate, using LISREL-VI| (Joreskog and Sor‘gom, 1983), and the
regression equations estimated with SPSSX. (Note that g.enerati»ng the
data as standard normal variables guarantees that subsequent
dichotomization and the use of tetrachoric and polyserial correlations

i

meets the assumption that continuous distributions underlie the
dichotomized variables.) |
! To determine the robustness of the regression estimates, the fifty
sets of regression estimates were averaged for each of the six methods
used to estimate the regression equations containing the dichoto?nized
variables (i.e., 50/50 with product-moment and with mixed correlations;
80/20 with product-moment and with mixed correlations; and 80/20 -
20/80 with product-moment and with mixed correlations). Comparisons of
these averages to the average regression coefficients based on the
continuous data allow us to determine the impa‘ct of dichotomization on
the assessment of the influence of the independent variables on the
dependent variable. Those averages closely appr'oximating their

corresponding regression coefficients based on the continuous data were

considered robust estimates. Accurate average estimates, however, are
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of little value if they exhibit large variability. Accordingly, the
variances of the estimates were also computed, and are reported below.
We hypothesized that using tetrachoric and polyserial correlations
for associations involving dichotomous variables would yield more accurate
estimates of the regression effects than would product-moment

correlations for the samegvariables. Furthermore, we hypothesized that

the greater the degree pf skewness among the independent variables, the

greater would be the tfias among regression estimates based on product-

moment correlations.,

RESULTS

N

lAn the regression results reported below there arei four
independent variables. Two of them (X] and X2) were generated as
continuous standard normal variables, and were used as such in all of
the regression runs. Two others (XB and X4) were generated as
continuous standard normal var‘iabies,; but subsequently were split into
dichotomies as discussed above.

Table 2 shows the results of these regressions. The first row of
regression coefficients in Table 2 contains the average of the fifty
estimations of the regression equation when all four variables were
entered as continuous data. These coefficients, therefore, are the
standards against which all other results should be compatred. The next
thrree rows of regression coefficients are the averages of the fifty
estimations of the regression equation for the variou‘s splits; the input

correlation matrix consisted entirely of product-moment correlations. The

¢
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last three rows of regression coefficients in Table 2 are the averages for
the various splits; in these cases the input correlation matrix consisted
of a mixture of product-moment, tetrachoric, and polyserial correlations,

as appropriate.

Examination of the coefficients shown ih Table 2 clearly indicates
that thé use of tetrachoric and.polyserial correlations for dichotomized
variables provide better average estimates of the effects of the
independent variables than did the use of product-moment correlations.
The average regression coefficient for >(1 when all four independent
variables were continuous was -.085. For each degree of skewness, the
average regf‘ession coefficients for X] using tetrachoric and polyserial
correlations were very close to -.085; none of the coefficients based on
product—mqment correlations was as close. The explanation is not
complicated. Both Y, the dependent vafiabie, and X] were measured
as continuous variables; their average zero-order association, however,
was small (.067). But X] was also correlated with the other
independent variables, and when these other variables were controlled
theqpar‘tial effect of X] became negative. With product-moment
correlations, however, the zero-order associations between X] and the
two dicnhotomized ‘var‘labiles (XB and X4) were underestimated; thus,
the influence of X] on Y was an attenuated estimate. These

correlations, for both the product-moment and the mixed matrices, can

11
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be found in Tables 3, 4, and 5, respectively, for the three different

splits.

The same conclusiohs can be seen to apply also to the regression
coefficients for XZ‘ Tl'we' use of tetra;choric and ‘polyserial correlations
led to regression estir'nates much closer to the regression coefficient
based on continuous data than did the use of product-moment
correlations. Once again, the prod\ucbmoment correlations underestimate
the associations between- X2 and ,"\'3, and between X2 and X4;
thus, the partial ef%ect of X2 on Y was overestimated.

In contrast, the use of product-moment correlations led to an
underestimation of the partial effect of >(3 on Y. In this case, X3
was a dichotomized variable, and the use of a product-moment correlation
underestimated its zero-order association with the dependent variable.

Of course, the associations among X3 and the other independent
variabies were also unde>restimated with product-moment correlations; but
correcting these underestimated associations (particularly with X] and
Xz) by using polyserial and tetrachoric correlations had only a modest-.
influence on the estimated partial effect of X3 on Y in comparison with
correcting the estimated association between X3 and Y itself.

Finally, examination of the regression coefficients for X4 shown

in Table 2 indicates no systematic bias,in the use of 'product-moment

versus polyserial and tetrachoric correlations. In this case, the use of

12
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product-moment correlfations not only underestimated the association
between X4 and Y, but also underestimated the rather substantial
correlations between X4 and the other indePendent variab!es.
Consequently, using product-moment correlations to control for X],
,\'2, and X3 in measuring the partial influence of X4 on Y removed

less of an effdct than the statistical control should have, -but removed it

from an attenuated estimate of the association between X, and Y. In

4
contrast, using polyserial and tetrachoric correlations removed more of
an effect of ,\'4 on Y, but removed it from a disattenuated estimate of
the zero-order association?between ‘<4 and Y.

In su‘mmar‘y, the estimated partial regression coefficients for
continuous independent variables were more accurately estimated on the
average by using a mixed matrix of tetrachoric, polyserial, and product-
moment correlations when some of the variables were dichotomized than
by using product-moment correlations alone, which underestimated zero-
order associations involving categorical variables.

We also hypothesized that the greater the degree of skewness
among the independent variables, the greater would be the bias among
the estimates based on product-moment correlations. This hypothesis
seems to be false. An examination of the average coefficients within
correlation type in Table 2 shows that they differ only slightly.
Furthermore, it appears that the average coefficiants for degree of split
could have varied by chance alone. To test this, a series of two"wéy

analyses of variance were performed for each set of regression

coefficients. While significant differences (witfi‘a = .01) were found

13
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X~’]r >/21

X4), no significant differences were found among the three degrees of

between correlation-matrix type for and X3 (but not for

skewness for any of the four independent variables.
CONCLUSIONS

While it has long been known that Pearson produkct—moment
correlations underestimate zero-order associations involving ordered
categorical variables, effects on muitivariate partial estimates have only
recently been investigated. Muthen (1983a) and Olsson (1979) con_cluded
that the factor loadings in factor analyses involving dichotomized
variables were better estimated with tetrachoric than with product-
moment correlations.

This paper investigated the effects on partial regression
coefficients of using an input matrix of product-moment correlations
versus a mixed matrix of tetrachoric, polyserial, and product-moment
correlations. We concluded that the average of fifty replications using
simulated data with a mixed matrix provided more accurate estimates of:
the regression coefficients based on continuous data than were the
estimates generated from the input of a matrix of product-moment
correlations. N

This does not mean, however, thai the use of tetrachoric and
polyserial correlations is cost free. In the first pléce, it is possible for
a mixed matrix of tetrachoric, polychoric, polyserial, and product-moment
correlations not to be positive definite (Joreskog and Sorbom, 1983,

p. IV.6). Thus, there would be no regression solution.

14
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Even when the problem of positive definiteness does not develop
(and never occurred in the 350 ‘replicated regressions reported here)
other costs develop. |In particular, the variance of the estimates
computed from tetrachoric and polyserial correlations were_ greater in
value than the estimates generated from product-moment correlations.
This is shown in Table 6, where one can see that'ever‘y standard
deviation for the fifty coefficients for product-moment correlations was

less than the corresponding standard deviation for the coefficients using

tetrachoric and polyserial correlations.

Thus, one must balance the costs and benefits of using as input
into regression analyses product-moment versus tetrachoric and polyserial
correlations for ordered dichotomous variables. The conservative choice
is to use product-moment correlations, recognizing that the true effects
may be underestimated. The use of tetrachoric and polyserial
correlations on the average produce more accurate regression parameter
estimates, but the greater variability of the estimates can, for a single
case, result in estimates far from the true parameter. Knowing this, it
would be advisable to cross validate one's results when using these

correlations.

15
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Table 1. Average Product-Moment Correlations
among Five Standard Normal Continuous Variables

’ Y X, X, X3 X
Y ———
X, .067 -
X, 204 344 ——
X3 .547 .128 .120 -——
X, . 479 .261 .323 .553 -

15




Table 2.

Correlation Type/
Split

Pearson/
Continuous

Pearson/
50/50

80/20

80,/20-20/80
Tetrachoric etc./

50/50

80/20

80,/20-20/80

Summary of Regression Results

Independent Variables

19

X X X X
1 2 3 4
o — . .
.0848 1069 .4136 2369
‘ ¢
L0612 .1308 . .3404 2472
.0487 1274 L3033 2124
. 0556 .1426 .3238 2451
.
.0834 .1016 .4092 .2473
.0832 1086 .a112 .2250
. 0859 .1078 .4138 2405

. 3600

.2661

.2185

.2357

.3632

.3654

.3640




a

Takle 3. Averadge Correlations for 50/50 Split
Y X, X, X, X,
Y - .067 204 . 434 .382
X, .067 -—- .344 .098 .210
X, .204 .344 - . 101 .255
X5 .545 .123 127 -—- .366
X, . 480 .263 320 .544 -

a A . .
Froduct-moment matrix is above the diagonal
and the mixed matrix is below.




Table 4. Average Correlations for 80/20 Splita

Y X, X, X, X,
0
Y - 067 204 381 339
X, . 067 - .344 .088 .079
X, .204 .344 - .079 .234
X, . 544 125 113 - .333
X, . 485 | .255 322 . .550 -

U U e [ S

aProduct—moment matrix 1s above the diagonal
and the mixed matrix is below.
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Table 5. Average Correlations
for 80,/20-20/80 Split?

Y X, X, - ~X,y s X,
Y - 067 204 381 334
X, .067 ——- .344 .088 .183
X, .204 .344 —— .079 .223
X, .544 .125 .113 -— .207
X, 477 .266 .322 .546 -

aProduct—moment matrix is above the diagonal
and the mixed matrix is below.




Table 6. Standard Deviations for Average Regression - .
Coefficients Shown in Table 1 /

Independent Variables

Correlation Type/ . 2
Split X X _ X X R
1 2 3 4
Pearson/ .
Continuous .0403 .0363 .0372 .0420 .0320
Pearson/
50/50 .0441 .0386 .0325 .0384 .0325
80/20 . 0462 . 0406 .0297 .0374 .0296

80,/20-20/80 .0415 .0382 .0363 .0345 .0292

Tetrachoric etc./

50/50 :0472° .0427 .0538 .0613 .0436
80,20 .0508 .0484 .0557 .0708 .0467
80,/20-20,/80 ' .0421 .0430 .0726 .0754 .0464

23




