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Summary
. .,

The AD *Force requires.- effective methods for test equating. Among the tests .
which =. must be equated are the Various forms of the Armed Services Vocational
Attlt de Battery (ASVAB). 4quipercentae test equating is typically tided to equate the
diffe nt forms ofthe ASVAB. to earlier forms and to each other. Increases in the
accura tof equipercentile test equating may be achieved by increasing,the size of the
samples of examinees. The purpose of the present effort was to determine' whether

1/4.. statistical smoothing could also inerease the accuracy of equating. .

Two classes of simple smoothing methods are of interest - presmoothing of the
score distributions'an-dpostsmoothing of the equipercentile points. A WO class of
smoothing methods, called combined smoothers, involved both presmoothing and
postsmoothing. The research used three methods to investigate fourteen simple
smoothers and five combined smoothers. The first method used simulations based on a
theory of ability testing. iSemulated tests were developed to mimic statistical aspects
of ASVAB subtests. Those 'tests were equated with and without smoothing and the
results were evaluated. The second and third methods used existing operationally
obtained data.. In the second method, very large samples of examinees were used to
establish highly accurate equatings, then smaller samplEs were drawn and equated with.
and without smoothing. The third method of investigation used the statistical _

.jackknife, a general purpose statistical tool, to estimate standard errors.
Negative hypergeometric presmoothing was clearly more effective than the other

presmoothers. TWo of the postsmoothets were somewhat more eff ctive than theMther
postsmoothers. The negative hypergeometric presmoother r ted in a reduction of
approximately ten percent in one measure of equating error use would correspond in
effectiveness to an increase of approximately twenty percent in the size of the samples
used for equating.-The effective postsmoothers were (1) orthogonal regression, which
was more effective than ordinary least squares linear regression, and (2) the use of
cubic smoothing splines, which was the most effective of the postsmoothers. No
postsmoother was as effective ,as presmoothing with the negative hypergeometric.
Combining presmoothers and postsmoothers did not restat in an improvement beyond
that obtained with the more effective. of the combined pair used alone.

Modest but significant gains in'the accuracy of equipercentile test equating may
be achieved through the use of negative hypergeometric presmoothing.

c .
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Equipercentile Test Equating: The Effects of Pre,smoothing and Postsinoothing
on the Magnitude of Sample-Dependent Errors

Test Equating
Test equating is the process of finding which scores on two or more similar tests

correspond to-the same level of ability in the population of examinees. lin principle,
when two tests have been equpted, either can be used with equal confidence.to measure
ability.. Test results will then be on the same scale and any examinee's expected score
will not be affected by the form of the test administered. The tests Under
consideration in this report are four-option, niultiple-choiee tests that are scored on the
basis of the number of correct responses. This report addresses certain methodological
issues which arise in the process of equating. Before delineating those issues, however,
the process of equating will be put Into the larger context of testing ih general.

The need for 'test equating arises as result of many considerations. It is often
... valuable to have more than one version or form of a test. When more than one version

or, form of a test is available, the particular form takedloy an examinee should not
affect the examinee's expe?ted score. In other words, there should be no advantage or
disadvantage associated with taking one form of a test rather than another form of the

I. INTRODUCTION

same test.
The need for more than on form of a test may arise from any of ..a number of

bonsiderations,/rhcluOng testing 'cies which allow the exnined individual to be re-
examined with a different for of the test. Alternatively, the need may be a
consequence of security consid rations. If there are several forms of a test in
existence, then it compromise of the security of one test form does not compromise the
entire testing program.

The 'replacment of operational tests requires equating when the scores on the new
tests are to be used in the same predictive or evaluative equations or in the same
manner as were the old scores. The, need for replacing operational tests can be due to
changes in the characteristics of the tested population, in theffeetiveness of some of
the test items, or in the needs of the testing agency. hest replacement policies can
also be a response to the possibility of/test compromise, or e breach of test security.
As a test is operational for longer and longer periods, the chances increase that the test
may no longer be secure against unauthorized disclosure and, hence, that scores may no
longer represent ability. .

The Armed Services conduct the largest testing program in the nation. The
Armed. Services Vocational Aptitude' Battery (ASVAB).-is administered annually to all
applicants-(about one million) for enlistment iri the Armed Services, as well as to about
one million high school and post-secondary school students. The applicants' acceptance
into of rejection /Sy the Services is governed in part by the results of the tests, as is
their assignment to particular specialities once they are in the Service. The success
and security of the testing program are thus important for the continued effective use
of personnel in the Services. All of the considerations mehtioned above which lead to
the need for test equating are present in the ASVAB testing program. Both the
requirement for several forms and the requirement for periodic replacement of forms
lead to the necessity of test equating. It is therefore important that effective methods
of test equating be available to the psychometrie community within the Armed
Services.

Test equating may be carried out in any of a large nuinber of different ways, some
of which are of recent origin and are technically sophisticated, and some of which have

1/4
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been in use for several decades (see Holland dr Rubin, 1982). This report addresses only
equipercentile test equating as applied to two equivalent groups (Angoff, 1971). A brief
description 'of equipercentile test equating is given here; a more complete description
may be found in Angoff (1971). Tile logic of equipercentile equating is based on the
concept that the ability of examinees who take tests may be used to Calibrate or equate
the tests. If two groups of examinees have identical distributions of abilities, and if one
group takes one test and the other group takes another tear-then corresponding
percentile points in the two groups will correspond to equal abilities, and those points
can be used to establish corresponding, Or equated, scores on the two tests. For
example, if individuals in the 20th perceptile received a score of 23 on one test, and if
the individuals in the 20th percentile of the other group received a score of 25 on the
other version of the same test, them a score of 23 on the first test is said to be equated, .

to a shore of 25 on the second test. In practice, equated scores are not usually given
_ for every percentile poiint, but rather for every obtainable test score on each of the

tests. One can then cony rt from either test to the other with equal facility: The
terms "reference test" and 'experimental test`!_ are used to indicate,respectively, the
test whose score metric is o be used for the results of both tests, and the test whose
score is to be.converted to t e units of the other test. For example, if an existing test
known as Form K is to be re laced by a similar test known as Form M, Form K wouldbe
the reference test and Form would be the experimental test.. , ,

In order for equating to be accurate (i.e., for the testto be used interchangeably
with no advantage or disadv ntage associated with the taking of either test) two
conditions Must be met. First, the two groups of examinees used for equating must be
equivalent, and second, the two tests must measure the same trait equally reliably. The
equivalence of the two groups is usuallyinet in practice b17 having one group divided at
random into two smaller group. The question of Wheth r two tests are sufficiently
similar is, more difficult. Lord, (1980) demonstrates that two tests cannot be eqUated
unless they are either perfectly' reliable (an impossibility), or are strict1, parallel, in

i which case they would not need to be equated. In practice, however, it is possible to
equate highly similar tests, sometimes called "roughly parallel" tests, by the
equipercentile method in such a way that the errors of equating are very small in
comparison with other errors ociated with testing (e.gi, the errors of measurement
arising as a consequence of he unreliability of tests, and particularly the inherent

. lower reliability of shortitests . 'In any case, although there may be some purposes to
which it would be misleading to put equated scores, Lord (1980) points out that if scores
are equated by the equipercentile method, then when equated cutting scores are used,
the different equated' forms will result in the selection of the same proportion of
examinees on all forms of the test, except for errors related to sampling in the equating
process or to the particular examinees tested operationally.

As with any procedures havingthe goal of estimating population characteristics
based on data obtained from a sample; there are always sample-dependent errors
present in test equating. If an equiperhentRe equating wereto be done twice with
similar samples, the results would diffe . The extent of such differences has been
estimated by Lord (1982) and their ma nitudes appear as the standard errors of
equipercentile equating. As with All sta dard statistical-procedures, the size of the
expected errors decreases linearly with th square root of the sample size. It is thus
operationally impractical to reduce error beyopd a certain amount by increasing
sample sizes. For example,, decreasing the error to one-fourth the size of the error
associated with a given sample size would r quire using a sample 16 times the size of
the, original sample. As a consequence, pra titioners of equipercentile test equating

2



have looked for other ways to reduce equating errors. They have most frequently used
the methods of smoothing.

Smoothing
Two general classes of smoothing methods are defined here. A third class is made

up by combining a smoothing method from the first class with one from the .Second
class. First, presmoothing is defined as the process of smoothing the observed score
frequency distributions prior to the equating. Second, poStsmoothing is defined as the
process of smoothing the equipercentile points after equating. Third, combined
smoothings involve presmoothing and postsmoothing applied_ consecutively, The
common intent of all three smoothing methods is to remove small sample-dependent
fluctuations from the nonsmoothed equatings so that the small sample equatings will
more nearly approximate the asymptotie equatings, or those w.hickwould result from
the use of samples so large that the sample- dependent errors approach zero. The
extent to which the various methods achieve this common intent is investigated by this
research. Seven presmoothing methods, seven postsmoothing methods, and five
combined smoothing methods were used as follows:

I ,

A. Presmoothing Methods
1. - 3-point moving medians
2. 5-point moving medians.
3. 3-point moving weighted averages .
4. 5-point moving weighted averages
5. 5-point moving weighted averages with root transformation
6. 4253H Twice ,
7. negative hypergeometric

B. Posts moothing Methods
1. linear regression. c
2. quadratic regression
3. cubic regression
4. orthogonal regression
5. logistic ogive
6. cubic splines
7. 5-point moving weighted averages

.

C. Combined Smoothers , . \
1. negative hypergeometric + orthogonal regre0on
2. negative hypergeometric + quad tic regression
3. negative hypergeometric + 5-poin moving weighted averages
4. 3-point moving weighted averages4 3-point moving weighted averages
5. negative hypergeometric + cubic splines

Presmoothing
Presmoothing methods are based on the concept that an observed data point in a

sequence of points shows the combined effect of an underlying systematic relation
among the points and sample-specific fluctuation or error of observation. If each point
were replaced by a value jointly determined by the point replaced and the vicinal
points, then the influence of the error of observation should be reduced, and the
influence of the underlying regular function should be enhanced.

Six of the seven presmoothing methods used in this study are general-purpose
methods which were developed for the smoothing 'of sequences of observations such as

3

12



time series data (Keats & Lord, 1962; Tukey, 1977;' Velleman, 19R0; Velleman &
Hoag lin, 1981). Detailed technical' descriptions of the methods are available in the
references cited; short descriptions are provided here.

Moving medians and moving averages were used for presmOthing,. as re a
combined or compound presmoother and a presmoothing method based on a partic ar
model of test scores.

Of the seven methods of presmoothing the score distributions, three are described
biTukey (1977). In the first method, frequency distributions are smoothed by moving
medians of span three. Smoothing by moving medians of span three inVolves replacing
each observed, frequency with the median of three frequencies: that of the score szfi

1-interest, the frequency associated with the next lower score, and that associated with
the next higher score, The end-values of the distribution, those corresponding to scores
of 0 and fierfect scores, are not smoothed because they have only one neighboring value, 7

and thus cannot be smoothed effectively by moving medians. Moving medians of span
five are found analogously, exceptlthat each frequency is replaced with a value which is
the median of thefrequency of interest, the two`preceding frequencies, and the two
following frequen&es. The end icifits are not smoothed, but the next- to-end points are,
by convention, replaced by the smoothed values found by smoothing by medians oNpan
three.

Presmoothing by three-point moving weighted averages is analogous ,to three-
point moving medians, but instgad of replacing each point in the raw frequency
distribution witkits median,. it is replaced with a values that is calculated by taking the
sum of twice the point being smoothed, the previous point, and the following point, then
dividing the result by 'four. This is equivalent to using weights of 1, 2, and 1. The
weights 1, 2, and 1 are chosen to give the point being smoothed a weight equal to the
surrounding points in determining the smoothed value. Clearly, any other weighting is
poisible, from one in which weights of 0, 1, 0 correspond to no smoothing to one in
which weights of 1,.0,-eCorrespond to a smoothing in which a point's surrounding points
completely determine its value. Again, the end values are not smoothed. Five-point
moving weighted averages are found, by taking the raw frequericies five at a time and
replacing each frequency with a weighted average of the freqUency and the four
surrounding values. The weighting functiOn is one recommended by"Angoff (1971), and
weights the five points by the factors -3, 12, 17, 12, -3, and divides the resulting sum by
35. The recommended weights allow linear, quadratic, and cubic components of the
curve to be unaffected by the smoothing process. The end frequencies are not
smoothed, but the next-to-end frequencies are smoothed by the three-point moving
weighted average using weights of 1, 2, 1., The five-point moving weighted average
with root transformation is identical to the five-point moving weighted average, except
that before the smoothing is applied, all of the frequency values are transformed by
taking their square root. The sqUare roots are then smoothed. Following the
smoothing,",the inverse transformation, a squaring, is applied. The use of the square
root transformation has the effect of decreasing. the influence of largeyalues relative
to the effeit of the same smoother without the square root transformatibn. Ai a (\
result, if a frequency is higher-than, surrounding frequencies, it is more effectively
reduced with the root transformation.. -Conver if a frequency is' lower than
surrounding frequencies, it is more effectively r sed to the surrounding values when
the 'root transformation is not used. At the r ge of frequencies reported here,
however, the differences are very slight. -

The 'sixth smoother is a combination of smoothers-proposed by Velleman (1980).
Designated as 4253H Twice; it is a complex method which re es the successive

4
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applicatioi of four different smoothers, including moving Medians of spans four, five,
and three,,then the finding of the differences between the smoothed and urtsmoothed
distributions, the smoothing of that sequenc of differences by the same compOund
method, and, finally, adding the smoothed differences back into the smoothed
distribution. The smoothing by medians of-span 4 results in smoothed values which
correspond to points tietiveen the originally smoothed points. Thus, smoothing points n,
n+1, n+2, and n+3 results in a value corresponding, to a point between points n+1 and
n+2. The step designated by "2" in 4253H is required to bring each smoothed value back
to its proper association with the point being smoothed. Details are given in Tukey
(1977) and Ve lleman and Hoag lin (1981).

The final presmootking method (see Keats & Lord, 19621 also Lord & Novick,
1968, pp. 515-520) is ,4:Met devised explicitly for smoothing or fitting frequency

/appropriateness /
of test scores. The distribution is the negative hypergeometric, whose

/appropriateness/is , derived from a binomial error model of test scores. The model'
-J assumes tgveral echnical conditions, one of which is equivalent to the assumption that
7all of the 'Re on the test whose score distribution is being fit are equally difficult.
That conditiononditi is known to be falie in the case of the ASVAB, as well as for most other
tests, but the fit of the negative hypergeometric is' still good enough to make it
promising for further study (Keats-& Lord, 1962).

P ostsmoothing
Equipercentile equating, as described earlier in this section, 'starts with tables,

which show the frequency:of each score in the samples tested for each of two tests and
ends in a table which associates with each score on one test a score on the'other 'test.
An integer score on one test is u§ually found to correspond to a non-integer score on the
other test the non-integer score may be estimated by linear interpolation. A plot of
the score 'pairs shows a Monotonically nondecreasing function whose form depends on
characteristics of the sample and characteristics of the two tests being equated.

Posismoothing is the process of passing a straight line or a curve among the points
which define* the dquipercentile, relationship. the equated scores are then determined
by the resulting function. Postsmoothing methods have traditionally required the
practitioner to judge where to pass a curve through. a set of points (kigoff,a971). in
place of the use of a draftsman's French curve or analogous drawing aid, a number,of
analytic postsmoothing methods have been developed. Seven such methods were
investigated here. They were chosen on the basis of a number of considerations
including practicality of implementation, frequency of use in the past, and-the extent to
which the methods appeared pramising based on the literature.

The simplest equation which way be fit to the points- resulting from an
equipercentile equating is a straight line. This study investigated tW different straight
lines: that defined' by conventional least squares and that defined by orthogonal
regression. The conventional least squar )%-. procedure minimizes the sum of the squared
vertical deviations from the line. In effect, the scores on the experimental test
considered to be known without error, and the line which best fits the equipercentlle
equivale s on the reference test is found. In orthogonal regression (Madansky, 1959),
the uantity minimized is not the sum of the squared deviations parallel to the y-axis,
but, rather, the sum of the squired deviations when those deviations are taken in a,.
direction perpendicular to the regression line. Orthogonal regression is appropriate
when-the variables represented on both axes are subject to measurement error, and
neither can properly be considered the dependent or independent variabla, This is
frequently the case in test equating, for two reasons. First, such ark equating' can be
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used to convert scores from either test to the other. It is thus dissimilar to a least
squares regression equation in which the regression of y on x is rarely the same as that
of x on y. Second, there are usually similar amounts of error associated with the
reference and the experimental test. The first two'postsmoothing methods, then, are
straight lines fit by conventional regression and by orthogonal regression. When'
conventional regression is used, the independent variable is the set of.seores on, the
experimental. test ranging troth the lowest observed score to the highest observed score.
The dependent variable is made up of the equipercentile points.

Only under certain circumstances is it possible to fit resulting points well with
straight line. A straight line is appropriate if the two tests have the same skewness and
kurtosis. The positioning and slope of the straight line will compensate for differences
in means and standard deviations in the two tests. If there is a curvilinear component
to the relationship defined by the esluipercentile equating, then it must be fit by a
curvilinear function. Quadratic and cubic functions are commonly used to fit uch-

curves. This investigation considered quadratieand cubic best-fitting (criterion of
minimum least squares deviations) smoothing curves. Quadratic curves can' fit points
whose best-fitting line is concave either Upward or downward, whereas cubic equations
can fit curves with an inflection point, so that part of the curve is concave upward and
part of it is concave downward. The use of quadtatic or cubic postsmoothing functions
can result in nonmonotonic functions in which there is a part of the smoothing function'
at which an increase in the score on the experimental test results in a decrease_in-the-
equated score. Such reversals are artifacts of the fitting process and when-they occur
are corrected to monotonicity. The correction is 'made-bOorcing each score to be
greater than or equal-to the precedingseore.- Stich correction is rarely needed. The
third and fourth postsmoothing methods, then, were quadratic and cubic regression
functions, fit by the method of least squares as modified by the requirement of
monotonicity.

In some equatings it is observed that the equipercentile equating function is
relatively flat at both of its ends and steeper in the middle. Such a shape can be fit by

a cubic curve, but it can also be fit by a logistic ogiye, a curve defined by the equation

B -A
"Y A +

1 + exp (-C ( X - D))

whete A, B, C, and D are fitted constants. The points resulting from equipercentile
equating were fit by a logistic ogive, the fifth postsmoothing method.

All of the smoothing method; mentioned aboye have associated with them the
disadvantage that they impose a function of a given form on the data, even if it is not
appropriate. Such a procrustean requirement is contrary to the rationale of smoothing,
especially when the function is not appropriate in shape to the points to which it is to
be fit. The sixth and seventh pOstsmoothing methods do not define the shape of the
function in advance of the fitting. -

The sixth function fit to the points was not a continuous function, but rather a
smoothing of the discrete resulting points. The smoothing function replaces each point
with a point which is the Weighted average of the point being replaced and the four
surrounding points. The method is that of five-point moving weighted averages, as
described earlier. The equating requires interpolation betWeen the resultant points.

I

15

9



The final, postsmoothing function was used by liolen (1983), who obtained good
results by fitting cubic smoothing 'spline functionS to the points resulting from the
equiperdentile equating. A smoothing spline differs from an intetpolatingSpline in that
the latter is constrained to pass through exactly known pants, while the former is
conceived of as passing among approximately known points. As used by Kolen,a'cubic
smoothing spline for N points (in the present case, an equipercentile equating of two N-
item tests) is a set of N-1 cubic !unctions, each of which takes as its domain the
interval from the I-th point to the (I + 1)th point .on the X-axis. The range and specific
form of the function are determined by the data in the interval. The cubic functions
come together with the same function value and slope (or derivative) at each .of the
interior N-2 points, which are called ducks or knots in the language of spline fitting.
The former term, ducks, is used in this report.' The resulting curve can be of almost any
differentiable shape, because -the individual cubic fittings are irIependent of each other
and can follow the shape of the function defined by the points to be smoothed.

z:combined' Smoothers '
The use of a presmoothing technique does not preclude the use of a postsmoother.

In order to determine whether or not presmoothing and postsmoothing employed
consecutively would hue benefits beyond those due to either method alone, five
combinations of presmoothing and postsmoothinewere investigated. Presmootying with
the negative hypergeometric was combined with four different postsmoothers,
orthogonal regression, five-point moving weighted averages; cubic splines, and
quadratic smoothing. Finally, presmoothing by the method of three-point moving
weighted averages was combined postsmoothing by means of five-point moving
weighted averages. .

I

Objectives A,
The aim of the present effort was to evaluate the effects of various different

methods of peesmoothing, postsmoothing, and combined smoothings on the accuracy of
test equating. The study was exploratory in nature;kfesigned to. determine which
methods hold. the most promise for operational use. Detaftd confirmatory scrutiny of
the efficacy of promising methods will have to await futtie attention. The following
section describes the methods used to determine the accuracy of equating and to apply
the methods to simulated and to operational, tests.
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II. METHODS
General Plan

The '-t,lan underlying this investigation was to use 'three different approaches to
determine the effectiveness of each of 14 unitary smoothing methods and five combined
smoothing methods. The first approach used simulated tests and examinees; the second
and third used data from tests qdministered to examinees under operational conditions.
The advantage of simulated tests and examinees is that all quantitative aspects of the
tests and examinees are completely specified, and it is possible to know in advance the
results of theoretically errorless equatings or those equatings which are unaffected by
sample-dependent errors. Operational data, of course, have the advantage that they
are obtained under conditions typical of the ones under which smoothing methods would
be' used.' The data are not based on an ideal model, as are the data from simulation,
rather, they contain all of the departures from theory that may be find in operational
test settings.

The first of the thre methods of evaluation involved' comparing each of the
smoothed equatings with a wn errorless equating. The'known errorless equating was
based on a method that yielded 'results typical of an equating using an infinitely large
sample. The method requires deriving a.distribution of expected yore frequencies, the
distribution being that which Would result from administering tre test to a sample so
large that. the observed proportions at each score were observed essentially without
error. The results of the simulated test administrations were used for that ethod.
The second method was a similar comparison of sample and criterion equati , but in
place of data based on simulations atd on an errorless equating, the co ison used
operationally obtained data and an eq 'ating based on an unusually larg sample size.
The third method was to use the statistical jackknife (Mosteller & Tukey, 1977) -to
estimate the size of standard errors of smoothed and unsmoothed equatings using
operationally obtained data rid simulated data. Those errors were also compared to
standard _errors computedby ns of the formula given by Lord (1982).

One reason for using. th "infinite sample size" equating as a criterion in the
simulations is that thp standard method used to address unacceptably large uncertainty
or error associated with stitistical procedures is to increase sample size.
Unfortunately, as is well known, the precision so 'obt::.ined increases in proportion to the
square root of the sample size, whereas the scale of a study and, hence, its costs tend
to increise'st least directly with the sample size. Thus, to increase the precision of a
statistical measure by a factor at two (or, equivalently, to reduce the standard error of
the estimate of a parameter by half), it is necessary to increase, the _size of a sample,
and thus approximitely the cost, by four or more. If the smoothing methods -

investigated` here ,reduce standard errors by 25 percent, their adoption might be
expected to permit the use of samples approximately 56% of the size ,of current
samples, with no loss of accuracy but with a saving in resources expended.

Simulations
The aim of the simulatims was to provide data that modeled those which might

result from having examinees take ASVAB-like subtests. The range ,of test lengths
irVestigated covers the range of lengths of subtests in the operational ASVAB. Three
test lengths were used -7- 15 items, 30 items, tind,50 items. For each -test length, two

very similar tests were created in simulation. /The tests were not strictly parallel.
They were, hOwever as similar to each other /as, are ASVAB subtests within a single
subject area in ASVAB 8, 9, and 10. (Ree, Mullins, Mathews, ck Massey, 1982.) A-

sampler of 2,000 randomly selected simulated examinees was administered -one test,
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while a second sample of 2,000 was administered the other test. (The term "simulee"
will be used hereafter to :indicate a simulated examinee.) That process was repeated
for a total of 100 simulated administrations for each. test length. The sarhe two
simulated tests were -used, but the sample of simulees was drawn -anew for each
simulated administration. Different simulated samples were used for each of the t st
lengths. The following paragraphs describe. in detail the method of the .simulati s.
Throughout this section, reference is made to random selection and random num rs.
The numbers used were generated by a pseudorandom generator, not a totally ran Om
generatdr, as is common in computee#Vimulations. Although deterthinate, sequences of
pseudorandom numbers appear much as random numbers, are indistinguishable from
them'by most standard tests, and do not repeat the sequence of numbers until millions
of numbers have been generated.

Item. Response Theory (IRT) (Lord, 1980) is the most explicit, complete,' and
quantitative theoretical treatment of tests of mental ability. \The simulations were
therefore, carried out within the framework of IRT. EaFh aspect of the simulated tests
and of the simitlees was specified in IRT terms in such a way as to model operational
ubtests in the ASVAB testing program. (See United States Military Entrance
rocessing Command, 1984, for a description of the ASVAB- program:) The exception to

th general statement is in connection with the 50-item test. The longest power
sub st in the ASVAB is 35 items. The simulated 50-item test was constructed to
simulate the same test as it might operate if it were lengthened to 50 items. The test
length 'of 50 items was included to determine the effectiveness of the smoothers with
tests of moderate length.

The 15"-item test was designed to simulate Paragraph Comprehension, the 30-item
test was designed to simulate Arithmetic Reasoning, and the 50-item test weal designed
to simu*te .a lengthened version of Word Knowl . For each .of the sUbt:,.ts to be
simulated, the statistics which describe the opera 'onal 3ubtests were first nsidered.
Subtest reliabilities, classical item stati statistics, and means standard
deviationi for the operational subtests were obtained from a technical re
et al. (1982). Simulated items were generated at random so that the items' distributions
of a, b, and c parameters approximately matched those reported by Ree et al. (1982) for
the _operational subtests. The resulting tests wereitheir a ministered in simulation to
samples of 2,000 simulees. The resulting item ues and item-test biserial
correlations and such test statistics as mean, standard deviation, skew, kurtosis, and
reliability (KR-20) were examined to determine whether or not all of the items were
similar to the items which are found on operational ASVAB subtests.

Some of the simulations used "to generate the data to evaluate the smoothings
were conducted in the same manner as the: simulations used to develop the tests. The
methdd used to simulate the administration bf ti test is similar to a method developed
by Ree (1980) for tie in a simulatiodcarried out in another context. In order to carry
out a simulated adcrOnistration, a population of examinees was defined with ability
normally distributed with a mean ability, e , of zero and a standard deviation of 1.0.
IRT equations allow .':he computation of the probability that an examinee of some known
ability will correctly answer an item with known parameters a, 12, and c. The parameter
a specifies the steepness of the slope. of the item characteristic curve. The parameter
b is a easure of the difficulty of an item. The parameter c indicates the probability
that an e minee of very low ability will answer correctly. That probability, P, is given
by the for ula r-

P + ( 1 c) / ( 1 + exp ( 1.7 a ( 6 - b))).
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For each of the 2,000 simulees in the sample and for each item, a program computed

1 the probability of an applicant's answering the item \correctly. The program then
/ selected a random deviate from a rectangular distribution on the open interval 0 < :(p< L.

If the deviate was less than the probability 'of* correct response, then the simulated
response was counted as correct; if it we; equal or greater, then it was counted as
incorrect. Such a\ simulation results in response vectors which include correct responses
due to the joint influences of ability and guessing, just as operational data show both
such influences. W en all 2,000 simulees had "responded" to all items in a test, the test
was scored and an yzed_to determine the mean and standard deviation of scores, the
item difficulties, ti' item. biserial correlation coefficients, and other statistics.

Tile resulting est statistics and distributions were compared with.the results of
the subtests which t e simulated tests were designed to match. Items, which were too
diffictlit or too eas , that is, items which had 2-values (or item difficulties) inconsistent
with the requirements for ASVAB items, were 'replaced with items with. a; b, and c
parameters which would lead to more appropriate 2-values, and the simulations were

rerun. Each of the simulIted tests went through several iterations of thit process in
order, to arrive at tests which resembled ASVAB subtests. The refining rocess was
necessary in part because the technical material dealing with the .ASVA

1
does not

report the item parameters for'the individual items, but gives only summaries. At each
test length, the items in one test were chosen to be slightly more difficult than the
items in the other test, so that the equatings would not result in virtual identities.
Since virtually identical subtests are not found in t-he ASVAB program, and since they
would not require equating if they existed, they were not sought sin this project. The

technical aspects of the resulting simulated tests did resemble the technical aspects of
the ASVAB subtests in every aspect but one. The itematest biserial correlati6n
coefficients in the simulated tests were higher than the corresponding coefficients in

si t he. oper ational subtests. .

. .

Although it is not known exactly why the biserials should be higher when the a, 2,
and c parameters are comparable, three posMbilities are evident. The first possibility
derives from the ,reltitionship, between the a parameter, or the item-Niscrimination
index, and the biserialcarelation. Lord (1980, p.33) gives that approximate relation as

A

ti

a
b=:\h_fal

when a is the a parameter and R is the biseiial correlation-2.'111e methods used to
'estimate a, b, c for the operatidhal items may have overestimated the a values (see

4 Ree, 1979, for an evaluation of estimation prcedures), with the result that simulations
which use the reported a values would tend to have higher biserials than would the
operational tests. A 'second and perhaps mo e likely possibility is that any departure
from test theory in the operational setting red es the resulting biserials. Accidentally
mismarked answer sheets, careless errors, om.tted items, and many other extraneous
response variables can reduce biserials troin the theoretically- expected value. The
simulations were free from such departures frOm theory. Third,'IRT requires the
assumption that tests are -unidimensional, or that each test measures only one ability.
No operational subtest is perfectly unidimensional, but the simulated tests were. It is

-likely that the perfect unidimensionality of the simulated tests is a_ significant factor in
accounting for the high biserials.

A test characteristic curve was prepared for each testIto show thp true score, or
score which would be found in the absence of measurement error, expected to
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correspond to each level of a ility, designated by theta, from' -3 to +3. (Ste Allen and
Yen, 1979, for a discussion of true scores ancrtest characteristic curves.), Similarly, for
each test,, test information curves were prepared to show test information as a function
of ability on the same interval. Figures 1, 2, and 3 show those curves for 15-, 30-, and
50-item tests, respectively.

Technical and statistical details of the tests are presented in Appendix A. Each
of_the six simulated examinations was "taken" by 100 groups of 2,000 simulees. Either
of two methods was used to administer a test in simulation. The first method is. that
described above in connection with the development of We forms. The second method
involved taking a sample of 2,0g0 obrvations at random from the Expected Observed
Score Distribution (tOSDt described on page 15) for a test: Score distributions were
tabulated fop each simulated administration. For each test length, 100 equipercenfile
equatings and smoothings were then performed using the methods described below. The
smoothings and.equatings were the same for theoperational.and simulated data and so
are described following the description of the operational data.
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Figure 1
Test information .curves (upper panel) and test characteristic curves
(lower pmiel) for the 'simulated tests of length 15. The solid lines
represent the reference test; the dotted lines. represent the
experimental test.
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Figure 2
Test information curves (upper panel) and test characteristic curves
(lower parcel) fOr the_ simulated tests of length 30. The solid lines
represent the reference test; the dotted lines represent the
_experimental test.
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figure 3
Teat information curves (upper panel) and tes t characteristic curves
(lower panel) for the stmtdated tests of length 50. The solid lines
represent the referente test, the dotted lines represent the
experimental test.
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Criterion Equatings
The preparation of simulated tests allows total control of the simulated test

situation. It is, therefore, possible to know in advance the criterion or "true" equating
of the tests used. Item response theory makes possible several approaches to the
determination of the criterion equating. It is possible, for example, to determine the
true scores associated with various abilities or theta values and equate true scores
through common theta, Analogously, a variant of true -score equating can be
performed, and for each integer true score on the experimental test, the corresponding
theta can 'be computed (usually by means of inverse interpolation); then the score on the
reference test which corresponds to that theta can be found. That method has the
advantage of giving equated scores for each number-right true score, and interpolation'
of tabled values is not required. True scores are never known in actuality, however, so
that method is not wholly appropriate.

The method used to establish the criterion equatings for the simulations used in
the present study is based on the EOSD for each test. An algorithm developed by Lord
and Wingersky (1983) was used to prepare distributions of expected obsermed scores for
each of the six simulated tests. In an ECSD, each score has associated with it a
proportion of examinees, not a frequency, The distributions model the result of
administering the test to an infinitely large number of examinees ,and observing the
relative frequency of each score. The EOSD method of establishing a criterion equating
is appropriate because the aim of the present research is to determine methods of
smoothing which compensate for the relatively small sample sizes that must be used
operationally. By comparing the small sample equatings (N=2,000) with those that
result from an "infinite sample (i.e., those based on the EOSD), the extent of
improvement resulting from smoothing is directly observable, The criterion equatings,
then, are the unsmoothed equipereentile equatings which result from using the EOSDs in
the unsmoothed equipercentile method. Lord and Wingersky (1983) show that such
equatings do not differ appreciably from true score equatings based on IRT.

Operational Data
The operational data that were used were taken from a set of ASVAB scores for

very large sample sizes (approxiMately 100,000 examinees) for three roughly parallel
forms of each of several subtests. Among those subtests were two forms of
Mathematics Knowledge, length of 25 it ms, and two forms of Electronics Information,
length of 20 items. In addition to th frequency distributions of test scores for all
examinees, there were available 100 ampl(N of 2,000 scores for each of the four
subtests (two for ns each of Mathem tical Knowledge and Electronics Information).
The samples were drawn at random *thout replacement from the larger samples of
100,000 examinees. 'Two test lengt were thus available in the operitional data: 20
and 25 items. The lengths used wer constrained in part by the availability of data and

--in-part-by-theftitn- of-increasing-the/general liability of the study by employing a number
of different test lengths for operational and simulated tests.

For the operational data, criterion equatings were established by using the full
sample of 100,000 examinem. Although that sample equating is not totally error-free,
it is based on a sample 50 times as large as the samples of size. 2,000 and so is expected
'to have sample-dependent errors only approximately one-seventh as large as those
found in the small equatings, As with the simulated data, the criterion,equatings were
unsmoothed equipercentile equatings, as described below. As with the simulated data,
100 reduced sample equatings were made for each of the test pairs, both without
smoothing and with each of the 19 smoottivg methods.
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Equatings
All, test equatings were performed using the equipercentile method described by

Lindsay and Prichard (1974). For the unsmoothed equatings and the equatings to which
only postsmoothing was to be applied, the raw frequency files were equated. When the
equatings involved presmoothing, the smoothed frequency estimates were equated.
Following the equatings and smoothings (which are described below); each test or
simulated test,had associated with it a criterion equating, an unsnioothed equating, and
19 smoothed equatings, one for each of the smoothing methods used. The equatings
resulted in associations betWeen each observed score on the experimental test and
scores on the reference test. Such associations may be expressed by equating tables
prepared for operational use by it administOrs or users. The equating tables, over
2,000 of which were required for this effort, were generated and used by the equating
program'but were not printed.

Smoothing
. The methods used for smoothing the data are listed and described in the

introduction. Most of the smoothing methods are sufficiently simple to implement that
thby require no description beyond that given in the introduction. Two of the
postsmoothing methods, however, are more complex and require fulther.description.

The fifth postsmoothing method was the fitting of a logistic ogive to the data.
The ogive was fit by the method of the simplex, which is ansiterative, rather than an
optimal, method. The method requires an initial estimate of the four parameters (upper
and lower asymptotes, slope, and location) which define the ogive; it then successively
finds better and better sets of points. In'this case, "better" implies sets of points with
smaller residual sams of squares. The simplex continues to iterate until thelivalues of
the four parameters converge to final values. The initial simplex for the first
smoothing of the' 100 eq stings was chosen to be a Simplex whose asymptotes were far
enough from the points o be smoothed that the part of Vie ogive passing through the
points was an approXima 'on of a straight line. Subsequfint smoothings took as their
initial simplex the final simplex of the previous smoothing. The method has the
disadvantage of being prone to /produce solutions which represent local, rather than
global, minim. Experience `with the method has indicated that it does occasionally fall,
into such minima; such solutions do not represent the best-fitting functions and may
occasionally not fit well at allii i

The procedure used here for the fitting of the ubic spline departed in three ways
from that used by Kolen.(1983). First, Kolen fit wo spline functions, one using' the
equated experimental te4, scores as the dependent scores, and the other using the
reference test scores as the dependent variables. The final equated values were
obtained by averaging the equatings resulting from the use of those two spline
functions. In order to retain comparability with other smoothing methods used in this
research, the experimental test was used as the dependent variable in the fitting of the
spline. .

The second departure involved the difficulty which was encountered with cubic
spline smoothing at lower ends of the score distribution. Kolen (12083), finding similar
difficulty at both ends, addressed it by applying the splines only in the interval of test
scores ranging from the 5th to the 95th percentile. The shortest of his tests, however,
was 40 items, and few examinees scored at either of the extremes. Smoothing by
means of cubic splines as described by Reinsch (1967) requires an estimate of the
standard errors of the y variables at each duck, but at the lower end point, where
frequencies are at or near zero, the standard errors are not defined or do not exist. For
the purposes )of this investigation, the end standard errors were assigned the value of
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the closest defined standard error, when "closest" means the numerically closest integer
score. The use of a large standard error constrains the spline 'function to pass through
or very close to the point associated with the unsmoothed equating.

Initially, smoothing methods relied heavily on human judgment and experience in
passing a line among the points. The hope of those using the more analytic smoothing
methods has been that an optimum or nearly optimum method might be found so that
judgmental methods would not be necessary. Smoothing could then be automated and
thus replicable and objective. The work of Kolen (1983), whose cubic splines have been
among the most effective postsmoothing methods described in the literature, has not
avoided the necessity of intervening judgment in the application of the smoothing
process. For the current project, however, when ovet 500 applications of the smoothing
technique were required, automated smoothing was a necessity. Thus, the third
departure was the use of standard errors in the cubic spline fitting procedure.

The smoothers usually resulted in slight changes in the total number of cases in
the smo&thed distribution as compared to the unsmoothed distributiOn. The changes
were due to the action of the medians or means in lopiering unusually high values or
raising unusually low values. The total number of cases was always adjusted to the
original number of 2,000 by increasing each frequency by whatever proportion was
necessary in order that the total frequency equal 2,000. Thus, the shape of the
distribution and the relative heights of its frequencies were unchanged by the
adjustment. The adjustment resulted in the use of some noninteger frequency values in
the equating step, an option permitted by the equating method.

Analysis of Equating Results
Each of the five tests, three simulated and two operational, had associated with it

one criterion equating, 100 unsmoothed equatings based on sample sizes of 2,000 (called
the "small sample"), and 100 sets of 19 smoothed equatings based on the same samples.
The question of interest is the effect of the smoothings on the accuracy of the
equatings. The measures used to define the accuracy of the equatings are b5ised on the
concept of deviations. A deviation is a difference between an equated score obtained
with a small sample and an equated score based on a criterion equating. At each
observed (i.e., integer) score on the experimental test, the corresponding scow on the
reference test was found using the criterion equating. The equated scores were found
as decimal fractions not rounded to the nearest integer. The score corresponding to the
same experimental test score was then found for the unsmoothed small sample equating
and for each of the 19 smoothed equatings. The differences between the equated score
based on the criterion equating and ,the equated score based on the small sample
equatings were found for each possible score on the experimental test, for the
unsmoothed and for the smoothed equatings, for all 100 replications. These differences,
or deViations, were the raw data used for evaluating the smoothings. A deviation, D,
associated with a given score on an experimental test, unsmoothed or smoothed by a
particular method, is thus defined by the formula:

D = x x'
where x equals the equated score based on criterion equating and x' equals the equated
score based on small sample equating. Each test thus has as many deviation scores, D,
as there are items on a test, plus 1 (for a score of 0). For each of the 100 small sample
equatings, the deviations at each score were combined across equatings to give a
general measure of deviation at each score. Three such deviation measures were
computed.
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The first measure is the Rpot Mean Square Deviation (RMSD), found by taking
the square root of the sum of the squares of the deviatioqs across all 100 samples. The
second measure is the Average Absolute Deviation (AAD), or .simply the mean of the
absolute value of the deviations computed across all samples. The third measure is the
average of the signed values of the deviations (ASD), found by taking the mean of the
deviations across all 100 replications. ASD differs from AAD in that the absolute
values are not found before the mean is computed. ASD is sometimes called "bias," or
"st_atistieal-bier," bit in the context of testing the term "bias" denotes other phenomena
and'so is less appropriate than "ASD." Positive values of ASD indicate that the small ..

sample equating mulled in a value which was generally lower than the criterion
equating values, whereas negative values indicate the opposite. These three measures,
RMSD, AAD, and ASD, were found for each score point on each test for the unsmoothed
and for each of the 19 smoothed equatings, across all 100 sample equatings.

The three measures of rdtviation taken together allow an evaluation of the effects
of the smoothing methods. The AAD and RMSD both give numbers which represent the
unsigned magnitude of an average deviation. The AAD is a straight arithmetic mean of
absolute .values, while 'the RMSD has the effect of weighting (or emphasizing) the
deviations which are far from the criterion equating. The computation of RMSD is
similar to the computation of the standard deviation, which is also sometimes 'called

. root mean squareViatiokfrom. the mean. The difference between the AAD and the
RIVISD is an indication6f the extent to which the distribution has outlying values. If the-

, -,R MSD is consider biy larger than the AAD, then a large number of outliers is
suspected. The AS . easure averages the deviations as does AAD, but it includes their
sign. The resulting-ASD shows how far the mean of the equated values for all 100
samples is above or below the value given by the criterion equating. This is a
significant value for two reasons. First, equipercentile 'test equating has not been
shown to be statistically unbiased; the ASD estimates how large the ASD (or bias)
actually is. Second, methods which reduce RMSD or AAD may increase,ASD. Thus, one
must consider RMSD,.AAD, and ASD in evaluating a smoothing technique.

Standard Errors
Two cross-checks were made to ensure the accuracy of the methods used to

determine the. RMSD. First, the standard errors of equipercentile equating were
determined using a formula derived by Lord (1982). The resulting standard errors, one
at each score level which was at or above chance, or expected guessing score. level,

. were compared with the R MSDs obtained from the simulated test administrations, from
the operational data, and from the results of the jackknifing. The observed R-MSD
values should be empirical estimates of the same standard errors which the Lord (1982)
,standard errors represent. In each case, the data from the criterion equating, with
sample size assigned to be 2,000, were used to develop the standard errors.

The method of Lord (1982) allows calculation of standard errors for the
unsmoothed case of equipercentile equating. The simulations discussed above allow
empirical estimations of the standard error for all of the smoothing conditions as well
as for the unsmoothed condition. The agreement or nonagreement of the Lord formula
values with the values generated through simulation indicate the extent to which the
simulations are appropriate in the unsmoothed case. There is no corresponding
analytical cross-check on the values of the standard errors hr-the smoothed..cases
because formulae for standard errors in those eases do not exist. In order to provide
corroborating or noncorroborating estimates of the standard errors for smoothed
equatings, the equatings were conducted with the use of Tukey's statistical jaeOcnite.
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The jackknife (Mosteller & Tukey, 1977) provides an estimate of the standard error of a
procedure regardless of whether or not analytical formulae for such errors are
available:

Briefly, the jackknife requires dividing a sample into a number of subsamples,
then performing the analysis fh. question (smoothed equipercentile test equating in this
case) once with each subsample deleted. In this case, samples of size 2,000 were
divided at random into 40 groups of size 50. The smoothings and equatings were
performed 40 times for each test length, once without each of 3the subsamples. The
results of 40 equatings were combined according to theocedilres of jackknifing in
order to obtain estimates of the standard errors of interest. -Bst-iinatO standard errors
were computed for each of the nonchance score levels on' the testsilb'Ose- standard
errors were averaged over all such test scores. Thus, each test combined with each
smoothing method resulted in a mean standard error of equating'as estimated by the
jackknife and as estimated by the small sample equatings.

The s les of size 2,000 used for jackknifing were based on the best available
estimates of th hape of the observed.score distribution in the large sample case. For
the. simulated tes he 2,000 cases were assigned scores based on the proportions of

res developed for he expected observed score distribution. For, the operational
to ts, the 2,000 cases were assigned scores based on the proportions oixieried in the
lar st samples which the monitoring agency provided. The same proportiOns were used
for the development of the criterion equatings when' using the simulations to develop
the deviation measures.
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III. RESULTS

Graphic presentation of the results of this effort are presented in Appendix. B,
Figures B -1 through B -95. Each figure is for one test length and one method of
smoothing. The figures are grouped so that the effects of eath smoothing method can
be evaluated across all five tests (three simulated and two operational). The results of
the simulationsLare presented first, with the test lengths,of 15, 30, vd 50. Following
those are the two operation* tests, of length 20 and 25. Each figure presents three
panels. Each panel,shows measures of deviation as a function of the raw score on the
experimental test, both with and without smoothing. In each figure, the top panel
shows the effect of smoothing on RMSD, the middle panel shows its effect on AAD, and
the bottom panel shows the effect on ASD.

Twofunctions are shown on each panel of each figure. The continuous line shows
the RMSD, AAD, or ASD which results from equating samples of size 2,000 without
smoothing, while the + characters indic to the RMSD, AAD, or ASD when the same
samples are equated with smoothing. Ea h point on the graph is an average of 100
deviations, or -differences ,between the riterion equating and the small sample
equating. The vertical axis of each grap has been scaled so that the maximum
measure of deviation takes up a large portion of the axis. In comparing different
figures, one should note the magnitude of the axes. When there is a horizontal line in a
graph other than the top or. bottom line of the graph, that line represents zero
deviation. For the figure panels which depict AAD and RMSD, + signs which lie below
the continuous line indicate that an improvement, or eAreduction of deviations, resulted
from smoothing. The situatiOn with ASD is slightly ipre complex, since ASD may be
either positive or negative. Improvement, or reduction of ASD, is indicated when, the +
.signs lie either between the continuous line and the x-axis of the graph, or closer to the
.,x/ixis than the continuous line. . -

It was found that with some smoothing methods, especially the presmoothing
methobs, smoothing resulted in large increases in the deviation measures for very low
test scores. In some cases. the increases were so great that graphing them required such
a large resealing of the figures that the more important deviations in the middle ranges
of the test could not .be represented.. These large induced deviati are seen as beingn
of little interest because they occurred at score values which w e lower than the
guessing level on a test, and .so were not associated with mea ngful measures .of
ability. In order to show the more relevant deviations effectively, the figures do not
present information on the levels of RMSD, AAD, or ASD at test scores below the
guessing level for each test.

The graphs may be considered in a number of ways. It is suggested that in
considering the graphs, particular attention be given to the top panels, where the effect
of smoothing on RMSD is shown. If a particular smoother is effective in reducing
RMSD across all five test lengths, then it should be considered further. In particular,
its effects on OD should be-considered, in order to determine whether it is effective in
reducing ASD or, as frequently happens, whether-it increased AS'D. The figures are
summarized in tables presented later in this section, but perusal of the figures gives
more detail concerning the effects of the smoothers.

In considering the figures, it is helpful to note that if ASD is near zero, then
values of RMSD and AAD which are nonzero result from deviations which are
distributed approximately evenly between positive and negative deviations. If, in
contrast, the ASD is not zero, then the deviations are predominantly above or below
zero. That is shown particularly clearly in Figure B -32, which shows the result of
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presmoothing by the method of the negative hypergeometric. The unsmoothed equating
(solid line) and smoothed equating (+ signs) at the lower end of the scerls show that the
smoothing increased TOED and AAD- moderately. The ASD, however, ,increased from
near zero to about 0.15 point. The interpretation of this and similar effects in other
figures is that the deviations increased moderately in their size,. and became
predominantly positive in sign, reflecting an increase in local bias.

Local effects, such as the preceding, make it difficult to summarize th effects
of the smoothers in tables without obscuring important effects. It is Suggested that the
figures present the results of this study more effectively than can the summary tables
and, hence, should Ape consulted not only in order to obtain general impressions of the
effects of the smoothers, but also to verify impressions obtained from the summary
tables.

Tables 1 through 20 summarize the information shown in Figures B -1 through
B - 95? Each table corresponds to one smoother. Table 1 shows the RMSD, AAD, and
ASD as averaged across all test scores above the guessing level with no smoothing. The
averages of the ASD were taken over the absolute values of ASD so that positive jind
negative values would not cancel put. The subsequent tables are associated with the
smoothed equatings. The averages of RMSD, AAD, and ASD are presented as
proportions of the deviations in Table 1.' Thus, figures less than 1 ifidicate that
smoothing reduced the deviation, while figures -greater than 1, indicate an increase in
deviations. For example, a figure of 0.2 indicates that a particular smoothing method
reduced the mean measure of a deviation to 20% of its unsmoothed value, when that
mean is taken over all scores on a test which are above the chance level.

These tables indicate the effectS of the smoothers in a global sense. The effects
are averaged over all scores above chance and so may obliterate the locally' high

. deviations. The standard errors of equating and the relatedfmeasures of RMSD, AAD,
and ASD are summary measures of the e*tent to which atest equating is subject to
sample-dependent error. Procedures which result in the reduction of such measures
increase the merit of equating methods.

Jackknifing R,

Table 21 compares the standard errors of unsmoothed equating as estimated by
Lord's analytic formula (1982) with those estimated by means of repeated reduced
sample equating (i.e., RMSD from simulated or operational tests) and those estimated
by means of the jackknife. The standard 'errors are presented in the metric of test
items. They are averaged over all test scores which are higher than chance level. Th
standard errors thus indicate that standard errors of equating vary with the length o
the tests, and vary with the method used to estimate them.

Table 22 presents the standard errors of smoothed equatings, as estimated by the
RMSD of the reduced sampleequatings (100 samples of 2,Q00) and as estimated by
Tukey's jackknife (Mosteller & Tukey, 1977). In order to 'facilitate evaluating the
effects of smoothing, the standard errors of the smoothed equatings are presented as
proportions of the unsmoothed equatings given in Table 21. Thus, values greater than
1.00 indicate that smoothing increased the standard errors, whereas values less than
1.00 indicate a reduction in standard error. -
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Table I. Mean Measures-of Deviations for Unsmoothed Equatings

Test Length

30

50

20

i 25

Mean Deviation

.RMSD AAD ASD

Simulated Tests
s

.134 .106 .009

.269. . .214 .016'

.439 .348 .028

Operational Tests

.184 .145 .029

.242 .192 .015

Note. Tabled valuga-repr

above change level. .

ent RMSD, .AAD, ASD averaged over all samples at all scores
7
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-Jable 2. Summary of the Averaged Effects of Presmoothing by the Method of 3-Point

Moving Medians

Proportion of Mean Deviations

Test Length RMSD ''AAD ASD

Simulated Tests

15 1.004 1.013 1.523

36 1.002 1.006 1.034

50. 1.058 1.052 .821

Operational Tests

20 .997 .996 , 1.003

25 .994 .999 1.233

Mean 1.011 , 1.013 1.123

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 3. SMmmary of'the Averaged Effects of Presmoothing by the Method of 5-Point

Moving Medians

Proportion of Mean Deviations

Test Length RMSD AAD ASD

Simulated Tests

15 , 1.021 1.046 1.841

30 .993 .994 1.352
4

50 1.027 1.027 1.362
.4{

Operational Tests

20 1.Q16 1.028 '.881

25 1.007 1.024 1.749

Mean 1.013 1.024 1.473

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages takenover,all samples at all scores

above chance level.
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Table 4. Summary of the Averaged Effects of Pre.smoothing by the Method of 3-Point

Moving Weighted Overages

Proportion of Mean Deviations

Test Length RMSD AAD ASDti
41/

Simulated Tests

15 .962 .96j 1.183

30 .974 .975 .846

50 .979 .981 1.303

Operational Tests

20 .953 .948 1.100

25 .960 .970 1.606

Mean .967 .968 1.208
tt

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 5. Summary of the Averaged Effects of Presmoothing by the Method of 5-Point -

Moving Weighted Averages

Proportion of Mean Deviations

I

Test Length RMSD AAD ASD

Simulated Tests

15 .994 .995

30 .990 .992

50 .990 .992

1.458

. 777

.946

Operational Tests

20 .988 .986

25 .985 :987

a

1.153

1.187

Mean .989 s .990 1.104
, 04,

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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table 6. Summary of the Averaged Effects of Presmoothing by the Method-of 5-Point

Moving Weighted Averages with Root Transformation

Proportion of Mean Deviations
I.

Test Length, RMSD AAD

/

ASD

a

15

30

.995

.990

SimulatedTests

.996

f .993

1.470

.801

50 1.002 1.006 1.040

Operational Tests

20 .986 .982 1.129.

25 .984 .988, 1.248

Mean .991 .993 1.138

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 7. 'Eummary of the Averaged Effects of Presmoothing by the Method of 4253H

Twice
I

Proportion of Mean Deviations

Test Length imp AAD ASD

Simulated Tests

15 1.019, y 1.036 2.721

30 1.013 1.013 1.364,

50 1.034 .920

0

,
Operational Tests t ,

20 .980 r .981 1.180 '
:*4

25' .992 .992 , 1.526

Mean 1.007 1.012 1.542

Note. Tabled val.up represent R1VLSD AAD, and ASD as proportions of the values found

without snfoothing, as presented in Table 1. Averages taken over all samples at el? scores

above chance level.
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Table 8. Summar of the Avera d Effects of Preimoothin b the Method of Ne tive

Hypergeom etri c

rt
ti

'Test Length . RMSD

15 .891

30 .865

50 .852

20 .905

25 .966

,Mean, .896

Proportion of Mean Deviations

L AAD .ASD

Simulated Tests

..903 2.919

.867 3.596

.861 3.453

Operational Tests .

Z .908 2.008

.989 7.479

.906 3.891

Note. Tabled values represent EIMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 9. Summary of the Averaged Effects of Postsmoothing,LtLile Method of Linear

Regression

Proportion of Mean Deviations .

Test Length RMSD AAD ASD
4

Simulated Tests

15 .969 .995, 7.181

30 1.131 1.192 10.905

50 1.346 1.385 13.211

Operational.Tests

20 .917 .941 2.684

25 1.243 1.300 13.639

Mean 1.121 1.163 9.524

Note. Tabled values represent RMSD, AAD, and .ASD as proportions of the valuesfound

Without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 10; Summer of the Avera d Effects of Postsmoothin b the Method of

Quadratic Regression

Proportion of Mean Deviations

Test Length 1111VISD AAD

Simulated Tests

15 .992 1.001 12.713

30, 1.031 1.042 5.362

50 1.754 1.942 18.898

20 .971 .993 1.394

--- 25 .960 .966 4.249

Mean 1.141 . 1.189 6.523

Operational Tests

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.

*4.
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Table 11. Summary of the Averaged Effects of Postsmoothing by the Method of Cubic

Regression
,10

Proportion of Mean Deviations

Test Length RMSD AAD ASD

Simulated Tests

15 1.077 1.062 2.626

30 1.054 1.053 3.131

50 1.318 1.252, 3.333

Operational Tests

20 1.118 1.130 2.048

25 .996 1.600 2.199

Mean 1.113 1.100 2.667

1%.

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 12. Summary of the Averaged Effects of Post,smoothing by the Method of

Orthogonal Regression

Proportion of Mean Deviations

Test Length MED AAD ASD

Simulated Tests

15 .876 .890 6.779

30 1.012 1.056 9.948

50 .962 1.001 9.103

Operational Tests

20 .884 2.708

25 . 5 1.234 13.048

Mean .982 1.018 8.317

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level. r
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Table 13. Summary'of the Averaged Effects of Postsmoothing by the Method of Logistic

Oen

Proportion of Mean Deviations

Test,Length RMSD AAD AS

Simulated Tests

15 .872 .886 6.767

30 .970 1.003 8.883

50 .940 .979 8.9,0

Operational Tests

20 .879 .902 2.651

25 1.170 1.230 13.001

Mean .966 1.000 8.056

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 14. Summar of the Avera

Splines

d Effects of Postsmoothin the Method of Cubic

r Proportion of Mean Deviations

Test Length

I

RMSD AAD ASD

Simulated Tests

15 .914 .917 1.548

30 .935 .927 h 2.086

50 ...984 .984 1.773

Operational Tests

20 .935 .932 .956

25 .928 .927 1.364

Mean .939 .937 1.545

Note. 'Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, Pas presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table .15. Summary of the Averaged Effects of Postsmoothing by the Method of 5-Point

Moving Weighted Averages *4

Proportion of Mean Deviations

Test Length RMSD ,AAD ASD

Simulated Tests

15 .984 .985 1.115

30 .990 .989 .980

50 .994 .993 1.013

Operational Tests

20 985 .985 .995

25 .990 1.069

Mean .989 .989 1.035

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presentedin Table 1: Averages taken over all samples at all Scores

above chance level.
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Table 18. Summer of the Aver ed Effects of Combined Smoothin: If ethod of

Combined Presmoothing by Ne ative H and Postemoothing by Orthogonal

Regression

Proportion of Mean Deviations

Test Length RMSD . AAD ASD
A

Simulated Tests

15 .831 .841 6.034

30 .965 1.011 9.995

50 .957 1.018 8.903

Operational Tests

20 .771 .780 2.078

25 1.064 1.121 11.742

Mean .918 .954 7.750

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as pre§ented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 17. Summary of the Averaged Effects of Combined Smoothing by 'the Method of

hombined Presmooth'ing by Negative Hypergeometric and Postsmoothing by Quadratic '

Regression

Proportion of -Mean Deviations

Test Length RMSD AAD ASD

Simulated Tests
1

k

15 .898 .907 2.504

30 .916 .923 6.312

50 1.143 1.227 9.310

Operational Tests

20 .397 .155 .246

25 .885 .898 5.855

Mean .848 .822 4.845

C.

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores
3

above chance level.
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Table 18. Summary of the Averaged Effects of Combined Smoothing by the Method of

Combined Presmoothing by Negative Hypergeometric and Postsmoothing by 5-Point

Moving Weighted Averages

Tett Length,

Proportion of Mean Deviations

AAD AS

Simulated Tests

15 .890 .904 2.932

30 .866 .868 3.614

50 .852 .861 3.466

Operational Tests

20 .904 ,.907 "' 2.012

25 .966 .989 7.479

Mean .896 .906 3.901

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 19. Summar of .the Avera d Effects of Combined $ oothin .b the Method of

Combined Presmoothing by 3-Point Moving Weighted Averages and Postsmoothing by

5-Point Moving Weighted Averages

Test Length

Proportion of Mean Deviations

RMSD AAD ASD

30

50

Simulated Tests

.958 .959 1.285

.970 .971 .901

.076 .978 1.292

Operational Tests a=

20 .948 .944 ' 1.106

25 .965 .965 1.601

Mean .963 .963 1.237

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 20. Sumniar of the Aver Effee s of Combined Presmoothin b N tive

Him% eometric and Postsmoothi b Cubic S nes

Proportion of M n Deviations

Test Length RMSD.

co

15 r .885

30 .878

50 .855

20 .902

25* .966

Mean .897

AAD ASD

Simulaed Tests

.898 2.968

.875 3.985

.863 3.613

Operational Tests

.905 1.998

.990 7.463

.906 4.005

Nov. Tabled values represent RMSD, AAD, and ASD as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.
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Table 21. Standard Errors of Unsmoothed Equating Estimated by Three Methods

Kind of Test.

Leugtfil of Test.

Simulated

1,15 30 50

Operational

20 25

Method of Estimation

Lord's Formula 0.15 0.30 0.51 0.18 0.25

Average of 100

Samples 0.13 0.27 0.44 0.18 0.24

Jackknifing 0.15. 0.25 0.47 0.17 0.23

Note. Standard errors were averaged over all scores above the chance or guessing level.
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Table 22. Proportional an e in Standard Errors as a Result of '19 Smoothing_Methods

Kind of Test:
Length of Test:

Simulated
15 30 50

Operational
20 25

Presmoothing

Method of Estimation

3-point moving median.
RIVISD 1 00 Samples 1.00 1.00 1.06 1.00 .99

Jackknifing , 1.07 1.00 1.02
k

1.05, 1.02

5-point moving median
RMSD 100 Samples 1.02 .99 1.027 1.02 1.01

Jackknifing 1.16 1.01 1.00 1.00 1.02

3-point moving weighted averages
RMSD 100 Samples .96 .97 .98 .95 .97

Jackknifing .98 .98 .98 .94 .98

-14
.5-point moving weighted averages

RMSD 100 Samples .99 .99 .99 .99 .99

Jackknifing 1.01 1.0Q .99 .98 1.00

5-point moving weighted averages with root transformation
RMSD 100 Samples 1.00 .99 1.00 .99 .98

Jackknifing 1.01 1.00 1.00 .98 1.01

4253H Twice
RMSD 100 Samples j..02 1.01 1.03 .98 .99

Jackknifing 1.09 .99 .97 .98 .98

Negative hypergeometric
RMSD 100 Samples .89 .87 .85 .91 .97

Jackknifing .89 .80 .88 .81 .87
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Table 22, continued

Kind of Test:
Length of Test:

Simulated Operational
15 30 50 20 25

Postsmoothing

linear regression
RMSD 100 Samples 4 .97 1.13 1.13 .92 1.24
Jackknifing .76 .82 .93 1.08 .88

quadratic regression
RMSD 100 Samples .99 1.03 1.75 .97 .96
Jackknifing .97 .92 .99 .99 .86

cubic regression
RMSD 100 Samples 1.08 1.05 1.32 1.12 .99
Jackknifing .99 1.03 1.45 1.19 .93

orthogonal regression
RMSD 100 Sample§ .87 1.01 .96 .88 . 1.18
Jackknifing .70 .85 2.15 1.09 .89

logistic ogive
RMSD 100 Samples .87 .97 .94 .88 1.17
Jackknifing .70 .85 2.03 1.09 .88

cubic splines
RMSD 100 Samples .91 .94 .98 .94 .93
Jackknifing 1.00 1.01 1.01 .99 .93

5-point moving weight averages
RMSD 100 Samples .98 .99 .99 .99 .99
Jackknifing' .95 .99 .99 .98 .99

_
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Table 22, continued

Kind of Test: Simulated Operational
Length of Test: 15 30 50 20 25

Combined Smoothers

negative hypergeometric orthogonal regression
RMSD 100 Samples .83 .97 .96 .77 1.06
Jackknifing .74. .78 .65 .77

negative hypergeometric + quadratic regression
RMSD 100 Samples .89 .91 1.14 .40 .89
Jackknifing .91 .79 1.01 .86 .85

negative hypergeometric + 5-point moving weighted averages
liMSD 100 Samples .89 .87 .85 .90 .97
Jackknifing .89 .80 .87 .81 .87

3 point moving weighted averages + 5-point moving weighted averages
RMSD 100 Samples .96 .97 .98 .95 .97

Jackknifing .97 .97 .98 .93 .97

negative hypergeometric + cubic splines
RMSD 100 Samples .89 .88 .86 , .90 .97
Jackknifing .89 .80 .88 .81 .87

Note. Table entries show the magnitude of standard error estimates for smoothed equatings
when such standard errors expressed as proportions of the corresponding unsmoothed equatinr.
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IV. DISCUSSION

This section considers first the presmoothing methods, then the postsmoothing
methods, then the combined smoothers. It then presents conclusions based on the
results, followed by a discussion of the limitations of the study. Finally,
recommendations for operational implementation and for further study are presented.

To evaluate the effects of smoothing, particularly its effects on deviations, it is
helpful to consider such deviations within the context of the accuracy of ability or
achievement tests more generally. The standard errolipo0 equating discussed in this
report are not the only measurement errors which arise in the testing process. There
are also standard errors of measurement- that are intrinsic to any test which is not
perfectly reliable. The following formula (Allen & Yen, 1979) relates reliability (R),
standard error of measurement (SE), and -test score standard deviation (SD).

SE = SD *

Thus, the standard error of measurement for the experimental test of length 15, based
on a reliability (KR-20) estimate of .80 and a standard deviation of 3.28, both given in
Table A-1, is 1.47. Based on data from the same table, the standard error of
measurement for the experimental test of length 30. is 2.20, and that for the
experimental test of length 50 is 2.74. The corresponding average standard errors of
equating, given in Table 21; as estimated by Lord's formula, are .15, .30,, and .51. Thus
the standard error of equating ranges from approximately only 10 to 20 percent of the
standard error of measurement.

131 esmoothing
Consideration' of Figures through B-5 shows that smoothing by the method of

3-point moving medians had no consistent beneficial effect. ,Frequently it resulted in
less accurate equatings than unsmoothed equatings. These effects are summarized in
Table 2. The means of the deviation measures show that, on the average, the smoother
was harmful.

Similar results are obtained from the use of 5-point moving medians (Figures B-6
to B-10 and Table 3). There is no consistent beneficial effect and frequent deleterious
effects on all three measures of deviation. Whatever local gains are achieved are
offset by losses elsewhere.

The method of 3-point moving weighted averages, whose results appear in Figures
B-11 to B-15 and Table 4, is the first method to show generally encouraging results,
although the gains are modest. The gains are particularly evident on the 15-item
simulated test and the 20-item operational test. There is a modest increase in the ASD
at the high score levels in both tests.

The method of 5-point moving weighted averages (Figures B-16 to 13-20 and Table
5) has generally negligible effects on all three-measures of deviation.

The result of applying the method of 5-point moving weighted averages with root
transformation, as shown in Figures B-21 to B-25 and. Table 6, is virtually identical to
the result of applying the method of 5-point moving weighted averages without root
transformation, as described above. There was no significant benefit achieved.

Smoothing by the method of 425311 Twice (Figures B-26 to B-30) was generally
ineffective and resulted in local increases and local decreases in the measures of
deviation. Table 7 bears out that impression by showing harmful or minimal effects.

Finally, the results of smoothing by means of the negative hypergeometric
(Figures B-31 to B-35) are the first to show consistent improvement in RMSD and AAD
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as a consequence of smoothing. The effects are particularly impressive with the
simulated tests, presumably in part because the criterionequatings for those tests are
nearly perfect, not estimated from very large samples.. The gains are not 'uniform
across the tests. On the shorter tests at lower scores, the measures of RMSD and AAD
actually increase as ,a consequence of using the negative hypergeometric. The
considerable decreases in RMSD and AAD are also indicated in Table 8. The beneficial
effects of the neptife hypergeomtric do not extend to the measures of ASD. The ASD
increases both globally and locally, sometimes quite drantatically. These increases
were expected at the lower end of the test, where guessing`is a factor, but increases at
the upper end were not expected. It must be noted, however, that as Table 1 shows, the
ASD figures were low initially, so that a tripling of ASD may still denote an acceptably
low level. The question of what amount of ASD may be acceptable is complex. Until
there are equating methods which can be show- to be consistent, sufficient, efficient,
and unbiased, it will be necessary to balance such properties against each other to
determine the mix which is optimal for a given purpose. The largest increase in ASD
occurredfor the test length 50 (Table 8). The increase, by a factor of approximately
7.5, resulted in an increase in the mean ASD (Table 1) from 0.0V5 score points to 0.11
Score pots. The mean RMSD for the same test was 0.24 without smoothing, and 0.23
with smoothing. Thus for the 50-item test used in this study the increase in ASD was
greater than the reduction in RIVLSD, although ttie resulting ASD was only half the
magnitude of the RIVED.

If an increase in ASD is less than the decrease in RMSD, then the net benefit may
make the use of a smoother which increases ASD justifiable. An increase in ASD may
be more acceptably when two tests are equated so that tht may be usedey
interchangeably than the same increase would be wien the objective 4the equating is
to replace one operational test with another. If two tests are used fkerchangeably,
then a systematic tendency to deviations in one direction on one test will be offset by
scores on the other test. Thus, if the forms of the test are administered at random to
examinees, there will be no expected advantage to any examinee. If, in contrast, a test
is equated to another so _that the older test may be replaced, then ASD will result in
equated scores whiacji give results which differ systematically from the scores expected
on the test which was replaced.

Why is it that the negative hypergeometric smoothing method outperforms the
other presmoothers? It is likely that it is in part because that smoother takes into
account all of the information in a distribution's mean and standard deviation in arriving
at the smoothed frequency for each point. The other presmoothers respond only to
Ideal conditions and so may incorporate, rather than eliminate, some sample-dependent
local fluctuations. Although the negative hypergeometric floes require the assumption
that all items are equally difficult, an assumptioh-usually contradicted in practice, itsrsuccess as a presmoother indicates that its use is robust against of this
assumption. Furthermore, among the seven presmoothers investigated, only the
negative hypergeometric is based on a mathematical model of testing. The other
smoothers, work by applying general algorithms which have been shown to be useful in a
wide varietysq circumstances. It appears that those smoothers do not bring the sample
score distributions closer to the shape of the distribution of parent popUlation, whereas
the negative hypergeometric does. The negative hypergeometric does so, however, at
the cost of increased ASD at some specific test scores.
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Postsmoothers
The use of linear regression postsmoothing, as shown in Figures B-36 to B-40,

resulted in modest reductions of RMSD and AAD at the middle ranges, butrincreases at
the upper score ranget;--.The increases in the deviations of the upper score ranges are
especially prominent in the simulated test of length 80 (Figure B-38). Since that
pattern turns up also with the quadratic and cubic regression postsmoothersFigures B-
43 and B-48), it merits consideration. First, those deviations were not due to the
results of the monotonicity constraint imposed on the curvilinear regression smoothing.
Although the smoothing-algorithm contained the provision for the useof that constraint
where needed; it was in fact never required for the data analyzed for this efforts -The'
deviations in the case of the unsmoothed equatings are modest, whereas the smoothed
deviations are considerably greater for scores above 47. The concomitant increases in
ASD indicate that the increases in-RMSD and AAD are due not necessarily to greater
variability but rather to consistent deviations in one direction. Furthermore, between
tests, the departures are sometimes in one direction, sometimes in the other, as the
contrast of the right end of the ASD panels in Figures B-36 and B-37 shows. That this
pattern of deviations occurs not only in the curvilinear smoothings, but also in the
linear regression smoothings further confirms that it is not due to any nonmonotonicity
of the curvilinear smoothing functions, but to the inability of the functions to follow
the points adequately. Table 9 summarizes the effects of the linear regression
smoother.

Figures B-41 to B-45 present the effects of postsmoothing with quadratic
equations. They indicate modest benefits locally. Improvements in RMSD and AM) are
partially offset by increases in ASD. Again, deviation measures tend to be high at the
upper end, especially with the 50-item test. Table 10 shows the nearly 20-fold
increases, from 0.028 to 0.53, in ASD for the 50-item test.

Use of cubic polynomial regression smoothing has less benefit than does quadratic
regression in most cases (Figures B-46 through B-50), but it also causes less increase in
RMSD at high scores, and less of an effect on ASD. Since a cubic function can follow a
given curve more accurately than can a quadratic function, one would expect that the
cubic regression smoothing would lead to more accurate equating than linear or
quadratic regression smoothing. Findings to the contrary suggest that the cubic
functions may have been foll4wing and fitting sample- dependent fluctuations in the
individual equatings. Table 11 thows its general effectiveness. "

Smoothing by means of orthogonal\regression (Figures B-51 to B-55) had effects
which were very similar to those which resulted from the use of linear regression. The
deleterious effects at the high end of the test, however, were less pronounced. Again,
there were considerable increases in ASD, although the direction of those increases was
not consistent. As Table 12 shows, orthogonal' regression was especially variable in its
effects on RMSD,

Pastsmoothing by means of the logistic ogive, the results of which are shown in
Figures B-56 to B-60 and summarized in Table 13, resulte'd in modest reductions in
RMSD and AAD, at the usual cost of increases in ASD, and with the previously noted
problems at the highest scores. On the whole, the results of smoothing with the logistic
ogive are modestly encouraging.

The results of smoothing by cubic smoothing splInds (Figures B-61 to B-65 and
Table 14), are the most promising of the results using pot smoothing methods. There
are modest reduetibas throughout in the amounts of. RMSD and AAD, combined with no
end point problems at either end, and no particularly severe problem with increases in
ASD. Table 14 shows that the gains, though modest, are Consistent for the cubic
smoothing spline method.
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Finally, as Figures B-66 thiough B-70 show, the effect of postsmoothing by 5-
point moving weighted averages was virtually nil at all scores and with all three
measures. Table 15 confirms the general lack of effect.

Combined Smoothers
. Combining negative hypergeometric presmoothing with postsmoothing by means

of orthogonal regression (Figures B-71 to B45) has effects on RMSD and ASD which are
greatly Inferior to the effects of negative hypergeometric presmoothing alone at the
higher score points. This implies that the fitted orthogonal regression smoothing line
does not follow the equipercentile points effectively.

The same problems are evident, though to a lesser degree, with the combination
of the negative hypergeometric presmoothing and quadratic regression postsmoothing
(Figures B--76 to B-80). Evidently the curvilinear function-can follow the equating
points better than can the straight line. Increases at the higher scores on the 50-item
test are evident (Figure B-78), but, in contrast, the combination was very successful for
the 20-item test. (Figure B-79). The latter, in fact, was the most effective combination
seen in this study for any of the five tests considered. .

The combination of presmoothing by means of the negative hypergeometric and
postsmoothing by the 5-point moving weighted averages (Figures B-81 through B-85)
again does not result in gains beyond those achieved with the negative hypergeometric
presmoothing alone. The difference in scales makes that difficult to perceive, but it is
confirmed by Tables 8 and 18, which have entries that are almost equal to each other.

Figures B-86 through B-90 show that combining the presmoothing method of 3-
point moving weighted averages with the postsmoothing method of 5-point moving
weighted averages results in slight reductions in RIVISD in some cases (Figure 9-86), and
negligible increases in ASD. Table 19 shows that although the gains are slight, they are
consistent. .

Finally, Figures B-91 through B-95 show the effects of combining presmoothing by
the negative hypergeometric with tsmoothing. by cubic smoothing splines. RMSD is

isdecreased at all test lengths, is AAD, whereas ASD is generally increased, especially
with the test of length 25. Th effects on ASD vary particularly strongly as a function
of test score, as Figure B-92 shows well.

Jackknifed Estimates
The close agreement of the standard errors as estimated i.)y the three methods,

shown in Table 21, supports the contention that each of the three estimation methods is
both appropriate and correctly executed. Although there are slight differences in the
estimates, they are- not large enough to call into question the appropriateness of the
methods.

The similarity of results continues, for the most part, in Table 22, where the
results of smoothing are summarized for all 19 smoothing methods as estimated by
RMSD averaged over 100 reduced sample equatings and by jackknifing. There are,
however, some cases of disagreement, such as that in.the case of postsmoothing by
means of linear regression. There, jackknifed results indicate that the method is more
generally effective than do the results of the averaged RMSD figures. The jackknifing
was applied to groups of 2,000 which were based on population expected proportions,
mg on small samples. As a result, it is plausible to suggest that the straight line fit the
jackknifed samples better than the "true" samples of 2,000 used in the computation of
RMSD because the population equating deviates from a straight line less than the small
samples do. A similar possibility is evident for the case of combined negative
hypergeometric and logistic ogive smoothing.
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In general'it is difficult to say that either estimation method is unequivocally
better than the other, but since the jackknife used data based on population proportions,
it is to be expected that analytic functions should fit such data better than they would
fit data with sample-dependent fluctuations. In any case, the jackknife does not allow
estimations of ASD or AAD.

Since the two methods do give somewhat divergent results in some cases, a
conservative criterion for.the recommendation of adopting a smoothing method is that
the method should appear advantageous with both estimation techniques, mean. RMSD
and jackknifing. The only method meeting that criterion at all test lengths is the
method of presmoothing by the negative hypergeometric.

Conclusions
One presmoother and one postsmoother stand out is deserving further study and

consideration for future operational use. The presmoother is the negative
hypergeometric; the postsmoother is the cubic smoothing spline.

When its effect is estimated by jackknifing, the cubic smoothing spline was not
effective in reducing RMSD with the operational test of length 20, nor with any of the
simulated tests. There was, however, consistent improvement resultinpfrom the use of
the smoothing splines- as measured by RMSD. This divergence _of measures of
effectiveness suggests the need for further study before unequivocal recommendations
may be made. tik

Presmoothers other than the negative hypergeometric are either ineffective,
inconsistent in their effects, or have associated with them disadvantages such as
greatly increased ASD. Divgi (1983) likewise found merit in the use of the negative
hypergeometric, although he also found ,that the three-and four-parameter beta
binomial distributions were more effective than the negative hypergeometric. (The
negative hypergeometric is a two-parameter beta binomial:)

The lack of effectiveness of the other presmoothers may say less about the
presmoothers than it does about the robustness of equipercentile equating. The various
ctimulative frequency counts used in equating may be degraded by all of the smoothers
except the negative hypergeometric.

The subie smoothing spline has a number of intuitively appealing characteristics:
it can follow a curve of an shape, it can pass as close to the fit points as appropriate,
and it is theoretically ne ral in the sense that its use does not depend on the
applicability or appropriaten of any statistical theory of testing. Its effectiveness,
which is also reported by Kolen (1983), is thus not, 'surprising. Although the
improvements due to the splines were modest, the fact that there is no concomitant
increase in ASD makes their use particularly attractive. The cubic smoothing splines
perform, in effect, exactly what hand smoothing was to do: It passes a theoretically
neutral curve among the points. Its effectiveness may derive from its mimicking of the
original objective of postsmoothing.

Limitations
The present study is limited in several respects, all of which may tend to reduce

its generalizability to other applications.
First, only five tests were used: two operational and three simulated.

Generalizations to other tests may be inadvisable, if the tests do not statistically
resemble those used for this study.

Second, the tests used, especially the simulated tests, may be. more similar to
each other than are most operationally equated tests. Generalization to less similar
tests is of questionable appropriateness.
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Third, an equated pairs were pairs of tests of the same length, a condition not
always found operationally.

Finally, within the current methodology it has not been possible to investigate a
question of potential importance. One of the particularly significant advantages of
equipercentile test equating is that when tests equated by the equipercentile method
are used interchangeably to select only those who score 'at or above a certain
percentile, then there is no expected advantage to any examinee in taking any
particOlar form of the test in place of any other form. It is not clear that presmoothed
equipercentile equatings retain that property. In- applications where such percentile
invariance is an essential consideration, the use of presmoothing should await further
research.

Recommendations
Among the presmoothing methods, the negativ,e hypergeometric and, by extension,

other smoothers of the same beta binomial family, deserve consideration for
operational use. If any of the presmoothers studied here is to be adopted, then the
negative hypergeometric would be the most appropriate. It has the effect of reducing
RMSD by about ten percent, a benefit which could also be achieved by increasing
sample size by about 20 percent.

Among the postsmoothers, gains were not as evident with .linear, quadratic, and
cubic regression smoothing as had been anticipated. In those cases where an a priori
decision has been made that the smoothing shall be linear, the use of orthogonal
regression should be favored over the use of standard regression. Where the shape of
the regression fitting is not determined in advance, then the use of cubic splines
appears appropriate. These two postsmoothing methods, orthogonal regression and
cubic splines, are appropriate for operational use with tests similar to those studied
here, and may be useful with other tests if further research confirms their usefulness.

It is further suggested that fut, inv stigatians consider not only AAD, R1VIS,
and ASD, but also look at the worst cas to etermine whether, as Divgi (1983) found,
there are some equatings in which the action of a generally helpful smoother results in
less accurate results than does either no smoother or some other. smoother. Dives
results suggested that the four-parameter beta binomial was effective in most
equatings, but that in a small proportion of cases its use was not appropriate because it

creased deviations markedly.
Analytic derivations of the standard errors associated with equating. distributions

presmoothed by means of the negative hypergeometric or related smoothers would
contribute to an understanding of the expected functioning of that smoother.

Fin'ally, the figure's and tables show that benefits are generally achieved at the
cost of increases in. ASD. The use of resampling techniques, such as jackknifing, known
to reduce ASD, might be applied with the promising smoothers to determine if the two
together would reduce 111VISD and ASD. Such combining of a smoothing technique with
a resampling might bring the benefits of both to the equating process.
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Appendix A

Technical Description of Simulated Tests

The tests used in the 'simulated equatings are described in detail in the
accompanying tables. Item statistics, distribution statistics, and item paraineters are
all given. Test 15.1 was the experimental test of length 15, and test 15.2 was the
reference test. The tests of lengths 30 and 50 were numbered similarly.. The item
parameters (a, b, and c) were used to develop the tests and to derive the expected
observed score distributions. All of the other statistics for the items and for the test as
a whole were developed from a single sample of 2,000 simulees. Table A-1 presents
test summary statistics. Tables A-2 through A-7 present item statistics.
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Table A - 1. Test Statistics for the Simulated Teats

Test Mean

Standard

Deviations Skew Kurtosis KR-20 KR-21

15.1 10.25 3.28 -0.44 -0.67 .80 .75

15.2 10.55 3.25 -0.48 -0.67 .80 .75

30.1 18.54 6.63 -0.14 -0.97 .89 .87

30.2 17.93 6.57 0.00 -0.95 .88 .86

50.1 38.33 10.36 -0.57 -0.66 .93 .93

50.2 35.17 9.61 -0.48 -0.67 .91 .91
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Table A - 2. Itym Statistics for Tests 15.1

ITEM . A B C. P RP RB

1 1.067 -2.146 0.237 0.950 0.328 0.690

2 1.222 -1.290 0.240 0.883 0.481 0.788

3 1.297 -1.120 0.230 0.868 0.492 0.778

4 1.420 -0.793 0.273 0.916 0.526 0.765

5 1.487 -0.757 0.247 0.804 0.541 0.776

6 1.330 -0.591 0.240 0.766 0.564 0.779

r 1.900 -0.395 0.250 0.722, 0.624 0.833

8 1.417 -0.350 0.260 0.736 0.561 0.756

9 1.439 -0.265 0.261 0.717 0.586 0.780

10 1.420 -0.094 0.241 0.637 0.583 0.747

11 1.371 0.007 0.269 0.656 0.543 0.701

12 1.590 0.677 0.226 0.449 0.499 0.628

13 1.150 0.682 0.245 0.489 0.489 0.613

14 1.530 0.778 0.240 0.429 0.478 0.603

15 1.430 1.393 0.235 0.326 0.356 0.463

KEY: A = a parameter; B = b parameter; C = c parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A. -3. Item Statistics for Tests 15.2

ITEM A 8 C P RP RB

1 1.557 -1.940 0.248 0.956 0.339 0.746

2 1.413 -1.790 0.234 0.944 0.384 0.780

1- 3 1.240 -1.226 0.237 0.878 0.468 0.751P

4 1.080 -0.866 0.237 0.804 0.502 0.720

5 1.410 -0.614 0.242 0.768 0.569 0.787

6 1.370 -0.488 0.248 0.752 0.577 0.788

7 1.220 -0.460 0.256 0.729 0.546 0.733

8 1.096 -0.412 0.251 0.735 0.526 0.709

9 1.350 -0.340 0.248 0.728 0.584 0.783

10 1.468 -0.299 0.215 0.680 0.620 0.809

11 1.405 -0.140 0.244 0.675 0.561 0.730

12 1.610 0.146 0.246 0.584 0.581 0.734

13 1.494 0:482 0.227 °0.508 0.538 0.674

14 1.263 0.865 0.262 0.440 0.454 0.571

15 1.146 1.261 0.247 0.368 0.375 0.480

KEY: A = a parameter; B = b parameter; C = c parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A -4. Item Statistics for Tests 30.1

C P RP , ABITEM A B

1 1.706 -1.800 0.242 0.944 0.362 0.737

2 1.051 -1.177 0.242 0.850 0.441 0.675

3 1.362 -1.088 0.229 0.852 0.519 0.798

4 1.639 -1.011 0.231 0.846 0.509 0.774

5 1.447 -0.926 0.217 0.820 0.531 0.786

6 1.771 -0.838 0.223 0.827 0.555 0.821

7 1.411 -0.806 0.240 0.806 0.521 0.749

8 1.262 -0.758 0.217 0.792 0.515 0.729

9 1.291 -0.683 0.244 0.796 0.527 0.749

10 1.379 -0.520 0.222 0.739 0.554 0.749

11 1.108 4.380 0.227 0.715 0.519 0.690

12 1.443 -0.241 0.227 0.692 0.582 0.764

13 1.685 -0.064 .0.224 0.640 0.593 0.761

14 1.403 -0.023 0.231 0.624 0.571 0.729

15 1.673 0.003 0.235 0.611 0.593 0.755

16 1.403 0.077 0.225 0.596 0.544 0.689

17 1.283 0.217 0.227 0.559 0.489 0.615

18 1.377 0.323 0.221 0.542 0.518. 0.651

19 1.656 0.420 0.219 0.503 0.540

20 1.641 0.512 0.216 0.472 0.506 0.634

21 1.603 0.563 0.225 0.478 0.511 0.641

22 1.287 0.569 0.222 0.488 0.485 0.608

23 1.226 0.574 0.226 0.486 0.453 0.567

24 1.242 9.611 0.249 0.499 0.439 0.550

25 1.313 0.624 0.229 0.467 0.473 0.594

26 0.930 0.880 0.235 0.437 0.421 0.530

27 1.266 0.895 0.221 0.407 0.384 0.486

28 1.159 0.994 0.224 0.406 0.388 0.491

29 1.578 1.251 `0.215 0.323 0.397 0.517

30 1.629 1.480 0.243 0.315 0.290 0.379

KEY: A = a parameter; B = b parameter; C = c parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A -5. Item Statistics for Tests 30.2

C P RP R8ITEM A 8

1 1.266 -1.498 0.239 0.907 0.379 0.661

2 1.717 -1.424 0.232 0.924 0.3.64 0.676

3 1.287 -1.110 0.236 0.856 0.464 0.717

4 1.010 -0.731 0.236 0.776 0.453 0.632

5 1.373 -0.675 0.202 0.775 0.533 0.741

6 1.336 -0.613 0.243 0.771 0.505 0.701

7 0.977 -0.605 0.243 0.755 0.458 0.627

8 1.450 -0.497 0.224 0.747 0.553 0.752

9 1.310 -0.264 0.235 0.673 0.518 0.674

10 1.211 -0.169 0.221 0.666 0.549 0.711

11 1.349 -0.150 0.226 0.660 0.542 0.700

12 1.100 -0.131 0.230 0.661 0.523 0.676

13 1.509 -0.086 0.217 0.660 0.577 0.746

14 1.361 -0.065 0.229 0.625 0.553 0.706

15 1.240 -0.032 0.242 0.613 0.518 0.659

16 1.337 0.020 0.212 0.622 0.563 0.719

17 1.671 0.082 0.244 0.613 0.566 0.720

18 1.663 0.198 0.236 0.558 '0.580 0.729

19 1.573 0.221 0.226 0.579 0.596 0.752

20 1.606 0.357 0.252 0.540 0.533 0.669

21 1.418 - 0.364 0.240 0.548 0.534 0.671

22 1.591 0.678 0.223 0.458 0.486 0.611

23 1.601 0.898 0.223 0.410 0,480 0.607

24 1.349 1.001 0.211 0.385 0.412 0.524

25 1.557 1.061 0.241 0.399 0.416 0.528

26 1.547 1.114 0.255 0.397 0.374 0.475

27, 1.124 1.287 0.238 0.378 0.377 0.481

28 1.307 1.304 0.234 0.363 0.309 0.396

29 I.697 1.548 0.230 0.305 0.315 0.414

30 1.900 1.600 0.235 0.304 0.292 0.384

KEY: A = a parameter; B = b parameter; C = c parameter; P = proportion of Simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A - S. Item Statittlee for Tests 50.1

A 8 RP RI

1 1.330 -1.620 0.229 0.921 0.429 0.788

2 1.538 - 1.540. 0.254 0.923 0.451 0.130.

3 1.433 -1.410 0.229 0.197 0.490 0.132

4 0.770 -1.311 0.244 0.840 0.404 0.609

5 1.005 -1.265 0.250 0.856 0.431 0.668

6 1.096 -1.237 0.249 0.857 0.481 0.746

7. 0.900 -1.225 0.253 0.840 0.440 .9,443

8 0.951 -1.171 0.240 0.839 0.441 0.663

9 1.321 4.1511 0.248 0.877 0.483 0.700

10 1.080 -1.123 0.241 0.840 0.433 0.651

11 1.101 -1.086 0.255 0.842 0.464 0.701

12 0.828 -1.012 0.239 0.799 0.439 0.627

13 1.060 -0.984 0.249. 0.818 0.496 0.724

14 1.222 -0.957 0.225 0.820 0.529 0.775

15 1.200 -0.950 0.228 0.816 0.510 0.742

16 0.822 -0.882 0.151 0.792 0.415 0.511

17 1.110 -0.861 0.240 0.792 0.512 0.726

18 1.171 -0.859 0.244 0.814 0.494 0.718

19 1.193 -0.786 0.226 0.785 0.513 0.721

20 1.383 -0.740 0.261 0.795 0.528 0.750

21 1.067 -0.739 0.247 0.772 0.414 0.678

22 1.014 -0,694 0.234 0.746 0.534 0.726

23 1.026 -0.559 0.240 0.734 0.510 0.617

24 1.220 -0.515 0.245 0.741 0.545 0.737

25 1.267 -0.487 0.248 0.726 0.513 0.686

26 0.979 -0.464 0.246 0.725 0.469 ---0.627

27 1.273 -0.434 0.263 0.731 0.509 0.613

28 1.156 -0.432 0.240 0.710 0.528 0.700

29 1.280 -0.429 0.240 0.722 0.569 0.760

30 1.401 -0.427 0.234 0.721 0.557 0.743



Table A 6. (continued)
L

able.

31 1.243 -0.426 0.246 0.721 0.521 0.695

32 1.098 -0.425 0.241 0.720 0.495 0.660

33 1.034 -0.279 0.240 0.687 0.475 0.621

34 0.624 -0.219 0.252 0.684 , 0.332 0.434

35 1.465 -0.216 0.235 0.668 0.575 0.746

36 1.133 -0.170 0.245 0.657 0.545 0.703

37 1.074 -0.167 s, 0,232 0.661 0.473 0.612

38 1.394 -0.161 0.241 0.658 0.560 0.723

39 0.829 -0.157 0.250 0.655 0.414 0.533

40 1.366 -0.106 0.238 0.636 0.555 0.712

41 1.222 -0.104\ 0.256 0.664 0.512 0.663

42 0.959 0.018 0,739 0.605 0.464 0.589

43 1.381 0.072 0.';',9 0.572 0.555 0,700

44 1.069 0.318 0.247 0.549 0.450 0.565

45 0.981 0.343 0.232 0.538 0.427 0.536

46 1.389 0.362 0.226 0.541 0.495 0.622

47 1.166 0.415 0.251 0.540 0,441 0.554

48 1.071 0.496 0.251 0.514 0.434 0.544

49 1.477 0.517 0.235 0.490 Q.451 0.565

50 1.268 0.605 0.227 0.473 0.437 0.548

KEY; A = a parameter; B = b parameter; C = c parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A 7. Item Statistics for Tests 50.2

ITEM

1

2

3

4

5

6

7

0.976

0.941

0.936

1.224

0.946

0.890

1.072

0.966

-1.593

-1.367

-1.268

-1.183

-1.177

-1.166

-1.141

-1.139

C.

0.236

0.255

0.233

0.246

0.234.

0.242

0.263

0.236

P

0.886

0.870

0363

4.875

0.843

0.832

0.843

0.815

RP

0.397

0.400

0.433

0.435

0.414

0.423

0.485

0.452

RD

0.653

0.636

0.678

0.699

0.627

0.629

0.734

0.656
4

9 1.046 -1.127 0.230 0.837 0.485 0.728

10 142 -1.086 0.222 0.840 0.505 0.761

1. 5 -1.019 0.241 0.843 0.476 0.722

1 0.8 -0.953 0.232 0.808 0.408 0.589

13 0.878 -0.942 0.240 0.799 0.440 0.628

14 0.81. -0.820 0.253 0.782 -0.415 0.581

15 0.867 -0.799 0.229 0.785 0.462 0.650

16 0.882 -0.779 0.249 0.778 0.448 0.625

17 0.831 -0.670 0.227 0.743 0.476 0.645

18 0.830 -0.653 0.244 0.718 0.437 0.582

19 0.910 -0.567 0.239 0.737 0.482 0.650

20 0.940 -0.535 0.265 0.73 1 0.448 0.602

21 0.924 -0.508 0.247 0.737 0.491 0.662

22 1.129 -0.485 0.244 0.741 0.511 0.691

23 0.853 -0.418 0.238 0.696 0.430 0.565

24 1.116 -0.408 0.245 (0.726 0.527 0.705

25 0.996 -0.395 0.243 0.710 0.447 0.592

26 0.951 -0.371 0.238 0.677 0.498 0.649

27 0.863 -0.333 0.222 0.685 0.429 0.561

28 0.783 -0.317 0.254 0.694 0.378 0.497

29 1.038 -0.201 0.230 0.669 0.472 0.613

30 0.913 -0.154 0.234 0.631 0.503 v.644
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Table A - 7. (continued)

31 1.256 -0.077 0.235 0.623 0516 0.651

32 0.921 -0.053 0.240 0.647' 0.446 0.574

33 0.991 -0.041 0.238 0.627 0.492 0.629

34 0.532 -0.020 0.242 0.613 0.382 0.417

3.5 0.815 0.021 0.238 0.613 , 0.430 0.547,

36 0.882 0.039 0.240 0.601/ 0.442 0.560

37 410.799 0.042 0.238 0.604 0.422 0.535

38 1.032 0.067 0.244 0.627 0.478 0.611

39 0.915 0.087 0.222 01,596 0.486 0.616

40 0.889 0,123 0.231 0.612 0.440 0.559

41 0.976 0.155 0.234 0.599 0436

42 0.816 0.198 0.248 .406-

43 0.532 0.241 0.240 0.576 0.322 0.406

44 0.919 0.298 0.233 0.553 0.427 0.537

45 0.746 0.301 0.236 0.567 0.379 0.478

46 1.175 0.324 0.251 0.547 0.461 0.580

47 0.716 0,358 0.230 0.553 0.398 0.500

48 0.986 0.475 0.242 0.524 0.445 0,558

49 0.758 0.554 0.236 0.506 0.370 0.464

50 0.559 0.743 0.236 0.497 0.308 0.386

KEY: A = a parameter; B = b parameter; C = c parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Appendix B

Figures showing the effects of the smoothing procedures.
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Figure B-1
Deviations of sample equatings (RMSD; AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15,
Test Type: Simulated
Smoothing: Presmoothed by 3-point moving medians
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Figure B-2
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 3-point moving medians
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Figure B-3
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Teat Type: Simulated
Smoothing: Presmoothed by 3 -point moving medians

0.71

R
M
S

0.18

O .71

H
H

6

O .18

++ +++++
+4-_ +4.

13
NUMBER CORRECT

no

O . 1 1

-0.47

+ + +++
+++

++ +

13.
NUMBER CORRECT

no

13
NUMBER CORRECT

68

50



Nun B-4
Deviations of sample equatinp (R% D, AAD, and ASD) from criterion
equating. Unemoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Presmoothed by 3-point moving roedians
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Figure B-5
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. UnsmOothed equating: solid ling; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Presmoothed by 3-point moving medians
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Figure B-6
Deviations of sample equatings (RIV6D, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothdd equating: + marks.
Test Length: 15
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving medians
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Figure B -7

401

Deviations of sample equating: (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving medians
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Figure B-8
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving Medians
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Figure B-9
Deviations of sample equatings (RIVISD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Presmoothed by 5-point moving medians
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Figure B -I 0
I

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: .Operational
Smoothing: Presmoothed by 5-point moving medians
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Figure 1311

4

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: 4- marks.
Test Lengt 15
Test Type: Simulated
Smoothing: Presmoothed by 3-point mcving weighted averages
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Figure B-12
Deviations of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 3-point moving weighted averages
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Figure 8-13
Deviations of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equating solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Presmoothed by 3oint moving weighted averages
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Figure B-14
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Presmoothed by 3-point moving weighted averages
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Figure B-15
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Presmoothed by 3-point moving weighted averages
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Figure B-164. Deviations of sample equetings .(RIVISD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 15
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving weighted averages
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Figure B-17
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving weighted averrIges
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Figure B-18

3.

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving weighted averages
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Figure B-19
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20

moiTest Type: Operational
Smoothing: Presmoothed by 5-point moving weighted averages
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Figure B-20
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing:
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Figure B-21
Deviations of sample equatings
equating. Unsmoothed equating:
Test Length: 15
Test Type: Simulated.
Smoothing: Presmoothed by

root transform at
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Figure S-22

C-

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Ltnsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving weighted averages with

root transformation
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figure B-23
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Presmoothed by 5-point moving weighted averages with

root transformation
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. P
Deviations of sample equatings (RIVISD, AAD, and ASD) from qt.iterion
equating. Unsmoothed equating solid line; smrthed. equating: + niarks.
Test Length: 20 ...
Test Typek Operaticeal .

Smoothing Presmoothed by 5-point moving weighted averages with
root transformation
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Figure.B-25
Peviations of Sample equatin (RMSD, AAD, and ASD) from criterion
equiting. Unsmoothed equatin . solid line; smoothed equating: + marks.
Test Length: 25

/ Test Type: Operational
Srlioothing: Presmoothed b -point moving weighted averages with

root transformation .c7;
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Figure B -26
7 -b.

140Deviations of sample equatings (RI D, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating + marks.
Test Length: 15
Test Type: Simulated
Smoothing: Presmoothed by 4253H Twice
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Figure B-27

H

Deviations of sample evatings (MED; MD, and ASD) front diterion
equating. -Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Presmoothed by 4253H Twice,
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Figure 8-28
-I " Deviations of sample equating. (RNSD, AAD, and ASD) from criterion-.), equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 50 '[ Teat Type: . Simulated
. Smoothing: Preamoothed by 4253H Tiviei
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Figure B-29

A

I.

.

DeVia tions of sample equatings (RIVED, AAD, and ASD) from criterion
, equating. Unsinoothed equating: solid line; smoothed equating: + marks.

Test Length: 20
Test Type: Operatimalc
Smoothing: Presmoothed by 4253H Twice
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Figure B-30

0

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Presmoothed by 4253H Twice
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gigues B-310 Devtations of sal:Agile equating!, 4R! D, AAD, and ASD) from criterion
equating. Unamoothed equating: solid line; smoothed equating; + marks.

-.Test Length: 15
Test Type: Simulated

'Smoothing: Presmoothed by negative hypergeometric
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Figure 8-32 '
Deviattofis of sample equatings MSD, AAD,' and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated 4

ASmoothing: Presmoothed by negative hypergeometric
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to. Figure B-33

Q

6

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Presmoothed by negative hypergeometric.
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Figure B-34
Deviations of simple equatings (R1ViSD; AAD, and ASD) from criterion

'equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Presmoothed by negatfr hypergeometric
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Figure B-35
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Presmoothed by negative hypergeometric
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Deviations of sample equating' (RIVED, LAD, and AND) from criterion
equating.' Unemoothed quating's solid line; smoothed,eiouatings + marls.
Test Lengths
Test Types Simulated
Smoothings Postsmoothed linear regreuion
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N IFigure B-37 '
: Deviations of sample equatings (RNED, AAR, and ASD) from criterion

equating. Unsthoothed equating: solid line; smoothed equating: + marks.
Test Le:v.1h: 30
Test Type: Simulated /Smoothing: Pcstsmoothed bylinear fegression* , ' 4-

M

0

ti

0.13

177

O .P4

X**

0.25

4

+ + + ++

NUMBER CORRECT

NUMBER CORRECT 3f3

+
+ +

8
tit3MBER CORRECT

102

30



Figure B-38

I

Deviations of sample equatings (R1VSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test tength: 50
Test Tljpe: - Simulated
Smoothing: Postsmoothed by linear regression
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Figure B$9
Deviations of sample equating (RfaiD, AAD, and ASD) from criterion
equating. Dnsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type:, Operational
Smoothing: Postsmoothsd by linear regression
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Figure B-40 -
Deviations of sample equatings (BRED, AAD, and ASD), from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operitional
Smoothing: Postsmoothed by linear' regression
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Figure B-41
Deviations of sample equatings (RMSD, -AAD, ancrASD) from criterion
equating. Unsmbothed equating: solid line; smoothed equating: + marks.
Test Length: 15 , '
Test Type: Simulated ,

Smoothing: Postsmoothed by quadiatic regression
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Figure B-42

a

4

Deviations of sample eque&ings (RI D; AAD, and ASD) \from criterion
equeing. Unsmoothed equating: solid line; smoothed equatirig:+ marl&
Test Length: 30 -
Test Type: Simulated
Smoothing: Fostsmoothed by quadratic regression
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Figure B-43
a

Deviations of sample equatings (RMSD,crAAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Teat Length: 50
Test Type: Simulated
Smoothing: Postsmolthed by quadratic regression
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Figure B-44
Deviation of sample equating. `(R! D, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks. ,
Test Length: 20
Test Types Operatiqnal
S m oo t hi ng: Postsmoothed by quadratic regression
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Figure B-45
Deviations of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equdting: solid line; smoothed equating: + marks.
Test Length: 25
Test T : Operational
S ng: Postsmoothed by quadratic regression
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Figure B-46
Deviations of sample equatings (RIVISD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15
Test Type: Simulated
Smoothing: Postsmoothed by cubic regression
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Figure 8-47
Deviations of sample equating. (RIVI3D, AAD, and A8D) from criterion
equating. Unsmoothed equating: solid linepsmoothad equating: + marks.Test Length: 30
Test Types Simulated
Smoothing: Postsmobthed by cubic regression
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Figure B-48
Deviations of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothid equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Postsmoothed by cubic regression f\
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Figure B-49

C-

Deviations of sample equatings (R1VISD, AAD, and ,ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length:, 20
Test Type: Operational
Smoothing: Postsmoothed by cubic regression
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Figure B-50

t

6

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed-equating: solid line; smoothed equating: + marks.
Test Length: 25
Test. Type: Operational
Smoothing: Postsmoothed by cubic regression
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Figure B-51

( 3

Deviations of sample equatings (RD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 15
Test Type: Simulated
Smoothing: Postsmoothed by orthogonal regression
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Figure. B-52
Deviations of sample squatings ( D, AAD, and ASD) from criterion
equating. Ursmoothed equating: soli line; smoothed equating: + marks.
Test Length: , 30
Test Type: Simulated
Smoothing: Postsmoothed by orthogonal regression
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Figure B-53

4

Deviations of sample equatings (RD, MD, and ASD)from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 50
Test Type: Simulated _fr

Smoothing: Postsmoothed by orthogonal regression
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Figure B-54
D4viations of sample equatings (RMS), MD, and ASD) from criterion
equa ng. 'Ur:smoothed equating: solid line; smoothed equating: + marks.
T ength: 20

est Typee Operational
Smoothing: Postsmobthedby orthogonal regression
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Figure 145

4

Deviations; of sample equating (AMID, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 25
Test Type: Operational
Sinoothingt Postsmoothed by orthogonal regression
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Figure B-5 6

4

Deviations_ of sample equatings (RMSD, MD, and ASO) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15
Test Type: Simulated
Smoothing: Postsmoothed by logistic ogive
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Figure B-57
Deviations of _sample ecklatings (RMSD, AA D, and ASD) from criterion
equating.' bnsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Postsmoothed by logistic ogive
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Figure B-58

a.

Deviations of sample equatings (RMSD, AAD, and
equating. Unsmoothed equating: solid line; smoothed
Test Length: 50
Test Type: Simulated
Smoothing Postsmoothed by logistic ogive
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Figure B-59
Deviations of sample equatings (BROD, AA D, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Postsmoothed bylogistic ogive
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Figure 840
Deviations of sample lequatinp (R D, AAD, and MID) from criteria:
equating. Unsmoothed equating: solid line: smoothed equating: + marks.
Test Lenth: 25
Test Types Operational
Smoothing: Postsmoothed by logistLoogive
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Figure B-61

v,

Deviations of sample equatings (RM&D, AAD, and ASD) from criterion'
equating. Unsmoothed equating: solid line; smoothed equating! + marks.
Test Length: 15 .

Test Type: Simulated
Smoothing: Postsmoothed by cubic smoothing Splines 1-
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Figure B-62
Deviations of sample equatings (RIVED, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: _Simulated
Smoothing: Pcstsmoothed by.cubic smoothing splines
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Figure B43

7

4

Deviations of sample cquatlnp
equating. Unsmoothed equatings
Test Lengths 50
Test Types Simulated
Smbothings Paitsmoothed by
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Figure B-64
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Postsmoohed by cubic smoothing splines
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Figure B-65

At.

'41

I

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Postsmoothed by cubic smoothing splines
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Figure B-66
Deviations of sample equatings (R1 D, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15
Test Type: Simulated
Smoothing: Postsmoothed by 5-point moving weighted averages
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Figure B-67
Deviations of sample equating% (RMSD, AAD, and ASD) from Criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Postsmoothed by 5-point moving weighted averages
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Figure 841
Deviations of ample equating** (RMSD, AAD, and AID) from criterion
equating. Unsmoothed equating* solid lin% smoothed equating* + marks.
Test Lengths 50;
Test Types , Simulated
Smoothing* Poitsmoothed by 5-point moving weighted averages
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Figure B-69
Deviations of sample equ'atings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Postsmoothed by 5-point moving weighted averages
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Figure B-70
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational
Smoothing: Postsmoothed by 5-point moving weighted averages

62

NUMBER CORRECT

0 . 1 0

Fi

0 51

NUMBER CORRECT

I

NUMBER CORRECT .

1354

43

k



Figure B-71
Deviations of sample equating (RMBD, AAD, and AID) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Lengths 18
Test Type: Simulated
Smoothing: Combined presmoothing by negathe hypergeometrict and

postsmoothing by orthogonal regreuion
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Figure B-72

iJ

Deviations of sample equatings (RMSD, AAD, and AS,1:1 from criterion

Test Length: 30
equating. Unsmoothed equating: sadline; smoothed equating: + marks.

Test Type: Simulated
Smoothing: Combined presmoothing by netive

0.63
postsmoothing by orthogonal regr

ga hypergeometric and
ession

R

8

O. 12
NUMBER! CORRECT

NUMBER CORRECT

NUMBER! CORRECT

137

145

4



Figure B-73
Deviations of sample-equatings (RMSD, D, and ASD) from criterion
equating. Unsmoothed equating: solidine; s othed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Combined presmoothing by nega ive hypergeometric and

postsmoothing by orthogonal regr on
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Figure B-74
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by orthogonal regression,
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Figure 13-75
Deviations of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 25
Test Type: Operational
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by orthogonal regression
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Figure B-i76
Deviations of sample equating: (AWED, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating; + marks.
Test Length;., 15
'rest Type: Simulated
Smoothing; Combined presmoothing by negative hypergeometric and

postimoothing by quadratic regression
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Figure B-77
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 30
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by quadratic regression
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Figure B-78
Deviations of sample equatings (RIVISD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by quadratic regression
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Figure R -79

1

Deviations of sample equVinp (RM3D, AAD, and ASD) from criterionequating. Unsmoothed equating: solid linei smoothed equating: + marks.Test Length: 20
Test Types Operational
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by quadratic regression
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Figure B-80
Deviatips of sample equatings (RMSD, MD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: Operational ----
Smoothing: Combined presmoothing by negative hypergJometric and

postsmoothing by quadratic regression
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Figure B-81

I

Deviations of sample equatings (R1VISD, AAD, and ASD) from criterionequating, Unsm9othed equating: solid line; smoothed equating: + marks.Test Length: 15
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric andpostsmoothing by 5-point moving weighted averages
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Figure B-82
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by 5-point moving weighted averages
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Figure B-83

I

4

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 50
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by 5-point moving weighted averages
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Figure B-$4
Deviations of sample equatings (RED, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational
Smoothing Combined presmoothing by negative hypergeometric and

postsmoothing by 5-point moving weighted averages
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Figure B-85
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 25
Test Type: Operational
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by 5-point moving weighted averages
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Figure B-86
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15 a .

Test Type: Simulated
Smoothing: Combined presmoothing by 3-point moving weighted

averages and postsmoothing by 5-point moving weighted
averages
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_ Figure 13-57
Deviations of sample equating; (R D, AAD, and ASD$ from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.Test Length: 90
Test Type: Simulated
Smoothing: Combined presmootping by 3-point moving weighted

averages and postemoothing by 5-point moving weighted
averages
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Figure B-88
Deviations of sample equatings (RIVED, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: SiMulated
Smoothing: Combined presmoothing by 3-point moving weighted

averages and postsmoothing by 5-point moving weighted
averages
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Figure B-8.9
Deviations of sample equatings (RMSD, AA D, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + mark).
Test,Length: 20
Test Type: Operaticinal
Smoothing: Combined presmoothing by 3-point moving weighted

averages and poslismoothing by 5-point moving weighted
averages
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Figure B-90
Deviations of sampleiequatings (11.1115D, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + mark).
Test Length: 25
Test Type:
Smoothing:
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Figure B-91
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test I. ength: 15
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by cubic splines
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Figure B-92
Deviations of sample equating. (BMW, AAD, and
equating. Us mouthed equating: solid line; smoothed
Test Lengths 30
Test Types Simulatod
Smoothing: Combined presmoothing by negaCve

postsmoothing by cubic splines
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Figure 13-93
Deviations of sample equatings (RIVED, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + mark.
Test Length: 50
Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by cubic splines
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Figure B-94
Deviations of sample equatings (FOIVISD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating:4- mark).Test Length: 20
Test Type: Operational
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by cubic splines
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Figure B-95
Deviations of sample equatinp (RM5D, AAD, and ASD) from criterion
equating. Ursmoothed equating: solid line; smoothed equating: + Mark).
Test Length: 25
Test Type: Operational
Smoothing: Combined presmoothing by negative hypergeometrie and

postsmoothing by cubic splines
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