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r ' . Summary

-

.The All‘ ‘Force reqmrw .effective methods for tes\t equatmg Among the tests.”

which: must be equatéd are the various forms of the Armed Seryvices Vocational
Aptit de Battery (ASVAB). uipercentile test equating is typically uded to equate the
different forms of-the ASVAB, to earlier forms and to each other. Incregses in the
aceura of eqmpercentile test equatmg may be achieved by increasing, the size of the

" samples of examinees. The purpose of the present effort was to determme whether
« statistical smoothing could also inerease the accuracy of equating.

Two classes of simple smoothing methods are of interest - presmoothing of the

~ score distributions and postsmoothing of the equipercentile points. A third class of

smoothing methods, called combined smoothers, involved both presmoothing and

- postsmoothing. The research used three methods to investigate fourteen simple

smoothers and five combmed smoothers. The first method used simulations based on a -
theory of ability testing. ~Simulated tests were developed to mimic statistical aspects -

"of ASVAB subtests. Those tests were equated with and without smoothing ard the

results were evaluated. The second and third methods used exwtmg operationally
obtdined data. In the second method, very large samples of examinees were used to
establish highly accurate equatings, then smaller samples were drawn and equated with,
ard without smoothing. The third method of .investigation used the statistical

Jjackknife, a general purpose statistical tool, to estimate standard errors.

- Negative hypergeometric presmoothing was clearly more effective than the other
presmoothers. Two of the postsmoothers were somewhat more effective than the.other
postsmoothers. The negatlve hypergeometrie presmoothe%dfteed in a reduction of
approximately ten percent in one measure of equating ertror; use would correspond in -

\,/effectlveness to an increase o{vapproxlmately twenty percent in the size of the samples
t

used for equatirig. The effecti¥e postsmoothers were (1) orthogonal regression, which
was more effective than ordmary least squares linear regression, and (2) the use of
cubic smoothing splines, which was the most effective of the postsmoothers. No
postsmoother was as effective as presmoothing with the negative hypergeometric.
Ccembining presmoothers and postsmoothers did not resuilt m an improvement beyond
that obtained with the more effective of the .combined pair used alone, :
Modest but significant gains in”the accuracy of equipercentile test equatmg may
be achieved through the use of negative hypergeometric Qmesmoothmg ‘
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.Equipercentile Test Equating: The Effects of Presmoothing and Postsmoothing -
~ «. ° .onthe Magnitude of Sample~-Dependent Errors o

2T

1. INTRODUCTION

- Test equating is the process of finding which scores gn two or more similar tests

correspond to-the same level of ability in the population of examinees, lg) principle,

" when two tests have been equated, either can be used with equal confidence to measure .
ability.. Test results will then be on the same scale and any examinee's expected score .
will not be affected by the form of the test administered. The tests under

‘consideration in this report are four-option, ntultiple-choice tests that are scored on the
basis of the number of correct responses. This report addresses certain methodological
issues which arise in the procgss of equating. Before delinedting those issues, however,
the process of equating will be put into the larger context of testing in general. = .°

The need for (test equating arises as-a result of many considerations. It is often

or. form of a test is available, the particular form taken by an examinee should not

_ affect the examinee's expegted score, In other words, there should be no advantage or

disadvantage associated with taking one form of a test rather than another form of the
The need for more than one form of a test may arise from any of a number of
considerations,/#hcluging testing policies which allow the exdinined individual to be re-
_examined with a different for

existence, then a compromise of the security of one test form does not compromise the

entire testing program. [’ . . :
The replacment of operational tests requires equating when the scores on the new
tests are to be used in the same predictive or evaluative equations or in" the same

*. manner as were the old scores, The need for replacing operational tests can be due to
changes in the characteristics of. the tested population, in th% effectiveness of some of .
the test items, or in the needs of the testing agency. Test replacement policies can

also be a response to the possibility of test compromise, or-& breach of test security.
As a test is operational for longer and longer periods, the chances increase that the test
may no longer be secure against unauthorized disclosure and, hence, that scores may no

The Armed Services conduct the largest testing program in the nation. The
Armed Services Vocational Aptitude Battery (ASVAB)-is administered annually to all
applicants—{about one million) for enlistment \iri the Armed Services, as well as' to about
one million high school and post-secondary school students. The applicants' acceptance
into of rejection Yy the Services is governed in part by the results of the tests, as is

" their assignment to particular specialities once they are in the Service. The success
and security of the testing program are thus important for the continued effective use
of personnel in the Services. All of the considerations mentioned above which lead to
the need for test equating are present in the ASVAB testing program. Both the

* requirement- for several forms and the requirement for periodic replacement of forms

lead to the necessity of test equating. It is therefore important that effective methods
of test equating be available to the psychometrie community within the Armed
- Services. . , I -
' Test equating may be carried out in any of e large number of different ways, some
of which are of recent origin and are technicalzy sophisticated, and some of which have
. : . LY

|
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R} of the test. Alternatively, the need may be a_
“consequence of security considerations. II there are several forms of a test in

_ valuable to have more than one version or form of a test. When more than one version
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been in use for severil decades (see Holland & Rubin, 1982). This report addresses only
‘equipercentile test:equating as dpplied to.two equivalent groups (Angoff, 1971). A brief
™ description ‘of equipercentile test equating is given here; a more complete description
may be found in Angoff (}971). THe logic of equipercentile equating is based on the
concept that the ability of examinees who take tests may be used to calibrate or equate
_ the tests. If two groups of examinees have identical distributions of abilities, and if one
group takes one test and the other group takes another tesf{s~then corresponding

percentile points in the two groups will correspond to equal abilities, and those points.

can be used to establish corresponding, or equated, scores on the two tests. - For
example, if individuals in the 20th perceptile received a score of 23 on one test, and if

the individuals in the 20th percentile of the other group received a score of 25 on the -

other version of the same test, then a score of 23 on the first test is said to be equated

to a store of 25 on the second test. In practice, equated scores are not usually given

tests. ‘One can then convert from either test to the other with equal facility.™ The
. terms "reference test" and l'experimental test":are used to indicate,srespectively, the
test whose score metric is to be used for the results of both tests, and the test whose
seore is to be_converted to the units of the other test. For éxample, if an existing test
known as Form K is to be replaced by a similar test known as Form M, Form K would-be
the reference test and Form M would be the experimental test. - LN

In order for equating to\be accuraté (i.e., for the testg to be used interchangeably
with no adventage of disadvantage associated with the taking of either test) two
conditions must be met, First, the two groups of examinees used for equating must be

for every percentile poi’n’t, %but rather for every obtainable test score on each of the

equivalent, and second, the two; tests must measure the same trait equally reliably. The

equivalence of the two groups is usually‘met in practice by having one group divided at

random into two smailer groups. The question of whether two tests are sufficiently -

similer is, more difficult. Lord'(1980) demonstrates that two tests cannot be equated
_unless they are eifher perfectly reliable (an impossibility), or are strietly paraliel, in
~ which case they would not neled to be equated. In practice, however, it is possible to
equate highly «similar tests, sometimes called "roughly parallel" tests, by the
equipercentile method in such a way that the errors of equating are very small in
comparison with other errors associated with testing (e.gi, the errors of measurement
arising as a consequence of i;se unreliability of tests, and particularly the .inherent
_lower reliability of short tests). ‘In any case, although there may be some purposes to
which it would be mislea&ing to put equated scores, Lord (1980) points out that if scores
are equated by the equipercentile method, then when equated cutting scores are used,

the different equated forms will result.in the selection of the same proportion.of*

examinees on all forms of the test, except for errors related to sampling in the equating
process or to the particular examinees tested operationally. _
' As with any procedures having-the goal of estimating population characteristics
based on data obtained from a sample; there are always sample-dependent. errors
present in test equating. If an equipercentile equating were_to be done twice with

similar semples, the results would differ. The extent of such differences has been .

estimated by Lord (1982) and their magnitudes appear as the -standard errors of
equipercentile equating. As with all standard statistical procedures, the size of the
expected errors decreases linearly with the square root of the sample size. It is thus
- operationally impractical to reduce errors beyond a certain amount by increasing
sample sizes. For example, decreasing the| error to one-fourth the size of the error
associated with a given sample size would require using a sample 16 times the size of

the, original sample. - As a consequence, pragtitioners of equipercentile test equating -




the methods of smoothing. .
Smobthing _ ' D -
Two general classes of smoothing methods are defined here. A third class is made

up by combining a smoothing method from the first class with one from the .second -

class, First, presmoothing is defined as the process of smoothing the observed score
frequency distributions prior to the equating. Second, postsmoothing is defined as the
process of smoothing the equipercentile points after equating. Third, combined

smoothings involve presmoothing and postsmoothing applied. contecutively, The

commén intent of all three smoothing methods is to remove small sampie-dependent
fluctuations from the nonsmoothed equatings so that the small sample equatings will
more nearly approximate the asymptotic equatings, or those which would result from
the use of samples so large that the sample-dependent errors approach zero. The
extent to which the various methods achieve this common intent is investigated by:this
reséarch. Seven presmoothing methods, seven postsmoothing methods, and five
combined smoothing methods were used s follows: . | -'
f oy . -
A, Presmoo\t.hing Methods
1. <+ 3-point moving medians

2. 5-point moving medians. -
3. 3-point moving weighted averages.
4. 5-point moving weighted averages

-5. 5-point mdving weighted averages with root transformation
6. 4253H Twice , ol Lo
7. negative hypergeometric

B. Postsmoothing Methods .

1. linear regression . '
2. quadratie regression '
3. cubic regression
4. orthogonal regression .

- 5. logistic ogive
6. cubie splines
7. 5-point moving weighted averages

C. Combined Smoothers . ' AN

1. negative hypergeometric + orthogonal regression
2. negative hypergeometric + quadratic regression _ ~.

3. negative hypergeometric + 5-point moving weighted averages
4. 3-point moving weighted averages'+ 5-point moving weighted averages
5. negative hypergeometric + cubie splines ’

Presmoothing : :

Presmoothing methods are based cn the concept that an observed data point in a
sequence of points shows the combined effect of an underlying systematic relation
among the points and sample-specific fluctuation or error of observation. If each point
‘'were replaced by a value jointly determined by the point replaced and the vicinal
points, then the influence of the error of observation should be reduced, and the
influence of the underlying regular function should be enhanced. S

Six of the seven presmoothing methods used in this study are general-purpose
methods which were developed for the smoothing ‘of sequences of observations such as

have looked for other ways to reduce equating érrgrs. They have most frequently used




\ | | | | ‘ |
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" time series data (Keats & Lord, 1962; Tukey, 19775 Velleman, 1980; Velleman &
Hoaglin, 1981). Detailed technical descriptions of the methods are available in the
references cited; short descriptions are provided here. o ~ "\ -

Moving medians and moving averages were used for presmdothing,.&s re a

- combined or compound presmoother and a presmoothing method baséd on a particular
model of test scores. - ) "

. Of the seven methods of presmoothing the score distributions, three are deseribed
by Tukey (1977). In the first method, frequency distributions are smoothed by moving
medians of span three. Smoothing by moving medians of span three involves replacing

. each observed frequency with the median of three frequencies: that of the score of
L interest, the frequency associated with the next lower score, and that associated with
the next higher score. The end values of the distribution, those corresponding to scores
of 0 and perfect scores, are not smoothed because they have only one neighboring value, 7
and thus cannot be sfiioothed effectively by moving medians. Moving medians of span
five are found analogously, except\that each frequency is replaced with a value which is
the median of the frequency. of interest, the two*preceding frequencies, and the two
following frequendies. The end poifits are not smoothed, but the next-to-end points ere,
by convention, . replaced by the smoothed values found by smoothing by medians of“span
three. :

. Presmoothing by three-point moving weighted averages is analogous-:to three-
point moving medians, but instead of replacing each point in the raw frequency
distribution with, _its median, it is replacéd with a valuedsthat is calculated by taking the
sum of twice the point being smoothed, the previous point, and the following point, then
dividing the result by ‘four. .This is equivalent to using weights of 1, 2, and 1. The
weights 1, 2, and 1 are chosen to give the point being smoothed a weight equal to the

.surrounding points in détermining the smoothed value. Clearly, any other weighting is
. possible, from one in which weights of 0, 1, 0 correspond to no smoothing, to one in
which weights of 1,.0,Correspond to a smoothing in which a point's surrounding points
completely determine its value. Again, the end values are not smoothed. Five-point
moving weighted averages are found by taking the raw frequencies five at a time and
replacing each frequency with a weighted average of the frequency and the four
surrounding values. The weighting function is oné recommended by Angoff (1971), and
weights the five points by the factors -3, 12,17, 12, -3, and divides the resulting sum by
35. The recommended weights allow linear, quadratic, and cubic components of the
curve to be unaffected by the smoothing process. The end frequencies are not
smoothed, but the next-to-end frequencies are smoothed by the three-point moving
weighted average using weights of 1, 2, 1.~ The five-point moving weighted average
‘with root transformation is identical to the five-point moving weighted average, except
that before the smoothing is applied, all of the frequency values are transformed by
taking their square root. The square roots are then smoothed. Following the
“ smoothing, the inverse transformation, a squaring, is applied. The use of the square
root transformation has the effect of decreasing the influence of largelilValues‘ relative
to the effeét of thie same smoother without the square root transformation. As aq\ |
result, if a frequeney is higher—than surrounding frequencies, it is more effectively
reduced  with the- root t_ransformatio\m_ 'Convesgl)", if a frequency is lower than

N

surrounding frequencies, it is more effectively raised to the surrounding values when
the root transformation is not used. At the.r

ige of frequencies reported here,
however, the differences are very slight. - ~ ‘ ¢

The ‘sixth smoother is a combination of smoothers proposed by Velleman (1980).
Designated as 4253H Twice, it is a complex metl‘flod -which requires the successive
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application of four different smoothers, including moving medians of spans four, five, |
and three, then the finding of the differences: between the smoothed and urlsmoothed \
distributions, the smoothing of that sequence of differences by the same compdund
method, and, finally, adding the smoothed "differences back into the smoothed
distribution. The smoothing by medians of span 4 results in smoothed values which
correspond to points between the originally smoothed points. Thus, smoothing points n,

n+1, n+2, and n+3 results in a value corresponding to a point between points n+l and
n+2. The step designated by "2" in 4253H is required to bring each smoothed value back
to its proper association with the point being smoothed. Details are given in Tukey. /
» (1977) and Velleman and Hoaglin (1981). ' T T

The final presmoothing method (see Keats & Lord, 1962; also Lord & Noviek,
1968, pp. 515-520) is ~one devised explicitly for smoothing or fitting frequency , .
distributions of test scores. The distribution is the negative hypergeometrie, whose
7appropriateness/is .derived from a binomial error model of test scores. The model

« - assumes sgveral /t/echnical conditions, one of which is equivalent to the assumption that

"+all of the ¥tems on the test whose .score distribution is being fit are equally dif ficult.
\ That conditiq??s known to be false in the case of the ASVAB, as well as for most other
' tests, but the fit of the negative hypergeometric is’ still good enough to make it
promising for further study (Keats & Lord, 1962). ' ‘ oL
. : -
Postsmoothing . v

Equipercentile equating, as described earlier in this section, 'starts with tables
which show the frequency'of each score in the samples tested for each of two tests and *

- ends in & table which associates with each score on one test a score on the other test. .

: An integer score on one test is uSually found to correspond to a non-integer score on the
other test; the non-integer score may be estimated by linear interpolation. A plot of
the score pairs shows a monotonically nondecreasing function whose form depends on
characteristics of the sample and characteristics of the two tests being equated.

Postsmoothing is the process of passing a straight line or a curve among the points
which definet the équipercentile relationship.” The: equated scores are then determined
by the resulting function. Postsmoothing methdds have traditionally required -the
practitioner to judge where to pass a curve through a set of points (Angoff,c1971). In
place of the use of a draftsman's French curve or analogous drawing aid, a number. of
analytic postsmoothing. methods have been developed. Seven such methods were .
investigated here. They were chosen on the basis of a number of considerations e
“including practicality of implementation, frequency of use in the past, and'the extent to
which the methods appeared premisiig based on the literature.

The simplest equation which iay be fit to the points resulting from an
equipercentile equating is a Straight line. This study investigated two different straight
lines: that défined.by conventional least squares and that defined by orthogonal
regression. The conventional least squarges procedure minimizes the sum of the squared
vertical deviations from the lire. In effect, the scores on the experimental test ‘are
considered to be known without error, /and the line which best fits the equipercentile

- equivalents on the reference test is found. In orthogonal regression (Madansky, 1959),
- " the qﬁ:ﬁty minimized is not the sumn of the squared deviations parallel to the y-axis,
but, rather, the sum of the squgred deviations when those deviations are taken in a,
direction perpendicular to the regression line. Orthogonal regression is appropriate »
-~ when the variables represented on both axes are subject to measurement error, and- -
R aeither can’ properly be considered the dependent or independent variablg, This is
frequently the case in test equating, for two reasons. First, such an. equating_can be
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used to convert scores from either test to the other. It is thus dissimitar to a least
~ squares regression equation in which the regression of y on x is rarely the same as that
of x on y. Second, there are usually similar amounts of error associated with the
reference and the experimental test. The first two postsmoothing methods, then, are
. straight lines fit by conventional regression and by orthogonal regression. Whernr
conventional regression is used, the independent variable is the set of-scores on the 4
experimental test ranging from the lowest observed seore to the highest observed score. '
The dependent variable is made up of the equipercentile points. : e
Only under certain eircumstances is it possible to fit resulting points well with 5" ,
straight line. ‘A straight line is appropriate if the two tests have the same skewness and
kurtosis. The positioning and slope of the straight line will compensate for differences
in means and standard deviations in the two tests. If there is a curvilinear component
to the relationship defined by the eduipercentile equating, then it must be fit by a
curvilinear funetion. Quadratic and cubie functions are commonly- used to fit sueh-
: curves. This investigation considered quadratic®and cubic best-fitting (eriterion of - e
N minimum least squares deviations) $moothing curves. Quadratic curves can fit points————
whose best-fitting line is conecave either upward or downward, whereas cubic equations ‘ ~
can fit curves with an inflection point, so that part of the curve is concave upward and
part of it is conecave downward. The use of quadratic or cubie postsmoothing funetions .
can result in nonmonotonie functions in which there is a part of the smoothing funetion’
at which an increase in the score on the experimental test results in a decrease > in-the &
equated score. Such reversals are artifacts of the fitting progess and when-they oécur '
are corrected to monotonicity. The correetion is made by foreing each score to be
greater than or equal-to the _pggcgdin\grscorer“Sﬁéh correction is rarely needed. The
third and fourth postsmoothing methods, then, were quadrstic and cubic regression
functions, fit by the method of least squares as modified by the requirement. of
monotonicity. : ‘ - .
In some equatings it is observed that the equipercentile equating function is
relatively flat at both of its ends and steeper in the middle. Such a shape can be fit by

a cubic clirve, but it can also be fit by a logistic ogive, a curve defined by the equation
. S ' v .
' B-A ‘
/Y= A + : ‘ . . ]
1+ exp (-C (X - D))

where A, B, C, and D are fitted constants. The points resulting from equipercentile
equating were fit by a logistic ogive, the fifth postsmoothing method.
All of the smoothing methods mentioned aboye have associated with them the -
, disadvantage that they impose a funection of a given form on the data, even if it is not
. appropriate. Such a procrustean requirement is contrary to the rationale of smoothing,
especially when the function is not appropriate in shape to the points to whieh it is to
be fit. The sixth and seventh postsmoothing methods do not define the shape of the
function in advance of the fitting. - . e i
The sixth funetion fit to the points was not a continuous funetion, but rather a
smoothing of the diserete resulting points. The smoothing function replaces each point
with a point whieh is the weighted average of the point being replaced and the four
“surrounding points. The method is that of five-point moving weighted averages, as
deseribed earlier. - The equating requires interpolation between the resultant points.
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The final. postsmoothmg functlon was used by Kolen (1983), who obtained good
results by fitting cubic smoothing 'spline functions to the points resulting from the

,equ1percent11e equating. 'A smoothing spline differs from an mtejpolatmglsplme in that

the latter is constrained to pass through exactly known points, whilé the former is
conceived of as passing among approximately known points. As used by Kolen, a’ cubic
smoothing splme for N points (in the present case, an equipercentile equating of two N-

~ -item tests) is a set of N-1 cubie .functions, each of which takes as its domain the

interval from the I—th point to'the (I + 1)th point on the X-axis. The range and specific

form of the function are determined by the data in the interval. The cubic functions

come together with the same function value and slope (or derivative) at each .of the
interior N-2 points, which are called ducks or knots in the language of spline fitting.
The former term, dueks, is used in this report. The resulting curve can be of almost any

differentiable shape, because the individual cubiec fittings are independent of each other

and can follow the shape of the functlon defined by the pomts to be smoothed.-
. P

The use of a presmoothing techmque does not preclude the use of a postsmoother.
In order to determine whether or not presmoothing and postsmoothing employed
consecutively woul_g hgye benefits beyond those due to either method alope, five
‘combinations of presmoothing and postsmoothing"were investigated. Presmoothing with
the negative hypergeometrlc was combined with four different postsmoothers,
orthogonal regression, - five-point moving weighted averages, cubic splines, and
quadratic smoothing, Finally, presmoothing by the method of three-point- movmg
weighted averages was conibined With postsmoothmg by means of five-point movmg v
“.Weighted averages.

Objectives A o 4,
The aim_of the present effort was to evaluate the effects of various dlfferent-

, methods of prpesmoothmg, postsmoothing, and ecombined smoothings on the accuracy of

test equating. The study was exploratory in nature,~designed to_determine which
methods hold the most promise for operational use. Deta confirmatory serutiny of
the efficacy of promising methods will have to await future attention. The following
section describes the methods used to determine the aceuracy of equatmg and to apply
the methods to simulated and to operatlonal tests.




.The advantage of simulated tes
tests and examinees are completely specified, and it is possible to know in advance the

" The second method was a similar comparison of sample and criterion equati

_standard errors computed’by

.Unfortunately, as is well known,
“square root of the sample size, whereas the scale of a study and, hence, its costs tend

, 1. METHODS
General Plan o " '
The-plan underlying this investigation was to use three djfferent approaches to

determine the effectiveness of each of 14 unitary smoothing methods and five combined

 smoothing methods. The first approach used simulated tests and examinees; the second

and third used data from tests %tdministered to examinees under operational conditions.
s and éxaminees. is that all quantitative aspects of the

results of theoretically errorless equatings or those equatings which are unaffected by
sample-dependent errors. Operational data, of course, have the advantage that they
are obtained under conditions typical of the ones under which smoothing methods would
b used.” The data are not based on an ideal model, as are the data from simulations;.
rather, they contain all of the departures from theory that may be.fgund in operational
test settings. ' ) '

The first of “the thred methods _of evaluation involved- comparing each of the

smoothed equatings with a kripwn errorless equating. The known errorless equating was

based on a method that yielded Tesults typical of an equating using an infinitely large - ;
sample. The method requires deriving a.distribution of expected score frequencies, the

distribution being that which would result from administering t% test to .a sample so
large that_the observed proportions at each-score were observed essentially without
error. The results of the simulated test administrations were used for that

place of data based on simulations a.qgson an errorless equating, the co
‘operationally obtained data and an eqiating based on an unusually large’ sample size.

" The third method was to use the statistical jackknife (Mosteller & Tukey, 1977) -to

estimate the size of standard errors of smoothed and unsmoothed equatings using

operationally obtained data ard simulated data. Those errors were also compared to
&@ns of the formula given by Lord (1982). '

One reason for using this "infinite sample size" equating as a criterion in the

simulations is that the standard method used to address unacceptably large uncertainty

or error associated with vst’h('tistical procedures is to increase sample size.

e precision so ‘obtcined increases in proportion to the

to\.increaTse\at least -directly with the sample size. Thus, to increase the precision of a
statistical measure by a factor of two (or, equivalently, to reduce the standard error of
the estimate of a parameter by half), it is necessary to increase the size of a sample,
and thus approximately the cost, by four or more. If the smoothing methods
investigated here .reduce standard errors by 25 percent, their adoption might be
expected to permit the use of samples approximately 56% of the size of current
samples, with no loss of accuracy but with a saving in resources expended. ‘
Simulations .

. The aim of the simulations was to provide®data that modeled those which might
result from having examinees take ASVAB-like subtests. The range ,of test lengths
irvestigated covers the range of lengths of subtests in the operational ASVAB. Three
test lengths were used -- 15 items, 30 items, anVo items. For each -test length, two
very similar tests were created in simulation. The tests were not sttictly parallel.
They were, however, as sinrilar f{o° each other /as.are ASVAB subtests within a single
subject area in ASVAB 8, 9, and 10. (Ree, Mullins, Mathews, & Massey, 1982.) A-
samplesof 2,000 randomly selected simulated examinees was administered one test,
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while a se_cona sample of 2,000 was administered the other test. (The term "simulee"
will be used hereafter to'indicate a simulated examinee.) That process was repeated
for a total of 100 simulated administrations for each.test length. The same two

simulated tests were -used,'but the sample of simulees was drawn anew for each

simulated administration. Different simulated samples were used for each of the t¥st
lengths. The following paragraphs deseribe.in detail the method of the simulatigns.
Throughout this section, reference is made ‘to random selection and random numbgrs.
The numbers used were generated by a pseudorandom generator, not a totally random
generator, as is commop in computessimulations.- Although determinate, sequences of
pseudorandom numbers appear much as random numbers, are indistinguishable from
them’by most standard tests, and do not repeat the sequence of numbers until millions
of numbers have been generated.

\ua Item. Response Theory (IRT) (Lord, 1980) is the most exblicit, complete,’ and -
q

ntitative theoretical treatment of tests of mental ability. \The simulations were

therefore. carried out within the framework of IRT. ‘Eagh aspect of the simulated tests

~ and of the similees was specified in IRT terms in such a way .as to model operational

ubtests in the ASVAB testing program. - (See United States Military Entrance
ocessing Command, 1984, for a description of the ASVAB-program:) The exception to
this general statement is in corinection with the 50-item test. The longest power
s?b st in the ASVAB is 35 items. The simulated 50-item test was constructed to
simulate the same test as it might operate if it were lengthened to 50 items. The test
length ‘of 50 items was included to determine the effectiveness of the smoothers with
tests of moderate length. : - _
The 15-item test was designed to simulate Paragraph Comprehension, the 30-item
test was designed to simulate Arithmetic Reasoning, and the 50-item test wa# designed

. to simulpte .a lengthened version of Word Knowl . For each.of the subtests to be

simulated, the statistics which deseribe the operational 3ubtests were first cédnsidered.
Subtest reliabilities, classical -item statisti statistics, and means standard
deviations for the operational subtests were obtained from a technical re ee
et al. (1982). Simulated items were generated at random so that the items' distributions
of a, b, and ¢ parameters approximately matched those reported by Ree et al. (1982) for
the operational subtests. The resulting tests were therr agministered in simulation to

samples of 2,000 simulees. The resulting item ues and item-test biserial
correlations and such test statistics as mean, standard deviation, skew, kurtosis, and -

reliability (KR-20) were examined to detérmine whether or not all of the items were
similar to the items which are found on operational ASVAB subtests. 5
~Some of the simulations used to generate the data to evaluate the smoothings
were conduc®ed in the same manner as theé. simulations used to develop the tests. The
method used to simulate the administration of a test is similar to a method developed
by Ree (1980) for use in a simulation carried out in another context. In order to carry
out a simulated administration, a population of examinees was .defined with ability
normally distributed with a mean ability, 6 , of zero and a standard deviation of 1.0.
IRT equations allow 'he computation of the probability that an examinee of some known
ability will correctly answer an item with known parameters g, b, and ¢. The parameter
a speqifies the steepness of the slope. of the item characteristic curve. The parameter
b is aMmeasure of the difficulty of an item. The parameter ¢ indicates the probability

- that an examinee of very low ability wil} answer correctly. That probability, P, is given

by the f ul - :
ythe forhla .
P=£+(1-e)/(1+exp(-17a(8-b))."
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For each of the 2,000 simulees in the sample and for each item, a ‘program computed

-} the probability of an applicant's answering the item \correctly. The  program then

selected a random deviate from a rectangular distribution on the open interval 0 £o< L.
If the deviate was less than the probability -of ‘@ correct response, then the simulated
response was counted as correct; if it was equal or greater, then it was counted as
- incorrect. Such aisimulation.results in response vectors which include correct responses
" due to the joint ihfluences of ability and guessing, just as operational data show both
such influences. When all 2,000 sim ulees had "responded" to all items in a test, the test
was scored and analyzed_to determine the mean and standard deviation of scores, the
item difficulties, the item. biserial correlation coefficients, and other statistics.

The resulting test statistics and distributions were compared with the results of
‘the subtests which the simulated tests were designed to match. Items which were too
difficit or too easy, that is, items which had p-values (or item difficulties) inconsistent
-with the requirements for ASVAB items, were 'replaced: with items with-a, b, and ¢
parameters which would lead to more appropriate p-values, and the simulations were
rerun. Each of the simulated tests went through several iterations of tﬁqt process 1n
order to arrive at -tests which resembled ASVAB subtests. The refining process was
necessary in part because the technical material dealing with the ‘ASV[SS\does not-
report the item parameters for the individual items, but gives only summaries. At each
‘test length, the items in one test were chosen to be slightly more difficult than the
items in the other test, so that the equatings gould not result in virtual identities.
Since virtually identical subtests are not found in' the ASVAB program, and since they
would not require equating if they existed, they were hot sought .in this project. The
technical aspects of the resulting simulated tests did resemble the technical aspects of
the ASVAB subtests in every aspect but one. The itemdtest biserial correlatitn
coefficients in the simulated tests were higher than the corresponding coefficients in
the operational subtests. . R ] ~ ‘

"Although it is not known gxactly why the biserials should be higher when the g, b,
and ¢ parameters dre comparable, three posbibilities are evident. The first possibility
derives from the reMtionship between the a parameter, or the item“diserimination
index, and the biserial-co‘rrelation. Lord (1980, p.33) gives that approximate relation as

: \

—-—r

a

Ry, =< A

b= V1+a : . o 7

when a is the a parameter and R, is the biserial correlation.’” The methods used to
~ ‘estimate a, b, and ¢ for the 6perati&1al items may have overestimated the a values (see
Ree, 1979, for an evaluation of estimation pry cedures), with the result that simulations
which use the reported a values would tend \to have higher biserials than wduld the
operational tests. A second and perhaps mone likely possibility is that any departure
from test theory in the operational setting reduces the resulting biserials. Accidentally
mismarked answer sheets, careless errors, omitted jtems, and many other extraneous
. response variables can reduce biserials from the theoretically. expected value. The
“simulations .were free from such departures from theory. Third, IRT requires the-
assumption that tests are unidimensional, or that each test measures only one ability.
No operatianal subtest is perfectly unidimensional, but.the simulated. tests were. Itis
-likely that the perfect unidimensionality of the simulated tests is a, significant factor in ,
- accounting for the high biserials. N _
‘ ~ A test characteristic curve was prepared for each test to show the true score, or
score which would be found in the absence of measurement error, expected to
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correspond to each level of al 111ty, designated by theta, from*-3 to +3. (Sée Allen and

Yen, 1979, for a discussion of true scores and test characteristic eurves. ) Similarly, for

each test, test information curves were prepared to show test information as a function
of ablhty on the same interval. Fxgur&s 1, 2, and 3 show those curves for 15- 30-, and
50-item tests, respectively. -

Technical and statistical details of the tests are presented in Appendix A. Each
of the six simulated examinations was "taken" by 00 groups of 2,000 simulees. Either
of two: methods‘was used to administer a test in simulation. The first method is that
describéd above in connection with the development of thte forms. The second method
involved taking a sample of 2 000 obgervations at random from the Expected Observed
Score Distribution (EGSD, deseribed on page 15) for a test. Score distributions were
tabulated for each sxmulated administration. For each test length, 100 equipercentile
_ -equatings and smoothings were then performed using the methods described below. The
- smoothings and.equatings were thé same for the‘operatlonal .and simulated data and so

are described f ollowmg the description of the Operatxonal data. '
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' Test information curves (upper panel) and test cheracteristic' curves

. (lower parmel) for the simulated tests of length 30. The solid lines
represent the reference test; the dotted lines represent the
.experimental test.
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Test information curves (upper panel) and test characteristic curves
(lower panel) for the simulated tests of length 50. The solid lines
represent the reference test, the dotted lines represent the"
experimental test. : '
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' Criterion Equatings

The preparatnon of snmulated tests allows total control ot‘ the simulated test
situation. It is, therefore, possible to know in advance the eriterion or "true" equating
of the tests used. Item response theory makes possible several approaches to the
determination of the criterion equatmg It is possible, for exam;)le, to determine the
true scores associated with various abilities or theta values and equate true scores
through common theta. . Analogously, a variant of true-score equating can be
performed, and for each mteger true score on the experimental test, the corresponding
theta can be camputed (usually by means of inverse interpolation); then the score on the
reference test which corresponds to that theta can be found. That method has the

‘advantage of ngmg equated scores for each number-right true score, and interpolation’

of tabled values is not required. True scores are never known in actuality, however, so
that method is not wholly appropriate.

~ The method used to establish the criterion equatings for the simulations used in
the present study is based on the EOSD for each test. An algorithm developed by Lord
and Wingersky (1983) was used to prepare distributions of expected observed scores for
each of the six simulated tests. In an EOSD, each score has associated with it, a

. proportion of examinees, not a frequency. The distributions model the result of
admlmstemng the test to an infinitely large number of examinees and observing the

relative frequeney of each score. The EOSD method of wtabhshing a criterion equating
is appropriate because the aim of the present research is to determine methods of
smoothing which compensate for the relatively small sample sizes that must be used

-operationally. By ‘comparing the small sample equatings (N=2,000) with those that

result from .an "infinite" sample (ne, those based on the EOSD), the extent of

improvement resulting from smoothing is directly observable, The criterion equatings, -
then, are the unsmoothed equipercentile equatings which result from’ using the EOSDs in’
. the unsmoothed equipercentile method. Lord and Wingersky (1983) show that such

equatings do not differ apprecnably from true score equatings based on IRT.

Operatnonal Data

The operatlonal data that were used were taken t‘rom a set of ASVAB scores for
very large sample sizes (approximately 100,000 examinees) for three roughly parallel
forms of each of several subtests. Among those subtests were two forms of
Mathematics Knowledge, length of 25 ngs, and two forms of Electronics Information,

length of 20 items. In addition to the frequenecy distributions of test scores for all
examinees, there were available 100 samples of 2,000 scores for each of the four
subtests (two for.ns each of Mathematical Knowledge and Electronics Information).
The samples were drawn at random without replacement from the larger samples of
100,000 examinees. Two test lengths were thus available in the operational data: 20
and 25 items. The lengths used were’ constrained in part by the availability of data and

---in-part-by-the-aim of-increasing the generalizability of the study by em ploymg a number

of different test lengths for operational and simulated tests.

For the operatnonal data, criterion equatings were established by usmg the full
sample of 100,000 examinees. Although that sample equatmg is not totally error-free,
it is based on a sample 50 times as large as the samples of size- 2,000 and so is expected
to have sample-dependent erfors only approximately one-seventh as large as- those

. found in the small equatings,” As with the simulated data, the criterion .equatings were

unsmoothed equipercentile equatings, s described below. As with the simulated data,
100 reduced sample equatings were made for each of the test panrs, both without

smoothmg and with each of the 19 smoothipg methods. . .,
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Equatings ' ' .

All test equatings were performed using the equipercentile method deseribed by
Lindsay and Prichard (1974). For the unsmoothed equatings and the equatings to whieh

“only postsmoothing wes to be applied, the raw frequency files were equated. When the

equatings involved presmoothing, the smoothed frequency estimates were equated.
Following the equatings and smoothings (which are deseribed below),” each test or
simulated test had associated with it a eriterion equating, an unsmoothed equating, and

.19 smoothed equatings, one for each of the smoothing methods used. The -equatings

resulted in associations between each observed score on the experimental test and

~ scores on the reference test. Such associations may be expressed by equating tables

prepared for operational use by test administors or users. The equating tables, over
2,000 of which were required for this effort, were generated and used by the equating
program’but were not printed. ' :

S moothings : : : : _
" The . methods used for smoothing the data are listed and described in the

introduction. Most of the smoothing methods are sufficiently simple to implement that
thky require no description beyond that given in the introduction. Two of the
postsmoothing methods, however, are more complex and require further deseription.
The fifth postsmoothing method was the fitting-of a logistic ogive to the data.
The ogive was fit by the method of the simplex, which is an’iterative, rather than an
optimal, method. The method requires an initial estimate of the four parameters (upper
and lower asymptotes, slope, and location) which define the ogive; it then suceessively
finds better and better sets of points. In“this ease, "better" implies sets of points with
smaller residual sims of squares. The simplex continues to iterate until thetvalues of

"the four parameters converge to final values. The initial simplex for the first

smoothing of the 100 equatings was chosen to be a $implex whose asymptotes were far
enough from the points Y?\ be smoothed that the part of the ogive passing through the

. . points was an approximation of a straight line. Subsequ¢nt smoothings took as their

initial simplex the final simplex of the previous smoothing. The method has the-
disadvantage of being prone to produce solutions which represent local, rather than
global, minima. Experience with the method has indicated that it does occasionally fall
into such minima; such soluticins do not represent the best-fitting funetions and may
oceasionally not fit well at all . : : f )

The procedure used here for the fitting of theﬁbic spline departed in three ways
from that used by Kolen (1983). First, Kolen fit two spline functions, one using’ the
equated experimental tés& scores as the dependent scores, and the other using the
reference test secores as the dependent variables. The final equated values were
obtained by averaging the equatings resulting from the use of those two spline
funections. In order to retdin comparability with other smoothing methods used in this
research, the experimental test was used as the dependent variable in the fitting of the
spline. ‘ : . '
The second departure involved the difficulty which was encountered with cubic
spline smoothing at-lower ends of the score distribution. Kolen (1083), finding similar
difficulty at both ends, addressed it by applying the splines only in the interval of test
scores ranging from the 5th to the 95th percentile. The shortest of his tests, however,
was 40 items, and few examinees scored at either of the extremes. Smoothing by
means of cubie splines as deseribed by Reinseh (1967) requires an estimate of the
standard errors of the y variables at each duck, but at the lower end point, where
frequencies are at or near zero, the standard errors are not defined or do not exist. For
the purposes 20f this investigation, the end standard errors were assigned the value of
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the closest defined standard error, when "closest" means the numerically closest integer
score. The use of a large standard error constrains the spline function to pass through
or very close to the point associated with the unsmoothed equating. ,

_Initially, smoothing methods relied heavily on human judgment and experience in

- passing & line among the points. The hope-of those using the more analytic smoothing
methods has been that an optimum or nearly optimum method might be found so that :
judgmental metheds would not be necessary. Smoothing could then be automated and
thus replicable and objective. The work of Kolen (1983), whose .cubic splines have been
among the most effective postsmoothing methods described in the literature, has not
avoided the necessity of intervening judgment in the application of the smoothing
——process. For the current project, however, when ovet 500 applications of the smoothing
technique were required, automated smoothing was a necessity. .Thus, the third.
departure was the use of standard errors in the cubiec spline fitting procedure.
The smoothers usually resulted in slight changes in the total number of cases in

the smoothed distribution as compared to the unsmoothed ‘distribution. The changes.
were due to the action of the medians or means in lowering unusually high values or
raising unusually low values. The total number of cases was always adjusted to the
original number of 2,000 by increasing each frequency by whatever proportion was
‘necessary in order that the total frequency equal 2,000. Thus, the shape of the
distribution and the relative heights of its frequencies were unchanged by the
adjustment. The adjustment resulted in the use of some noninteger frequency values in R
the equating step, an option permitted by the equating method. . ~

Analysis of Equating Results ~ A
Each of the five tests, three simulated and two operational, had associated with it
one criterion equating, 100 unsmoothed equatings based on sample sizes of 2,000 (called
the "small sample"), and 100 sets of 19 smoothed equatings based on the same samples.
The question of interest is the effect of the smootlings on the acguracy of the
~equatings. The measures used to define the accuracy of the equatings are bgsed on the
. concept of deviations. A deviation is a difference. between an equated score obtained
" with a small sample and an equated Score based on a criterion equating. At each
observed (i.e., integer) score on the experimental test, the corresponding score on the
reference test was found using the criterion equating. The equated scores were found -
as decimal fractions not rounded to the nearest integer. The score corresponding to the -
same experimental test score was then found for the unsmoothed small sample equating
and for each of the 19 smoothed equatings. The differences between the equated score
based on the criterion equating and /the equated score based on the small sample
equatings were found for each possible score on the experimental test, for the
unsmoothed and for the smoothed equatings, for all 100 replications. These differences,
or deviations, were the raw data used for evaluating.the smoothings. A deviation, D,
associated with a given score on an experimental test, unsmoothed or smoothed by a -
particuler method, is thus defined by the formula: ‘
. D =X - x' T
where x equals the equated score based on criterion equating and x' equals the equated
" score based on small sample equating. Each test thus has as many deviation scores, D,
as there are items on a test, plus 1 (for a score of 0). For each of the 100 small sample
~equatings, the deviations at each score were combined across equatings to give a
general measure of deviation at each score. Three such deviation measures were
computed. B




)

The first measure is thé Rpot Mean Square Deviation (RMSD), found by taking
the square root of the sum of the squares of the deviations across all 100 samples. The
second measure is the Average Absolute Deviation (AAD), or.simply the mean of the
absolute value 'of the deviations computed across all samples. The third measure is the
average of the signed values of the deviations (ASD), found by taking the mean of the

- ‘
v

deviations across all 100 replications. -ASD differs from AAD in that the absolute

values are not found before the mean is computed. ASD is sometimes called "bias," or
"statistieal bias," but in the context of testing the term "bias" denotes other phenomena

- "and’so is less appropriate than "ASD," Pgcsitive values of ASD ‘indicate that the small ..

sample equating resulted in a value which was generally lower than the criterion
equating values, whereas negative values indicate the opposite. These three measures,
'RMSD, AAD, and ASD, were found for each score point on each test for the unsmoothed
and for each of the 19 smoothed equatings, across all 100 sample equatings. v
~ The three méasures of ‘Géviation taken together allow an evaluation of the effects
of the smoothing methods. The AAD and RMSD both give numbers which represent the
unsigned magnitude of an average deviation. The AAD'is a straight arithmetic mean of
absolute values, while the RMSD has the effect of weighting (or emphasizing) the
“deviations which are far from the criterion equating. The computation of RMSD is
. similar to the computation of the standard deviation, which is also.sometimes called
. root mean squara;d%!iaﬁqrgfrom;'the mean. The difference between the AAD and the
‘= RMSD is an indication of the extent to which the distribution has outlying values. If the-
* ,~RMSD is considerably larger’than the AAD, then .a large number ‘of outliers is
:.35, suspected. The A %&ne&sure averages the deviations as does AAD, but it includes their

[ sign. The resulting ASD shows how far the mean of the equated values for all 100

samples is above or below the value given by the criterion equating. This is a

significant value for two reasons. First, equipercentile test equating has not been

shown to be statistically unbiased; the ASD estimates how large the ASD (or bias)
- actually is. Second, methods which reduce RMSD or AAD may increase, ASD. Thus, one
‘ must consider RMSD, AAD, and ASD in evaluating a smoothing techmique.

Standard Errors ‘ o ]

Two cross-checks were made to ensure the accuracy of the methods used to
determine the RMSD. First, the standard errors of equipercentile equating were
determined using a formula derived by Lord (1982). The resulting standard errors, one
_at each score level which was at or above chance, or expected guessing score’ level,

. were compared with the R MSDs obtained from the simulated test administrations, from
the operational data, and from the results of the jackknmifing. The observed RMSD
values should be empirical estimates of the same standard errors which the Lord (1982)
_standard errors represent. In each case, the data from the ecriterion equating, with
sample size assigned to be 2,000, were used to develop the standard errors.

The' method of Lord (1982) allows calculation of standard errors for the

unsmoothed case of equipercentile equating. The simulations  discussed abave allow

empirical estimations of the standard error for all of the smoothing conditions as well
as for the unsmoothed condition. The agreement or nonagreement of the Lord formula
- values with the values generated through simulation indicate the extent to which the
simulations are appropriate in the unsmoothed case. There is no corresponding
analytical - cross-check on the values of the standard errors im—the smoothed- cases
because formulae for standard errors in those cases do not exist. In order to provide
corroborating or noncorroborating estimates of the standard errors for smoothed

equatings, the equatings were conducted with the use of Tukey's statistical jackknife.

i
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The jackknife (Mosteller & Tukey, 1977) provides an estirnate of the standard error of a
procedure regardless of whether or not analytical formulae for such errors are
available.

Briefly, the jackkmfe requires dividing a sample into a number of subsamples,
then performing the analysis th. question (smoothed equipercentile test equatmg in this
case) once with each subsample deleted. In this case, samples of size 2,000 were
divided at random into 40 groups of size 50. The smoothings and equatings were
performed 40 times for each test length, once without each of ‘the subsamples. The
results of 40 equatings were combined according to the procedires of jackknifing in
order to obtain estimates of the standard errors of interest. “Estimat.g.d standard errors
- were computed for each of the nonchance score levels on’ the tests; 5 “those-standard

errors were averaged over all such test scores. Thus, each test” combined with each
smoothing method resulted in a mean stindard error of equating "as estimated by the
- jackknife and as estimated by the small sample equatings.
The samgles of size 2,000 used for jackknifing were based on the best available
estimates of thenghape of the observed score distribution in the large sample case. For
: e 2,000 cases were assigned scores based on the proportions of .
res developed tor he expected observed score distribution. For, the operational
tests, the 2,000 cases were assigned scores based on the proportions observed in the
lar st samples which the monitoring agency provided. The same proportions were used
for the development of the criterion equatings ‘when' using the simulations tos develop
- the deviation measures.

&
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. | m. RESULTS -

Graphic presentation of the results of this effort are pi'esentedin Appendix» B,
Figures B ~1 through B -95. Each figure is for one test length ‘and one method of
smoothing. The figures are grouped so that the effects of éueh smoothing method can

" be evaluated across all five tests (three simulated and two operational). The results of

the simulations.are presented, first, with the test lengths of 15, 30, apd 50. Following
those are the two operationdl tests, of length 20 ahd 25. Each figure presents three
panels. Each panel, shows measures of deviation as a function of the raw score on the

. experimental test, both with and without smoothing. In each figure, the .top panel

shows the effect of smoothing on RMSD, the middle panel shows its effect on AAD, and

‘the bottom panel shows the effect on ASD."

Two funetions are shown on each panel of each figure. The continuous line shows
the RMSD, AAD, or ASD which results from equating samples of size 2,000 without
smoothing, while the + characters indicate the RMSD, AAD, or ASD when the same
samples are equated with smoothing. Eagh point on the graph is an average of 100
deviations, or -differences .between the Yriterion equating and the small sample
equating. The vertical axis of each graph has been scaled so that the maximum

‘measure of deviation takes up a large portion of the axis. In comparing different

figures, one should note the magnitude of the axes. -‘When there is a horizontal line in a
graph other than the top or. bottom line of the graph, that line représents zero
deviation. For the figure panels which depiet AAD and RMSD, + signs which lie below
the continuous line indicate that an improvement, or gareduction of deviations, resulted
from smoothing. The situation with ASD is slightly re complex, since ASD may be

_either positive or negative. Improvement, or reduction of ASD, is indicated when the +
signs lie either between the continuous line and the x-axis of the graph, or closer to the

x-axis than the continuous line. _ - : L _
It was found that with some §moothing methods, especially the presmoothing

" methods, smoothing resulted in large increases in the deviation measures for very low

test scores. In some cases the increases were so great that graphing them required such
a large rescaling of the figures that the more important deviations in the middle ranges
of the test could not be represented. These large induced deviati are seen as being
of little interest because they occurred at score values which v(i?
guessing level on a test, and €o were not associated with mearingful measures of
ability. In order to show the more relevant deviations effectively, the figures do not
present information on the levels of RMSD, AAD, or ASD at test scores below the
guessing level for each test. :

The graphs may be considered in a number of ways. It is suggested that in
considering the graphs, particular attention be given to the top panels, where the effect
of smoothing on RMSD is shown, If a particular smoother is effective in reducing

~RMSD across all five test leﬁgtls, then it should be considered further. In particular,

its effects on ASD should be-considered, in order to determine whether it is effective in
reducjng ASD or, as frequently happens, whether it increased ASD. The figures are
summarized in tables presented later in this section, but perusal of the figures gives
more detail conecerning the effects of the smoothers. ‘ '

In considering the figures, it is helpful to note that if ASD is near zero, then

 values of RMSD and AAD which are nonzero result from deviations which are
distributed approximately evenly between positive and negative deviations. If, in -

contrast, the ASD is not zero, then the deviations are predominantly above or below
zero. That is shown particularly clearly in Figure B - 32, which shows the result of
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_increase the merit of equating methods. ¢

-
©

‘presmoothing by the method of the negative hyperggometric. The unsmoothed equating

(solid line) and smoothed equating (+ signs) at the lower end of the scergs show that the
smoothing increased RMSD and AAD moderately. The ASD, however, increased from
near zero to about 0.15 point. The interpretation of this and similar effects in other

figures is that the deviations increased moderately in their size, and became

predominantly positive in sign, reflecting an increase in local bias. :

Local effects, such as_the preceding, make it difficult to summarize the effects
of the smoothers in tables without obscuring important effects. It is suggested that the
figures present the results of this study more effectively than can the summary tables

.and, hence, shouid e consulted not only in order to obtein general impressions of the
- effects of the smoothiers, but also to verify impressions obtained from the summary

tables. ' . .
. Tables 1 through 20 summarize the information shown in Figures'B -1 through

B - 957 Each table corresponds to one smoother. Table 1 shows the RMSD, AAD, and

ASD as averaged across all test scores above the guessing level with no smoothing. The
averages of the ASD were taken over the absolute values of ASD so that positive and
negative values would not cancel out. The subsequent tables are associated with the
smoothed equatings. The averages of RMSD, AAD, and ASD are presented as
proportions of the deviations in Table 1. Thus, figures less than 1 ihdicate that
smoothing reduced the deviation, while figures greater than 1, indicate an increase jn
deviations. For example, a figure of 0.2 indicates that a particular smoothing method

‘reduced the mean measure of a deviation to 20% of its unsmoothed value, when that
-mean is taken over all scores ori a test which are above the chance level.

These tables indicate the effects of the smoothers in a global sense. The effects
are averaged over all scores above chance and so may obliterate the locally” high
deviations. The standard errors of equating and the related,measures of RMSD, AAD,
and ASD are summary measures of the extent to which a-test equating is subject to
sample-dependent error. Procedures which result in the reduction of such measures

.

s

Jackknifing ' ® ‘

Table 21 compares the standard errors of unsmoothed equating as estimated by

Lords analytic formula (1982) with those estimated by means of repeated reduced

sample equating (i.e., RMSD from simulated or operational tests) and those estimated
by means of the jackknife. The standard ‘errors are presented in the metric of test'

standard errors thus indicate that standard errors of equating vary with the length o
the tests, and vary with the method used to estimate them, ‘

Table 22 presents the standard errors of smoothed equatings, as estimated by the
RMSD of the reduced sample-equatings (100 samples of 2,000) and as estimated b‘y

items. They are averaged over all test scores which are higher than chance level. Th«;"

Tukey's jackknife (Mosteller & Tukey, 1977). 'In order to facilitate evaluating the

effects of smoothing, the standard errors of the smoothed equatings are presented as
proportions of the unsmoothed equatings given in Table 21. Thus, values greater than

1.00 indicate that smoothing increased the standard errors, whereas values less than
1.00 indicate a reduction in standard error. . “
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‘Table 1. Mean Mgasures of Deviations for Unsmoothed Equatings

: X < |
’ . - Mean Deviation .
i , , — — : —
Test Length "RMSD AAD ASD
' Simulated Tests .
g - i - R » .. M . ' _—
7 N ' 134 - .106 .009
30 269 . . .214 016’
; 50 .439 1,348 ©.028 B
. ‘- —_ Y
’ —— e Operational Tests
. 20 ° 184 | 145 029
) + 25 242 .12 015
\ “~
/ ', - Note. Tabled valu_esreprégent RMSD, AAD, ASD averaged over all samples at all scores
( ' . . " B ' » 7 T ’ ’ b
| above chance level. )
‘ | |
| .
| ! s )
.D.
| .

- 22¢
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Moving Medians

\Tét;le 2. Suminary of the Avégged ‘Effects of Presmoothing by the Method of 3-Point
. - : -

~ Proportion of Mean Deviations .

1

i

~ \;AAD .

30
50

1.002

1.058

]

1.006
1.052

Test Length' RMSD ASD
| Simulated Tests
15 © 1.004 11,013’ 1.523

1.034
.821

20
25

.997
.994

' _ Operational Tests

.996

999

. 1.003
1.233

Mean

1.011

- 1.013

" 1128

P

above chance 1evel.

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found ' o L

without smdothing, as presénted in Table 1. Averages taken over all samples at all scores

~
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. Table 3. S,ummafy of ' the Averaged Effects of Presmoothing by the Method of 5-Point

" Moving Medians

Proportion of Mean Deviations.  *
. . ' .

+ -

«  Test Length _AAD

Simulate& Tests
1.046
- .994

1.027

Operational Tests
:1 028
- 1.024

- 1.024

Note. Tabled values represent RNBD, AAD, and ASD ss proportions of the values found
without smoothing, as presented in Table 1. Averages taken‘over.all samples' at all scores
above chance level. - AN ’
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Table 4. Summary of the Averaged Effects.of Préémoothing by the Method of 3-Point

.

\A

* Moving Weighted Averages

e

Proportion of Mean Devia‘tions

. ¢
) . . .
‘Test Length . RMSD AAD ASD .
, Simulated Tests A
30 : 974 975 7 e
50 .. - .919 - 981 1.303 -
T T Operational Tests
20  .953 o o.48 T 1100
25 969 970 . 1.606
' ' %
 Mean .967 968 1.208

=

f

Note. Tabled values represent BNéD, AAD, and ASD as proportions of the values found
‘without smoothirjg, as presented in Table 1. Averages taken over all samples at all scores

~ above chance level. L .

L

25
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 Table 5, Summary of the Averaged Effects of: Presmoothing by the Method of 5-Point - -

Mpvlng_ Weighted A.veragw .

Proportion of Mean Deviations
Test Length . RMSD - AAD ASD.
s {
N - 7 <= Simulated Tests
15 | 994 . ,905 1.458
. i ) . P g . N N ..
80 - .90 - .992 o am
L 50 o aee0 g2 - M6
{ i Vo ' e
Operational Tests . 0
" 20 - .988 -~ .86 1158
25 .985 et Coae
Mean - | .989 * o .990 . 1104
] s 3 . )
A . L

" Note. Tabled valueé represent RMSD, AAD, and ASD as pl‘opprglor‘w of the values found
 without smoothing, as presented in Table 1. Averages taken over all samples at all scores

’ above chance lével. - 3
26
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“Table 6. Summary of. the Averaged Effeets of Presmoothmg by the Method of 5-Point

Movum Weighted Averggw with Root Transformatxon K

s \
| B I | “
| Proportion of Mean Deviations |
. . /y : ‘ N .
Test Length, ~ RMSD = AAD — ASD
e / : .
® ‘ '
‘ ' . Simulated Tests
15 - S 995 .996 11.470
30 T .990 [ .93 - 801
50 | 1.002 1.006 1040
Cperational Tests - : / A
. 20 - .. ° - .982 N 1.129
< 7 25 ‘ - 984 - .988, o 1,248
L » !
‘Mean - | 91~ 993 1138

\ ) . ‘ ) . )
. . -
[}

Note. Tabled values represent RMSD, AAD, and ASD as prOportions of the values found

w1thout smoothmg, as presented in Table 1. Averages taken over all samples at all scores L

above chance level. S
' 27
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Table 7. 'Summary of the Averaged Effects of Presmoothing by the Method of 4253H

Twice - - . /
. | . .
Proportion of Mean Deviations
Test Length ~ RMSD ~ AAD ASD ‘
. s . . . . < " N _ v
o o - © Simulated Tests * ” -
15 . . - © Lo, - 1.036 2.721
300 ' 1,013 7 . 1.013 1364
50 1.0 . 108 . . 920 7 /
N ‘ S L
) OperationalTests -~ * i .. . % . - )
20 | .980 B onas0c i B e
25 N ' 992 ‘ 2992 - 1,526 "
B R ) : ‘» s . L* X . . \ .
B M N - "’ -
Mean - e 1.007 1.012 1.542
Note. Tabled vaJu? represent RMSD, AAD, and ASD as proportions of the values found
w1thout sn‘ioothmg, as presented in Table 1. Averages taken over all samples at all scores
above chance level.
28
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- Table 8. Summary ot‘ the Averaged Effects of Presmoothmg by the Method of Negatlve

\

' Hypergeometric , N : !
s . : . . .
) Proportion of Mean Deviations
L | - \
v ‘
“Test Length .- - , RMSD | \AAD ASD
© . : . . -' X
| Simulated Tests _
15 | .1 903 2.919
. - . \
30 - . .865 .867 _ 3.596
| 50 852 .861 3.453
Operational Tests. 3 ot
. . ‘ ) E Ty L
. 20 : .905 N 908 - 2,008 ,
1 : , A ».
25 ' § .966 989 7.479
. . - p
. Mean. ' .896  .906 3.891
Note. Tabled values repraent RMSD AAD, and ASD s proportlons of the values found
without: smoothlng, as presented in Table L Averages taken over all samples at all scores
“ above chance level. B | |
§ - N - o »
’ 29
S v '
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Table 9. Summary of the Averaged Effects of Postsmoothing by the Method of Linear -

Regression - ’ : ‘ ‘
- Proportion of Mean Deviaﬁc_;‘ns -
Test Length ' RMSD ’ AAD . . ASD .
’ Simulated Tests |
15 969 995, . 7.181
30 L1431 o c1ase 10905
50 1346 ) 1&.385' . 13a1
o
» ‘ Operational Tests .
20 o 9017 941  2.684
25 o lo248 1.300 13.639 |
] . - /

Mean R 1.i63 9.524

Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found 3

without smoothmg, as presented in Table 1. Averages taken over all samples at all scores

above chanee level. 2

‘ - : 30




. Table 10.

gm&a& Regression

\

Summary of the Averaged Effects of \Postslhoothlng by the Method of '

Proportion of Mean D_evlati«:lns

-

Test Length | )RNED AAD ASD
\ Simulated Tests \

15 892 ' 1.001 2.713

[ R 1.031 1.042 5.362

50 R (7 1.942 18.896

Operational Tests

20 971 .893 1.304
25 1960 966 4249
Mean 1.141 8.523

1.189

~ Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found
without smoothing, as presented in Table 1. Averages taken over all samplé at all scores

above chance level.
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\ Table 11. Summary of the Averaged Effects of Postsmoothing by the Method of Cubic

. Regression
\ &
A
Proportion of Mean Deviations
| K -
Test Length RMSD AAD _ AsD -
Simulated Tests
15 1.077 1.062 2.626 )
30 - 1.054 1053 - 3431
50 , | 1.318 . 1.252. 3.333
[
Operational Tests
20 1.118 T 1.130 2.048
25 996 1600 2199
[ = — T - -
Mean — - 1.113 1.100 2.667

~

Note. Tabled values repraén't RMSD, AAD, and ASD as proportions of the values found
without smoothing, as presented in Table 1. Averages taken over all samples at all scores

_ above chance level.
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- Table 12. ~ Summary of the Averaged Effects of Postsmoothing by the Method of

Orthogonal Regression
L s
— .
Proportion of Mean Deviations \\ ’
Test Length RMSD AAD | .LSD ‘
. Simulated Tests _ v
\ 15 - 876 .890 6.779
I .02 - 1.056 9.948
50 ' .962 - / 1.000 9.103
Operational Tests
20 | . .884 .907" 2,708

25 1.'N5\ © 1234 " 13.048
‘ . R w
Mean - .982 \ 1.018 . 8.317

Note. Tabled values represent RMSD, AAD, and ASB“as proportions of the values found

without smoothing, as presented in Table 1. Averages taken over all samples at all scores
' rd

above chance level.




Table 13. Summary'of the Averaged Effects of Postsmoothing by the Method of Logistic .

Ogive
b IR
Proportion of Mean Deviations .
1
\ Test Length / ' RMSD AAD . ASD
_ Simulated Tests ¢
15 . 872 . . .886 6.767
30 S .970 - 1,003 8.883 _
50 \ .940 979 s.g{m
. . ¥
. Operational Tests J
20 ' .879 .902 2.651 |
25 1m0 1.230 13.001
Mean .966 1.0000 '8.056
. -

s - {
Note. Tabled values represent RNBD, AAD, and ASD as proportions of the values found
without smoothing, as presented in Table 1. Averages taken over all samples at all scores |

" above chance level.
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Table 14. Summary of the Averaged Effects of PostSmoothingb{the Method 6f Cubic

hd N

Splines - ,
: /

Ve

Proportion of Mean Deviations

Test Length

Simulated Tests
917
927
.984

Operational Tests

20 _ .935 ©o.e32 - .956
N 25 : .928 .927 ' 1.364
Lt \
Mean | 939 937 1.545
s P
Note. “Tabled values represent RMSD, AAD, and ASD as proportions .of the values found
without smoothing, s presented in Table 1. Averages taken over all sam ples at all scores
above chance level.
4 A
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Table 15. Summary of the Averaged Effects of P‘ostsmoothin&by the Method of 5-Point

Movink Weighted Averages ‘ R PR d

-

!

Proportion of Mean Deviations

Test Length . RMSD " AAD *~ ASD
. ) ] |
' Simulated Tests

15 o o .984 985 1.115

30 S ss0 .989 © 980

50 . .994 - .993 | 1.013

. hN
. X ; ~
\ Y Operational Tests
. oS o

20 - ) \e85 - .985 . .995

: ‘= . - S

25 - .990~ 990 1.069
Mean -989 .989 N 1.035

i

4 Note. Tabled vélues represent RMSD, AA& ahd ASD as proportions of the values found
without smoothing, as presented.in Table I: Averag'és taken;.over all samplw. at all scores

above chanqe level. -



Table 16, Summary of the Averaged Effects of Combined Smoothing lsi M ethod of

Combined Presmoothing by Negative Hypergeometric and Postsmoothing by Orthogonal
. J : :

Regression. . - ' o,
i - Prgportion of Mean Deviations
Test Length "7 RMSD. AAD ~ ASD
gﬁmmated Tests
15 - \ .81 .841 T 6.034
30 B ' 965 1.011 9.995
50 S T 1018 8.903
' | Operational Tests ’
20 N an 80 T2.018
B 1.084 1.121 S 11742
Mean s . 954 150

Note. Tabled values represent RMSD, AAD, and ASD as proportions.of the values found
 without smoothing, as. predented in Table 1. Averages taken over all samples at all scores

above chance level, .

37
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Table 17. Summary of the Averaged Effects of Cuombined Smoothing by the Method of

.

ombined Presmoothing by Negativé Hypergeometric and Postsmoothing by Quadratic

v

Regression

/
Proportion of -Mean Deviations
Test Length - - RMSD AAD ASD
@
L ]
_ Simulated Tgsts b .
15 . 898 .907  2.504
30 .918 .923 . 6.312
50 1143 L.221 - 9.310
Operational Tests
20 91 155 - .246
| ‘ o
25 | .885 .898 5.855
Mean . 848 .822 4.845
- ®
’ ~ Note. Tabled values represent RMSD, AAD, and ASD as proportions of the values found
without smoothing, as presented in Table 1. Averages taken over all samples at all scores
above chance level. ° 3
e
-
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Table. 18. Summary of the Averaged Effecfs of Combined Smoothing by the Method ‘of

Combined Presmoothing by Negitive Hypergeometric and Postsmbothing by 5-Point

‘Moving Wéighted .A'verag‘es_

Proportion:‘of Mean Deviations

o

Tést Length R/ﬁsn ~ AAD ~AS
~ Sim ulated Tests
( 15 . .890 | ..904. - . 2,932
30 | .866 .868 | 3.614
50 - | 852 , 861 4 3.466
. E ~
. i : Operation-alTestér
20 | - .o04 o L.907 v 202
25 .966 | .989 7.479
. '. : w . '
Mean . .896 . .906 3.0

Note. Tabled values represent RMSD, AAD, and ASD as propoPtions.of the values found
without smoothing, as presented in Table 1. Averages taken over all samples at all scores

above chance level.




' Table 19, Summary of the Averaged Effects of Combined Smoothing by the Method of
- Combined Presmoothing by 3-Polnt Moving Welghted -Averages and Postsmoothing b}l

5-Point Moving Weighted Averages | o o

(]

Probortlon of Mean Deviations

Test Length RMSD AAD - ASD " |
\ Simulated Tests
AN . . . ’ -
» 15 958 959 . 1.285 .
30 | © o ,070 971 .901° - |
50 476 . 978 - 1.292
: S » , oy
B Operational Tests ¥ ' S
L . . - . . ! o
e 985 965 60 ;
. . | -) |
Mean - 963 963 L7
: | . | o - , ;
) . A i ’ .
Note. TaE{led values represent RMSD, AAD, and ASD as proportions of the values found -
without smoothing, as presented in Table 1. Averages taken over all samples at all scores 5
BN above chance level. | | B "
. ‘ N K ‘
| / 40 / ‘
: . 7 )
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Table 20. Summam of the Avergggd Effec s of Combined Presmootm ng by Negative

Meometnc and Postsmootmgg by Cubie S\Imes

Proportion of Mean Deviafions

Test Length ~ RMSD. AADR\  ASD
. Sim'ul%ed Tests
5 - .885 898" 2.968
30 ,, a8 875 3.985
50 .. .85 | 863 3.613
Operational Tests
20 0 w2 .905 1.998
25, B 966 990 ©on.463
Mean ‘ 897 . .906 4.005

Note. Tabled values represent RMSD, AAD, and ASD ss proportions of the values found
without smoothing, as présented in Table 1. Averages taken over all éamples at all scores
above chance level. |

.41
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_ Table 21. Standard Errors of Unsmoothed EquatinLEsti}hated by Three Methods ,

i

Kind of Test.
Lengti' of Test.

Simulatedﬁ
15 30 50

Operational

Method of Estimation,
‘Lord's VF'ormul,a
Average:of 100
‘Samples

- Jackknifing

0.15 0.30 0.51

A

0.13 . 0.27 0.4

0.15. 0.25 0.47

‘ 20 25
. X M
0.18 0.25
0.18 0.24
0.17 0.23

-Note. Standard errors were averaged over all scores above the chance or guessing level.

}



Table 22. Proportional anngé in Standard Errors as a Result of 19 Smoothing Methods

Kind of Test: ‘ . Simulated Operational
Length of Test: 15 30 50 20 25

Presmoothing ‘

Method of Estimation

3-point moving median

Jackknifing . ., 107 1.00 1.02 , © . 1,05-  1.02
. / “ . z - - .
5-point moving median
RMSD 100 Samples 1.02 99 1.027° 1.02° 1.01
Jackknifing 1.16 1.01 1.00 ‘ 1.00 1.02
: 3-point moving weighted averages
RMSD 100 Samples .96 97 - .98 .95 .97
J ackknifing - .98 -~ .98 .98 : .94 .98
o ‘ _ .5-point moving weighted averages
RMSD 100 Samples .99 .99 .99 .99 .99
Jackknifing ' 1.01  1.0Q .99 . - .98 1.00
: 5-point moving weighted averagés with root transformation
- RMSD 100 Samples 1.00 = .99 1.00 .99 .98
- 4253H Twice
‘Jackknifi’r‘xg 1.09 .99 .97 .98 .98
: - Negativé hypergeometric
RMSD 100 Samples .89 .87 .85 .91 .97
Jac'd(nifing - ’ 089 080 .88 . 081 087

»
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Table 22, continued o - .
Kind of Test: ‘ Simulated | Operational
L'ength of Test: 15 30 50 - 20 25
. N : - «
s v
* . ; Postsmoothing
L B .

linear regression
RMSD 100 Samples « .97 1.13 1.13 92 - 1.24
Jackknifing - .76 - .82 .93 1.08 .88 .

. _quadratic regression
RMSD 100 Samples .99 1.03 1.75 97 . .9
, Jackknifing .97 .92 .99 ‘ - .99 .86

cubic regression

RMSD 100 Samples 1,08 1.05 1.32 112 .99 |
. ~ Jackknifing .99 1.03  1.45 119 .93 ¢
. : \"\\ . . : .
‘ ' : _ orthogonal regression s
RMSD 100 Samples .87 1.01 .96 .88 . 1.18
© Jackknifing - 70 .85  2.15 - 1.09 .89
- o ' logistie ogive v
. . RMSD 100 Samples .87 .97 .94 .88  1.17
Jackknifing 0 .85 2.03 » 109 .88
: ' cubic splines -
RMSD 100 Samples . 91 .94 .98 94 .93 :
Jackknifing ) 1.00 1.00 1.01 .98 .93
- RMSD 100 Samples 98 ~ 99 ' 99 "

.95

Jackknifing' -




Table 22, continued

Kind of Test: Simulated . Operational
Length of Test: - 15 30 50 20 25 ’

-

~+  Combined Smoothers

negative hypergeometric + orthogonal regression

RMSD 100 Samples .83 .97 .96 7 1,08
Jackknifing : J4 N .78 .65 7
negative hypergeometric + quadratic regression
RMSD 100 Samples .89 91 114 ‘ .40 .89
- Jackknifing ) 0 .79 1.01 .86 .85

negative hypérgeom etric + 5-point moving weighted averages

KMSD 100 Samples .89 .87 85 , .90 .97
Jackknifing ' .89 .80 87 - .81 .87
3 point moving weighted averages + 5-point moving weighted avei_-ages
RMSD 100 Samples 96 .97 .98 .95 97
Jackknifing 97 97 .98 , .93 97
' , _negative hypergeometric + cubie splines
"RMSD 100 Samples - .89 .88 .86 . .90 97
Jackknifing .89 .80 .88 ' .81 .87

‘Note. Table entries show the magnitude of standard error estimates for smoothed equatings
when such standard errors expressed as proportions of the corrgsponding,unsmoothed equatings.
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‘ IV. DIS CUSS ION

This section considers first the pr%moothmg methocb, then the postsmoothing
methods, then the combined smoothers. It then presents conclusions based on the
results, followed by a discussion of the limitations of the study. Finally,
recommendations for operational implementation and for further study are presented.

To evaluate the effects of smoothing, particularly its effects on deviations, it is
helpful to consider such deviations within the context of the accuracy of ablllty or
achievement tests more generally. The standard erro equating discussed in this
report are not the only measurement efrors which arise in the festlng process. There
are also standard errors of measurement- that are ‘intrinsic to any test which is not
perfectly reliable. The following formula (Allen & Yen, 1979) relates reliability (R),
standard ergor of measurement (SE);and-test score standard deviation (SD). -

SE=SD* ~1-R

Thus, the standard error of measurement for the experimental test of length 15, based
on a rehablllty (KR-20) estimate of .80 and a standard deviation of 3.28, both given in
Table A-1, is 1.47. Based on data from the same table, the -standard error of
measurement for the experimental test of length 30. is 2.20, and that for the
experimental test of length 50 is 2.74. The corresponding average standard errors of
equating, given in Table 21, as estimated by Lord's formula, are .15, .30, and .51. Thus
the standard error of equating ranges from approximately only 10 to 20 percent of the
standard error of measurement.

P:esmoothing
Consideration of Figures B-1 through B-5 shows that smoothing by the method .of

3-point moving medians had no consistent beneficial effect. Frequently it resulted in

less' accurate equatings than unsmoothed equatlngs These effects are summarized in

Table 2. The means of the deviation measures show that, on the average, the smoother
was harmful.

Similar results are obtained from the use of 5-point moving medians (Figures B-6
to B-10 and Table 3). There is no consistent beneficial effect and frequent deleterious
effects on all three measures of dewatnon. Whatever local gains are achieved are
offset by losses elsewhere. - :

" The method of 3-point moving weighted averages, whose results appear in Figures
B-11 to B-15 and Table 4, is the first method to show generally encouraging results,
although the gains are modest. The gains are particularly evident on the 15-item
simulated test and the 20-item operational test. There is a modest increase in the ASD
at the high score levels in both tests.

The method of 5-point moving weighted averages (Figures B-16 to B-20 and Table
5) has generally negligible effects on all three-measures of deviation.

The result of applylng the method of 5-point moving welghted averages with root
transformation, as shown in Figures B-21-to B-25 and Table 6, is virtually identical to
the result of applying the method of 5-point moving weighted averages without root
transformation, as described above. There was no significant benefit achieved.

Smoothing by the method of 4253H Twice (Figures B-26 to B-30) was generally
ineffective and resulted.in local increases and local decreases in the measures of
deviation. Table 7 bears out that impression by showing harmful or minimal effects.

Finally, the results of smoothing by means of the negatlve hypergeometric

(Figures B-31 to B-35) are the first to show consistent improvement in RMSD and AAD

t
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as a consequence of smoothing. The effeets are particularly impressive with the
simulated tests, presumably in part because the criterion- equatings for those tests are
nearly perfect, not estimated from very large samples. - The gains are not ‘yniform
across the tests. On the shorter tests at lower scores, the measures of RMSD anhd AAD
actually increase as‘'a consequence of using the negative hypergeometric. The
considerable decreases in RMSD and AAD are also indicated in Table 8. The beneficial
effects of the negative hypergeomtric do not extend to the measures of ASD. The ASD
increases both globally and locally, sometimes quite dramatically. These increases
were expected at the lower end of the test, where guessing'is a factor, but increases at
the upper end were not expected. It must be noted, however, that as Table 1 shows, the
ASD figures were low initially, so that a tripling of ASD may still denote an acceptably
low level. The question of what amount of ASD may be acceptable is complex. Until
there are equating methods which can be showr to be consistent, sufficient, efficient,
and unbiased, it will be necessary to balance such properties against each other to
determine the mix which is opfimal for a given purpose. The largest increase in ASD
occurred-for the test.length 50 (Table 8). The increase, by a factor of approximately
7.5, resulted in an increase in the mean ASD (Table 1) from 0.0%5 score points to 0.11
score points. The mean RMSD for the same test was 0.24 without smoothing, and 0.23
with smoothing. Thus for the 50-item test used in this study the increase in ASD was
greater tban the reduction in RMSD, although the resulting ASD was only half the
magnitude of the RMSD.

' If an increase in ASD is less than the decrease in RMSD, then the net benefit may
‘make the use of a smoother which increases ASD justifiable. An increase in ASD may
be more acceptable when two tests are equated so that th may be used
interchangeably than the sume increase would be wuen the objective ofAthe equating is
to replace one operational test with another. If two tests are used Fhterchangeably,
then a systematic tendeney to deviations in one direction on one test will be offset by
scores on the other test. Thus, if the forms of the test are administered at random to
examinees, there will be no expected advantage to any examinee. If, in contrast, a test
is equated to another so.that the older test may be replaced, then ASD will result in
equated scores whigh give results which differ systematically from the scores expected
on the test which was replaced. ) ' ‘

Why is it that the negative hypergeometric smoothing method outperforms the
other presmoothers? It is likely that it is in part because that smoother takes into
account all of the information in a distribution's mean and standard deviation in arriving
at the smoothed frequency for each point. The other presmoothers respond only to
local conditions and so ‘may incorporate, rather than eliminate, some sample-dependent
local fluctuations. Although the negative hypergeometric does require the assumption
that all items are equally difficult, an assumptioiusually contradicted in practice, its
success as a. presmoother indicates that its use is robust against ‘violation of this
assumption. Furthermore, among the seven presmoothers investigated, only the
negative hypergeometric is based on a mathematical model of testing. The other
smoothers. work by applying general algorithms which have been shown to be useful ina
wide variety of circumstances. It appears that those smoothers do not bring the sample
score distributions closer to the shape of the distribution of parent population, whereas
the negative hypergeometric does. The negative hypergeometric does so, however, at
the cost of increased ASD at some specific test scores.




Postsmoothers -

The use of linear regression postsmoothing, as shown in Figures B-36 to B-40,
resulted in modest reductions of RMSD and AAD at the middle ranges, but,increases at
the upper score ranges.~The increases in the deviations of the upper score ranges are
edpecially prominent in the simulated test of length 80 (Figure B-38). Since that
pattern turns up also with the quadratic and cubic regression postsmoothersXFigures B-
43 and B-48), it merits consideration. First, those deviations were not due to the
results of the monotonicity constraint imposed on the curvilinear regression smoothing.
Although the smoothing -algorithm contained the provision for the use of that constraint
‘where needed, it was in fact never required for the data analyzed for this effort. -The'
-deviations in the case of the unsmoothed equatings are modest, whereas the smoothed
deviations are considerably greater for scores above 47. The concomitant increases in
ASD indicate that the increases in"RMSD and AAD are due not necessarily to greater
variability but rather to consistent deviations in one direction. - Furthermore, between
‘tests, the departures are sometimes in one direction, sometimes in the other, as the
contrast of the right end of the ASD panels in Figures B-36 and B-37 shows. That this
pattern of deviations occurs not only in the curvilinear smoothings, but also in the
linear regression smoothings further confirms that it is not due to any nonmonotonicity
" of the curvilinear smoothing funetions, but to the inability of the functions to follow
the points adequately, Table 9 summarizes the effects of the linear regression
smoother. _

Figures B-41 to B-45 present the effects of postsmoothing with quadratic
equations. They indicate modest benefits locally. Improvements in RMSD and AAD are
partially offset by increases in ASD. Again, deviation measures tend to be high at the
upper end, especially with the 50-item test. Table 10 shows the nearly 20-fold
increases, from 0.028 to 0.53, in ASD for the 50-item test. ' v '

Use of cubic polynomial regression smoothing has less benefit than does quadratic
regression in most cases (Figures B=46 through B-50), but it also causes less increase in
RMSD at high scores, and less of an effect on ASD. Since a cubic funetion can follow a
given curve moré accurately than can a quadratic function, one would expeect that the
cubic regression smoothing would lead to more accurate equating than linear or
quadratic regression smoothing. Findings to the contrary suggest that the cubic
functions may have: been follqwing and fitting sample-dependent fluctuations in the
individual equatings. Table 11 ghows its. general effectiveness. * .

Smoothing by means of orthogonal regression (Figures B-51 to B-55) had effeects
which were very similar to those which resulted from the use of linear regression. The
deleterious effects at the high end of the test, however, were less pronounced. Again,
there were considerable increases in ASD, although the direction of those increases was
not consistent. As Table 12 shows, orthogonal\geg{ession was especially variable in its
effects on RMSD, : - '

Postsmoothing by fiheans of the logistic ogive, the results of which are shown in
Figures B-56 to B-60 and summarized in Table 13, resulted in modest reductions in
RMSD and AAD, at the usual cost of increases in ASD, and with the previously noted
problems at the highest scores. On the whole, the results of smoothing with the logistic
ogive are modestly encouraging. RN
. The results of smoothing by cubic smoothing splines (Figures B-61 to B-65 and
Table 14), are the most promising of the results using po§ smoothing methods. There
are modest reductions throughout in the amounts of RMSD and AAD, combined with no
end point problems at either end, and no particularly severe problem with increases in
ASD. Table 14 shows that the gains, though modest, are consistent for the cubic

S

\

smoothing spline method. SN
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Finally, as Figures B-66 through B-70 show, the effect of postsmoothing by 5-
point moving weighted averages wes virtually nil at all scores and with all three
measures. Table 15 confirms the general lack of effect. ‘

Combined Smoothers B _ _

. Combining negative hypergeometric presmoothing with postsmoothing by means
of orthogonal regression (Figures B-71 to B-75) has effects on RMSD and ASD which are
greatly inferior to the effects of negative hypergeometric pregmoothing alone at the
higher score points. This implies that the fitted orthogonal regression smoothing line
does not follow the equipercentile points effectively. : : _

The same problems are evident, though to a lesser degree, with the combination
of the negative hypergeometric presmoothing and = quadratic regression postsmoothing
(Pigures B=76 to B-80). Evidently the curvilinear - function-can follow the equating
points better than can the straight line. Incréases at the higher scores on the 50-item
test are evident (Figure B-78), but, in contrast, the combination was very successful for

the 20-item test (Figure B-79). The latter, in fact, was the most effective combination -

seen in this study for any of the five tests considered. . ‘
-~ The combination of presmoothing by means of the negative hypergeometric and
‘postsmoothing by the 5-point moving weighted averages (Figures B-81 through B-85)

again does not result in gains beyond those achieved with the negative hypergeometric '

presmoothing alone. The difference in scales makes that difficult to perceive, but it is
confirmed by Tables 8 and 18, which have entries that are almost equal to each other.
Figures B-86 through B-90 show that combining the presmoothing method of 3-
- point moving weighted averages with the postsmoothing method of 5-point moving
weighted averages results in slight reductions in RMSD in some cases (Figure B-86), and
negligible increases in ASD. Table 19 shows that although the gains are slight, they are
consistent. o
Finally, Figures B-91 through B-95 show the effects of combining presmoothing by

decreased at all test lengths, a8 is AAD, whereas ASD is generally increased, especially
with the test of length 25. The effects on ASD vary particularly strongly as a function
of test score, as Figure B-92 shows well. ' ’

the negative hypergeometric w%t/h_p,mtsmoothingx by cubic smoothing splines. RMSD is
is

Jackknifed Estimates , : ! .
T The close agreement of the standard errors as estimated by the three methods,
-shown in Table 21, supports the contention that each of the three estimation methods is
both appropriate and correctly executed. Although there are slight differences in the
estimates, they are-not large enough to call into question the appropriateness of the
methods. - : E ' :
The similarity of results continues, for the most part, in Table 22, where the
results of smoothing are summarized for all 19 smoothing methods as estimated by
RMSD averaged over 100 reduced sample equatings and by jackknifing. There are,
however, some cases of disagreement, such as that in.the case of postsmoothing by
means of linear regression. There, jackknifed results indicate that the method is more
generally effective than do the results of the averaged RMSD figures. The jackknifing
was applied to groups of 2,000 which were based on population expected proportions,
not on small samples. As a result, it is plausible to suggest that the straight line fit the
* jackknifed samples better than the "true" samples of 2,000 used in the computation of
RMSD because the population equating deviates from a straight line Iess than the small
samples do. A similar possibility is evident for the case of combined negative
hypergeometric and logistic ogive smoothing. : ~

49

'
i




In general it is difficult to say that either estimation method is unequivocally
better than the ather, but since the jackknife used data based on population proportions,
it is to be expected that analytie functions should fit suech data better than they would
fit data with sample-dependent fluctuatxons _In any case, the jackknife does not allow
estimations of ASD or AAD.

Since the two methods do give somewhat divergent results in some cases, a
conservative eriterion for.the recommendation of adopting a smoothing method is that
the method should appear advantageous with both estimation techniques, mean RMSD
and jackknifing. The only method meeting that criterion at all test lengths is the
method of presmoothing by the negative hypergeometnc .

Conelusions : _

One presmoother and one postsmoother stand out as deserving further study and
consideration for future operational use. The presmoother is. the negative
hypergeom etric; the postsmoother is the cubie smoothing spline. ' ¢

' When its effeet is estimated by jackknifing, the cubiec smoothing spline was not
. effective in reducing RMSD with the operationadl test of length 20, nor with any of the
simulated tests. There was, however, consistent improvement rwl.ltlngjrmn the use of
the smoothing splines:-as measured by RMSD. - This divergence.of measures of
effectiveness suggests the need for further study before unequivocal recommendations
may be made.

Presmoothers other than the ‘negative hypergeometrlc are either ineffective,
inconsistent in their effects, or have associated with them- disadvantages such as
~greatly inereased ASD. Divgi (1983) likewise found merit in the use of the negative.
hypergeometric, - although he also found .that the three-and four-parameter beta
binomial ¢istributions were more effective than the negative hypergeometric. (The -
negative hypergeometric is atwo-parameter beta binomial.) :

The lack of effectiveness of the other presmoothers may say less mbout the
presmoothers than it does about the robustness of equipercentile equating. The various .
cumulative frequency eounts used in equating may be degraded by all of the smoothers
except the negative hypergeometric.

The_gubic smoothing spline has ‘a number of intuitively appealing characteristics:
it can follow a curve of any) shape, it can pass as close to the fit points as appropriate,
and it is theoretically nAgm/in the sense that its use does not depend on the
apphcablllty or appropriaten@s<”of any statistical theory of t%tlng Its effectiveness,
which is also reported by Kolen (1983), is thus not, "surprising. Although the
1mprovements due to the splines were modest, the fact that there is no conecomitant
increase in ASD makes their use particularly attractlve The cubie smoothing splines
perform, in effeet, exacetly what hand smoothing was to do: It passes a theoretically
neutral curve among the points. Its effectiveness may derive from its mimieking of the
original objective of postsmoothing. :
Limitations

The present study is limited in several respeets, all of which may tend to reduce
its generalizability to other applications. ‘

. First, only five tests were used: two operational and three simulated.
Generallzatlons to other tests may be madvxsable, if the tests do not statxstlcally
resemble those used for this study. ’

Second, the tests used, especially the simulated tests, may be:more similar to
each other than are most operatxonally equated tests. Generalization to less similar
tests is of questionable appropriateness.
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e . ’ ' ' :
Third, -all equated pairs were pairs of tests of the same length, a condition not

always found operationally. : .
Finally, within the current methodology it has not been possible to investigate a

question of potential importance. One of the particularly significant advantages of

equipercentile test equating is that when tests equated by the equipercentile method

: are used interchangeably to select only those who score at or above a certain

percentile, then there is no expected advantage to any examinee in taking any
particalar form of the test in place of any other form. It is not clear that presmoothed
equipercentile equatings retain that property. In.applications where such percentile
invariance is an essential consideration, the use of presmoothing should await further

research.

Recommendations -

Among the presmoothing methods, the negative hypergeom etrie and, by extension,
other smoothers of the same beta binomial family, deserve consideration - for
operational use. If any of the presmoothers studied here is to be-adopted, then the
negative hypergeometric would be the most appropriate. It has-the effect of reducing
RMSD by about ten percent, a benefit which could also be achieved by increasing

:s_ample size by about 20 percent. ._

" Among the postsmoothers, gains were not as evident with linear, quadratie, and
cubic regression smoothing ‘as had been anticipated. In those cases where an a priori
decision has been made that the smoothing shall be linear, the use of orthogonal
regression should be favored over the use of standard regression. Where the shape of
the regression fitting is not determined in advance, then the use of cubic splines
appears appropriate. . These two postsmoothing methods, orthogonal regression and
cubic splines, are appropriate for operational use with tests similar to those studied
here, and may be useful with other tests if further research confirms their usefulness."

It is further suggested that future investigations consider not only AAD, RMSD,
and ASD, but also look at the worst cases, to determine whether, as Divgi (1983) found,

there are some equatings in which the action of a generally helpful smoother results in
less aceurate results than does either no smoother or some other.smoother. Divgi's

results suggested that the four-parameter beta binomial was effective in- most
- equatings, but that in a small proportion of cases its use was not appropriate because it

increased deviations markedly. : |
Analytic derivations of the standard errors associated with equating distributions

presmoothed by means of the negative hypergeometric or related smoothers would .

contribute to an understanding of the expected functioning of that smoother.

Finally, the figures and tables show that benefits are generally achieved at the
cost of increases in ASD. The use of resampling techniques, such as jackknifing, known
to reduce ASD, might be applied with the promising smoothers to determine if the two
together would reduce RMSD and ASD. Such combining of a smoothing technique with
a resampling might bring the benefits of both to the equating process.-

<
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Appendix A
Technical Description of Simulated Tests
ﬁ * . .

S

The tests used in the simulated equatings are descnbed\i'r{ detail in the
accompanymg tables. Item statistics, distribution statistics, and item parameters are
all-given. Test 15.1 was the experimental test of length 15, and test 15.2 was the

: reference test. The tests of lengths 30 and 50 were numbered similarly. The item
. parameters (a, b, and ¢) were used to develop the tests and to derive the expected
L observed score dlstmbutlons. All of the other statistics for the items and for the test as
a whole were developed from a single sample of 2,000 simulees. Table A-1 presents
test summary statistics, Tables A-2 through A-7 present item statistics.
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Table A - 1. Test Statistios for the Simulated Tests -

, Standard . : _
Test =~ Mean  Deviations o Skew  Kurtosis .  KR-20 KR-21
151 1025 - 3.28 - -0.44 . -0.67 .80 .75
15.2 10.55 - 3.25 -0.48  0.87 .80 75
3 30.1 18.54 6.6 -0.14 ~0.97 .89 |
Q 3.2 17.93 8.57 - 000 - -0.95 . .88 .86
. 504 36.33  10.36 -0.57 -0.66 .93 .93
50.2 ~ 35,17 9.61 -0.48 - -0.87 1 91
“
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" Table A - 2. Itm Statisties for Tests 15.1

IEN . A B A R RB
‘ | | e
1 1,067 -2.146 0237 0.950  0.328 0.6%0
2 L -L2%0  0.240 0.8  0.481 | 0.768
30 OL297 -1.120 0.230  0.868  0.4%2 0,778
4 1420 <079 0273 0.816  0.526  0.745
, 5 1487 -0.757 - 0.247  0.804 0.5 ' 0.77
b 1330 ~0.591 0240 0766 0.554 0779
7 1900 -0.395 . 0.250  0.722, 0.624 0,833
8 147 0350 0260 073 0.1  0.7%
9 - 1439 -0.265 - 0.261 0717 - 0.366  0.780
10 1.420 <009 0240 0.637  0.583  0.747
1 L3 0.007  0.269 T 0.65 - 0343  0.701
12 L590 0.7 0226 0449 0499  0.628
13 1150 0682 0.245  0.489  0.489  0.813
14 1530, 0778 0.240 0429  0.478  0.503
15

1,430 1.393 0.235 0.326 0,35 . 0.483

LS

" KEY: A=a param eter; B = b parameter; C = ¢ parameter; P = proportion of simulees
_ answelntqg correctly; RP = point biserial correlation; RB = biserial item-test
correlation. ' ' . ' v
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Table A.-3. Item Statistics for Tests 15.2

P AP RB ‘ B

0,584 . 0.581 0.734 ' . -

ITER A - B c

1 1.557 -1.940 0,248 - 0.95 0,339 - 0.746
2 L.43 -1,79 0,234 0,94 0384 0,780

r~ 3 L2400 -1.226 0,237 0.878  0.468 . 0.75F
4 1.080 -0.866 0,237  0.804 0,502 . 0.720
5 1,410 -0.614 0,247 0,768 0.569  0.787
6 1370 -0.488 0248 0752  0.577  0.788
7 1,220 -0.460 0,25  0.729 0.5  0.733
8 1.09 -0.412 0.251. 0.735  0.526  0.709
9 1,350 -0.340 . 0.248 0,728  0.584  0.783
10 1.468 -0.299 0,215  0.680 - 0.620  0.809
11 1,405 -0.140  0.244  0.675  0.568  0.730

i 12 1.6% 0146 0246
13 - 1,494 0482  0.227 °0.508 0.538  0.674
14 1263 0.865 0,262 - 0.440  0.45¢  0.571
15 1.261 0.247 0,38  0.375 - 0.480

1.146

o~

KEY: A=a parameter; B = b parameter; C = ¢ parameter; P = proportion of simulees
answering correctly; RP = point biserial correlatlon, RB = biserial item-test

correlation,
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Table A 4. Item Statistics for Tests 30.1

1TEN A B . L 4 Re . RB -
1 1,706  -1.800  0.242 0.944 0.362 0.737
2 1L.051  -L17 0. 242 0.850  0.441 0.4675
3 1.382 -1.088 - 0.229 0.852 0.519 0.798
] 1.639  -t.011 ~ 0.231 0.846 0.509 0.774
3 1M1 -0.926 0.217 0.820  0.537 0.786
- b 17711 - -0.838 0.223 0.827 0,955  o0.821 ° - =
1 1,411 -0.806 0.240  0.806 0.521 -0.789
8 L262 --0.738 0.217 0.792 0.515 0.729
9 1,291 -0.683 0.244 0.796 0.521 - 0.789

10 1,39 -0.520 0,222 0.7% 0.55¢  0.74%

. it 1,108 -0,380 0.227 0.715 0.519 0.690

12 1LM3  -0.241 - 0.227 0.692 0,582 0.764

13 1.685 - -0.064  0.224 0.640 0.593 0.761

RL) 1403 -0.023 0.231 0,624 0.511 - 0.789

15 1.673 0.003 0.235°  0.617 0.393 0.755

16 1,403 0,077 0.22% 0.59% 0.944  0.689

17 1,283 0.217 0.227 0.559 0.489 0.615

18 1.31 0.323 0.221 0.342 0.318. 0,851

f i 19 1.656 0.420 0.219 0.303 0.540 V.57

' 20 1.641 0.512 0.216 0.472 0.506 . 0.634

21 1,603 0.563 0.225 0.478- 0511 N 0.441

22 1.287 0.569 0.222 ~ 0.488 0.485 0.608

23 1,226 0.57%  0.226  0.486 0.453 0.567
YL Y1 Y} .61t 0.289 0.499 0.439 0,530 .

5 L3 6. 624 0.229 0.467 0.473 0.594

26 - .0.930 0.880 0.235 0.437 0.421 0.530

27 1,264 0.895 0.22}  0.407 ~ 0.384 0.486

8 . L1590 0.99% 0,224 0.406 0.388 0.491

- . A 1.578 1,251 0.215 0.323 0.397 0.517 . .

30 1629 1.489 0.243 9.315 0.290 0.379

13

" KEY: A = a parameter; B = b parameter; C= ¢ parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation. ’ : .

~
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Table A -5. Item Stat_istits for Tests 30.2

ITEA A B C 4 RP RB
! 1,266 -1.498 0.239 0.907 0.319 0. 451
2 LT -1.424 0.232 0.92¢ . 0.364 0.876
| 3 1.287  -1.110 0.234 0.856  0.464 0.7117
- 4 1,010  -0.731 0.236 0.776 0.453  0.632
3 1,373 -0.475 ' 0,202 0.775  0.533 0.7
_ , b 1,336 -0.413 0.243 0.771 0. 509 0.701

1 0.977  -0.405 0.243- 0.75% 0.458 . 0.627 ’

8 1,450  -0.497 0.22¢ 0.787 0,533 0.732 :

9 1.310  -0.264 0.233 0.673 0.518 - 0.674

10 L2011 -0.189  0.221 0.6  0.549  0.7U

: 11 1349 -0.150  0.226-  0.660  0.542  0.700

\ ' 12 1100 -0.131 ° 0.230  O0.661  0.523  0.676
T13 1509 -0.086 0,217  0.650  0.577  0.74

, . 14 1361 -0.065  0.229  0.625 0,533  0.70b
~ 15 1,260 -0.032  0.262 . 0.613  0.518  0.659
16 1337 0020  0.212 0,622  0.583 0.719

17 1671 0.082  0.264  0.813 0.5  0.720

18 1.663  0.198 ° 0.235  0.558 °0.580  0.729

19 1,573 0,221 0.226  0.579  0.59%  0.732

20 1.606  0.357  0.252 0.540  0.533  0.649

o 2 1,418 - 0.364 0,240 0,548 0.53  0.671

! 22 1.591  0.678 0,223  0.458 0,486  0.b11
: 23 1.601 0,898 0.223  0.410 - 0.480  0.407

24 1,349 1.000  0.211  0.385  0.412 0.5

25  1.557-  1.061  0.2¢1 . 0.3%  0.416  0.528

2 1.547 L1460 0,255 0.397  0.374  0.475

7 LI L2817 0238 0358 0377 0.481

2 1,307 1,34 0234 0,363 0.309  0.3%

2%  [.497 1548 0,230  0.305  0.315  0.414

30 1,900 - 1,600  0.235  0.304  0.292  0.384

KEY: A=a parametér; B = b parameter; C = ¢ parameter; P = proportion of simulees
answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation.
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Table A -6, Item Statistics for Tests 80.1

' stn A b c 4 RP

! ! 1,330  -1.620 0229 0921 0,429 0.788
2 1,538 -1.560. 0,254 0,923 0.451  0.830. -
3OLASY -LA0 0,229 0.8 0.4 0.8%2
§ 0770 -1 0,246 0.840 0,408 0,609
5 1,005 -1.265  0.250  0.8%  0.431 0,668
b 109 -1.237 - 0,249 0.857 - 0.481 0,74
70900 -1.225 0,253 0.840  0.440 \g,«g
8 0951 -LI71 0.200 0839 0.441 0,663
9 1321 -f158  0.248  0.877  0.483 0,780
10 1080 -1,128 0241  0.840 0,433  0.651
1 1100 -1,086  0.255  0.842  0.464  0.70!
12 0828 -1.012 0239 0799 0.430  0.627
13 1,060 -0.984 0249, 0818  0.49 0.7
4 1,222 -0.957  0.225 . 0.820 059 0775
15 1,200 -0.9%0 0,228 0.B16 0510 0.742
16 0,622 -0.882 0251  0.792  0.M5 0,588
17° 1110 -0.81  0.240 0,792 0,512  0.72b
18 170 -0.859 0,244 0.814  0.4%  0.718
19 1193 -0.786  0.225 0785 0513 0,72
20 1,383 -0.748 0261 0,795  0.528 0,750
20 LT -0.739 0,247 0772 0.488  0.478
22 1014 -0.69% 0,234 0,746 0,534 0.72%
23 1,026 -0.359 - 0240 073  0.510 - 0.687
24 1,220 -0.515  0.245 0.7 0545 0.7%

25 L7 -0.487  0.248 0726 0513 0.8
2 - 0979 -0.464 0266 0725 0.49 —0.627
27 L3 <0434 0263 0731 0,500 0.8
28 1.5 -0.432 0240 0,710 058 0700
29 1,280 -0.429 0,240 0,722 0.9 0740
0 LA 0,47 0.721 0,743

0.234
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Table A - 6. (continued)

3 L4300 -0.426 0,246 0721 0.521  0.695
.32 1,098 -0.425  0.241  0.720 0,895 0.b60

! 33 1,034 0,279  0.240  0.687  0.475:.  0.62
34 0.624  -0.219  0.252 0.684 . 0.332 0.434

35 L5 -0.216 0235 0.8 0.575 © 0.74b

3% - L33 -0.170  0.245  0.657  0.545  0.703

37 1074 -0.167 - 0,232 . 0.6b1  0.473 0,412

38 1.394  -0.161  0.241 - 0.658.  0.560 0,723

39 0.829 -0.157 0,250  0.65%  0.414 - 0.533

0 1366 -0.106.  0.238 0.635 0.5 0.712

8 1,222 -0.108\  0.256  0.664  0.51z - 0.663
#2095 0,018 0,239 0.605  0.464  0.589

83 1381 0.072 0529 0572 0.555 0,700

M 1,069 0.318  0.247 0,549 0.450 ° 0,565

5 0.980  0.383  0.232  0.538  0.427  0.53

8% 1389 0.362 0,226 0.581  0.495  0.622

47 1.166  0.415 - 0.25t  0.540 0.4t 0.354

8 1,071 0.49%  0.251  0.514 0,434 0.584

9 1477 0.517  0.235  0.490 . 0.451  0.545

50 1.268  0.605 0,227  0.473  0.437  0.548

«

™~
KEY; A = a parameter; B = b parameter; C = ¢ panameter; P = proportion of simulees

answering correctly; RP = point biserial correlation; RB = biserial item-test
correlation. : : - :

Y




P
ITEN A B t - P RP RB
1 0.97%6 -1.593  0.236  0.886  0.397 0,653
2 0.9 -1.37  0.255  0.870  0.400  0.636
3 0.936  -1.268 0,233 0.843  0.433  0.678
& L2 -1.183 0246 9.875 0435 0.699
5 0.9 -L177 0,234, 0.843  0.414  0.627
6 0.890 -t.1s6 0,242 0.832. 0.423  0.629
7 1072 -Li40 0.263  0.843  0.485  (.734
8 0.96 -1.139  0.23%  0.815  0.452  0.b56
) 9 1.0 -1.127 0,230  0.837  0.485 0,728
0 -1.086 0,222  0.840  0.505 0,761
! -1,019  0.241  0.843  0.476 0,722
-0.953  0.232 0,808  0.408  0.589
-0.942  0.240 - 0.799  0.440 0,628
- -0.820  0.253 0,782 - —0.415  0.581
. -0.799  0.229  0.785  0.462  0.450
' -0.779  0.249  0.778  0.448 0,625
) -0.670- .. 0,227  0.743  0.476  0.b45
-0.653  0.244 0,718 0.437 0,582
-0.567  0.239  0.737  0.482  0.650
-0.535  0.265 0,731 0.448 0,602
-0.508  0.247 0,737 0.491  0.b62
-0.485  0.244 - 0741 0.511 0,691
<0.418  0.238  0.696 0,430  0.55
-0.408  0.245 (0,726 0,527 0,705
-0.395  0.243  0.710  0.447  0.592
“0.371 . 0,238 0.677  0.498  0.548 -
-0,333  0.222  0.685  0.429 0,561
-0.317  0.25¢ 0,694  0.378  0.497
29 1,038 -0.201 0,230  0.649  0.472  0.613
30 0913  -0.154  0.234  0.633 0,503 D.o44
/
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" TableA -T. (continued)

«0.077
=0,083 -
=0,041
=0, 020
0,021
0,039
0,042
0,087
0,087
0,123
0155
0.198

0.241
0.2%8
0.301

0.324
0.358
0.475
- 0,594
0.743

A

0,238
0,240
0,238
0.242
0,238
0.240
0.238
0.244
0.222

0,231

0.234
0.248
0.240
0.233
0.236
0.251
0.230
0.242
0.236
0.23b

0,623
0,647
0,621
0:413
0,413
0-60]/
0,604
0.427
05%
612

0516
0,446
0,492
0,382
0,430
0,442
0,422
0,478
0,486 .
0,440

0,659

0.574
0,629
0.487

- 034

0,360
0,338
0.611
0.6l

0,559 d,—ﬂf”f”’((”ﬂ

| 05~ 0:5H-—

0,576
0,553
0,567
0.547
0,553
0,524
0.506
0.497

0.322

. 0.427

0.379
0,451
0.398
0.445
0.370
0.308

0.406
0,337
0.478
0.580
0,500 .
0.358
0.464
0.386

KEY: A = a parameter; B=b parameter; C=¢ par\an{eter; P = proportion of simulees

answering correctly; RP
correlation, -
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Appendix B .

Figures showing the effects of the smoothing procedures.
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"Figure B-1 e i

Deviations of sample equatings (RMSD; AAD, and ASD) from eriterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 15,

Test Type: Simulated ‘

Smoothing: Presmoothed by 3-point moying medians
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Figure B-2

Deviations of ssmple equatings (RMSD, . AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 30 -
Test Type:. Simulated o
Smoothing: Presmoothed by 3-point moyving medians
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Figure B-3 »
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
S Test Length: 50
- ' - Test Type: Simulated
: : Smoothing: Presmoothed by 3-point moving medians
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IR LS —— | . and ASD) from
Deviations of sample equatings (RMSD, AAD, and ASD) from ecriterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30 - :
Test Type: Operational

Smoothing: Presmoothed by 3-point moving medians

0.320
3
S
DA
0. 10
) 0.320
E .
a
e 18— , ze
NUMBER ' CORRECT
e.a% ‘ —
\\ v /
2 \ \ ’
B
-e.12 L_ =
NUMBER CORRECT
89
Q | . ' 77
ERIC .




~

Figure B-5

3

Deviations of sample equatings (RMSD, AAD,' and ASD) from criterion
equating. Unsmoothed equating: solid ling; smoothed equating: + marks.

'Test Length: 25

Test Type: Operaticnal » ’
Smoothing: - Presmoothed by 3-point moving medians
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Figure B-6 -
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15

Test Typer Simulated

Smoothing: Presmoothed by 5-point moving medians
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Figure B-7

~
-

Peviations of sample equatings (RMSD, AAD,

and ASD) from criterion

equating. Unsmoothed equating: soli'c‘l‘ line; lmoothed equatihg: + marks.

Test Length: 30
‘Test Type: Simulated ~
Smoothing: _ _ Presmoothed by 5-point moving medians {
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Deviations of sample equatings (RMSD, AAD, and ASD) from criterion 5
equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: - 50 : ‘ :

Test Type:. Simulated , »
Smoothing: . Presmoothed by 5-point moving medians )
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Figure B-9 -

Deviations of samplé equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
- Test Length: 20

Test Type: Operational

Smoothing: Presmoothed by 5-point moving medians .
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Figure B-10

e

-~

: - ' g
Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 :
Test Type: =~ .Operational :
Smoothing: Presmoothed by 5-point moving medians
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Figure B"ll 3
Deviations of sample equatings (RMSD, AAD, and ASD) from ecriterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
. Test Length: 15 :
. . Test Type: Simulated N :
Smoothing: Presmoothed by 3-point mecving weighted averages
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Figure B-12

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30

Test Type: Simulated .

S moothing: Presmoothed by 3-point moving weighted averages
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Figure B-13

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks. .
Test Length: 50 \
Test Type: Simulated - '
Smoothing: Presmoothed by 3-point moving weighted averages
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Figure B-14

A

3

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: ~ 20

Test Type: Operational :

Smoothing: Presmoothed by 3-point moving weighted averages
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Figure B-15 _
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 . ' ‘
Test Type: Operational
Smoothing: Presmoothed by 3-point moving weighted averages
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Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15 ,

Test Type: . Simulated

Smoothing: Presmoothed by 5-point moving weighted averages
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‘Figure B-17

Deviations.of sample equatihgs (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: = 30 '

Test Type: Simulated ‘
Smoothing: Presmoothed by 5-point moving weighted avel%es

hJ

B, 33
-
=)
14
5
] :
8. 14
3 a6
HUMEER CORRECT
-
3,323
H
4
D
8. 14 L
= X
MUMEER COFRELCT
Bo1S " - _
=5 +
o) T =
S TEr + + 7+
-8 18 = T
~ HUMEBEFR COFRECT
82 r




*  Figure B-18

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length:
Test Type:
Smoothing:

2

8. vi

50 ,
Simulated
Presmoothed by 5-point moving weighted averages
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Deviations of sample equatt/'mgs (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20

: Test Type: ~ Operational : i
. Smoothing: Presmoothed by 5-point moving weighted averages
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© . Figure B~20

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks,
Test Length: 25 ’ e

Test Type: Operational :
Smoothing: Presmoothed by 5-point moving weighted averages
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Figure B-21

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: - 15

_ Test Type: Simulated.
Smoothing: Presmoothed by 5-point moving weighted ave ages with
root transformation
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Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 30 ° : .

Test Type: Simulated )

Smoothing: Presmoothed by 5-point moving weighted averages with
root transformation p
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Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length:

Test Type:
Smoothing:

8. 71

50 .
Simulated

Presmoothed by 5-point moving weighted averages with
root transformation
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- |

Deviaticns of sample equatings (RNBD AAD, and ASD) from eriterion
equating. Unsmoothed equating: solid hne, sm9othed equating: + m ks. -
Test Length: 20 -
Test Typel Operational - ‘
Smoothing: - ~Presmoothed by 5-point moving wexghted averages with
: root transformation > '

Figure B-24
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Fiqute'B-ZS '

Test Length:
Test Type:
- Smoothing:

.

25 _
Operational

Presmoothed by"™espoint moving weighted averages with

root transformation
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Deviations of sample equatings (RMSD; AAD, and ASD) from criterion
. equating. Unsmoothed equating: solid line; smoothed equating: + marks.
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Figupe B-26 )
L]

—

Deviations of s';!rﬁple eqxﬁtings'(RhBD, AAD, and ASD) from criterion

- equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 15 - ~N .
Test Type: Simulated A G

' Smoothing: - Presmoothed by 4253H Twice
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Figure B-27
f
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: ' ' -l
4 ! > ’ >
. ) . N .
_ Deviations of sample equatings (Rl\rSD AAD and- ASD) from el’xtenon ’
equating. -Unsmoothed equating: solid hne, smoothed equatmg. + marks.
Test Length. - 30 '
Test Type: Simulated . . )
Smooth:ng' | Presmoothed by 4253H Twice: b
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" Deviations of sample equatingy (RMSD, AAD, and ASD) from oriterion

%

Al

equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Lengthy 50 |
Teat Type: Simulated

Smoothing: - Preamoothed by 4253H Twice’
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N , Figure B-29
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Deviations of sample equatlngs (RMSD, AAD, and ASD) from criterion
. equating. Unsmoothed equating: solid line, smoothed equatmg' + marks.

Test Length:

Test Type:

Smoothing:
LN
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Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion
equating. Unsmoothed equating: solid line; smoothed equatin

-

g: + marks.

Test Length: 25 )
Test Type: Operational :
Smoothing: Presmoothed by 4253H Twice
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glgure 8-31

. Deviltionl of suﬂple equatings (RMSD, AAD and ASD) from criterion
equating. Unsmoothed equating: solid line; lmoothed equating: + marks,

+Test Length: 15
Test Type: Simulated
‘Smoothings Presmootlied by negltive hypergeometrlc
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’ .
 Figure B-32 S v
- . Deviattofs of sample equatings (RMSD, AAD and ASD) from eriterion
J I ’ equating. Unsmoothed equatmg- solid line; smoothed equating: + marks
. Test Length: 30
*  Test Type: Simutated - = ¢ N
Smoothing: Presmoothed by negatlve hypergeometrlc L
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Figure B-33

Deviations of sample equatmgs (RMSD, AAD, and ASD) from cntenon .
equating. Unsmoothed equating: solid hne, smoothed equating: + marks,

Test Length: 50
.. Test Type: Simulated - - . )
Smoothing: . Presmoothed by negative hypergeometric
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Figure B-34 ° ' ' C -
N ~ Deviations ‘of sample equatmgs (RMSD; AAD, and ASD) from criterion . = °
. “equating. Unsmoothed equatmg- solnd lme, smoothed equating: + marks. .

' Test Length: 20 ) .
Test Type: = Operational '
Smoothing: Presmoothed by negati?re hypergeometnc
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Figure B-35 x Ce—
Deviations of sample equatings (RMSD, AAD, and ASD) from. criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 ‘

Test Type: Operational , '
Smoothing: Presmoothed by negative hypergeometric ., e I
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Deviations of sample equitings (RMSD, AAD, and ASD) from ceiterion

equating.’ Uumogthod equating: solid line; smoothed-equating: + marks.
1 ' )

Test Length:
Test Types

9.2%

y

Simulated >~
Smoothing: Postsmoothed by linear regression -
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Figqre B-317

N

.” Deviations of sample e

equating. Unsmoothed
Test Lenth: - 30
Test Type:

v

.92

/

atings (RMSD, AAD, and ASD) from criterion
eg:mting: solid line; smoothed equating: + marks,

Simulated . ‘4
Smoothing: . ;qgtsmoothed by'linear regression
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Figure B-38

-

e B
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks, "

Test hength: 50
Test Type: . Simulated

Sm\oothing: Postsmoothed by linear regression
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Pigure B-39

o

Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks,

Test Length: 20
Test Type:. - Operational .
Smoothing: ‘Postsmoothed by linear regression
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Figure B~40

Deviations of sample equatings (RMSD, AAD, and ASD), from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 R

Test Type: Operational

Smoothing:  Postsmoothed by?li’n_ear‘ regression v
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Deviations of sample equatmgs (RNBD "AAD, and ASD) from criterion
equating. Unsmoothed equatmg- solid line; smoothed equating: + marks.

Test Length: 15 N
o © Test Type: Simulated . '
. ~ S,moothin_g: Postsmoothed by quadratic regression
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Figure B42

Test Length. _ . *
Test Type: Sxmulated
Smoothing: Postsmoothed by quadratic regre‘ésion
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- Figure B43 ‘ :
. Deviations of sample equatings (RMSD,“AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50 ’ .
. Test Type: = Simulated -
Smoothingr Postsmoothed by quadratic regression
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Figure B44 o T : : . .
. Deviations of sample equatings (RMSD, AAD, and ASD) from criterion -
equating. Unsmoothed equating: solid une; lmoothed equatlng: + marks. -
* Test Length: 20 . .
Test Type: Operatignal ' o .
Smoothing: Putlmoothcd by quadrutlc regression
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" Figure B45 . B - B ,
‘ " Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks,
Test Length: 25 _ ‘ v
Test Type: Operational ]
Smavin?ne Postsmoothed by quadratic regression
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Figure B-46

Deviations of sample equatings (RMSD, AAD, and ASD) from critenon
equating.- Unsmoothed equating: solid line, smoothed equating: + marks.
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Test Length:
Test Type: Simulated
- Smoothing: Postsmoothed by cubic regression.
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Figure B47

Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion
equating. Unsmoothed equating: solid unenmoothgd equating: + marks.
Test Lengtht 30 ' '

Test Type: Simulated ,
Smoothing: Postsmobthed by cubic regression
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Figure B-48

b 7y 921

\

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothéd equating: solid line; smoothed equating: + marks.

Test Length: 50
Test Type: Simulated :
Swroothing: . Postsmoothed by cubic regression
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Figure B49

’

‘Deviations of sample equatings (RNSD, AAD, and -ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed -equating: + marks.
Test Length:, 20 '

Test Type: Operational

Smoothing: Postsmoothed by cubic regression
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Figure B-50 '

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed-equating: solid line; smoothed equatmg + marks.
Test Length: 25

I 4

Test Type: - Operational "
Smoothing: Postsmoothed by cubic regressxon .,
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Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Ummoothed equating: solid line; smoothed equating: + marks.

Test Length: 15
Test Type: .  Simulated .
Smoothing: Postsmoothed by orthogonal regression : -

¥

B .25
‘ +
R ¥
i)
~x
D
8.7
5
8.25
<)
B +
e ~
+ o+ +
+ + +
+ 4, o+ 7
a. 97
b} 15
( NUMEER CORRECT
@. a5 :
+ +
+ .
+ +
;‘L—M‘v ‘
A +
B
-
o -+
-0.208 . :
= 15
HUMBER CORRECT
: 1186
~ *

124




: T
p v '\

JFigure B-52 T :
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Ummoothed equnting: soli llne; lmoothod equating: + marks.

. : " Test Length: .
~ . Test Types Simulnted
Smoothing: Postsmoothed by orthogonal regression
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Figure B-53 ' '
' Deviations of sample equatings (RMSD, AAD, and ASD) from ecriterion "
v equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50 = :
Test Type: Simulated - :
Smoothing: - Postsmoothed by orthogonal regression
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Pigure B-54 T . - : 1
) : ~ Dgviations of sample equatings (RMSD, AAD, and ASD) from criterion .
equating. Unsmoothed equating: solid line; smoothed equating: + marks, :
Test-Length: 20 : L
. est Typer Operational _ C !
Smoothing: Postsmoothed by orthogonal regression ST
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Figure B85 ' : ,
: Deviations; of sample equatings (RMSD, AAD, snd ASD) from ecriterion
ot equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Lengths 25 :
Test Typet . Operational
‘Smoothingr Pastsmoothed by orthogonal regression
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Figure B-56 -

Test Type: -
Smoothing:

a. 25

Simulated ¥

Postsmoothed by logistic ogive
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Deviations of sample equatings (RMSD, AAD, and ASD) from ecriterion
equating. Unsmoothed equating: solid line; smoothed equatmg' + marks.
Test Length. 15
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Figure B-57

°

Deviations_of sample equatings (RMSD, AAD, and ASD) from ecriterion

equating.” Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30

Test Type: Simulated :
/ Smoothing: Postsmoothed by logistic ogive
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Figure B-58

————

Deviations

equating. Unsmoothed e
Test Length: 50

«Y - ‘

o

of sample equatings (RMSD, AAD, and ASD) from criéerfon
quating: solid line; smoothed equating: + marks.

Test Type: ~ -Simulated ,
Smoothing: Postsmoothed by logistic ogive e
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Deviatncns of sample equatings (RMSD, AAD and ASD) from eriterion

equating. Unsmoothed equating- solid line; smoothed equating: + marks
‘Test Length. ‘20 . ,

Test Type: = = Operational
Smoothing: Postsmoothed by.log'nstlc ogive
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Figure B-80

RN

Dovmim of sample
equating. Ummoot

n.q/

Test Length:
Test 'l‘ypcu Opcutlonul
Smoothingt . Poatsmoothed by logistic.ogive
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Figure B-61 N
Deviations of sample equatings (RMSD, AAD and ASD) from eriterion ’
equating. Unsmoothed equating: solid lme, smoothed equatmg + marks.
Test Length: 15
Test Type: Simulated

¢

Smoothing:  Postsmoothed by cubic smoothmg splines s
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Figure B-62 o - '
- Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30 '
Test Type: Simulated ' .
Smoothing: Postsmoothed by cubic smoothing splines
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Figure B-83 -
" Deviations of sample oquatings (RMSD, AAD, and ASD) from eriterion
;qultlnc. Unsmoothed squating: solid line; lmoothod oqult!ngs + marks.
est Lengtht 50
Test Typu Simulated
Smboth!np _ Poftsmoothed by ouble smoothing spiines
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Figure B-64
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
N equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20
Test Type: Operational

Smoothing: . Postsmoothed by cubic smoothing splines - N
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Figure B-65 :
Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 ‘
Test Type: Operational

y Smoothing: Postsmoothed by cubic smoothing splines .
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Figure B-66
Deviations of sample equatmgs (RMSD, AAD, and ASD) from criterion

~equating. Unsmoothed equating: solid line; smoothed equatmg + marks,

Test Length: 15 : .

Test Type:  Simulated N

Smoothing: Postsmoothed by 5-pomt moving weighted averages

8.25

o

N2
+

%
a.a7
- s 1S s
MUMEER CORRECT
8. 25 ,
! _ L
o
=
D
: §.07 L_ =
- HUMEEF CORFRECT -
&
8. .09
] -
M
=t " = o
8
B
P
-0.20
5 _ _ 1‘_?,. .
NUMEER CORRECT




<

Deviations of sample equatings (RMSD, AAD, and ASD) from eritenon
equating. Unsmoothed equating: solid line; smoothed equatmg- ¥ marks,
Test Length: 30

Test Type: Simulated

Smoothing: Postsmoothed by 5-point moving weighted averages

- . Figure B-67

.92

LeliDc e

. | o613
I = : 30
NUMBER CORRECT
3

\

9.92 ——
. v I b
f
] N
B
D
w . **‘d_rv*4w'r*ﬁq—hwtdﬂuhw+;\
6.13
8 28
NUMBER CORRECT
2.84

§ Ll
\ ___‘d_,+,q__*4_u¢d12213==*=n»¢¢=~—v/
J -0.2% ' \
8 ' 39
NUMEER CORRECT Q}
. g

k 132




Figure B-68
Deviations of sample equatings (RMSD, AAD, and ASD) from oriterion
equating. Unamoothed equatings lol!d line} lmoothod equating: + marks.
Test Length: 80 o
Test Type: - Simulated
Smoothings Poutsmoothed by 5-point mowng weighted avougol
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Figure B-69

-

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 20 ' ’ ' :

Test Type: Operational

Smoothing: Postsmoothed by 5-point moving weighted averages
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Figure B-70

<

/ Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
Test Type: .= Operational
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. Mgure B-71

o

~ Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Lengthi 18 o : :

Test Type: Simulated : '
Smoothing: Combined presmoothing by negative hyporgoomotrlQ and
' postsmoothing by orthogonal regression _
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Deviations of sample equatings (RMSD, AAD, and ASP) from criterion
equating. Unsmoothed equating: solid line; smoothed equatmg + marks.
’ * Test Length: 30 ,
. Test Type: Simulated
Smoothing: Combined presmoothmg by negatxve hypergeometnc and
. - postsmoothing by orthogonal regressxon

f Figure B-72
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Figure B-73 _ '
Deviations of sample-equatings (RMSD, D, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks,
Test Length: 50 - . o\

Test Type: Simulated C
Smoothing: Combined presmoothing by negatjve hypergeometric and
postsmoothing by orthogonal regression
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Figure B-74

re

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
4

Test Length: 20
Test Type: ¥  Operational
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothmg by orthogonal regression.
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Figure B-75 . N
- Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25
- Test Type: - Operational : :
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by orthogonal regression )
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Figure B-76

A

Deviations of umple equatings (RMSD, AAD, and ASD) from crlterlon

equating. Unsmoothed equating: solid line; lmoothed equating: + marks.

Test Lengthy, 18

Test Type: Simulated

Smoothing: Combined presmoothing by negative hypergeometrlc and
_ postsmoothing by quadratic regreulon
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Figure B-77

Fa

Deviations of sample equatings (RMSD,
equating. Unsmoothed equating: solid li

, AAD, and ASD) from criterion
ne; smoothed equating: + marks.

Test Length: 30
Test Type: Simulated
S moothing: Combined presmoothing by negative hypergeometric and
. postsmoothing by quadratic regression )
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Figure B-78

e

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks,
Test Length: 50

Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by quadratic regression
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Figure B-79

Lo ¢ Eu: o2 i)

Deviations of sample equatings (RMBD, AAD, and ASD) from criterion

equating., Unsmoothed equating: solid line; smoothed equating: + marks.
Test Lengths 20

Test Types Operational

Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by quadratic regression
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Figure B-80 . N
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 25 ™~ :

. \ Test Type: Operational ™ :
. Smoothing: Combined presmoothing by negative hyperg@ometric and
postsmoothing by quadratic regression
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Figure B-81 ,
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating, Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 15 ' .

Test Type: Simulated ' ‘
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by 5-point moving weighted averages
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Figure B-82 ' , -
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 30 .
Test Type: “Simulated : -
Smoothing: Combined presmoothing by negative hypergeometric and

postsmoothing by 5-point moving weighted averages
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~ Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50 . .

Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and
- postsmoothing by 5-point moving weighted averages.
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Figure B-84

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.

Test Length: 20
Teat Type: Operational
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by 5-point moving weighted averages
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Figure B-85 - )

Deviations of sample equatings (RMSD, AAD, and ASD) from eriterion
¥ equating. Unsmoothed equating: solid line; smoothed equating: + marks.

. Test Length: 25 ' '

Test Type: Operational . -
- Smoothing: Combined presmoothing by negative hypergeometric and
. postsmoothing by 5-point moving weighted averages
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Figure B-86

C .
Deviations of sample equatings (RMSD, AAD, and ASD) from ecriterion
equating. Unsmoothed equating: solid line, smoothed equating: + marks.
Test Length: 15
Test Type: Simulated
Smoothing: .= Combined presmoothing by 3-point moving weighted
' averages and postsmoothing by 5-point moving weighted
averages
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_ Pigure B-37

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 30 ‘
Test Type: Simulated - '

. Smoothingt  Combined presmoothing by 3-point moving weighted

averages and postsmoothing by 5-point moving weighted

averages
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Figure B-88 ' o
‘ Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + marks.
Test Length: 50
Test Type: Simulated .
S moothing: Combined presmoothing by 3-point moving weighted
: averages and postsmoothing by 5-point moving weighted
averages ’

ol
19
i}

DNz
kv

oo

: _ _ 50
.-xt{LME:EF: CORRECT

\

1.91

oY

]
[\
H
a s

HUMEER CORRECT
153

Q | ' ' 1 61




)

Figure B-89 '
Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + mark)..
Test.Length: 20
Test Type: Operational :

Smoothing: Combined presmoothing by 3-point moving weighted
averages and posgmoothing by 5-point moving weighted
averages R
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Figure B-90 . / <

Deviations of sample;/equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + mark).

Test Length: 25

Test Type: Operational .

Smoothing: Combined presmoothing by 3-point moving weighted
averages and postsmoothing by 5-point moving weighted
averages
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Pigure B-91

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion

equating. Unsmoothed equating: solid line; smoothed equating: + marks. .

Test I :ngth: 15 ,

Test Type: Simulated -

Smoothing: Combined presmoothing by negative hypergeometnc and
postsmoothing by cublc splines
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Figure B-92

AT IR SR

Deviations of sample equatings (RMSD, AAD, and A%D) from oriterion
squating. Unsmoothed equating: solid linej smoothed rquating: + marks,
Test Lengthi 30 .

Test Type: Simulated .
Smoothing: Combired presmoothing by negative hypergeomatric and
postsmoothing by cubic splines
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Figure B-93
. Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: * marks.

Test Length: 590

“ Test Type: Simulated
Smoothing: Combined presmoothing by negative hypergeometric and
postsmoothing by cubic splines
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Figure B~94

Deviations of sample equatings (RMSD, AAD, and ASD) from criterion
equating. Unsmoothed equating: solid line; smoothed equating: + mark).
Test Length: 20 ; .
Test Type: Operational _
S moothing: Combined presmoothing by negative hypergeometric and
postsmoothing by cubic splines
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Figure B-98

Deviations of sample equstings (RMSD, AAD, and ASD) from oriterion
equating. Urnemoothed equating: sclid line; smoothed equating: + mark),
25 > .
Operational o

Combined ?rnmoothlng bir
polgmooth

Test Length:
Test Type:
Smoothing:

lnegntlvo hypergeometric and

ng by cuble splines
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