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The Difficulty of Test Items
that Measure More than One Ability

Mark D. Reckase
The American College Testing Program

Statistics that. describe the characteristics of test items are routinely
used to assist in the test construction process. These statistics are often
used to help produce equivalent forths of tests and to produce tests according
to detailed specifications. Sometimes they are used' to select items that will

'yield test forms that measure a single trait or dimension.

Most, if not all, of the statistics that are ,commonly used to describe a
test item assume that the item measures a single trait or dimension. The
unidimensional IRT procedures (see Traub and Lam (1985) for a summary of
these) make the assumption of a single trait directly, but even the
traditional statistics, such as p and rbis, make an implicit assumption that

items can be ordered-in difficulty along a single continuum and that a single
dimension is being measured .by the test.

Yet, most'items are multidimensional in ,some sense, and, depending' upon
the strength of the multiple dimensions, these unidimensional statistics may
not be appropriate. Some items measure a fairly strong first dithension with
only minor higher order dimensions. Vocabulary and some mathematics
computation items may fall into this category., Although there may be many
different types of vocabulary words and synonyms,'oae Overall dimension seems
to 'be measured by vocabulary tests. For these types of items, unidimensional
statistics seem reasonable.

Some items clearly require more than one distinct ability to arrive at a
correct response. Mathematicaf,"story problems" are the most common example
of this type of item. Both mathematical and verbal skills are required to
obtain a.correct answer. Current measures of item characteristics are
inappropriate for this type of item. For example, if a proportion correct
difficulty index is used to describe items of this type, the ranking of items
on difficulty may vary considerably if the examinee sample used to compute the
statistics differs, more in mathematical or verbal skill.

What is needed is a means of describing the characteristics of an item
that takes the dimensionality of the skills required to solve the item into
account. Such a statistic can then be used to determine how or if it is
possible to compare items that measure different combinations of abilities.
The statistic can be used in test construction to ensure that a test matches
predefined characteristics and, if desirable, to form tests that measure a
single characteristic.

Paper presented atthe meeting of the American Educational Research
Association, Chicago, April 1985. This research was supported by Contract
Number N00014-81K0817 from the Personnel and Training Research Programs of
the Office of Naval Research.
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It is the goal of this paper to describe a means of determining the
difficulty of an item that gives useful information when the item measures
more than one dimension. This multidimensional measure of difficulty is based

on a multidimensional generalization of item response theory *concepts. To

depinstrate the usefulness of this concept, it will he compared to several

commonly used unidimensional item statistics.,

Method

The proposed definition of a measure of multidimensional item difficulty

(MID)

The

based on-three general assumptions. First,-it is assumed that the
probability of answering an item correctly increase's monotonically with an
increase in each.dimension being measured. Second, it is assumed that it is
desirable to locate an item at a. single point in a multidimensional space.
Previous work (Reckase and McKinley, 1983) defined MID as the locus of points
of inflection of a multidimensional item response surface (IRS).' That

definition proved to be unwieldy, prompting the work presented here.

The third assumption is that the most reasonable point to use in defining
the MID for an item in the multidimensional space is the point where the item_
is most discriminating. This is the point where the item provides the most
information about the person being measured.

On the basis of these three assumptions, a general technique for
determining the MID will be specified. However, in order to demonstrate the
procedure, a particular model is needed. For the pUrpose of demonstration,
the multidimensional extension of the two-parameter logistic (M2PL) model has
been selected (McKinley and Reckase, 1983a). This model has been selected

because it meets the first assumption and because estimation procedures are
available for the parameters (McKinley and Reckase, 1983b).

The M2PL model can be described by the following equation.

P(x = 1
.,

di, 0.)
j

(ai 0j + d
i
)

e

(ai 0j + d.)
+ e

(1)

where P(x = 1 d 0
j

) is the probability of a correct response to item i

by person j; ai 1.9 a vector of discrimination parameters; 114 is a scalar

parameter that is related to the difficulty of the item; and 0, is a vector of

ability parameters. The exponent can also be expressed as

E a (8 - b )aik
jk ik

k=1

where n is the number of dimensions, ak is an element of ai
' jk

8 is an



n

element of 0,, and di = a
ik

k=1

In this form, it is more similar to the

usual expression for the two - parameter logistic model..

The M2PL model defines an IRS that is monotonically increasing in
probability as the elements of Oj increase. An example of the IRS defined by

the model for the two-dimensional case is shown in Figure 1. This IRS was
generated using ail = .75, ai2 = 1.2, and di = -1. This surface clearly meets

the first assumption given above.

Insert Figure 1 about here

The goal of the analysis to be presented is to determine the point in
the 6-space at which the IRS has the maximum slope. However, the slope along
a surface differs depending on the direction taken relative to the surface.
The slope at a point can be quite different in one direction than in
another'. In order to develop a definition for MID that is easily useable, the
slope at a point in the 6-space will always be determined using the direction
from the origin of the 6-space to the point. This choice of a direction has
implications that will be described later in the paper.

The procedure to be used to find the point of maximum slope from the
origin involves two steps. First, the point of maximum slope in a particular
direction will be determined. Then, the slopes in each direction will be
analyzed to determine the direction that yields the overall maximum.

In order to facilitate the analysis, the model given in Equation 1 will
be translated to polar coordinates. That is, each 6

jk
will be replaced

aik
aj.k

gives the

angle from the kth axis to the point. Figure 2 shows the relationship between
the original and translated. parameters for the two dimensional case.

Insert Figure, 2 about here

The revised expression for the M2PL model is presented in Equation 2
below.

P(x
ij

= l l a f d 6 ) -

n

( E aik . cos aik + d.)
k=1

( E aik pj cos. + d )

1 + e
k=1.

(2)



Inordertofindthemaximumslopeinaparticulardirectiona.., the

second derivative is taken with respect to and solved for its zero point.

This analysis gives the point of inflection of the IRS in a particular

direction. For the M2PL model, the second derivative with respect to.0 is

given by

62p (x = ila d a., 0.) n
ij J (Ea

ik
cos a. )2P.(1 3 + 2P,2.') (3)

(st3 jk
Pik Pij

k1

where Pik = P(x
ij .

= lla di, a.
v
0.). Equation 3 is equal to zero when

P
ij

= .5. Thus, the slope in direction a. is at its maximum when the IRS
crosses the .5 plane.

'rheslopeofthesurfadeindirectiona.is given by the first derivative
of the model with respect to 8

P(xij = llai, di,

'

ae.
P
ij

(1 P

J

When Pij = .5, the slope is equal to

1/4 E aik cos ajk.
k=1

n

E a
ik

cos a
jk

.

k=1

To find the direction of steepest slope, Expression 5 is differentiated
with respect to cos a

jk
and solved for zero. However, before performing the

n

differentiation, the constraint that E cos2a
k

= 1 is added to the

k=1
j

expression for the slope by setting

qbs a. =
jn

n-1

E cos2a. .

k=1

(4)

(5)

(6)



The differentiation results in n-1 equations of the form

cos a
ail - a *1

in = 0
cos a

jn
cos a.

a
i2

- ain i2
- 0

cos a
jn

a
in-1

- a
in

cos a
jn-1

- 0
cos a.

in

This system of equations can he solved for cos a
ik

in terms of the a-
parameters. The result is

a
ik

cos a =
ik

k1
aik

(7)

(8)

Up to this point, the a.- vector was considered as a person parameter that

was used to convert from rectangular to polar coordinates.. When the direction
that yields the maximum slope is found from the system of equations given in
(7), a changes to an item parameter., Therefore, it will'be denoted as ai in
the, following equations.

The above derivation gives the angle from the origin to the point of
steepest slope. To determine the distance, Di, to the point of steepest

slope, Equation 8 can be substituted for cos a
ik

in Equation 2 and the

resulting equation can be solved for 0. for Zdi = .5, the value of the
J

probability when the slope is maximum. The result is

D. -

k=1.

n

a2
ik

-d
i

where Di is an item parameter.

Thus, to describe the difficulty of a multidimensional item, it is
proposed that a set of statistics be reported: the distance to the point of
steepest slope in a direction from the origin, and the angles, or direction
cosines, needed to describe the direction.

(9)



At this point it may prove helpful to give an example of the MID for an

item. The item shown in Figure 1 will be used for this purpose. The a-

parameters for the item werelil = .75 and alt = 1.2, therefore the direction

cosines are cos a = .53 and cos ail = .85 corresponding-to angles of 58° and

32° with th
e

0
1
-and 8--

2
axes respectively. The distance in that direction to

the point of steepest slope is .71. This corresponds to a 8
1
-coordinate of

.37 and a 0
2
-coordinate of .60. The distance can be interpreted much like a

b-parameter from unidimensional IRT, indicating that the item is fairly .

difficult for a population centered at the origin.

In order to demOnstrate the usefulness of the MID statistics for the
analysis of actual test data, the statistics were computed using the item
response data from a representative sample of 1000 student's who took the ACT

Assessment Mathematics Usage Test in February 1983. The M2PL parameter
estimates for the 40 items on the test were determined using the-MAXLOG
program (McKinley and Reckase, 1983b). As a basis for comparison, a
traditional item analysis and a three-parameter logistic calibration using
LOGIST (Wingersky, Barton, and Lord, 1982) were performed on the same data

set.

Results

The parameter estimates from the M2PL model, the directions, ant the
distances for a two-dimensional analysis of the ACT Mathematics Usage Test are
presented in Table 1. A two-dimensional analysis was performed to keep the
demonstration of the procedures simple; Also, the method for determining the

'appropriate number of dimensions has not been solved.

Insert Table 1. about here

.

The second, third, and. fourth columns of Table Ugive the paramete-r-
-

'

estimates from the M2PL model. Notide that the lower pumbered items (the
easier items since the items were arranged in order'of'difficulty) tend to
have high values for ail while the more difficult items tend to have higher

116values of a42'
The values of di reflect the difficulty\bf the-items;

The next two columns show the direction cosines for each item and the
following two columns give the corresponding, angles. with the andand 0

2
-axes.

Note that the angles. must add to 90° once the solution is in two dimensions.

.
The angles with the axes reflect the pattern present-in the a-parameter,
estimates. The easier items tend to be clustered along the 81 axis and the'"
harder items tend to have directions close to the 0

2
-axis.



The last column in the table gives the distance measure for each item.
The distances tend to reflect the difficulty ordering of the items.

The results given in Table 1 can be presented graphically as vectors in a
twodimensional space. Such a representation is given in Figure 3. Note that
the items with negative values for Di tend to cluster along the

1
axis, while

the harder items are more scattered.

Insert Figure 3 about here

The traditional difficulty (pvalue) and discrimination (biserial
correlation) statistics for the forty mathematics items are given in Table
2. The statistics show that the items are arranged in approximate order of
difficulty, and that they tend to have uniformly high values of
discrimination.

Insert Table 2 about here

Table 3 presents the parameter estimates fdr the threeparameter logis.tic
model. The estimates for the parameters were obtained using LOGIST 5 on the
sample of 1000. The aparameter estimates given in the table tend to be
higher for the more difficult items. The b-- parameter estimates roughly
indicate the ordering of the items according to difficulty.

'Insert Table 3 about here

In order to give some baSis for comparison for the statistics presented,
Pearson product moment correlations were computed for all possible pairs of
statistics. The correlations are only reported as an aid for interpretation
of the data. In some cases, nonlinear relationships are present between the
coefficients so the correlations should be interpreted cautiously. The
correlations for all of the statistics are presented in Table 4.

Insert Table 4 about here

The strongest relationships indicated in the table of correlations are
those among the difficulty indices. The values of p, d, 1), and h are all
highly interrelated. All seem to he an indicator of the probability of
getting an item correct for the group of individuals that were tested.



A second relationship that is of interest concerns the measures of
discrimination.rms and a. These two values are only correlated .14. An

analysis of the scatter plot of these statistics indicated that the low
correlation was the result of several difficult items that had relatively low

.1 is-values and high a-values (i.e. Number 34). Therms-values for these

items may have been deflated by guesSIng effects.

The direction measure for the items, cos api, is most highly related to

IL, indicating that the dimension measured by the items changes with the
difficulty of the item. The high correlations with the other M2PL model
parameters are artifacts. For example, cos a

il
and cos ail are functionally

related and must be highly correlated. The a-parameter from the three
parameter logistic model is most highly related to 22, indicating that LOGIST

is estimating ability from the. second M2PL dimpAsion.

Discussion

The purposeof this paper hps been to present a definition for
multidimensional item difficulty (MID) and to demonstrate its use for a
particular set of test items. The definition presented defines MID as the
direction from the origin of the multidimensional space to the'point of
greatest discrimination for the item and the distance to that point. For the
two-dimensional case, two statistics are required to present this information,
the angle with one 'of the axes, and the-distance along the vector to the, point
of maximum discrimination. rn n-dimensions, n statistics are needed to
specify the MID: n-1 angles and a distance. If desired, the coordiriates of
the point of greatest discrimination could. be presented as an alternative

=definition, but specifying the n-coordinates was judged not as useful.

The direction and distance is not unique for an item any more than any
other IRT-parameters are unique. They are only uniquely defined when the
origin and unit of measure of the complete latent space are specified. If a

different origin is used, or different units are-specified, the direction and
distance will change. Work is currently being done to work out the procedures
for translating from one specification of a, latent space to another. Such'
procedures will be needed to link mult dimensional calibrations or for
equating multidimensional tests.

The MID information for the ACT Mathematics Usage Test revealed some
interesting information about the test. The easier items tended to he
measures of 0

1
while the harder items tend to give more information about 0O.

From an analysis of items that are\jpost highly related to Al, it seems that,

that dimension is related to mathematics problems with a strong verbal
component. For example, Item 6 is almost a pure measure of 01 and it clearly

requires reading comprehension skills. Item 20 is a harder item of this same
type (see Figure 4 for these items).

10



Insert Figure 4 about here

Item 34, on the other hand is almost ,t pure measure of 6
2

. Item 9 is an

easier version of this type of item. Both of these items require very little
verbal comprehension skill. Both of these items are also presented.in Figure
4.

In order to compare the difficulty level of items, they must be measuring
the same composite of abilities, that is, they must have the same direction.
Thus, it is-reasonable to compare the difficulties of Items 6 and 20 since
they measure in the same direction, but it would not be reasonable to compare
the difficulty of Items 20 and 34 because they are measuring quite different
things.

Itemi that measure best in a particular direction can be combined
together to form a test that will operate as if it were measuring a single
dimension. For example, if items 4, 13, 16, 25, and 33 were selected as a
single subtest, that subtest would operate as a unidimensional subtest because
all of the items measure the same composite of 6

1
and 6

2'
All of these items

can also he ordered in difficulty because they all measure the same composite
of abilities.'

The concept of MID can also be used to select items.to measure a person
at a particular 0point. The MID definition emphasizes that when selecting an
item the direction must be considered as well as the point of maximum
discrimination. If information is wanted' for all 6dimensions, the item must
be selected so that the slope of-the IRS is nonzero for any direction parallel
to a 6axis. This means that the item direction must not be parallel to any
axis. Item 36 is such an item. ,If one dimension is of interest to the
exclusion of the others, items should be selected that have directions
paralleLta the dimension of interest.

Conclusions

The purpose of this paper has been to define a measure of item difficulty
_ that is appropriate for items that require more than one ability to achieve a
correct response. The definition that has been proposed describes the
difficulty of an item as a direction and a distance.in the complete latent
space. The use of the definition was demonstrated using the multivariate
extension of the twoparameter logistic model, but the definition is
sufficiently general that it can be used with any model that yields
probabilities that increase monotonically with an increase in ability on any
dimension.

The definition of difficulty was applied to test data from the ACT
Mathematics Usage Test and the results were shown to be readily interpreted.
The uses of the statistics for test construction were also discussed.
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Table 1

Item Parameters, Directions
and Distance for the Items

in the ACT Assessment Mathematics Usage Test

Item Number ail ai2 di cos ail cos ail
4i1

a
i2 Di

1 1.81 .8.6 1.46 .90 .43 25 65 -.73
2 1.22 .02 .17 1.00 .02 1 89 -.14
3 1.57 .36 .67 .97 .22 13 77 -.42
4 .71 .53 .44 .80 ,60 37 53 -.50
5 .86 .19 .10 .98 .21 1 -2 78 -.11
6 1.72 .18 .44 .99 .10 84 -.25
7 1.86 .29 .38 ..99 .15 9 81 -.20
8 1.33 .34 .69 .97 =.25 14 76 -.50
9 1.19 1.57 .17 .60 .80 53 37 -.09

10 2.00 .00 .38 1.00 .00 0 90 -.19
11 .87 .00 .03 1.00 .00 0 90 -.03
12 2.00 .98 ,.91 .90 .44 26 64 -.41
13 1.00 .89 -.49 .75 .66 42 48 .37

14 1.22 .14 .54 .99 .11 7 83 -.44
15 1.27 .47 .29 .94 .35 20 70 -.21
16 1.35 1.15 -.21 .76 .65 40 50 .12

17 1.06 .45 .08 .92 .39 23 67 -.07
18 1.92 .00 .12 1.00 .00 0 90 -.06
.49 .96 .22 -.30 .97 .22 13 77 .30

20 1.20 .12 -.2-8 .99 .10 6 84 .23

21 1.41 .04 -.21 .99 .03 2 88 .15

22 1.54 1.79 .02 .65 .76 49 41 -.01
23 .54 .23 -.69 .92 .39 23 67 1.18
24 1.53 .48 -.83 .95 .30 17 73 .52

25 .72 .55 -.56 .79 .61 37 53 .62

26 .51 .65 -.49 .62 .79 52 38 .59

27 1.66 1.72 -.38 .69 .72 46 44 .16

28 .69 .19 -.68 .96 .27 15 75 .95

29 .88 1.12 -.91 .62 .79 52 38 .64

30 .68 1.21 -1.08 .49 .87 61 29 .78

31 .24 1.14 -.95 .21 .98 78 12 .82

32 .51 1.21 -1.00 .39 .92 67 23 .76

33 .76 .59 -.96 .79 .61 38 52 1.00

34 .01 1.94 -1.92 .01 1.00 90 0 .99

35 - .39 1.77 -1.57 .22 .98 78 12 .87

36 .76 .99 -1.36 .61 .79 52 38 1.09
37 .49 1.10 -.81 .41 .91 66 24 .67
38 .29 1.10 -.99 .25 .97 75 15 .87

39 .48 1.00 -1.56 .43 .90 64 26 1.41

40 .42 .75 -1.61 .49 .87 61 29 1.87

13



Table 2

Proportion Correct and Biserial Correlation
for each Item on the Mathematics Usage Test

Item Number rbis

1 .70 .48

2 .53 .41

3 .60 .48

4 .59 .36

5 .52 .37

6 .56 .49

7 .55 .51

8 .62 .44

9 .50 .49

10 .54 .54

11 .51 .32

12 .60 .53

13 .39 .49

14 .60 .41

15 .54 .47

16 .44 .55

17 .51 .44

18 .51 .49

19, .43 .39

20 .44 .43

21 .46 .45

22 .47 .56

23 .34 .29

24 .35 .53

25 .38 .40

26 .39 .35

27 .41 .60

28 .35 .33

29 .32 .49

30 .30 .45

31 .32 .33

32 .31 .40

33 .30 .42

34 .22 .32

35 .26 .41

36 .25 .47

37 .34 .40

38 .31 .34

39 .22 .39

40 .20 .31
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Table 3

Estimated Item Parameters
for the Thiee-Parameter Logistic Model.

Item Number a

1 1.08 -.64 .12

2 .66 .08 .12
3 .97 -.25 .12
4 .47 -.29 .12
5 .50 .18 .12
6 .93 -.10 .11

7 1.21 .05 .15

8 .77 -.35 .12
9 1.28 .34 .20

10 .97 -.17 .02
11 .40 .29 .12
12 1.44 -.22 .12
13 1.23 .72 .16
14 .65 -.29 .12

15 .91 .09 .15

16 1.36 .38 .12
17 1.09 .47 .24
18 .85 .03 .06
19 .73 .71 .16
20 .81 .58 .15
21 .84 .44 .13

22 1.46 .30 .14
23 .41 1.61 .12
24 .89 .54 .00
25 .91 1.00 .18
26 .57 .98 .13
27 1.36 .35 .06
28 .93 1.36 .22
29 1.31 .91 .12
30 1.43 1.11 .15
31 1.60 1.44 .23

32 1.34 1.22 .18
33 1.46 1.18 .17
34 2.00 1.55 .15
35

4
1.73 1.29 .14

36 .79 1.15 .03
37 1.05 1.15 .18

38 1.22 1.45 .20
39 1.25 1.52 .11

40 1.94 1.67 .13
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Table 4

Correlation between Item Statistics
for the Items of the ACT Assessment Mathematics Usage Test

Statistic

Statistic 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

1. p

2. rbis
3. ail
4. ail

5. di

6. cos a
7. cos a

il

8. a
il ,

i2

9. a
10. Dig

11. a

12. b

13. c

.38 .75

.80

-.47
.16

-.34

.99

.41

. .78

-.46

.72

.31

.71

-.81
.74

-.69
-.1R
-.66
.87

-.67
-.92

-.71
-.24
-.70
.86

-.71
-.97
.98

.71

.24

.70

-.86
.71

.97

-.98
-1.00

-.96
-.49
-.75
.33

-.94
-.63
.61

.63

-.63

-.49
.14

-.21

.74

-.47
-.69
.65

.69

-.69
.42

-.95
-.55
-.82

.38

-.93
-.69
.65

.68

-.68
.96

.40

-.13
-.44
-.47

.16

-.12
-.30
.30

.31

-.31
.15

.24

.34
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Item ReSponse Surface
for the M2PL Model

with Parameters al = .75, a9 = 1.2, d = -1
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Figure 2

Conversion of M2PL Parameters
to Polar Coordinates
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Figure 3

Representation of the ACT Mathematics Usage
Items as a Direction and a Distance
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Figure 4

Items Measuring each of the
Two Dimensions

6. Sheila's salary is $110 per day. Due to financial
problems in her company, her employer has asked
Sheila to take a 10% cut in pay. How much will Sheila
be earning per day if she takes the cut in pay?
F. $ 11
G. 99
H. $100
J. $109
K. $121

.1-51
A.
B.

C.
D.
E.

+161

-22
-10

2
10
12

+(-5) 6 =?

20. A serving of a certain cereal, with milk, provides 35%
of the potassium required daily by the average adult. If
a serving of this cereal with milk contains 112 mil-
ligrams of potassium, how many milligrams of potas-
sium does the average adult require each day?
F. 35
G. 39
H. 147
J. 320
K. 392

34. Which line is parallel to y =
y = 6x I on the y-axis?
F. y = 3x - 1
G. y 2x - 1
H. y=ix-/
J. y=fx+ I
K. y =ix 1
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