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- The Difficulty of Test Items
' ‘that Measure More than One Ability

. Mark'D. Reckase
The American College Testing Program -

Statistics that describe the characteristics of test items are routinely
used to assist in .the test construction process. These statistics are often
used to help produce equivalent forms of tests and to produce tests according
to detailed specifications. Sometimes they are used to select items that will
'yield test forms that measure a single trait or dimension. °~

Most, if not all, of the statistics that adre commonly used to describe a
test item assume that the item measures a single trait or dimension. The
unidimensional IRT procedures (see Traub and Lam (1985) for-a summary of
these) make the assumption of a single trait directly, but even the
traditional statistics such as p and Ihis» make an implicit assumption that

items can be ordered-in difficulty along a single continuum and that a single .
dimension is belng measured .by the test. -

Yet, most items are multidimensional in some sense, and, depending upon
the strength of the multiple dimensions, these un1dimensiona1 statistics may
not be appropriate. Some items measure a fairly. strong first dimension with
only minor higher order dimensions. Vocabulary and some mathematics
computation items may fall into this category.. Although there may be many
different types of vocabulary words and synonyms, o.te overall dimension seems
to be measured by vocabulary tests. For these type: of items, unidimensional
- statistics seem reasonable. :

Some items clearly require more than one distinct ability to arrive at a
correct response. Mathematical “"story problems” are_the most common example
of this type of item. Both mathematical and verbal skills are required to
obtain a correct answer. Current measures of item characteristics are
inappropriate for this type of item. For example, if a proportion correct
difficulty index is used to describe items of this type, the ranking of items
on difficulty may vary considerably if the examinee sample used to compute the
statistics differs more in mathematical or verbal skill.

What is needed is a means of descriBing the characteristics of an item
. that takes the dimensionality of the skills required to solve the item into
account. .Such a statistic can then be used to determine how or if it is

. possible to compare items that measure different combinations of abilities.
- The statistic can be used in test construction to ensure that a test matches
predefined characteristics and, if desirable, to form tests that measure a
single characteristic, '

Paper presented at the meeting of the American Educational Research

Association, Chicago, April 1985. This research was supported by Contract

Number  N00014-81-K0817 from the" Personnel and Training Research Programs of
the Office of Naval Research.
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It is the goal of this paper to describe a means of determining the
difficulty of an item that gives useful information when the item measures
more than one dimension. This multidimensional measure of difficulty is based
on a multidimensional generalization of item response theory:concepts. To
demonstrate the usefulness of this concept, it will he compared to several
commonly used unidimensional item statistics..

Method

" The proposed definition of a measure of multidlmensional item dlfficulty
(MID) {s based on .three general assumptions. First, -it is assumed that the
probability of answering an item correctly increaéés monotonically with an -
increase in each dimension being measured. Second, it is assumed that it is
desirable to locate an item at a single point in a multidimensional space.
Previous work (Reckase and McKinley, 1983) defined MID as the locus of points
of inflection of a multidimensional item response surface (IRS). That
definition proved to be unwieldy, prompting the work presented here.

The third assumption 1S that the most reasonable point to use in defining
the MID for an item in the multidimensional space is the point where the item_
is most discriminating. This is the point where the item provides the most
information about the person being measured.

On the basis of these three assumptions, a general technique for
determining the MID will be specified. However, in order to demdnstrate the
procedure, a particular model is needed. For the purpose of demonstration,
the multidimensional extension of the two-parameter logistic (M2PL) model has’
been selected (McKinley and Reckase, 1983a). This model has been selected
because it meets the first assumption and because estimation procedures are
available for the parameters (McKinley and Reckase, 1983b).

The M2PL model can be désCribed-by the following equation.

= llai, d, ej) = - (al I | (1)
1 +e 3 '

P(xij

i? ej) is the probability of a correct response to item i

where P(xij = l'ai, d

by person j; ay i§ a vector of discrimination parameters; d; 1s a scalar

parameter that is related to the difficulty of the item; and 0. is a vector of

ability parameters. The exponent can. also be expressed as

where n is'the number of dimensions;=gik is an element of ay, ij is an
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A In this form, it is more similar to the

element of Oj, and di = =I ik*
. k=1
usual expression for the two-parameter logistic model.,

The M2PL model defines an IRS that is monotonically increasing in
probability as the elements of Oj increase. An example of the IRS defined by

the model for the two—dimensional case is shown in Figure 1. This IRS ‘was
generated using a;j; = <75, a,, = 1.2, and di = -1. This surface clearly meets

the first assumption given above. -

Insert Figure 1 about here

The goal of the analysis .to be presented is to determine the point in
the 6-space at which the IRS has the maximum slope. However, the slope along
a surface differs depending on the direction taken relative to the surface,
The .slope at a point can be quite different in one direction than in
another.  In order to develop a definition for MID that is easily useable, the
slope at a point in the 6-space will always be determined using the direction
from the origin of the 6-space to the point. This choice of. a direction has
implications that will be described later in the paper.

The procedure to be used to find the point of maximum slope from the
origin involves two steps. First, the point of maximum slope in a particular
direction will be determined. Then, the slopes in each direction will be
analyzed to determine the direction that yields the overall maximum.

In order to facilitate the analysis, the model given in Equation 1 will
be~trans1ated.to polar coordinates. That 1is, each ij will be replaced

by 6.cos a, where 6, is the distahce from the origin to O, and.q. gives the
3 jk h| . ] jk

angle from the kth'axis to the point. Figure 2 shows the relationship between
the original and translated parameters for the two dimensional case.

[N

Insert Figure 2 about here

The revised expression for the M2PL model 1is presented in Equation 2
below. :

cos a,

jk + di)

P(xij = llai, d




In order to find the maximum slope in a particular direction aj, the
second deriyative~is taken with respeét to ej and solved for its zero point.
This analysis gives the point of inflection of the IRS in a particular

direction. For the M2PL model, the second derivative with respect to. 6, is
given by . o ]

2 _ .
. s¢p (xij l'ai, d

i’aL’ej_y o 2 ' 2y
557 = (kil a, cos ajk) Pij(l - 3Pij + 2Pij) (3)
where Pij =VP(xij = llgi; di’ aﬁ, ej).' Equatio§ 3 1s equal to zero when
Pi = 5. Thus, the slope in direction aj is at its maximum when the IRS

crosses the .5 plane."

The slope of the surface in:direction a., is given by the first derivative
of the model with respect to Gj, ' J '

a ;\6.) n

8 P(xij = llai, di’ 5 j

89,
J

ij ik jk (4)

Wheh'Pij = ,5, the slope is equal to

COoS &, o

n .
1, :
I B ag ik | (5)

k=1

‘To find the direction of steepest slope, Expression 5 is differentiated
with respect to cos ajk and solved for zero. However, before performing the

n .
differentiation, the constraint that I cos2ajk = 1 is added to the
: k=1 :
expression for the slope by setting
n-1 ‘
cosa, =1- 2 cosza.k.' - ,
jn -1 IR L . (6)



The differentiation results in n-1 eqpatidns of the form

COS.G,V 7
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This system of equations can he solved for cos @ in terms of the a-
parameters., The result is

ik
: n

cos a,, = ————, (8)
k=1
Up to this point, the aj-vector wasvconsidered as a person parameter that
was used to convert from rectangular to polar coordinates. When the direction
that yields the maximum slope is found from the system of equations given in
(7), a changes to an item parameter.. Therefore, it will' be denoted as a, in
the following equations. : .

The above derivation gives the angle from the origin to the point of
steepest slope. To determine the distance, Dy, to the point of 'steepest

slope, Equation 8 can be substituted for cos aiﬁvin Equation 2 and the
resulting equation can be solved for ej for Eij = .5, the value of the

probability when the slope is maximum. The result is

D, = ———— - _ . 9)

 where Dy 1s an item parameter.

Thus, to describe the difficulty of a multidimensional item, it is
proposed that a set of statistics be reported: the distance to the point of
steepest slope in a direction from the origin, and the angles, or direction
cosines, needed to describe the direction. " :




At this point it may prove helpful to give an example of the MID for an
item. The item shown in Figure 1 will be used for this purpose. The a-
parameters for the item were a;, = 75 and.EiZ = 1.2, therefore the di;ection

cosines are'eos ail = ,53 and cos ai2 = .85 corresbonding“to angles of 58° and

32° with the el-and'eé-axes respectively. The distance in that direction to

the point of steepest slope is .71. This corresponds to a el-coordinate of

«37 and a éz-coordinate of .60. The distance can be interpreted much like a
b-parameter from- ‘unidimensional IRT, indicating that the item is fairly
difficult for a population centered at the origin,

In order to demonstrate the usefulness of the MID statistics for the
analysis of actual test data the statistics were computed using the item
response data from a representative sample of 1000 students. who took the ACT
‘Assessment Mathematics Usage Test in February 1983. The M2PL parameter
estimates for the 40 items on the test were determined using the - MAXLOG
program (McKinley and Reckase, 1983b). As a basis for comparison, a
traditional item analysis and a three-parameter logistic calibration using
LOGIST (Wingersky, Barton, and Lord, 1982) were performed on the same data
set. .

Results

The parameter estimates from the M2PL model, the directions, ani.the
distances for a two-dimensional analysis of the ACT Mathematics Usage Test are -
presented in Table 1. A two-dimensional analysis was performed to keep the
demonstration of the procedures simple. Also, the method for determining the
‘appropriate number of dimensions has not been solved.

3
¢

Insert Table 1. about here
! . S \-\ (
‘ “‘\\ -t
. The second, third, and. fourth ‘columns of Table 1: give the parameter~“~~““-*’
estimates from the M2PL model. Notice that the lower pﬁmbered items (the '
easier items since the items were arranged in order of’ diffieulty) tend to

have high values for_a_il while the more difficult items tend to have higher

values Of‘EiZ'. The values of 24 reflect the difficultyéﬁf the -“items.
The next two columns show the direction cosines_fer each iten‘énd the
following two columns give the'corresponding.angles,With the 61~ and ez-axes.
' f

Note that the angles must add to 90° once the solﬁxion is in two dimensions.

The angles with the axes reflect the pattern present. in the a-parameter, e

estimates. The easier items tend to be clustered along the el-axis and the”
harder items .tend to have directions close to the ez-axis.




The last column in the table gives the distance measure for each item.-
The distances tend to reflect the difficulty ordering of the items. C—
e —anl
The results given in Table 1 can be presented graphically as vectors in a
two~dimensional space. Such a representation is given in Figure 3. ' Note that
the items with negative values for.Q.i tend to cluster along the Gl-axis, while

"

o

the harder items are more scattered.

Insert Figure 3 about here

The traditional difficulty (p-value) and discrimination (biserial
correlation) statistics for the forty mathematics items are given in Table
2. The statistics show that the items are arranged in approximate order of
difficulty, and that they tend to have uniformly high values of
discrimination. ‘

Insert Table 2 about here

Table 3 presents the parameter estimates for the three~parameter logistic
model. The estimates for the parameters were obtained using LOGIST 5 on the
sample of 1000. The a-parameter estimates given in the table tend to be '
higher for the more difficult items. The bh-paraméter estimates roughly
indicate the ordering of the items accordipg to difficulty.

. NN
* Lo

s - _:' ' ﬁnsert Table 3 about here

In order to give some basis for comparison for the statistics presented,
Pearson product moment correlations were computed for all possible pairs of
statisticses The correlations are only reported as an aid for interpretation
of the data. 1In some cases, nonlinear relationships are present between the
coefficients so the correlations should be interpreted cautiously. The
correlations ﬁor all of the statistics are presented in Table 4.,

Insert Table 4 about here

The strongest relationships indicated in the table of correlations are
those among the difficulty indices. The values of p, d, D, and b are all
highly interrelated. All seem to be an indicator of the probability of
getting an item correct for the group of individuals that were tested.




A second relationship that is of interest concerns the measures of
discrimination ry;, ‘and a. These two values are only correlated .l4. An
analysis of the scatter plot of these statistics indicated that the low
correlation was the result of several difficult items that had relatively low
Ipig-values and high a-values (i.e. Number 34). The ry;g-values for these

. . B
items may have been deflated by guesé&ng effects.

)

The direction measure for the items, cos afl,'is most highly related to

p, indiceting'that the dimension measured by the items changes ‘with the
difficulty of the item. The high correlations with the other M2PL model

parameters are artifacts. For 'example, cos ail and cos aiZ are functionally

*

related and must be highly correlated. The a-parameter from the three
parameter logistic model is most highly related to a,, indicating that LOGIST

is estimatihg ability from the second M2PL dime.asion.

Discussion

The purpose.of this paper has been to present a definition for

Amultidimepsional item difficulty (MID) and to demonstrate its use for a

particular set of test items. The definition presented defines MID as the
direction from the origin of the multidimensional space to the tpoint of
greatest discrimination for the item and the distance to that point. For the

two-dimensional case, two statistics are required to present this information,

the angle with one‘of the axes, and the -distance along the vector to the. point
of maximum discrimination. Tn n-dimensions, n statistics are needed to
specify the MID: n-1 angles and a distance. T1f desired, the coordinates of

. the point of greafEEt discrimination could. be presented as an alternative
;definiﬁion, but specifying the n-coordinates was judged not as useful.

The direction and distance is not unique for an item any more than any
other IRT-parameters are unique. They are only uniquely defined when the
origin and unit of measure of the complete latent space are specified. 1If a
different origin is used, or different units.EYE\specified the direction and
distance will change. Work is currently being done to work out the procedures
_for translating from one specification of a, latent space to another. Such’
procedures will be needed to link mult dimensional calibrations or for
equating multidimensional tests.

The MID information for the ACT Ma hematics Usage Test revealed some
interesting information about the test. The easier items tended to be
measures of 61 while the harder i;ems tend to give more information about 6
From an analysis of items that are\mast highly related to 61, it seems that

\
that dimension is related to mathematiCS problems with a strong verbal
component. For example, Ttem 6 is almost a pure measure of_e1 and it clearly

requires reading comprehension skills. Ttem 20 is a harder item of this same
type (see Figure 4 for these items). 2 ‘ s

10



Insert Figure 4 about here

~Item 34, on the other hand is almost « pure measure of GZ.J Item 9 is an
easier version of this type of item. Both of these items require very little
verbal comprehension skill. Both of these items are also presented- in Figure
4e '

In order to compare the difficulty level of items, they must be measuring
the same composite of abilities, that is, they must have the same direction.
Thus, it is ‘reasonable to compare the difficulties of Ttems 6 and 20 since
thex‘measure in the same direction, but it would not be reasonable to compare
the difficulty of Ttems 20 and 34 because they are measuring quite different
things.

N

Items that measure best in a particular direction can be combined
together to form a test that will operate as if it were measuring a single
dimension. For example, if items 4, 13, 16, 25, and 33 were selected as a
single subtest, that subtest would operate as a unidimensional subtest because
all of the items measure the same composite of 61 and 62. All of these items
can also bhe ordefed in difficulty because they all measure the same composite
of abilities.’

The concept of MID can also be used to select items.to measure a person
at a particular O-point., The MID definition emphasizes that when selecting an
item the direction must be considered as well as the point of maximum
discrimination. If information is wanted for all O-dimensions, the item must
be selected so that the slope of "the IRS is nonzero for any direction parallel
to a 6-axis. This means that the item direction must not be parallel to any -
axis. Ttem 36 is such an item. .If one dimension is of interest to the
exclusion of the others, items should be selected that have directions

. parallel;to the dimension of interest.

Conclusions

The purpose of- this paper has been to define a measure of item difficulty

_that 1's appropriate for items that require more than one ability to achieve a

correct response., The definition that has been proposed describes the
difficulty of an item as a direction and a distance in the complete latent
space. The use of the definition was demonstrated using the multivariate
extension of the two-parameter logistic model, but the definition is
sufficiently general that it can be used with any model that yields
probabilities that increase monotodnically with an increase in ability on any
dimension. :

The definition of difficulty was applied to test data from the ACT

Mathematics Usage Test and the results were shown to be readily interpreted,
The uses of the statistics for test construction were also discussed.

11
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Table 1

Item Parameters, Directions
and Distance for the Items
in the ACT Assessment Mathematics Usage Test

>

Item Number aj ajo di cos ail cos aiz qil aiz 91
1 1.81 .86 1.46 .90 W43 25 65 -.73
2 1.22 .02 .17 1.00 .02 1 89 -.14
3 1.57 .36 67 .97 .22 13 77 -.42
4 .71 .53 A .80 <60 37 53 -.50
5 .86 .19 .10 .98 2l 0 12 78 -.11
6 1.72 .18 Jb .99 10 6 . 84 -.25
7 1.86 .29 .38 499 .15 9 81 -.20
8 133 W34 .69 .97 .25 14 76 -.50
9 1.19 1.57 17 .60 .80 53 37 -.09

10 2.00 .00 .38  1.00 .00 0 90 -.19
11 .87 .00 .03 1.00 .00 0 90 -.03
12 2.00 .98 <o 91 .90 A 26 64 -.41
13 1.00 .89 -.49 .75 66 - 42 48 .37
14 1.22 .14 .54 .99 - W11 7 83 -4
15 1.27 W47 .29 .94 35 20 70 =.21
16 1.35 ° 1.15 -.21 .76 65 40 50 .12
7 , 1.06 W45 .08 .92 .39 23 67 -.07
18 . 1.92 .00 .12 1.00 .00 0 90 -.06
19 96 .22 -.30 .97 - 022 13 77 .30
20 1.20 .12 -.28 . .99 . .10 6 84 . .23
21 1.41 .04 -.21 .99 - .03 2 88 .15
22 1.54 1.79 .02 65 .76 49 41 -.01
23 .54 .23 -.69 .92 .39 23 67 1.18
2 - 1.53 .48 -.83 .95 .30 17 73 .52
: 25 .72 .55 -.56 .79 .61 37 53 62
26 ) .51 65 -.49 .62 .79 52 38 .59
27 1.66 1.72 -.38 .69 .72 46 44 .16
28 69 .19  -.68 .96 .27 15 75 .95
29 .88 1.12 -.91 62 .79 52 38 .64
30 . .68 1.21 . -1.08 .49 .87 61 29 .78
31 24 0 1.14 -.95 .21 .98 78 - 12 .82
32 .51 1.21  =-1.00 .39 .92 67 23 . .76
33 .76 .59 -.96 .79 .61 38 52 1.00
34 X .01 1.94 =1.92 .01 1.00 90 0 .99
35 . - 39 1.77  =1.57 022 .98 78 12 .87
36 .76 .99  -1.36 .61 .79 52 38 1.09
37 49 1.10 -.81 W41 .91 66 24 .67
38 .29 1.10 -.99 .25 .97 75 15 - = .87
39 .48 1.00 -1.56 W43 .90 64 26 1.41
40 W42 75  =1.61 .49 .87 61 29 . 1.87

13




Propoition Correct and Biserial Correlation
for each Item on the Mathematics Usage Test

Table 2

l'b:I_.s

Item Number p
1 .70 48
2 «53 . W41
3 .60 48
4 .59 .36
5 . «52 .37
6 «56 .49
7 «55 .51
8 .62 A4
9 .50 .49
10 .54 .54
11 51 .32
12 .60 «53
13 .39 .49
14 .60 .41
15 <54 W47
16 A4 «55
17 .51 A4
18 51 .49
19. .43 .39
20 44 .43
21 46 W45
- 22 A7 .56
23 .34 .29
24 «35 .53
25 .38 «40
26 .39 «35
27 W41 .60
28 «35 «33
29 32 .49
30 .30 +45
31 32 .33
32 .31 .40
33 .30 42
34 «22 32
35 «26 41
36 «25 A7
37 .34 .40
38 .31 .34
39 22 .39
40 .20 .31




. . - Table 3

Estimated Item Parameters
for the Three-Parameter Logistic Model

Item Number ' a ' b ' c
1 . 1.08 -.64 .12
2 <66 .08 12
3 .97 -.25 W12

- 4 47 -.29 .12
5 «50 : - .18 -~ ol2
6 93 -.10 . .11
-7 1.21 .05 15
8 : “e77 -.35 ; 12
.9 ' 1.28 34 «20
10 97 - -.17 .02
11 40 .29 v . .12
12 - 1.44 -e22 12
13 1.23 ' .72 .16
14 : .65 -.29 .12
15 . .91 .09 ’ .15
16 1.36 4 .38 .12
17 } 1.09 47 .24
18 85 .03 .06
19 73 ' ' 71 .16
20 .81 ) .58 15
21 .84 44 «13
22 : . 1.46 .30 (14
23 41 1.61 12
24 " .89 54 .00
25 - ' .91 1.00 .18
26 57 .98 : 13
27 1.36 «35 T W06
28 ) .93 ' 1.36 «22
29 1.31 )| .12
30 ' 1.43 ‘ l1.11 «15
31 1.60 , 1.44 .23
32 ' 1.34 » 1.22 .18
33 ' 1.46 . 1.18 17
34 2.00 ' 1.55 ' .15
35 : . 1.73 ' ' 1.29 .14
.36 79 : . l1.15 .03
37 . ‘ 1.05 1.15 .18
38 1.22 1.45 .20
39 _ 1.25 1.52 .11

40 - 1-94 1-67 . -13
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Table 4

Correlation between Item Statistics
for the Items Qf the ACT Assessment Mathematics

Usage Test

Statistic ~
Statistic 1. 2. 3. 4. 5. e 7. 8. 9. 10. 11. 12. 13.
l. p 38 .75 =47 .99 - .72 -.69 -.71 J1 =296 -.49 -.95 -.13
2. Tpyg 80 .16 . W41 .31 -.18 -.24 2b =49 14 =55 -.44
3. ayy -.34 .78 71 -.66 =.70 70 =.75 =.21 =-.82 =.47
4o ay, =.46 —-.81 .87 .86 -.86 .33 .74 .38 .16
" 5. dy Jh =67 -.71 1 =094 =47 -.93 -.12
6. cos a,, -.92 -.97 «97 -.63 -.69 -.69 -.30
7. cos al, 98 -.98 .61 .65 .65 . .30
8. a, -1.00 .63 .69 .68 .31
9. a. - . =e63 -.69  -.68 -.31
10. D 42 .96 .15
11. a 40 W24
12. b 34
13. ¢ 4 ‘

16
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Conversion of M2PL Parameters
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Figure 3

Representation of the ACT Mathematics Usage
Items as a Direction and a Distance
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Figuré ly"l : .
/
Items Measuring }Zach of the
Two Dimensions

6. Sheila’s salary is $110 per day. Due to financial
problems in her company, her employer has asked

Sheila to take a 109% cut in pay. How much will Sheila

be carning per day if she takes the cut in pay?
F. $11 ' '

G. $99

H. $100

J. $109

K. $121

"9, ]-5] +]6] +(-5)+6=7

A. -22
B. -10
'C. 2
D. 10
E. 12 -

] 20. A servingof a écrtain cereal, with milk, provides 35%

of the potassium required daily by the average adult. If
a serving of this cereal with milk contains 112 mil- .
ligrams of potassium, how many milligrams of potas- -
sium does the average adult require each day?

F. 35

G. 39

H. 147 :

J. 320 ' .

K. 392

/

6; . | /
- 34. Which line is parallel to y = 3x + | and intefsects

y = 6x - 1 on the y-axis? ' /

F. y= Ix-1 . ’ . ‘ //

G. y=2x-1 . . . /

H. y=4{x-1 /

Jo y=ix+1 /

K. y=ix-1 ' /
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