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CHAPTER 1
PROBLEMS IN TEST CALIBRATION

Historical Perspectives

It is now one hundred years since F'rancis Galton pioneered the development of mental

- measurement with the publication of his ‘Iriquiries into Human Faculty and its
Development' (Galton, 1883). Galton developed what are generally considered to have
been the first mental tests, although it was James Cattell (1890) who intrdducec; the
term 'mental test'. By then .the process of measurement had started on its way, the
techniques of measurement and the standards to be employed for describing the
instruments used to measure were emerging (see Subpes, 1976). -

Cattell postuléted a predictive relationship between his tests and future scholastic
success (Cattell and Farrand, 1896). What was r_'eportedly" the first substantial use of the
technique of correlation oy Wissler (1901) illustrated no practical relationship between
the scores Cattell obtained and the observed college grades of the students. “The next
major development occurred when Binet constructed mental tests to diseriminate
‘between retarded and normal children (Binet and Simon, 1905). The _publiéhed tests

(Binet and Simon, 1908) were widely used and became the model for later tests developed
in other countries. : »

The involement of the United States in the First World War in 1917 required the
selection of recruits as efficiently and effectively as possible. As a consequence, the US
Army developed a variety of sub-tests designed to measure various attributes of the
incoming recruits. The educational community observed this application of measurement
and soon there were many tests emulating the content and format of the army tests.
The notions of standardization (meaning the derivation of normative information. on
sections of a population) and validation (as measured by correlation with some
indépendent measure or measures of the same attributes) were first recognized at about
this time. As a result of these developments, it became clear that tests could measure
"more than just some form of general mental ability; in fact, they began to be applied to
the identification of a wide range of somewhat.independent dimensions of ability.

The practice of test development and the formulation of theoretical models of test
performance grew toge}her in the emerging field of educational and psychological

" measurement. By the time of the 1940s various models of test performance had been
formulated and since then various parallel streams of development have continued.

The first stream was associated with the now classical model of true score and
error. This model was practical in that it allowed the formulation of ‘a number of useful

" relationships. It led to the development of parameters to describe the items comprising

ERIC ‘\

. .



o

the test. Such parameters were the item difficulty, item reliability and item
diserimination, which is now usually measured by the point-biserial correlation between
the item responses and t"ehe total score obtained from all the other items on the test.
Parameters describing the test were forthcoming as well. These included reliability as it
is measured in a number of forms, most popularly the Kuder—R}chardson formulae (Kuder
and Richardson, 1937), and sueh indices as the standard error of measurement. In
addition, the classicial true score and error approaeh has allowed the exposition of
relationships between test length and reliability or precision, such as the well known
Spearman-Brown formula (Spearman, 1910). The classical model did, however, have -
certain problems associated with it, often related‘to the way the descriptive parameteré
of the test fluctuated with di&ffereht samples of people used to estimate such
parameters; that is, the parameters used to desecribe test and ntem performance were
sample—dependent

By now it was clear that test parameters were related to the selection of people,
and also related falrly directly to the selection of items and the parameters of those
selected items. The attention of the test developers and those who proposed models for
describing test performance was directed at items more than ever before.

The second, and more recent, stream in educatlonal and .psychological
measurement was initiated by Georg Rasch who formulated a model which focused on a
single latent trait (Rasch, 1960). In this model, the function of a test was conceived to
be the estimation of an individual's ability not in terms of an observable ‘how many' from
a domain of tasks, but in terms of "how much' on a dimension representing the trait to be
measured. This model was obviously suited to tasks that varied with respect to a single
parameter, namely the difficulty of tﬁe task, rather than in the type or content of the
task. The amount by which the tasks deviated from the assumed dimension in any way
other than their difficulty has generally been ineasured using factor analytic methods.

Latent Trait Measurement

From the‘acceptance_and use of the notion of a latent trait on which individuals might be
measured and placed, there came the task of formulating an effective yet relatively
practical model to describe the quantitative parameters of tests, and more specifically,
of the items within the tests. Historically, & number of models has been suggested.
However, they all have tended to take the approach of specifying a probability function
which relates two parameters, the abilit'y of the individual and the difficulty of the item,

- _to the probability of passing the test item, that is, of answering it correctly.

O

There are in fact three parameters which may easily be demonstrated to dlffer
between items. These are:

ERIC | - 1i

;




v

1 the location of the item on the trait, namely, the measure of its difficulty;

2 the rate with which the probability of success increases or decreases as one moves
.ug or down the trait in. ability, namely, the measure of its discrimination between
candidates who differ only slightly in ability; and

3 the lower asymptote of the probability of success - a parameter designed to
measure the success rate of candidates for whom the task is nea'rly impossible, but
who have a substantial probability of success because of the item's construction
(such as a multiple-choice item), namely, a measure of the probability of guessing

correctly.

‘ There are, currently, two main schools of thought regarding the role of these
parameters. One either assumes that the second parameter is constant for all items and
that the third is zero, or alternatively assumes that although they do not satisfy the
above criteria, the amount by which they violate these two assumptions is not great
enough to give rise to significant effects. The second approach treats all three
parameters within the structure of the model. However, this approach gives rise to
problems associated with the complexity of the model and the numbers of candidates
necessary to estimate accurately the three parameters for every item. °

The model under consideration in this monograph is commonly called the 'one
pérameter model' because it asSumes that the first parameter is the only one which.
varies, t“hat the second is constant, and that the third is zero. Thus, each item is
completely describéd by only the first parameter, which is the item difficulty value.

Various mathematical formulations for this probability model have been
postulated. The two most prominent ones are the normal ogive model and the logistic '
ogive model. These two are nearly equivalent; the difference between the shape of a
logistic ogive and a normal ogive being less than one per cent at the most. The logistic
ogive has gained dominancé however, Abecausﬁg the logistic function is demonstrably
easier to manipulate algebraically, and because of the separability of pe'rson ané item
measures. It is this more widely used logistic model which is being investigated in this
study.

The simple formulation of the one parameter logistic model is:

exp(xz( by - d; )
1+exp( by - d;)

. : Cprlx = x| by, dy)

where pr(x =1 | By di) is the probability of success for candidate
on item <,
'ck is the estimated ability for candidate &,

and d, is the estimated difficulty for item 7.

It is clear that the parameters describing tests and items depend on the sample of
candidates used for calibration, and that the parametérs of items may depend on
3
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characteristics of the other items in the test. Because tests are composed of items the
test parameters are clearly dependent upon the characteristics of the items.

The Rasch model eliminates the dependence of item (and therefore test)
parameters upon the calibration sample when all the assumptions <;f the model are met.
This has not been'ach'ieved in practice because these assumptidns are not met in real-life
testing situations. A test designed to measure the ability of a person, either in the
latent trait sense, or in a traditional norm-referenced sense is therefore only as good as
the items which it contains. These items must meet a number of criteria. First, the
iteins must be valid. That is, they must exhibit content validity and should be
representative of the domain of behaviours on tasks they purport to measure. They must
exhibit construect validity, and in so far as is possible, the dimension on which attributes
are measured must be unidimensional. It is hoped that the items will have predictive
validity: they must be able to be used to predict with some accuracy the success of the
candidates, who are tested on tasks drawn from the specifiéd domain. Secondly, the
items must also be reliable. They should measure whatever they do measure
consistently. If an item is inconsistent in the measures of performance it provides then
its‘usefulness is correspondingly reduced. )

Obviously the validity and reliability of a test, and thus also its usefulness, are
related to the validity and reliability of the items which make up the test. In latent trait
measurement the test is only as sample-independent as are the items from which the test -
is constructed. It is important that items can be demonstrated to possess certain
measurable attributes which do not fluctuate widely under conditions of differing_
calibration samples. Nor should they fluctuate according to the presence or absence of
other items In the test. It is the extent of this fluctuation with different samples and

with different item compositions which is under investigation in this study.
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CHAPTER 2

¢

RESEARCH INTO THE ONE-PARAMETER MODEL

The Rasch Mod«l Emerges

Gulliksen (1950) remarked that the diséovery of item pérameters, which would remain
stable as the analysis group changed would constitute a significant contribution to item
analyéis theory. Rasch (1960) outlined a model which had the theoretical capability to
separate item and person measures, so that the item measures were independent of the.
person measures, and therefore independent of the sample, or analysis group. It was with
Wright's paper 'Sample-free Test Calibration and Person M_easurement' (Wrighi, 1967)

that this technique to achieve this stability of item parameters across different analysis

groups became more widely investigated by those in the measurement field.

Wright illustrated this -technique through a relatively straightforward example of
test calibration usi ng two sam ples of subjects which had been set up to be as different as
possible in ability. The resulting test and item parameters were very nearly equal, but
not exactfy so. Since Wright's-initial application of the Rasch model to this problem in
educational measurement, the question of the degree to which the test and item
parameters approximated invariance across different sample groups has become the issue
of many subsequent studies. If the assumptions of the model are met, in theory the item
parameters of the test and the person ability parameters are separable, and thus the
item parameters are considered sample-free, and consequently invariant, across
different samples. In this invariance iay the centr;al feature and the promise of the
Rasch model; without it this model would be no more useful than any other model.
However, once it had been established that this invariance was only approximated in
practice, researchers came to speculate on just how stable the item parameters were.
Conseduently the model began to be tested for both its robustness across different
samples and the degree to which the model would remain robust as the assumptions it
demanded were violated.. ,

Hambleton (1969) outlined these assumptions underlying the model. In particular,
he showed that the item scaling procedure was insensitive to violation of the assumption
that all items had equal discrimination. Panchepakesan (1969) also illustrated this
robustness of the model when item discrimination values varied significantly.

Whitely and Dawis (1973) subsequently argued that the Rasch model would not
make a significant impact on test development until the technology of latent trait
measurement became more sophisticated. History has shown the correctness of their
prediction. During the decade from Wright's paper in 1967 and the papers of Hambleton
and Panchepakesan in 1969 until the late 1970s little was heard of the Rasch model apart

RIC | 14
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from isolated research studies. Since then many people have made varying applications

of the model and investigated its properties. Others have impreved the technology of its

_estimation procedures so that currently the’ most frequently adopted procedure is the

Unconditional Maximum ° Likelihood Estimation technique (usually abbreviated to
UCON). This method uses successive adjustments (in an iterative manner) of the item

difficulty and person ability parameters to generate the closest possible fit of the data

to the model. This technique, whilst accurate, is still cumbersome, requiring substantial
data processing resources. It is possible that other approaches ‘may, in future, yield

equally good parameter estimates with reduced computational requirements.

Sample Size Effects

Forster (1976) investigated the relationship between sample size and the point-biserial
diserimination values and the mean square fit values for items. He determined that as
the sample size increased the fit values also increased. It was also established that the
point-biserial correlation c'oeff_icients remained relatively constant, and the average
deviation between the theoretical and the true item characteristic curves increased.
Close inspection of Forster's tables has indicated that these effects relating item
Parameters to sample size were not pronounced within the range of sample sizes used
(smallest 98, largest 508). Interestingly, Forster did not draw multiple samples to check
for the stability of item parameters He relied on only one sample at each sample size
to investigate the trend as sample size was increased.

The - conclusions reached by Whitely and Dawis (1973) were similar to those of
Forster, who suggested that in order to estimate parameters it would be necessary to
have & minimum number of three to five students at each score point, whereaé Wright

(1967) had contended that accurate estimation was possible even if a number of
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sequential score points had no students at all. Forster concluded from this perceived
necessity to have a minimum number of students at each score poﬁnt that it was also
sufficient and necessary in order to obtain stable itém difficulty and student
achievement estimates. Whitely and Dawis (1973) concluded that even with a group size
of 300 or more, some values such as extreme scores could not be estimated accurately.
Haberman (1975) has demonstrated that for a fixed length test the maximum
likelihood estimates of the item parameters for the one—parameter ‘model converge to
their true value as the sample size tends tc ihfinity. This is, howevei‘, an intuitive
propecsition as all sample parameters converge to the population values asi the sample
size increases and this effect is seen in the finite population correction of the few known
formulae for the sampling variance of many statistics. Conversely, Andersen (1973a,
1973b) showed that when the number of examinees was increased the .maximum
likelihood procedure did not yield stable estimates of the item difficulty parameters.
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Wright (1977) and Whitely (1977) have strongly debated certain issues of the Rasch
technique. Wright made clear that there is a direct relationship between the standard
error of items and the size of the sample used for calibration. This relationship is

. claimed to be of the same type as when estimating the sampling error of the mean,
namely that the sampling variance of the estimated parameter is inversely proportional
to the sample size. This means that the standard error of the item difficulty parameter
is inversely proportional to the square root of the sample size. Wright then gave a table
relating samples of particular sizes to standard error estimates, and suggested that
although sample size does have a relationship to the standard error, that for all practical
purposes the item difficulty parameter may be estimated from samples as low as 100.
He further stated that sample-invariance depends on a demonstration that the
difficulties of the items remain statistically equivalent over the various kinds of persons
to be measured using those items, and that this condition is investigated when evaluating
the data for fit to the model. ’ .

‘ Whitely argued that although difficulty estimation is possible from smaller
samples, the estimation of fit becomes more powerful ‘when larger samples are used. She
also pointéed out that when dlfferences in item difficulty were being investigated then
larger samples would be necessary.

Forster (1978) examined the issue of sample size by taking five samples at each of
four sizes (50, 100, 200, and 300) from a population of approximately 1400. Examination
of the correlation between item difficulty estimates based on the samples and the
population values led him to suggest that for sample sizes less than 200 the accuraey
dropped considerably (as measured by this correlation procedure) and that as sample size
increased beyond iOO the increase in accuracy was not substantial. Forster also
calculated the standard deviation of the item difficulty estimates for each sample size
and compared this with the standard deviation of the item difficulty estimates for the
population. This was done in order to compare the equality of the sample difficulty
parameter metric to that for the population. The ratio was very. nearly unity for all »
sample ‘siza, although it did exhibit a slight general decrease as the sample size
increased. . ‘

Douglass  (1980) investigated the .stability of the one-parameter (Rasch), -
two-parameter and three-parameter models across samples of size 200, 600, 800 and .
1082. He concluded that the Rasch model was the most useful in that it gave the most
consistent calibration of items, particularly for smaller sample sizes. Whitely (1980) has
since expressed the opinion, based on a review of earlier studies; that item calibrations
for the Rasch model which are sufficiently precise for research applications can easnly

" be obtained from samples of 250 or even less.

Cornish (1983) has investigated ‘empirically the stability of item difficulty

estimates for both Rasch and traditional item difficulty parameters. He took 60 samples
B . 7
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each of 120 students from a bopulation of 2342. No ihfereqces could be drawn about the S
effect of sample size as only one size was used. However, he _argued that the Rasch
estimates were more stable than the traditional ones because the empirically measured
sampling variance of the Rasch estimates Wgs less than the corresponding empirically '
measured sarapling variance for the traditional estimates. Whilst his tables support this
co'nclusiovn, no account was taken of the different metrics used for the two types of item
difficulty estimate. Cornish also used two sample types (snmple random and cluster
samples) and observed that the type of sample did not seem to affect the stability of
the Rasch difficulty estimates.

“1tem Selection Criteria

Not only has the formulation and size of calibration samples come yndei' investigation
with mixed results, but item selection criteria have eiso been investigated and debated
at some length. Andersen, Kearney and Everett (1968) investigated the stability of
" Rasch item difficulty parameters and found that items which fitted the Rasch model
well had more stable estimates. Tinsley and Dawis (1975) argued likewise that stability
was related to goodness of fit, and went further to suggest that the deletion of poorly
fitting items increased the stability of those remaining, althéugh excessive deletion

caysed a subsequent drop in stability. Tinsley and Dawis also investigated the 'z-item j
difficulty index' - a standardized form of the traditional item difficulty, and found it to /’

be less stable than the Rasch parameters. Both these research studies used a two-sample /
desngn for measuring stability and employed correlation measures to indicate the level of /
stability in a quantntat_lve manner for comparative purposes.

Forster (1976) investjgafed the relationship ' between the poi'nt-biseria/’l
discrimination values and the mean square fit values for items, and suggested that
differences in point-biserial values between items did not affeet item difficulty valyes
but did affect item fit values. On a more practical note, Dinero and Haertel (1977) dlso
found that the lack of an item discrimination parameter in the simple logistic (Re}f ch)
rnodel did not result in poor calibration in the presence of varying item discriminq‘/tion;
They therefore suggested that with this in mind test constructors should select iteﬁ/ns of
high discrimination in or'der to maximize the information available through the use'of the
test. Forster and .Karr (1979) have suggested that neither the point—biserial'
discrimination value nor the mean square fit velue was a satisfactory criterion for the -
selection of items or tue ascription of item quality. They suggested that the item
characteristic curve should be consulted in order to select appropriate items for the
Rasch model. Similarly George (1979). investigated the standardized residual mean
square fit statistic and concluded that it did not detect unacceptable variation in item

discrimination. He aéqued that in order for Rasch model analyses to work in practice the
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item discrimination values must be very similar. This was a contrary proposition to

those advanced by the earlier researchers who suggested that discrimination values
which varied significantly would not substantially affect the stability of the
calibrations. However, very few researchers seem to have defined these terms, such as

'similar' or 'varied in a manner which made clear their meaning in a quantltatzve ‘

sense. Forster and Ingebo (1978) successnvely reduced the number of items in a test from

80 to 15 by excluding those items which were at the extremes of the calibration. They

concluded from a correlatnonal procedure that the range of item dnffncultnes in a test _

did not affect the item scaling procedure.
The contextual stability of item parameters was investigated by Yen (1979), who
correctly pointed out that the use of the correlation between estimates to indicate

stability was not entirely appropriate. Correlation values simply indicated the strength

of a linear relationship betw~~n two variables but did not indicate the degree of equality '

of those two variables. Yen argued that since Rasch item difficulty estimates were
nonljnear but monotonie transformations ef traditional item difficulty values, ttjen the
rank order was preserved between the two types of statistic. Yen's study illustrafed that
contextual effects were greater for item discrimination values than for dxffxcu%‘ty
-estnmates She also investigated the effect of increasing sample size on difficuf}ly
parameters, but could not easily interpret these effects because of snmultan:\.\
contextual dnfferences She proposed that if predictions about individual 1tems were of
concern to the researcher then it would be wise to use the same context for: calibration
and the. later use of the item. .If the same context was not to be used then very large

calibration samples, of more than 600, should be employed. .

Summary

In retrospect it has been found that no investigation has ‘accurately and systematically
quantified the stability of the Rasch item difficulty parameters under a variety of
conditions. Such conditions include varying sample size and the deletion of poorly fitting
items in such a way as to allow comparisons of stability measures between situations of

interest to the researcher. Previous studies have used methods of quantifying stabnhty

which take no account of the metric, such as correlatnon measures. - Many previous.

“studies have used as few as two samples at each sample size to investigate the effect of
different sample sizes on the stability of item parameters. It seems strange that
investi‘gations into the effects of-sampling on these parameters have assumed that the
effects caused by sampling were sufficiently small between samples of the same size to

enable valid comparisons to be made between samples of different sizes. More

‘specifically, it seems strange that the studies which investigated the effects of sampling '

v
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on the stability of item calibrations did not seem to take into account the effects of
sampling on the parameters used to mcasure stability,

erght (1967) outlined the advantages offperfectly invariant item parameters.
HoweVer,’ subsequent work has shown that these Rasch model item parameters are not
perfectly invariant in pr‘actice.' The confﬁcting findi.ngs of research into the stability of
these parameters under.conditions of different sample sizes and different levels of item
fit have indicated that the question of just how stable these paranieters are under a
number of changing conditions has not been fully explored. This study sets out to fill a
few of the more fundamental gaps in our knowledge of this area. )
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CHAPTER 3

- : THE DESIGN OF THE STUDY

- , ' Introduction

This chapter describes the data used in this study, the research questic’ns regarding
parameter estimation for which answers are sought, the - relationships between
parameters which require closer examination, the parameters themselves, and the

procedures used to inquire into the issue$ under investigation.

The Population Data

This study has been made possible through the .availability of data on the item responses
on a 55-item test of mathematics achievement for a popul'ation of Australian students.
These data were collected as part of a study which- examined the contributions. of ‘home,
school and peer group environmental factors to changes in the educational achievement
of students in the first year of post-primary education (Year 7) in the Australian Capital
Territory (Keeves, 197%) Keéves gathered data on the whole population of first-year

~ post-primary students m the Territory, and these students were grouped according to the

classes 1n which they were taught
In 1969 there were 15 secondary schools in the Austrahan Capital Terntory, nine

co-educational Government high schools, four Catholic high schools (two for boys and

two for girls), and two Anglican high schools (one for boys and one for girls). The number

of students in the target population which was obtained from census data, and the

~number of students in the achieved population for whom Keeves obtained data are

presented in Table 3.1. .

The differences between the figures for Keeves’ data and those obtained from the
census may be ascribed to ‘absenteeism on the day of ‘testmg, the movement of
population elements between the census date and the date of testing, and the exclusion

of one small classroom of children because of the atypical nature of this class.

The Sampling Frame

This frame is described in detail in Table 3.2. Each school has been numbered, and the
classes within schools have been numberedb from class 01 to class 76 with the numbers of
students within each class also given. Square brackets describe classes which were
paired into 'pseudoclasses’ so that later application of cluster sampling would provide

‘large enough classes for the specified cluster sizes. The bracketed number at the end of

O

each school is the number of students in that school.

11
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Table 3.1 Students Attending Secondary Schools at Form I
Level in the Australian Capital Terr1topy .
during 1969

Censusd . Keeves
Government schools ) 1714 1611
Nqn—goiernment schools - 764 743
Total 2478 2354
8 From CBCS, 1970a; and CBCS, 1970b. ‘

The Questions Under Investigation

From the previous chapter it is clear that there were many research questions which
could be examined; this study confines itself to some of the more important issues. v
First, the relative stability of the Rasch item difficulty parameter, the traditional
item difficulty parameter, and the z-item dlfflculty parameter were investigated under
conditions of dlffermg sample size and design, and the specific relatlons\mp between
their stability and the sample size was also examined. Secondly, the effect of different
sample types and sizes on the Rasch item fit estimator for items were investigated. In’
this case the fit estimator used was. the one recommended by Wright, obtained through
the cbmparison of multi-group maximum likelihood item response estimates (see Whitely,
1977:230). Thirdly, the effects on the item fit parameter and on the Rasch item
difficulty paramet'er of removing some of the less appropriate items from the calibration
were examlined. Fb_urthly, ‘the statements by Wright (1977) that the standard error of the -
item difficulty parameter is a good estimator of the variance of the item difficulty
parhmeter and the statement that the standard error of the item difficulty parameter

has an inverse square root relationship to the sample size also came under investigation.

The Procedures

It is clear that these four questions r_equire(that the'characteristics of the samples being
taken should vary, and that a sufficient number of samples should be taken to de.'termine
empirically the effects of such sample types and designs upon. the parameters in
question. To this end four sample designs were employed: simple random samples,
cluster samples with clusters of size 5, cluster samples with clusters of size 10, -and
cluster samples with clusters of size 20. Each cluster was drawn from one classroom,
and classrooms were drawn without replacement. For each of these designs a total of
nine sample sizes were employed (40, 60, 80, 100, 120, 160, 200, 240, 320). In addition to
analyses carried out on the total test of 55 items, the original 55 items were reduced to
42 by eliminating those items which were not truly _appropriate to Rasch calibration.
' 12 -
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That is, the items at each extreme of difficulty and those which had poor fit to the item

characteristic curve were deleted. These 42 items, considered appropriate for Rasch

calibration, were subsequently reduced to 32 by the elimination of items with extreme

© fit'statistics from among the 42. This meant that the effect of deleting poorly fitting

O

items could also be studied. These analyses ‘were repeated for three test lengths (55, 42

and 32 items) giving a total of 108 systematically different combinations of sample size, °

sample design and test length. For each of these 108 combinations 200 random samples
(replications) were drawn, and for each of these 21,600 random sampleé an estimate of
the Rdsch item difficult\y,‘ the traditional item difficulty, the z-item difficulty, the
Rasch fit statistics, the standard error of the Rasch item difficulty and the traditional
‘point biserial diserimination value (unbiased) were calculated for each item.. The Rasch
statistics were generat'ed by the compufer program BICAL (Wright and Mead, 1977), The
traditional difficultiés were calculated by a small FORTRAN routiné written specially
for this étudy. The further computations and statistics later generated ‘and presented in
tables and graphs were largely generated by the statistical package. SAS (Statistical
Analysis Systems). All the computation was performed on a; FACOM MI180N system
under TSS.

The Investigations

Investigation 1: The Stability of Item Difficulty Parameters

In his study of the relative stability of diff_erent. item difficufty parameters Cornish
(1983) made comparisons between the sampling variance of Rasch and traditional item

" difficulty parameters. To enhance the interpretation of the Rasch parameters Cornish-

transformed the values obtained by multiplication by 4.551 (equal to the recipi‘ocal of
the natural logarithm of 3) and the addition of 50 units. This transformation produced
item difficulty estimates which tended to fall between 0 and 100 and so seemed more
manageable than the original logits which wére_- centred on zero and had numerically
small values. The transformation also produced & neat factor of 3 change to the odds of
success on an item every time fhe difficulty (or person ability) changed by 5 units.
Cornish also expressed the traditional difficulty values as percentage values. The
problem with such transformations was that any empirically. determined variance of an
item difficulty is correspondingly expanded or contracted in accordance with the
transformation which is uéed. The traditional and Rasch item difficulties were not on
the same metrife in the first place in Cornish's study, nor were they after ‘each had been
linearly transfgx:':rhed. To overcome this problem it was necessary to find some way to
make these variance estimates cémparable. A relatively stﬁaightforward solution was to
divide the individual item variances obtained (in whatever metric) by the variance of the

actual item difficulty parameters across the test (in the same metric). This procedure

13
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Table 3.2  The Sampling Frame

SYSTEM 1 SYSTEM 1 (continued)
SCHOOL 01 CLASS 01 37 SCHOOL 08 CLASS 40 34
CLASS 02 36 CLASS 41 36
CLASS 03 39 GLASS 42 35
CLASS 04 38 CLASS 43 37
[ CLASS 05 - 28 : CLASS 44 27
CLASS 06 10 (183) CLASS 45 32
‘ ) "CLASS 46 25
_ [jCLAss 47 27
SCHOOL 02 CLASS 07 34 CLASS 48 21 (274)
CLASS 08 33 ’
CLASS 09 28
CLASS 10 25 SCHOOL 09 CLASS 49 32
CLASS 11 30 CLASS 50 33
CLASS 12 28 CLASS 51 32
CLASS 13 17 (195) CLASS 52 31 ,
- ‘ : CLASS 53 26 (154)
SCHOOL 03 CLASS 14 32
CLASS I35 31 - SYSTEM 2 T
. CLASS 16 23
L CLASS 17 15 SCHOOL 10 CLASS 54 38
CLASS 18 29 (130) . CLASS 55 40
CLASS 56 35 (113)
SCHOOL 04 CLASS 19 38 ’
CLASS 20 36 SCHOOL i1 CLASS 57 35
) CLASS 21 36 ’ CLASS 58 33
CLASS 22 .36 CLASS 59 34
[.CLASS 23 19 (165) , CLASS 60 31 (133)
SCHOOL 05 CLASS 24 . 40 SCHoOL 12 CLASS 61 38
CLASS 25 35 CLASS 62 37
CLASS 26 35 CLASS 63 38
CLASS 27 30 . .CLASS 64 30
o CLASS 28 36 (176) [ CLASS: 85 18 - (161)
SCHOOL 06 CLASS 29 36 SCHOOL 13 CLASS 66 40
CLASS 30 37 CLASS 67 44 v
CLASS 31 30 : . CLASS 68 48 (132)
CLASS 32 21 . :
L CLASS 33 9 (133) .
SYSTEM 3
SCHOOL 07 ° ' CLASS 34 35 SCHOOL 14 CLASS 69 26 .
CLASS 35 39 , _ CLASS 70 26 _
CLASS 36 37 CLASS 71 29 ( 81)

CLASS 37 36
CLASS 38 33 . .
CLASS 39 21 (201) - SCHOOL 15 CLASS 72 32

CLASS 73 30

CLASS 74 30

CLASS 75 31 (123)
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eliminateid the effect of both transformations and also eliminated the metric used
because the variance of the item difficulty parameters were expanded and contracted in
exactly the same manner as the individual item variances across the samples under the
linear transformation. This process is not unlike transformations used in the analysis of
variance, where the ratio of between groups and within groups variability is examined.
In this study, the between groups variébility is measured by the variance of the item
difficulty measures across the test (the means of the difficulty péramete_r' for each item
across the samples is used for the item difficulty values). The within gi‘oups variability
is the variance of the item difficulty parameter across the samples (the mean of the
item variance parameter is taken to represent the within groups variability). If a general
stability estimate is required for all the items that constitute a test, the average of this
within-item between-samples variance may be divided by the between-items variance.
This procedure enabled the sampling variance of each item to be expressed as a fraction
of the total spread of difficulties encompassed by the items which ‘made up a test. As
such, it is a measure of the separability of the items within a test as calibrated using the

particular sample. This procedure was applied to the three item difficulty parameters,

“the Rasch, traditional and z-item difficulty indices. The effect of different sample

types and sizes on the ratio of variances just described, and the comparative relationship
between the ratios for the three parameters were investigated so that it could be
determined which parameter gave the most stable estimates under varying conditions.

Investigation 2: The Effect of ‘Sample Parameters on Item Fit and Point-biserial

Discrimination

In this investigation the contentions of Forster (1976) were examined. Namely, that as
sample size increased the fit values also increased but the point-biserial diserimination
values r:mained the same. At the same time the effect of different sample sizes on
both item fit and point-biserial discrimination were investigated, and various
explanations explored. The effects of sample designs on fit and point-biserial

discrimination were also examined.

Investigation 3: The Effect of Deleting Items which do not Fit the Rasch Model on Item
Fit and [tem Variance P

Analysis of the items produced clear indications that certain items did not fit the Rasch
model, because of extreme facility or difficulty, or bécause of poor fit values related to
variability in discrimination values between items. Items which diseriminated either too
poorly or too well were eliminated. For this purpose the point-biserial diserimination
vaiués were also consulted. Items which iwere too easy or too difficult were also -
eliminated, as were poorly fitting items. This procedure was performed twice, yielding
the two sub-tests, one of 42 items and one of 32 items. The items which were eliminated
and the reasons for doing so are given in Appendix F. The reason for a two-stage
15
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procedure was that the original 55 items were selected on the basis of traditional

criteria, particularly for high point-biserial discrimination. Thus the first elimination
process produced a test which contamed items appropnate to the Rasch model, and the
second eliminated those which were leSS~ appropriate (m terms of fit value) as members
of the larger group of 42 items which fitted Rasch criteria. The effect of this procedure
on the fit values of the items and on the stability of the item difficulty parameter for

items belonging to the smallest item group were then investigated.

Investigation 4: The Relationship between Rasch Item Variance, Standard Error, and
Sample Parameters o

In this part of the study a straightforward comparison between the sampling variance of
the Rasch item difficulty index and the Rasch standard errors of the items enabled the
validity of the standard error, as an estimator of the error associated with an item
difficulty value, to be examined, both for individual items and, in general, acr;oss all
items. The notion that there existed a simple inverse relationship between the square of
the standard error (or the sampling variance) and the size of the calibration sample as
Wright (1977) had contended, was able to be investigated.

The Finite Population Correction -

It is clear that the estimation of sampling variances for most statisties is in error as the
size ol the sqmple‘ approaches a significant proportion of the population. In this study
the samples ranged from 2 per cent to 14 per cent of the population, and as such it was
coﬁsidered necessary - to incorporate a finite population correction to the variance
estimates empirically determined from multiple samples. No formulae were available -
for this correction for the more complex statistics such as the Rasch item difficulty and
the z-item difficulty indices “As a first-order approximation the standard form of
(- n)/(N -1), (where ¥ is the population size and » is the sample size), which is
appropriate for the tradmonal item difficulty statistic, was used. This correction was
applied to the variance estimates of the dlfflculty parameters, where it was considered
appropriate.

Summary

The questions asked by these investigations have remained largely unanswered for some
years now. This study aims to provide some steps towards a better understandmg of the
problems assocxated with the measurement of item difficulty, as well as providing partial

answers to some of the uncertainties in our knowledge of this area.

16
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CHAPTER 4 -

THE RESULTS OF THE STUDY
In this chapter the results of the four investigations previously outlined in Chapter 3 are
discussed in turn. It becomes clear that they are not independent investigations but
rather, inter-related studies since observations made in any one investigation are
associated with, and are, necessarily, consistent with observations in the other

investigations. -

Investigation 1: The Stability of Item Difficulty Parameters .

This investigationécovers a number of questions related to the variance of item difficulty
indices. In the first stage of this investigation the mean raw item.difficulty sampling
variances are examined. These are plotted for each of the three item difficulty indices
under consideration in Figures 4.1, 4.2 and 4.3, and the actual values are given in
Appendix D. It was essential that some form of common metric should be used 1 the
comparisons between the three item difficulty indices. Consequently, the mean raw
item difficulty variance across the test length was divided by the variance of the mean
item difficulty values across 200 samples for the test. The ratio produced in this manner
was unitless in the same way as the coefficient of variation is unitless. This ratio is,
specifically:

Mean (of 55 item difficulty sampling variances)

5= Variance (of 55 item difficulty sampling means)

This procedure, as outlined in Chapter 3, provided a measure of the 'separability’ of
the items, hence the use of the symbol 'S' to indicate the ratio just described. It is a
measure of 'sepérability’ because it expresses the mean error surrounding %h\é estimation
of item difficulty as a fraction of the total sbread of item difficulties across a test. The
smaller the value of S, the more clearly the position of each items difficulty value is
discernible from amongst the difficulty values of the other items on the test. The ratio
might well be described as a 'standardized mean item difficulty variance'. These ratio
values are shown plotted for each sample design and test length in Figures 4.4, 4.5 ;md
4.6. The actual values used in the drawing of these figures are given in Appendix D. The
four sample designs are designated, for convenience, as 'SRS-1'(Simple Random Sample),
'CLS-5' (Cluster Sample - 5 persons per cluster), 'CLS-10' (Cluster Sample - 10 persons
per cluster), and 'CLS-20' (Cluster Sample ~ 20 pefsons per cluster). The:s designations

indicate both the type of sample - simple random or clustered, and the size of the

primary sampling unit - 1, 5, 10 or 20 persons.




Table‘h.l Design Effect (Deff) Values for the Variahce of the Three Item
Difficulty Indices when estimated by the Three.Clustered Sample

Designs** :
Rasch difficulty index
Sample size
Test Sampleé - - :
length type 40 60 80 100 120 160 200 240 320
"¢ 55 CLS-5 1.10 1.11 1.06 1.08 1.03 1.02 1.03 0.99*% 0,98%*
CLS-10 1.22 1.26 1.21 1.19 1.17 1.13 1.17 1.11 1.13
CLs-20 1.58 1.52 1.50 " 1.44 1.50 1.48 1.46 . 1.37 1.39
42 CLS-5 1.10 1.14 1.06 1.09 1.05 1.04 1.01 1.00 0.94%

CLs-10 1.23 1.29 1.22 1.24 1.23 1.16 1.16 1.15 1.09
CLS-20 1.65 1.67 1.58 1.55 1.61 1.49 1.47 1.43 1.40

32 CLS-5 1.11 1.15 1.08 1.10 1.06 1.05 1.0Z  1.01 0.97*
CLs-10 1.24 1.30 1.23 1.29 1.25 1.15 1.18 1.20 1.17
CLS-20 1.66 1.70 1.61 1.57 1.65 1.53 1.50 1.47 1.50

" Traditional difficulty index

Sample size

40 60 80 100 120 160 200 240 320
55 CLS-5 1.34 1.44  1.29 1.33  1.20 1.20 1.15 1.04 0.87%
: CLS-10  2.02 2.03 1.90 1.78 . 1.89 1.95 1.89 1.71 1.52
CLS-20  3.47 3.18 3.21 2.88 -3.18 3.08 3,27 3.08 J3.21

42 . CLS-5 1.38 1.51 1.32 .1.38 1.24 1.25 .09 1,07 0.86*
CLS-10 2.14 2.17 1.99 1.88 2.02 2.08 1.86 1.83 .58
CLS-20 3.78 3.48 3.50 3.12 13,50 3.33 . 3.34 3.37 3.48

o
o

32 CLS-5 1.41
CLS-10 2,25
CLS-20  3.95

57 1.35 141 1.26 1.25 1.18  1.06 0.85%
.30 2,08 1.93  2.09 2.14 2.07 1.88 .64
.70 3.66  3.20 3.67 3.46 3.71 3.48 3.67

z-item difficulty index

L PO -
P

Sample size

40 60 80 100 -120° 160 200 240 320
55 CLS-5 1.08 1.12 1.08 1.06 1.04 1.04 1.05 1.3 0.96%*
CLS-10 1.20 1.27 1.23 1.19 1.22 1.19 1.25 1.20 1.16 -
CLs-20 1.55 1.55 1.53 1.49 1.56 1.50 1.59 1.55 1.54
42 CLS-5 1.07 1.12 1.07 1.06 1.04 1.03 1.00 1.02 0.93*
CLs-10 1.17 1.27 i.21 1.18 1.21  1.16 1.17 1.15 1.09

CLS-20 1.49 1.54 1.50 1,46 1.52 1.44 1.47 1.45 1.41

32 CLS=5 1.09 1.12 1.10 1.07 1.04 1.04 1.03  1.04 0.97*
CLS-10 1.19 1.26 1.23 1.23 1.25 1.16 1.23 1.21 ° 1.17
CLS-20 1.53 ~ 1.59 1.56 : 1.51 1.57 1.49 1.54 1.51 1.52

See Appendix B for a discussion of these figures.
**  See Appendix F for a warning regarding the use of this table to
'correct' variance values.

*
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The Sample Effects

An examination of the raw item difficulty sampling variance plots (see Figures 4.1 to
4.3) for the three difficulty indices showed a number of interesting sample effects. In
the case of all three difficulty indices there was a systematic reduction in sampling
variance, that is, a trend towards gréater.stability in the estimates of the indices, as the
sample size increased. In terms of the sémple types used:, it was clear that simple
random samples produced the most stable estimates of the difficulty indices, followed by
the cluster sample designs of cluster size 5 and 10 in that order. Trailing behind these
and notlceab\! inferior as a sample de51gn for accurately estlmatmg item difficulty
values was the cluster sample design with a cluster size of 20.

In order to consider the relative effectiveness of different sample types it was
useful to apply the notion of a design effect (Deff), defined by Kish_(1965)-as: ‘... the
ratio of the actual variance of a sample to the variance of & simple random <.mple of
the same number of elements’ (Kish, 1965:258). That is, for a statistic such as the Rasch

item difficulty: .

> e,

Design Effect (Deff) ==

where R is the Rasch item difficulty index, -

V(R)
complex
or non-simple randorni sample,

is ‘%he variance of the Rasch item diffi.éﬁlty for a complex,

V(R)srs is the wariance of the Rasch item difficulty for a simple random’

sample.

This value of Deff was also ca}culated for the traditional and z-item difficulty indices,
designated T and Z reﬁpectlvely The Deff values for the three item difficulty indices
under 1nvest1gatlon are given in Table 4.1.

The design effect is a measure of the -proportional increase in the 'variance of a
statistic which has been derived for a sample other than a simple random one. This
proportional increase, (or, in some less frequent cases, decrease) indicates and quantifies
the increase (or decrease) in 'the‘ error associated with the stﬂtuicstic being measured.
Large design effect values indicate that far more caution is needed in the intérpretation .
of statistical tests and other comparative_ techniques. The Rasch model of measurement
is in a sense a comparative technique, as the essential element is the difference
between an item difficulty measure and the ability measure for a person. Any incréase
in the variance of the item. difficulty measure produces a ‘correspondingly larger
uncertainty about this difference, and is therefore associated with a decrease in the

confidence with which the ensuing interpretations (and any implications) are held.
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The size of the Deff values given in Table:_4.1 indicate the infegriority of cluster
samples compared to simple random samples for estimating accuratély any of the three
item difficulty invdices‘. It is also apparent that larger clusters for a given sample size
lead to greater variance of the item difficulty measures. Thus the stabilities of the item
difficulty measures decreasé as cluster sizes increase. The consistent exception to: this
statement in this study is for sample size 320, where Deff is less than unity for the

CLS-5 design. This exception is a peculiarity of the sample design and population

structure used in this study and the possible reasons for such an exception are provided in

Appendix C.
Given that many educational surveys in which item and test statistics are examined

have often used intact classes or even intact within-school year level groups as the-

~cluster size, this finding has implications for the stability, and imputed error, of

Q

whatever parameters might have been estimated in such studies. Rhese findings again
offer strong support for the argument presented by Kish (1957:156)\ that in the social
sciences the use of simple random sample formulae on data from complex samples
remains the most frequént. source of gross mistakes in thé‘* construction of confidence
intervals and tests of hypotheses.

In the light of the effect of different sample typés on the sa_rripling variance of the .
Rasch item difficulty index it would s'ee_m'cl_ear that previous statements which
attempted to suggest-an appropriate sample size for stable item difficulty estimation
have failed to take into account the sam'ple types and a's.SOCiatedv design effects.
Estimates which are 'stable', as defined by some measure, for one sample size may be
more or less stable for othér sampleé of the same size but of different design. The
conclusions based on earlier research, and some of the arguments which ensued, are seen
to have been based on the oversimplified notion that sample size was the only relevant
criterion when determihing the attributes of the sample necessary for stable estimates.
It is also clear that stability .is_ a relatively regular function.of the sample size and type,
and of the statistic in question. This means that the level of stability desired may be
obtained through an examination of the relationships presented, and the- subsequent
selection of a sample of the best design and size to generate. the reqdired level of
stability. This study does indicate that very low sample siz‘es, such as less than 100,
yield poor estimates in terms of stébility, and that for sample sizes beyond 200 the
increase in stabiiity is not necessérily economical in ferms of the large number of
additional sample elements (people) required to gain additional stability. This finding is
in general agreement with that of Forster (1978) who, w‘it‘h referen¢e to the Rasch item
difficulty index, concluded that for sample sizes less t.han'v200 the accuracy of the item
difficulty dropped ‘considerably, and that As the sample size increased beyond 200 the

increase in accuracy was not substantial. These statements do, of.course; need to be
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. tempered by design effect ,considérations, Afo‘r if economy permits, a better design may

im'brove accuracy more readily than a large increase in the number bf sample elements.
"The present study also indicatés that simple random sérhples generate the most
stable estimates, and that for cluster samples small clusters generate more stable
estimates than ldrge clusters -for a given sample size. Of particular concern is the
noticeable relative instability for clusters of size 20 (CLS-20 design). As suggested
earlier, it is commonplace for educational surveys to sample from class or year-level
clusters which are considerably larger than 20, and, as such, 'som‘e~concern arises from
the observation. ;hdt for such samples the traditional error values may grossly
underestimate how large the variance of the .item difficulty estimates might actually
be. Table 4.1 suggests by extrapolation that the Deff values of such samples would be at
least 1.5, and as such, samples of one and a half times the given size would be required

to generate estimates as stable as a simple random sample of given size.

Comparison of the Three Difficulty Indices-

So faf only the raw item difficulty varianice measures have been considered. Cornish
(1983) sought to compare the stability of two types of difficulty index, the Rasch and the
traditional indices. This study incorporates‘ a third, the z-item -difficulty index. The
z-item difficulty index is obtained by calculating the traditional difficulty values across
all items on a test and then converting the traditional values by linear transfbrmation in
such a way that the new difficulty, values have a fixed 'mean and a fixed standard
deviation. \ . ‘ ‘

Each of the three indices being examined in this study, was niejasured using a
different metric. The Rasch item difficulty was transformed by multiplication by 4.5512
and subsequent addition of 50 units. The traditional difficulty values were expressed as

) percentages. The z-item difficulty comprised traditional values which were transformed

so that the mean difficulty across the test was 50 units and the standard deviation of
difficulty values was 15 units. These procedures meant that at all times there was no
occasion when any of the three indices had a value lower than zero or greater than 190.

Although these procedures made the three indices appear similar, in order to compare

. these" three difficulty indices in a meamngful way, it was still necessary,.as indicated

Q
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earlier, to place them on some form of ‘common metric. For this purpose the following
procedure was adopted-for éach of the three item difficulty measures.

The mean,diffAicultAy values for each item dver 200 samples, for each combination
of sample size, sample design and test length were caiculated. Thé variance of these
mean item difficulty values across the test length is directly related to the metric used
to determine the difficulty values. If each item difficulty value, or if the mean of the
sampling variance of the item difficulty values is divided by this variance across the test
of mean item difficulty values then the resulting ratio is freed from . the -units of
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measurement. The measure _o‘btained is equivalent to the raw mean item difficulfy
sampling variance which would be obtained if the variance, and standard deviation, of
the test items across the test were made equal to unity. ‘This ratio is also a measure of
the error variance associated with item difficulty values expressed as a fraction of the’
spread of the item difficulty values across a test. This 'sfandardized mean item
difficulty vanance' is thus 'a measure of how clearly defined is the position of the
dnfflculty of an item from amongst the difficulty values of the other item§ on the test.

This rativ is a measure of  the ability of any form of item difficulty index to indicate
“difficulty values which are clearly differentiated from the other items of a test. In
additién, this ratio, in so fer as the variance of the item difficulty values is low, is also a
measure of item stabilityJ’. It is suggested that the term 'item separability variance ratio'
may be an appropriate label for such a measure. One interesting feature of this variance
-ratio was that the denommator was extremely stable in value across samples of different
size and design. This therefore meant that the shape of the plotted standardnzed mean
item variance ratio vqlues was the same as the shape of the plotted raw item variance
values. The advantage was that the three different difficulty indices could be plotted on
the same axes. Thesé }'elationships have been presented in Figures 4.4, 4.5 and 4.6. The
labels 'T', 'R’ ‘and 'Z‘/ 'were used to indicate the plots for the traditional, Raseh, and
z-item difficulty indices respectively.

From the graphs of the standardized mean item variance ratio a number of
features are evident. The first is the substantial inferiority of the traditional item
difficulty measure as the cluster size increases. Given that most educational surveys use
a clustered sample 'design, this inferiority of the traditional measure suggests that it is
unsatisfactory as a measure of item difficulty when compared to the other two 1tem
difficulty indices.

One reason for the instability of the traditional measure compared te the other two
difficulty indices is that the traditional index has no fixed mean vglue. Both the Rasch
and the z-item dnffnculty values are constrained to a flxed mean (of 50 in this study) for
each occurrence of calibration, that is, for each sample This is not the case for the
traditional index. Consequently, the mean item samplmg variance for the traditional
index has an additional component associated with the average difference of the mean
traditional difficulty values between samples. This component does not arise for the
other two mdnces As the sample size increases this difference between samples will
tend to become less, and as a consequence this additional component of the variance will -

. also be.reduced, meaning that larger samples are less affected by this component. It
should be noted that this explanation is consistent with the trends found for the
‘traditional index in Figures 4.4 to 4.6, where the greatest instability of the traditional

index compared to the other two indices is exhibited at the smallest sample sizes.
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" findings of earlier studies such as

The second feature of note is the obvious consistency in the order of size of these
standardized mean item variance ratios for any given coml;ination of sample size, sample
désign and test length. The traditional difficulbty index producés the highest value, and
the z—iterﬁ difficulty index produces the lowest. Within this study there were- no
exceptions to this phenomenon. This featuré, however, contradicts the findings of
Tinsley and Dawis (1975) that the z-item difficulty index was less stable thari the Rasch
item’difficult} index. Associated with this comparison of the Rasch and the z-item
difficulty indices is the additioﬁal and obvious feature shown in Figures 4.4 to 4.6,
namely that these two- difficulty measures are closely related at all times. The
consistent superiority of the z-item difficulty indexing in terms of stability as measured
by the standardized mean item variance is countered by the very, small size of the
improvementuin stability obtained through the use of the z-item difficulty index rather '
than the Rasch item difficulty index. This leads to questions regarding the usefulness of

the z-item difficulty index compared to the Rasch difficulty index. Indeed, both indices

‘owe much of their stability to the fixing of the mean item difficulty at the time of .

éalibration. Certainly, at present, the z-item difficulty index is far simpler to calculate,
but it does not have the probability model features of the logistic model. [n addition, the
possibility of & common scale for item difficulty and person ability does not arise with
the z-item difficulty index. History may prove that the Rasch item difficulty index is
superior for reasons of practicality and usefulness, even though it is slightly inferior in

. terms of item stability as indicated by the standardized mean item variance ratio.

The Undebl@g Structure of Variability

Up to this point this study has inves igated these difficulty indices in relation to the
ose of Whitely and Dawis (1973), Forster (1976),
Wright (1977) and Cornish ‘(1983). It would be useful if the maj-or part of the variability
of such complex measures as tiese difficulty indices could be explained by features of
the calibration samples. T this end the standardized mean item variance ratio was
further modified. One additional transformation was made.

To understand thig; let us first consider the samphng variance of a statistic such as
the mean.

V-1 2] ) ‘

V(%) = sampling variance of the mean,
V(&) = variance of X across the population,
7 is the population size,

» is the sample size,

and ¥ - ” is the finite population correction,
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This equation may be transposéd to give:

N-1
N-n

V(X) = V(X).n.
In this study has been measured the sampling variance of the item difficulty, the
term equivalent to V(X). We also know ¥ and n for each sample size and design. For
the term V(X) we have substituted the measured standardized mean item difficulty
variance. :I;he resulting value, in the place of V(X); is difficult to describe algebraically.
However, conceptually it is a measure of the underlying variability of a particular item
difficulty index as measured using a particular sampling design. For this reason it has
beer labelled the 'structure value'. The degree to which it remains constant across
sample size mdncates how well the above equatlon may be applied to explain the total
variability -of the item difficulty index. If the structure factor is constant with relation
to other variables then the above equation is adequate in explaining the variability of the
item difficulty index in terms of sample size, Eample design, finite population ‘correction
and the structure value. The use of the standardized mean item difficulty variance,
rather than the raw item difficulty samplmg variance, allows comparisons to be made
between the three different indices.
The equation:

N-1

F = S.n. T

where 7 is the structure value,

and .5 is the standardized mean item difficulty variance,

is derived directly from the earlier formula for V(X) and is based therefore on the
assumption of simple random sampling. The degree to which increases in the
standardized mean item variance cause an increase in the structure value correspond to
the degree to which non-simple random designs cause an increase in the sampling
variance. As such, the structure value for simple random samples may be considered to
be the base against which the structure values for other sample designs are measured.
The structure values are plotted in Figures 4.7 to 4.9. The values plotted in these anures
are given in Appendxx D. . . e
These graphs of the structure values indicate some useful features of the sampling
variability of the three item difficulty indices. The horizontal nature of these plots
suggest, at least for the Rasch and z-item difficulty indices, that the major contributing
factors to the variability have been accounted for. It seems that the finite population
correction and the relationship to sample size are the two most important single effects
determining the variability of item difficulty measures. The traditional difficulty value
is again somewhat different. In this case there appears to be an interaction between the
sample size and the cluéter size which is particularly apparent in the CLS-5 design. In
all céses, the lowest struét}ure values are, in general, found for the simple random design,
30
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and as the cluster size increases, so too the structure values increase. The variability

also depends upon the sample design and upon the length of the tést, which in this

situation is related to the fit' of the items. However, there is no obvious way of -

accounting for this in a quantitative manner. Here too, the parallel nature of the
behaviour of the Rasch and z-item difficulty indices is apparent, with even some degree

of association evident in the smallest fluctuations from the horizontal.

Summary

In the first phase of the investigation reported above it was found that the sampling
variance of the item diffikculty values was clearly related to sample size in a systematic
and quantifiable manner. Thié is consi‘stent with the claims of earlier reséar\gﬁers. The
design effect was also a major contributing factor to item difficulty sampling variance
when non-simple random samples were used. The traditional difficulty index.appeared to
be inferior to the other two indices in many respects. The standardized mean item
difficulty variance of the z-item difficulty index indicated that it is marginally superior
to the Rasch index. However, other considerations make this advantage small. The
close correspondence in behaviour of the Rasch item difficulty index and the z-item
diffiéulty index also suggested that there was little difference for all practical purposes
between the two. ‘ ” .

Investigation 2: The Effect of Sampling on Item Fit and
Point-biserial Discrimination Values

Forster (1976) has suggested that Rasch item fit values increased as the ‘sample size

increased, but that pomt -biserial values remained the same. To test this contentlon,.'

plots were made of the mean Rasch item fit values for the items of a test and for the
mean point-biserial values. .These results are presented in Figures 4 10 and 4.11
respectively.

The Effect of Sample Size on Item Fit Values

Figure 4.10 indicates :quite clearly that there exists a distinet relationship between
sample size and the fit values of the items. The fact that all the mean item fit values
plotted were negative was indicative of the good fit of the items as a group to the Rasch

model, perhaps better .than might have been expected for a test originally constructed

“using traditional procedures. The mean item fit values increased rapidly (in the negative -

direction) as the sample size increased. However, two effects are apparent with respect
to test lehgth. Since the estimation of item fit values requires candidates, the fewer the
number of candidates the more the item fit values tend towards zero. Conversely, the
'population’ values for mean item fit, which are recorded in Figufe 4.10, are well above

even the mean item fit values for the largest sample size of 320, Jt would seem that
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whereas item difficulty values can be estimated relatively accurately with small

samples, say around 200, and only slightly less accurately with smaller samples, the

"estimation of item fit values becomes markedly weaker as the sampie size decreases,

and .quickly becomes stronger as the number of subjects increases. This is not
unexpected. The analysis of item fit is dependent upon the response patterns. of
candidates. The ability to detect unusual, or mis-fitting items, requires accurate
information about the expected behaviour of individual items, and such information
cannotv be gained with confidence from a small number of subjects. Wright and Stone
(1979:74-77) have stated that the item fit statistic follows a t-distribution with degrees
of freedom equalv'to one less than the number of candidates. For smaller sample sizes
this test becomes less powerful for detecting extreme, or discrepant, item fit values.
This means that as the sample size decreases the fit values will also decrease in absolute
size. As the sample size is increased towards the population -size, so too the item fit
values move closer to the 'population' values

It should be noted that the 'population' value of the mean item fit is somewhat
different from many other population statistics, such as, for example, the population

"mean or the population variance for some parameter. If it were possible to increase the

size of the population, as might be simulated, for example, by counting each person
twice, most.population statistics such as the mean and variance, would remain constant.
This is not true for fit however, because, as mentioned above, the fit value is dependent
upon the number of subjects. This means that the notion of a populatlon' value for the ™~
mean item fit is less absolute than for most other statistics.

Thus, in general agreement with Forster (1976), it is apparent that as sample size
increases, so too the item fit values increase from small values, in absolute terms,
towards the population item fit values, whether- these population values are positive or
negative. It is also of particular interest to note that the sample design had a negligible
effect upon the estimation of item fit values, with any effect which might exist being

~ most apparent for small sample sizes. It should be noted, however, that the amount of

fluctuation in fit values between similar samples has not been considered as part of this
study. »

The Effect of Sample Size on Point-biserial Diserimination Values

For each sample size and design, and each test length, the meah_ point-biserial item

discrimination value was calculated. These values are plotted in Figure 4.11, where the
empirically determined relationship between sample size and the mean point-biserial -
discrimination value is seen. The population value of the mean point-biserial

-discrimination index is also shown for each test length.

In contrast to item fit estlmatlon, the sample estimates quickly approach the

population values. It would seem that, unlike item fit estimation, the major factor in
)
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determining  the size of estimated point-biserial discrimination values is not the sample

size, but the interaction between sample size and sample design. The simple random

samples estimated the point-biserial discrimination values well, even at the smallest
sample size of 40, whereas this accuracy was not achieved by the cluster sample with 20
students per cluster (CLS 20 design) even at a sample size of 320. The statements of
Forster conc *ning the consistency of the point-biserial diserimination value over,
varying sample sizes is only true for simple random samples, and not true for the cluster
samples examined in this study. A possible explanation of this effect would appear to be
associated with the consistency of class groups in respondmg to items. The formula'

for the point biserial is given by

Ppbi T ———— / pq
Sy .
where - V‘ is the mean test score of students who were correct on the item, >

Yo is the mean test score of students who were incorrect on the item,
ﬂx is the test standard deviation,
v is the proportion of students answering the item correctly,
and - is the proportion of students who answered the item inéorrectly
(le.p + g =1 , '
The \/—? component incorporates the traditional dnfflculty of the item. Investigation 1
has shown that the traditional dlfflculty value is the one most susceptlble to sample size
and de51gn effects, and the major effect is a noticeably larger samphng variance for the
traditional difficulty-index under conditions of a combination of complex sample design
and smaller sample size. These are exactly the same conditions which are associated
with low ‘mean point-biserial discrimination values. It seems likely that the more
extreme values of the traditional item difficulty index which oceur Qnder such conditions
cause a reduction in the /[»7 value, thereby decreasing the associated point-biserial
discrimination values. ) ' .
Of note also was the general increase in mean disgrimination value és the test
length ‘was reduced. ‘This is an artifact of the procedure 'whereby, in general,. the items
which were deleted were non-fitting items, and many did not fit because of poor

discrimination.

Summary

Item fit increases, in absolute value, as the sample size increases. However, there
appears to-be a reason why this increase should be expected, namely the increased power

1 "Note that ¥, and %, are calculated on the test excluding the item in question,
so that rphj is an unbiased value.
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of the model to detect mconslstent item behavnour through the increased degrees of
freedom as the sample size become larger. Although Forster (1976) was correct in this
respect, his statements concerning the constancy of point-biserial diserimination values
across different sample sizes are seen to be true only for simple random Samples. For
clustered samples the mean point-biserial discrimination decreased as the sample size
decreased. ' ’

Investngatnon 3: The Effect of Deleting Items which do not Fit the Rasch
Model on Item Fit and Item Variance

Items which did not fit the Rasch model well initially were deleted from the 55 item test
to produce a test of 42 items, which were deemed to satisfy the Rasch calibration
procedures. From these 42 items, further items with poor or extreme item fit values
were removed to produce a test of 32 items. The items deleted and the reasons for doing
_'so are presented in Appendix F. The efféct of these procedures on the item fit values

and the itemvariance of the core of 32 items was then investigated.

The Effect of Item Fit

The examination of item fit is a comparative process. That is, the fit of any one item is
dependent upon the characteristics of the other itenis around it. This occurs because the
latent trait against which item fit values are calculated can be viewed as corresponding
approximately to the first, or principal component of a factor ahalysis when applied to
‘the items of a test. Thus it is the complete group of items, namely the combined item
characteristics which defme the latent trait. Each item contributes to this trait in part,
and thus one component of an item fit value involves a comparison between that item
and the other items which comprise the test. The other component of the fit value is
associated with a éomparison between the Rasch model and the iterh, and involves a
qhantification of the degree to which the item conforms to the Rasch model. That the
item group in this study does fit the Rasch model well is shown by Figure 4.10, where the
mean item fit is negative, indicating good fit. Because the items which were deleted in
the first reduction of test length were the ones not truly appropriate for Rasch
calibration, that is, because they were items which did not fit the Rasch model well, the
effect was, in general, to take away from the mean fit value those items which had poor,
or, high positive fit values. This meant that those remaining had a better, or more
negative, mean fit value. Similarly, it' was again non-fitting items which were deleted
from the 42 item test to produce the 32 item test. Again the same effect applied, and so
the mean item fit value became more negative. This effect is seen in Figure 4.10, where °
the mean item fit becomes better (more negative) as the test length is reduced/ by the
deletion of poorly fitting items. The conéequences of this reduction on the core of 32
items are shown in Figure 4.12.
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Again it is clear that as the sample size increases the fit values increase in

absolute terms. ‘However, the effect of reducing the test length by deleting poorly

fnttmg items on the core of 32 1tems is to worsen their fit values, that is, to make

them more positive. Wright ‘and Stone (1979:80) point out that as misfitting items are
rembved from a test the fit values of those items which remain will tend to become
worse, that is, more positive, particularly in the case of those items which do not fit as
well as most others. It would seem 'fr_om' the trend in Figure 4.12 that this is consis'tently
the case. (It should be noted that Figure 4.10(c) and Figure 4.12(c) are identical, but on a
different vertical scale.)

- While, in general terms, the deletion of misfitting items Iimproves the mean fit
value of the test, which is to be expected, contrarily it also makes worse the mean fit
value for those items which remain, or for any particular subgroup of well-fitting items
amohgst those rerﬁaining.

The Effect on Rasch Item Variance

It may be of more value to know the effect of the deletion of poor-fitting items on the
stability of the difficulty index than to know the effect on fit values. When the tests are
taken as a whole, as shown in Figure 4.1, the effect, even though slight, is apparent. The
effect on the item variance of the reduction of items from 55 to 42 and then to a core of
32 items is seen in Figure 4.1 (with actual values being given in Appendix D, Table D.1).
The .initial effect of the reduction of test length of 55 items to 42 by deleting those
possibly unsuitable to Rasch calibration was to decrease the mean item variance.
However, the subsequent deletlon of further items on the basis of mis-fit, which reduced
the test from 42 items to 32 items, has actually increased the mean item variance back
to the same values, if not higher, than for the 55 item test. The small general increase
“in the variance of the 32 core items as the test length is reduced should be noted in
Figure 4.13.

As far as 1tem stability is concerned, it would appear that the mean Rasch item
difficulty variance may be reduced by an initial deletion of 1nappropr1ate or poorly
fitting items, but that any further deletion produces an increase in the item variance
which counters the gain in stability obtained: through the initial exclusion of .poor
items.The size of these effects was however, quite small, and as such was not of great
consequence in this study. . ' :

'Summary

The features of the items comprising a test, in general, act to influence the Rasch item
fit and Rasch item variance. Exclusion of items which do not fit well causes fit values
to improve for the test as a whole, whilst actually making worse the fit values for the

core of items remaining. Item variance is also affected by the deletion of poor items.
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The variance of the core of remaining items.is not substantially affected. However, as a
whole, the mean item variance for a test is reduced after only a first deletion of
poorly-fitting items. Subsequent deletion of more items causes the gain in stability

obtained from the first deletion of items to be lost.

Investigation 4: Measurement of the Rasch Errors

This investigation covérs two aspects of the measﬁrement of the standard error of the
Rasch itemv difficulty index. The first is its appropriateness, or accuracy, as compared
with the empirical measures available from this study. The second aspect is a . brief
discussion of the relationship between the vstandard error and the size of the calibration
sample. ‘

The Acclracy of the Standard Error

The standard error measure considered here is the one defined by Wright and Stone
(1979) and produced by the computer program BICAL (Wright and Mead, 1977), namely an
asymptotié estimate of the standard error of the maximum likelihood difficulty estimate.

For each item the variance of the Rasch item difficulty was calculated and
converted to a standard dev,iation. Also for each item the mean of ‘the standard error
measure across the 200 samples was also obtained. The ratio of this Vstandar.'d error to
the standard deviation was calculated for each item for all the different combinations of

- test length, sample size and sample design. Within each such combination the ratio was

summarized by descriptive statistics, tables of which are found'in Appendix E, Tables E.1
to E.12. 'To reduce these tables to a form in which they could be réadily comprehended
the two most extreme values found in Tables E.1 to E.12 are given in Table 4.2. It should
be noted that if persons wish to use the above table (4.2) and the information in Appendix
E to 'correct' values of the Rasch Standard Error, that the values in these tables should

- be divided into the values outpui by programs such as BICAL.\\~

The first feature noted in Table 4.2 is that the ratio (as expressed in the 'mean'
column) is indeed close to unity, with systematic deviations from unity according to the
sample type. Thus it appeats that the standard errot is a good estimator of the variance
of item difficulty values for items in general. In ordér to determine how much variation

of this ratio was occurring across items, the standard deviation of the ratio values across

the test length was also calculated. From the standard deviation values in Table 4.2 it.

was clear that these ratio values had a very narrow distribution, the maximum standard
deviation over all combinations of test length, sample size and sample type being 0.144
and the minimum being 0.058, with typical values for the standard deviation of the ratio
being of the order of 0.1. The narrowness of these distributions indicated that, in
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Table 4.2 Distributional Attributes of the Ratio of Calculated Rasch
Standard Error to Empirically Detérmined” Sampllng_gtandard
Deviation of Rasch Item Difficulty

Ratio distribution

No. of Sample Mean Standard . Minimum Maximum
items ~design ratio . deviation ratio - ratio

55 . SRS-1 1.02-1.09 0.066-0.098 0.85-0.93 1.18-1.46

. CLS~5 0.97-1.11 0.066-0.097 0.69-0.94 1.16-1.37

CLs-10 0.93-1.03 0.086-0.128 0.56-0.71 1.12-1.52

CLS-20 0.86-0.95 0.113-0.144 0.40-0.48 1.08-1.39

42 S TTSRS=1. - 1.01-1.08 0.063-0.074 0.88-0.97 1.13-1.29

-CLS-5 . ~0:97-1.12 0.006-0.083 0.68-0.95 1.11-1.33

CLS-10 0.94-1.05 0.084-0.103 0.56-0.70 1.06-1.19

CLS-20 0.85-0.95. 0.110-0.125 - 0.40-0.48 1.00-1.20

32 : SRS-1 1.01-1.12 0.058-0.072 0.89-1.01 1.12-1.24

CLS-5' 0.97-1.14 0.064-0.084 0.68-1.01 . 1.11-1.32

CLS-10 0.94~1.05 0.093-0.106 0.56-0.70 . 1.07-1.19

CLS-20 0.85-0.96 0.122-0.139 0.40-0.48 1.02-1.19

general, the ratio did not differ from unity by a substantial amount, thus confirming as

appropriate the use of the standard error parameter to mdncate the error associated with

the Rasch item difficulty index. B .

. Further investigation of the t_rends in Table 4.2 showed that as tRe sampling
method beéame more élustered, that is, as clusters became larger, the standard error
tended to undere_étifnate the true error associated with the difficulty estimates. For
simple random samples thé standard error slightly overgstimated the true error. Again,
the effect of different sample designs upon the variance of the Rasch item difficulty

measure and therefore the standard error are seen. The larger cluster size is assocnated

with an underestimation of the true error by the standard error estimate. This is

consistent with the earlier findings' where larger cluster sizes resulted in an increase of .

the variance of the difficulty index, as measured by the design effect (Deff) shown in
Table 4.1, where large clusters are associated with high Deff values, the result of them
havi‘ng increased the variance of the item difficulty value. '
Finally, an examination of the complete tables of distributional attributes of this
ratio of standard error to standard deviation (Tables E.1 to E.12 in Appendixy E) shows

that for all sample types except the simple random samples the ratio increased slightly

as the sample size increased. This 'si/stematic increase, although slight, is largely
eliminated if the finite population correctign is applied to the standard deviation of the
difficulty values (the denominator of the ratio). :
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Earlier resé‘é;aﬁé%s, such as Wright (1977) "hévebic{:-ontended-that there is a siirrnplerir‘werse
relationship between the square of the standard error (or the sampling variance) of the
Rasch item difficulty index and the size of the calibration sample.

"The first 1nvest1gatlon in this chapter has indicated clearly the very close
relationship between the variance of the Rasch item difficulty index and the size of the
calibration sample. This relationship is just as Wright had contended, that there was a
simple inverse relationship between the item variance and the sample size. The earlier
part of this fourth investigation has illustrated the appropriateness of the standard error
as a measure of the square root of the sampling variance of the item difficulty. These

two clear and:inter-related findings combine to confirm Wright's contention.

Sﬁmmarx

The Rasch standard error parameter was found to Se appropriate as a measure of the
true error of estimation as calculated from the square root of the empiricaliy
determined sampling variance of the item difficulty index. This finding, coupled with
the simple inverse relationship between sample size and item variance, as discussed in
Investigation 1, shows the relationship between the Rasch standard error and the sample
size to be likewise simple; namely, that there is a s}mple inverse relationship between
the square of the standard error and the size of the calibration sample. Systematic -
deviations in the ratio of the standard error to the true error are explained by the
finite population correction and the design effect, both of which are discussed in
Investigation 1. '

.
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CHAPTER 5 ‘ <&

ISSUES IN THE CALIBRATION OF TEST ITEMS

. ‘ Introduction

In this study several issues relating to the calibration of items in educational tests were
investigated. Prlmarlly, the study sought to both compare and descrlbe quantitatively
the variance of the three item difficulty measures as the size and type of calibration
sample was varied. At the same time, it was possible to mvestlgate issues related-to the
Rasch techniques of item calibration by linking these questions to the major
investigations, so that the maximum amount of information could be gained from the one

study, without enlarging its scope of reference beyond manageable limits. In Chapter 4

the results of four investigations are reported in detail. This concluding chapter bring31

forward the major findings'in nine proposition§, which, it is hoped, will provide answers
to some past doubts by clarifying our knowledge, and will give direction for further

investigation where they do not fully complete the pieture. No proposition is seen as
.more important than the others. Finally, these propositions are projected into ideas

regarding the implications for theory, practice and further research which stem from

“this study.

The Propositions

-
Proposition 1 L

The Rasch item dlffxcultygls less susceptlble to desngn effects and to: varlatlons from

sample to sample, particularly at lower sample sizes, than is the tradltlonal dlfflculty

index.

. The standardized mean item difficulty variance fdr the Rasch index was, without
exception, lower than that for the traditional measure of difficulty.(see‘Figures 4.4, 4.5
and 4.6). This might be largely attributed to the setting of the mean item difficulty
Vulue at the time of calibration. The Rasch item difficulty index is also less inclined to
w1de variation at low sample sizes than the traditional item dlfflculty index. The Rasch
index has considerably lower desngn effect values than the traditional index when
estimating the item difficulty from non-simple random sample designs. Furthermore,
the Rasch index now has the advantage of a body of techniques associated with it which
allow, for example, the linking of two tests with different mean item difficulties onto
one difficulty scale through common items. These advantages over the traditional index -
combine with ‘the previously mentioned greater stability to make the use of the Rasch

index a more favourable proposition than the use of the traditional item difficulty index.

’
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Proposition 2

The z-item difficulty index is superior to the Rasch item difficulty index with respect to

the stability of estimation.

The z-item difficulty index not only has the mean item difficulty set at a fixed
valﬁe, but, in addition, the spread of item difficulties across the test, as measured by the
standard deviation, is also set at a fixed value. Whether this feature is the major reason
for the greater stability of the z-item difficulty index is in need of investiéation.
Nevertheless, the z-item difficulty index has been demonstratéd empirically in this study
to be very closely related to the Rasch item difficulty index in 1ts behaviour under the
varying conditions 1mposed by these investigations. The standardlzed mean item
difficulty variance (see Figures 4.4, 4.5 and 4.6) for the z-item difficulty index was,‘
without exception, slightly lower than for the Rasch item difficulty index. This indicates
that it was slightly more stable under all the conditions examined in this study.
Unfortunately not enouzii is known about the practical applicability of the z-item
difficulty index, compared with the now widely used Rasch and traditional item
difficulty indices. The z-item difficulty index does not have the various advantages
offered by the Rasch index. For this reason the slight advantage it has in terms of
stability will not cause it to b used in preference to the Rasch index.

Proposition 3

The major part of the variance of the Rasch andthe z-item difficulty indices, and a

lesser part of the variance of the traditional item difficulty index are explained
guantitatively through (1) the sample size and (2) the finite population cornectnon, and
qualitatively by reference to (3) the sample design and (4) the level of item selectlon.

As shown by the graphs of the parameter given the name 'structur_e value' (see
~ Figures 4.7, 4.8 and 4.9), almost all of the variations in item difficulty variance can be
explained by the dependence on sample size and the finite population correction.
Together‘ these two features reduce the standardized mean item difficulty variance to a
near constant value for each combination of sample deSngn, test length and difficulty
index. Paradoxically, the one index for whnch we may easily calculate a theoretical
variance measure is the traditional one. Whilst the relatnonshnps suown for all three
indices are those which are theoretically correct for the traditional index, yet the
traditional index fits this formulation least well of the three indices in the conditions
examined in this study. Neverth'eiess, it is apparent that for a known variance we. could
easily extrapolate to ‘a new expected variance for a different sample size quite
accurately, by applying this knowledge of the way sample and population size are related
to the variance of item difficulties. ‘
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That is it appears that we may write:

- F N-n : 1 ‘
VL —T N :— . KT . (1&74'_," . ‘ | .‘
where V; is the mean item variance for item difficulty index ¢,
F is the structure factor in the simple random case,

st is the sample size, '

& is the population size, B

KT is a constant associated with the particular test,
and def# is the appropriate design effect value.

Proposition 4

The variance of the Rasch item difficulty index is inversely proportional to the sainple_‘

size, as are_the variances of the z-item difficulty index and, more approximately, the

_variance of the traditional item difficulty inde:. -

The plots of the structure value (see Figures 4.7, 4.8 and 4.9) show that after o
adjusting the standardized mean item difficulty variance by the finite population
correction, the product of this variance and the sample size produces a straight line plot
for the Rasch in.dex, that is, a near constant value. Thus, a8s was discussed in
Investigation 1, it is clear that the variance of the Rasch item difficulty index is
inversely proportional to the sample size.. The z-item dii”ficulty index also prodﬁées a
straight line plot thereby indicating that the same relationship also holds. Although the -
same trend is true for the traditional item difficulty indpx, the graph demonstrates-some
additional perturbations not explained by the sample and population size, suggesting that
it is also dependent upon other factors which were not identi'fi,ed. One possibility does
lie in the fact that no fixing of the mean item difficulty occurs for the traditional index.

Proposition 5

The Rasch standard error is a good estimator of the variability of the Rasch item

difficulty index and is inversely proportional to the square root of the sample Size.

The relationship between the standard error and the square root of the item
variance is self-evident from the relationship described in Proposition 4, given that the
standard error does estimate well the square root of the item variance. This is shown to
be the.case by the properties of the ratio of the standard error to the square root of the
empirically determined item variance. This ratio is always close to unﬂ;y, and deviations
away from unity are small. Whilst the calculated standard error best eé\timates the true
error for simple random samples, there is a trend for the standard error to slightly
underestimate the true error at large sample sizes for non-simple random - sample
designs. One possible explanation involves the finite population correction applied to the
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empirically determined errors, but this explanation does not hold in the case of simple
random samples. Nevertheless, the Rasch standard error is a worthwhile and practical

estimator of the error associated with the measurement of Rasch item difficulty values.

Proposition 6

_ Rasch item fit values increase from ‘Zero towards the population value as the sample size

: statnstnc to detect - mis-fitting items at such low sample sizes. The fit statistic is not an:.

increases from zero towards the population size, and the estimation of these fit values is

not affected by sample design except to a very small extent at very low sample sizes. {

The trends observed in item fit values as the sample size increased were very clear
and confirmed the contentions of Forster (1976) regarding the increase of fit values with
sample size (see Figure 4.10). The observed effect does, however, have an underlying
basis in theory, associated with the reduced ability to detect statistically significant
effects for small samples. In faet, it would be better to say that the detection of good
or poorly fitting items is less powerful for small samples. The overall effect of
increasing sample size is to ’inflate' the individual item fit values. Whatever their value
for one sample size, item fit values will move towards zero for smaller samples sizes and
away from zero for larger samples. Thus the entire distribution of item fit values for a
particular test is' expanded or contracted about the zero fit point, reflecting the

differing ability of the sample size to detect significant effects at different sample

sizes. One interesting effect is that unlike many other estimated item parameters (such .

as the three difficulty indices and the point-biserial discrimination index which were all
well estimated using small samples) the fit value continues to increase. and decrease as
the sample size increases and decreases. This means that even for the largest sample
size used in this study, of 320 candidates, the mean fit value could have been increased
had the sample size been increased. The closeness of the fit values for different sample
designs at any given sample size (see Figure 4.10) indicates that the sample design has
little effect on the estimation of fit, except for very small samples (less thar 60). This
hardly need cause concern, béca,use fit is so poorly estimated for such sample sizes as to
render this small design effect inconsequential in comparison to the inability of the fit

asymptotnc estnmate of a population parameter as are most of the other item statlstlcs

estimated in this study.

Proposition 7

The deletion of items from a test which do not fit the Rasch model well causes an

improvement in overall fit and a reduction in mean item variance, however, although the

. additidnal deletion of poorly fitting items improves overall fit further, the mean item
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It is apparent that the deletion of poorly fitting items should improve the overall
fit of the test, and this is borne out by the results of this study (see Figure 4.10).
Howeve., the effect of this deletion process on those items which remam is to reduce
their fit values (see Figure 4 .12). This, too, is to be expected. The internal consistency

of a subgroup of items is most apparent when badly fitting items are. also present.

Removal of poorly fitting items reduces the apparent internal consistency of those items
remaining, as measured by the fit statistic. This effect has been discussed by Wright and
Stone (1979). The other.effect of deleting poor items is to reduce initially the item
variane. However, this is not.a large effect (see Flgufes 4.4, 4.5 and"4.6), and furiher
deletion of poor items in this study caused an increase in item variance comparable with
the previous decrease. Ultimately, the conclusion to be drawn is that for constructing
Rasch calibrated tests the excessive deletion of items is to be. avoided, since quite
satisfactory results were obtamed through only one process of item deletion, w1th this

improvement bemg small over the initial test..

Pfogosition 8

Point- blsemal dxscrlmlnatlon values remain near constant over varying sample size-in the

case of simple random samples, otherwise, in the case of non-simple random samples

they decrease as the sample size decreases below approximately 200 subjects, with

sharper decreases occurring for sample designs with large cluster sizes.
Forster. (1976) had contended that pomt-blsenal discrimination values remamed

constarnt over varying sample sizes. The results of this study indicate this only to be true
for simple random samples. Reference to Figure 4.11 shows this effeet quite plainly, and

also indicates that the sample point-biserial diserimination values obtained estimate the

population values well, provided that the sample size is larger than 200,

Proposition 9

The effect of cluster samphng on the estimation of a variety of item parameters is

substantlal partlcularl)Lat the large cluster sizes often used in educatlonal research and

surveys. ) _

- A substantial effect of using non-simple random samples was evident for nearly

every parameter which was estimated in this study. Throughout, one sample design, the:

cluster sample design with clusters of size 20, has produced the most deviant outcomes

compared to the other designs. Clearly, the magnitude of the deviation from simple

random sample estimates is consistently related to the size of the clusters used in the
sample design. In-terms of devfatiovn from the results of the simple random sample
design, increasing cluster size causes an increase in the deviation of estimates from
those obtained through the use of simple random samples.v This effect was readily

apparent in all investigations except those regarding Rasch item fit, which would seem
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relatively insensitive to sample design. This study has only touched on the magnitude of

this pro’b'lém ‘of design effect. First, the sample desig'n must also affect the est_imation :
of other parameters not examined here, including those related to item and test
reliability. Secondly, this study has used a maxihum_cluster size of 20. This is smaller
than the cluster sizes commonly used in educationai surveys, such as intact classes or
even within school year-level cohorts. Thirdly, this effect would be less of a problem
were it not for the fact that lafge numbers of educational surveys use cluster sample
designs. If cluster sampling were a rarity,. rather than commdnplace, then the design |
effect problem would appear less often. Although not a major part of thns study, the-
design effect problem has been evident throughout <

Implications for Theory

Clearly the Rasch and the z-item difficulties conform to a structure which is empirically
satisfactory to describe the sampling variability of these two indices. This structure is
that which is.known to be theoretically correct for the traditional difficulty index. It
could be useful if it were possible to express mathematically the item difficulty sampling

variances for the Rasch and the z-item difficulty indic'es, at least in the case of simple

-random samples. The empirical evidence suggests that even if these formulae are

complex, then at least they should still approximate quite well the structure examined in
this study. An algebraic description of the sampling distributions of these two indices

would assist in the understanding of their expected properties under a variety of

conditions, provided these conditions may also be expressed mathematically. In

particular, a better mathematical understanding of the properties of the z-item

difficulty index may indicate why this index has very similar stability to the Rasch index,
and whether this may be the case in all circumstances. Given that both indices show
distinct advantages over the traditional index, the z-item difficulty index is worthy of
further theoretical study. _

The Rasch fit statistic appears to be very susceptible to sample size etfects. This
makes. the ifiterpretation of any particular fit value difficult, for the same items on the
same test will exhibit different fit values for different sampie sizes. What appears to be
an item with poor fit for. one sample may be considered quite satisfactory for another
sample size. - This is particularly important given that many test developers-use a 'rule of
thumb' cutoff level when examining item fit values with 'a view to deleting poorly fitting
items from a test. The type of fit statisti¢c which is needed, and which may be developed
as a useful feature of the Rasch item analysis techniques, is one which exhibits two
components. Consider a statistical procedure such as the detection of differences
between grbup means. In this procedure . numerical parameters must be considered.
The first of these is a measure of the size of the difference detected, and its value may
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be largely independent of the sample size. The second is ciearly dependent on sample
size, and is a measure of the statistical significance we may apply to the first measure.
This type of technique is commonly used in a vér_'iety of well-established statistical
procedures, such as chi-squared tests, or analysis of variance where two measures are
examined; the first is concerned with the size of the effect the second with the
statistical significance of the first. 'If such an approach could be applied to'item fit, the
fu'st ~measure would involve the degree to which an item appeared to belong, or

»othermse, among the others on the test, and this measure would hopefully be largely

independent of sample size. The second measure would be an indication of the
siynificance level which could.be attributed to the first measure. -

One of the practical advantages of such a procedure would be the co;'n‘parability of
fit statistics obtained from different sample sizes. It would not matter that the
significance levels were different, provided that both were acceptable.  Thus the earlier
problem of the same item on the same test having different fit values for different
sample sizes would reduce to a position where the first- measure,*that concerned with the
degree of fit, was largely unchanged in value. However, the second measure, indicating
the significance level of this degree of fit, might well be-much larger for one sample size
than for another.

Implications for Practice

Item Variance and Sample Size

The knoWledge of the structure of variability, whether determined theoretically or

empircally, allows the prediction of item variance under some circumstances. If item

'variances are known from an early calibration on a small sample, the expected error

variance to be obtained when a larger sample is.used may be estimated. Conversely, the
necessary sample size to obtain a maximum allowable item variance may also be
estimated. - In practice this feature of prediction of the effects under ‘changed
cnrcumstances allows more systematxc planmng when attempting to obtain a certain

accuracy, or stability, of item calibration when wise use is made of the knowledge of the

relatlonshlps between sample size and item variance.

Effects of Cluster Samples

Théleffect of cluster sampling on the item variances of the three indices has been
appérent in this study. Research workers and test developers need to be'very cautious in
the selection ofi sample designs and in the way in which they'interpret or use the
variance of any statistic based on a non-simple. random sample design. The observation
that both the Rasch and the z-item difficulty indices were less susceptible to design

ANN




effects suggests that their use may be preferable to the traditional index when
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non-simple random sample designs are used.

Deletion of Items

-3

The excessive deletion of items may cause the loss of any gain in precision obtained
through the initial deletion of poorly fitting items. This indicates that sufficient caution .
needs to be used in the item selection process lest one becomes over-enthusiastic in the
search for a uni=dimensional subse{ of items, and in the process produce a test where the
mean item variance is no better than when more items were included.’ Conside}'ations
such as test reliability and the need to separate candidates along an ability scale suggest
that a longer test may be preferable provided that the stability of the item estimates is

comparable with a shorter one.

Implications for Future Research

The z-item difficulty index is ‘in need of more study. Whilst theory may help in
underétanding some of.its features, research into its operdtional properties may help to
illustrate whether the slight advantage of stability it has exhibited over the Rasch index
is in fact offset by dlsadvantages or properties as yet uhknown.

The process of item selection -de .erves more attention. This study has used only
three different levels of item selection criteria, one of which was simply to leave intact

a test which was sound by traditional criteria. Even at this coarse level of item scrutiny,
it was clear that there was an initial advantage gained at the first stage of judicious
item deletion, but' there was aiso a later loss of this advantage through continued
deletion of items. The point at which the maximum'advantage is gainéd needs to be
found. That is, the point where the mean item variance falls to a minimum. Then, if
possible, the relationships betweén this optimum level of item deletion. and the criteria
which are used for selection should be investigated, even if only empirically. If this is
done, it may then be possible to describe criteria by which 'the maximum item stability

may be obtained systematically for all tests able to be scaled with the Rasch model.
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APPENDIX A

POPULATION VALUES OF THE SIX ITEM PARAMETERS
FOR THE THREE TEST LENGTHS
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Table A.1l The Population Values of the Six Item Parameters Estimated on the
55 Item Test

Traditicnal Statistics Rasch Statistics
Item Traditional z-item Point- Rasch Standard Item
number difficulty difficulty biserial difficulty error fir
01 3.06 29.749 0.1667 34.63 0.482 -0.747 '57'
. D2 38.80 51.02 0.3001 50.76 0.209 5.800 !
03 32.06 37.81 0.2759 39.26 0.214 6.112
04 . 29.80 41.98  0.4536 36.30 0.228 -4,456
05 22.59"  38.35 0.27%4 34.28 0.246 2.235
06 33.05 343.53 . 0.4735 47.12 0.223 -5.156
B - 07 30.23 42.19  0.3625 36.41 6.228 0.416
08 7.09 31.18 0.2387 37.43 0.382 -0.529
- 09 21.65 38.10  0.3226 .. 34.00 0.2436 -0.3433
10 25.75 40.05 0.3316 35.20 0.237 0.551
r1 31.85 32.98 0.4378 46.82 0.223 -3.236
12 40.82 37.23 0.4713 38.97 0.214 -4.809
13 10.89 32.99 0.3582 39.77 0.319 -2.236
14 84,59 68.05 0.3398 60.31 0.282 _ -1.988 -
15 56.58 54.72 0.3702 52.51 0,214 1.594
16 15.88 - 35.36 0.43205 31.99. 0.278 -3.618
17 ©27:24 40.77 0.4324 35062 0.232 -3.478
18 36.21 45.02 0.4811 37.89 0.218° -5.522
19 25.15 39.77 0.4986 45.03 | 0.237 -6.597
20 45,16 59.66  0.4936 50.17 ~ 0.209 -6.061
21 39.40 46.56 0.3418 38. 64 0.214 ° 2.515
22 53.63 53.32 0.3565 .51.848 0.209 2.479 ’
23 52.65 52.85  0.4350 . 51,62 . 0.209 -2.197 .
24 35.48 44,69  0.3987 37.72 0.218 -0.900
25 17.51 36.13 0.2210 32.60 Q.26%9 1.933
26 55.89 %4.40 0.3991 52,35 0.209 -0.265
) 27 53.12 53.08 0.3670 51.73 0.209 1.530
R 28 53.59 53.30  0.33576 51.83 0.209 2.210
29 347.57 50.449 0.4166 50.49 0.209 -1.157
30 75.28 63.62 0.2308 57.18 0.241 4.054 . . -
31 54,83 53.89 0.3798 52.11 0.209 1.161
32 31.38 342.74 0.4607 36.70 0.223 -4.656
33 26.93 © 30.38 0.4843 35,39 L 0.232 -6.039
=4 7.43 31.34 0.3057 37.68 0.373 -1.826
35 56.66 54.76 0.3101 - 52.53 0.214 5.078
36 31.50 47.55  0.48%8 49.12 0.214, -5.783
. 37 39.11 46.491 0.3359 38.57 0.214 2.903
38 41.25 37.43 0.4552 49.06 0.214 ~3.837
39 67.33 59. 81 0.4813 55.05 0.223 -6.037
30 56.49 54.68  0.3122 52.49 0.214 -7.304
ay 57.26 55.05 % 0.43542 52.66 0.214 -3.712 °
a2 61.57 57.10  0.3227 53.66 0.214 3.149
43 70.67 ql.42 0.3913 55.91 0.228 -2.094
q49 60.29 56.49  0.2123 53.36 0.214 9.477
35 57.52 55.17  0.4377 52.72 0.214 -2.776
- 36 55,64 54.27 0.5526 - 52.29 0.209 -10.148
q7 63.11 57.83  0.3564 54.02 0.218 1.042 .
a8 64.69 58.58  0.20640 54.40 0.218 g.790 .7
49 68.28 60.29 0.3626 55.29 0.223 -0.286
50 84.97 68.23 . 0.1889 60.47 0.282 1.423
N EE- 73.48 62.77 0.3901 56.67 0.237 -2.016
52 75.75 63.84 0.2298 © 572,32 0.241 3.089 ¢
53 64.48 58.48 0.43535 54.35 0.218 -3.867
54 81.04 66.36 _ 0.2353 59.00 0.259 4651
T 55 80.15 65.93 0.3351 - 58.69 0.255 So-1.2277
60
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Table A.2 The Population Values of the Six Item Parameters Estimated on the
' 42 Ttem Test '

v ) Traditional Statistics Rasch Statistics
-
R Item Traditional z-item Point- Rasch Standard Item
number difficulty difficulty bisertal difficulty error . fit
s .
o1 . v = R
Q2 B
o3 .
[oF:} 29.80 41.%6 0.4%549 36.40 0.232 -3.812 e
o5 22.59 37.57. 0.2775 44,35 0.250 2.89% s
06 + 33.05 43.36 0.4806 347.24 0.223 -4.563
07 30.23 41.80  0.3613 46.52 0.228 1.454
08 - .
" . a9 21.65 59.66 0.3262 N 34,04 0. 250 0.249
12 25.75  39.32 0.3314 ) 45,27 0.241 1.537
1 1t 31.85 342,69 0.49362 36.96 0.228 ~2.442
12 40.82 347.65 0.4778 49,14 0.218 -3.8%91
¢ 12 10.89  31.10 0.3%86 39.72 0.323 ~2.088
14 .
15 56.58 56.37 0.3691 52,79 0.214 3. 229
16 15'. 88 33.86 0.4221 31.98 0.278 -3.4944
17 27.24 40.149 0.4350 35,69 0.237 -2.777
18 36,21 35,30 0.4856 - 348.04 0.223 -4.761
19 25.1%  38.99 0.35004 45.11 U.241 -6.280
20 46.16  S0.61 0.5015 50.38 0.214 -5.174
21, 39.40 36.87 0.3407 48.81 0.218 3.930
22 53.63 54.74 0.3552 52,12 0.214 3.061
23 52.65 54,20 0.4344 51.88 0.214 ~0.512
24 35.48 44,70 0.3916 347.85 0.223 0.733 .
25 17.51 34.76 0.2258 42,43 0.269 2.324
26 55.89 55.99 . 0.4037 52.64 c.214 0.967
i 27 53.12 54.464 0.3620 52.00 0.214 3.112
28 . 53.59 54,72 0.3509 52.10 0.214 q.112
29 47.57 51.38 0.4186 50.71 -+ 0.214 0.320 .
30 ;
31 59.83 '55.430 0.3880 52,39 o214 2,281
32 fo31.38 42,43 0.4666 ~ q4.82 0.228 -4.133
33 26.43 39.69 0.49821 345,46 0.237 -5.237
' 34 . -
~ 35 ; .
36 341.50  348.03 0.49882 349.30 c.218 . -4.558
37 39.11 46.71 0.3328 48.73 0.218 4.491
38 31.25 37.89 0.4562 = 49.249 0.218 -2.490
39 67,349 62.32 0.4787 v 55.93 0.228 -5.033
40 56.49 54.32 0.5083 52.79 0.214 =~ -35.722
41 57.26 56.75 0.4537 52.964 0.218 -~ -2.258
42
a3 70.67 64.16 0.3824 56.32 0.232 -0.771
449 : <
45 57.52 56.89 0.4334 53.02 0.218 ~1.097
LY 55. 49 55.85 0.5447 52.58 0.214 -8.324
. 47 63.11 59.98°  0.3515 54.38 0.223 S2.379 |
2 48 . X w
49 48. 28 62.84 0.3%20 55. 48 0.228 1.305 ‘
50 : |
s1 73.48 65.72 0.3842 ' 57.12 - 0.241 T-4.1492 ‘
52 ) |
53 64.498 60.74 0. 4443 54.70 0.223 -2.097 |
, 54 81.049 69.90 0.2251 59.53 05264 2.864 " }

85 80.15 69.41 0.3226 359.21 0.2461 -9.306 -
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The Population Values for the Six Item Paramefers Estimated on

the 32 Item Test

Traditional Statistics

Rasch Statistics

Traditioral z-item

Ttem Pointc- Rasch Standard Item
number difficulty difficulty biserial difficulty error fit
7

o1

0z o

03 . )

04 29.80 42.%9  0.4542 46.57 0.232 -3.296
0s

06 33.05 _44.36  0.4776 47.43 0.228 -3.079
07 30.23 %42.82  0.3597 36.73 . Q.232 1.704
08 . . ‘ -

0% 21.65 38.14  0.3249 33,17 0.255 0.63%
10 25.7%  40.38  .3286 45.43 0.241 1.965
11 31.8%  43.71  0.433% 47.14 0.232 -1.894
12 4G.82 348.59  0.4767 49.39 0.218 -3.528
13 10.89  32.28  0.3562 39.78 0.328 t2.114
14

15

16 13.88  35.00  0.4200 42.0% 0.287 -3.244
17 27.24  4i.19  0.4338 45.85 0.241 -2.31%
18 36.21  46.08  0.4865 48.2% 0.223 -4.431
9

20 46.16 51.50 0.4508 50.65 0.218 -3.180
21

22

23 52.63 55.04  0.4277 %52.18 0.218 0.292
24 35.48  45.68  0.3751 48.08 0.223 1.879
25 17.%1  35.49 ' 0.2282 42.74  .0.273 2.634
26 55.89 55.81  0.3926 52.95 0.218 1.983
27

28

29 47.57  52.27  0.4223 50.97 0.218 0.573
30 .

31 54.83 56.23  0.385% 52.70 0.218 2.772
32 31738 43.45  0.4614 37.03 0.232 Y -3.709
33 26.43  30.75  0.4711 45.62 0.251 -4.354
34 :
.35 .

36 41.50 48.97  0.4890 39.5% 0.218 -4.351
37

38 41.25  48.83  (1.4508 49.47 0.218 ~1.613
39 67.343 .04  0.4704 55.79 0.232 ~4.582
‘30 56.49 57.13  0.5081 53.09 0.218 -5.435
a1 37.26. 57.55  0.4450 53,28 0.218 -1.397
a2

a3 70.67 44.86 0.3791 56.71 0.237 -0.568
a3 - N -

as 57.52  S57.69  0.4280 53.33 0.218 -0.524
36

37 63.11  60.74  0.3350 54.75, 0.223 2.858
ag :

49 68.28 63.56 0.3383 T6.06 0,232 2.139
50 B . - .
S1 73.48 66.39 0.3771 57.53 0.241 -0.829
52 ) o ’

53 64.48  41.49  0.4346 55.06 0.228 -1.369
543

55 80.15  70.03 0.3179 59. 66 0.264 -0.348
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APPENDIX B

A WARNING REGARDING THE USE OF DEFF VALUES
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A Warning Regarding the Use of Deff Valies

it should be noted that the Deff values given in Table 4.2 are the ratios of two

empirically obtained variances. In general, persons who wish to 'correct' for design

effects have & value of the item variance which has been calculated, for example, the

Rasch Standard Error output by the program BICAL. If this is the’ case, the values in

Table 4.2 should NOT be used. Instead, reference should be made to Table 4.2 and to
Tables E.1 to E.12 in Appendix E. _ : ,

"The values given in Appendix E are apprbpriate to 'correct' the Rasch Standard
Ecror for design (and other) effects. Two points should.be made. First, the values in
Tables E.1 to E.12 and in Table 4.2 are associated with deft values and not with deff
values; that is, they should not be applied to variances but to standard errors. Secondly,
they 'correct' the Standard Error by being divided into it, not by being multiplied by
it.
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DISCUSSION OF THE DEFF VALUES LESS THAN UNITY
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Discussion of the Deff Values Less Than Unity

There is a number of instances where Deff values less than unity are encountered.
Although not always expected', such values are not exception'al, and are a fu‘nction of the
sample design and the sampling frame. In the case of the CLS-5 design, an increase in
the. sample size quickly increases the number of clusters required, because the cluster
size is sniall. The largest sample size of 320 requires 64 clusters.. The sampling frame |
contains only 67 'pseudoclasses’ or possible clusters. Thus, each CLS-5 sample taken has
a minimum overlap with each other CLS-5 sample of 61 pseudoclasses out of a total of
87 pseudoclasses. This overlap: means that a fairly 'representative' crbss—section of the
total population is taken for large sample sizes under the CLS-5 design. That this
cross-section is more representative than the SRS-1 design, in terms of the stability of
the parameters estimated from the sample; is shown in the Deff values less than unity.
Such effects are most likely to oceur under just the conditions described above, namely;
an almost complete coveragé of the primary sampling units (classes or clusters), coupled

with some degree of conformity within classes compared to the whole population.
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TABLES OF THE VALUES WHICH ARE PLOTTE
"IN FIGURES 4.1 to 4.13
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(Raw) Mean Item Variance of the Rasch Item Difficulty Index

Table D.1
(Plotted as Figure 4.1) (All values rounded)
Test Sample Sample size
length design 40 60 80 100 120 160 200 240 320
55 SRS-1 3.45 2.31 1.73  1.38 1.14 0.82 0.63 0.53 0.37
items CLS-5 3.81 2.56 1.83 1.50 1.18 0.83 0.65 0.52 0.36
: CLS-10 4.20 2.91 2.09 1.64 1.34 0.93 -0.74 0.58 0.42
CLS-20  5.46 - 3.51 2.59 1.99 1.71 1.21 0.93 0.72° 0.51
42 SRS-1 3.29 2.08 1.55 1.20 0.97 0.72 0.57 0.46 0.34
items CLS-5 3.63 - 2.36 1.64 1.30 1.03 0.75 0.58 0.46 0.32
CLS-10 4.03 2.67 1.89 1.48 - 1.20 0.84 0.66 0.53 0.37
" CLS-20 5.44 3.47 2.44 1.85 1.56 1.08 0.84 0.66 0.48
32 SRS=1  3.47 2.14 1.60 1.23 1.0l 0.74 0.58 0.47 0.33
items CLS-5 3.85 2.45 1.72 1.35 1.07 0.77 0.59 0.47 0.32
CLS-10 4.30 2.78 1.97 1.58 1.26 0.85 0.69 0.56 0.39
CL5-20 5.75 3.63 2.58 1.93  1.67 1.13 - 0.87 - 0.69 0.50
.Table D.2 (Raw) Mean Item Variance of the Traditional Item Difficulty Index
: (Plotted as Figure 4.2) (All values rounded)
Test Sample Sample size
length design 40 60 80 100 120 160 200 240 320
55 SRS-1. 49 .66 32.96 25.10 19.71 16.47 11.97 , 9.24 7.71 5.71
items CLS-5 66.77 47.47 32.27 26.27 19.84 14.42 10.67 8.03 4.97
CLS-10 100.5 66.86 47.75 35.12 31.15 23.33 17.44 13.16 8.71 .
CLS-20 172.5 - 104.9 80.55 56.70 52.43 36.83 30.24 23.72 18.36
42 SRS-1 51.99 34.21 26.37 20.55 17.06 12.55 10.34. 7.98 6.02
items CLS-5 71.61 51.72 34.82 28.40 21.20 15.66 11.28 8.55 5.16
CLS-10 111.4 74.20 52.53 38.72 34.49 26.15 19.25 14.61 9.52
CLS-20 196.3 118.9 92.15 64.02. 59.65 41.81 34.53 26.90 20.97
- 32 SRS-1 51.40 33.27 -26.04 20.55 16.91 12.53 9.58 7.98 5.90
items CLS-5 72,20 '52.23 35.17 28.98 21.02 15.69 11.35 8.43 4,99
CLS-10 115.6 76.43 54.19 39.65 :35.34 26.77 19.86 15.00 9.71
CLS-20 203.2 123.1 95.40. 65.70 62.13 43.35 35.50 27.77 21.67
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Table D.3 (Raw) Mean Item Variance of the z-item leflculty Index
(PLQtted as Flgure 4.3) (A1l values rounded)

Sample size

Sample
‘design 100 - 120 160

SRS-1 . . . .54 .89 - 2.17
CLS~5 . . . .77 .01 2.25
CLS-10 . . . .22 .54 2,59
CLS-20 . .90, 6. .26 .50 .75

SRS-1 . . . .66  3.83 .92
CLS-5 .02 8, . .96 .98 .02
CLS-10  13. .33 6. .52 4.62 .40
CLS-20  ‘16. . . .81 .81 .21

SRS-1 . . ;. .27 .48 .66
&LS-5 .34 . . .58 .61 .77
CLS-10 . . . 5.23 .34 .09
CLS-20 . .95 . 8. .45 .48 .96

D.4 (Raw) Mean Item Difficulty Variance of the Three Difficulty
Tndices on the 55 Ltem Test (Plotted as Figure 4.4) (ATl values
rounded) .

Sample Difficulty Sample size

design index . 40 100 120 160

SRS-1 R . . . L0409 ".0340 .0247
’ T . . . L0444 0371 .0272

Z . . . .0367 .0298 .0222

.0440 .0352 .0252
.0593  .0447 .0389
.0320 .03%' 0230

0485 .0398 .0279
.0789 .0702 .0530
L0441 .0367 .0265

.0584 .0503 .0360
.1288 .1188 .0839
.0556 .0472 .0336
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Table D.5 Standardized Mean Item Difficulty Variance of the Three

Difficulty Indices on the 42-Item Test (Plotted as Figure 4.5)

(A1l values rounded)

Sample Difficulty Sample size

design index 40 60 80 100 ‘120 160 200 240 320
SRS-1 ‘R .1424 0911 .0688 .0540 .0446 .0332 .0261 .0212 .0157
. T - .1597 .1039 .0804 .0624‘ .0522 .0386 .0314 .0244 0184
Z .1267 .0816 .0604 .0490 .0399 .0301 .0236 .01S1 .0l44
CLS-5 R .1554  .1031 .0727 .0581 .0465 .0345 -.0264 .0216 .0l48
o T .2173  .1568 ,1050 .0863 .0645 .0484 0344 .0264 .0158
Z .1370 .0925 ,0650 .0522 .0415 .0311 .0236 .0194 .0133
CLS-10 R .1707 ,1160 .0841 .0668 .0539 .0382 .0303 .0244 .0173
T .3422  .2266 1596 1176 .1049 .0802 .0591 .0446 .0292
Z L1514 1031 .0741 .0585 .0485 .0353 .0276 .0220 .0157
CLS-20 R +2291  .1497° ,1052 .0822 .0699 .0493 .0388 .0305. .0219
T .5989  .3621 .2756 ,1969 .1827 .1291 .1063 .0824 .0642
Z .2023  .1312 .0931 .0732 .0617 .0440 .0352 .0279 .0204
Table D.6 Standardized Mean Ttem Difficulty Variance of the Three
« Difficulty Indices on the 32-Item Test (Plotted as Figure 4.6)
(A1l values rdéunded) :
>Samp1e Difficulty . Sample size _
design index 40 60 . 80 100 120 160 200 240 320
SRS-1 R ‘1361 ,0858 .0645 .0506 .0421 .0310 .0242 .0197 .0140
T .1504 ,0965 .0754 .0594 .0492 .0367 .0278 .0234 .0172
Z L1167 0743 .0542 .0446 .0391 .0273 -,0208 .0169 .0123
CLS-5 R .1496  .0970 .0692 .0552 .0438 .0324 .0247 .0200 .0136
T .2084 ,1505 .1006 .0842 .0607 .0462 .0329 .0247 .0145
Z .1284 ~.0842 .0600 .0481 .0375 v.028$ 0215 .0175 .0119
CLS-10 R .1649 .1090 .0798 .0645 .0516 .0354 .0287 .0234 .0164
T .3382 .2209 .1568 .1141 .1024 .0782 .0581 .0435 .0284
Z ;1423 .0958 .0677 .0553 .0455 .0320 .0258 .0205 .0l44
CLS-20 R .2216  .1430 .1010 .0779 .0678 .0473 .0365 ~.0288 .0208
T .5887 .3585 .2717 .1920 .1810 .1275 .1036 .0808 .0630
Z .1904  .1233 .0873 .0690 .0581 .0413 .0325 .0258 .0188
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Table D.7 Structure Values for the Three Difficulty Indices on the
55-Item Test (Plotted ‘as Figure 4.7) (All values rounded)

‘Sample Difficulty Sample size

design index 40 60 80 100 120 160 200 240 320

SRS-1 R . . - .274  4.30: 4.237 4,147 4.288  4.203
T . . . .633 4.685 4.663 4.545 4.677 4.802
Z . . . .836 3.769 .814 3.670 3.670 3,766

CLS-5 . . . 4.599 448 .328 .305 .230 .103
.188 .653 .645 .261 .870 .163
.094 .926 .956 . 844 .817 .618

5.064 . .795 4.932 4.730 4.713
.237 . .094 .671 7.948 7.318

8 8
4.605 . 4.557 4.591 4.451 4.359

6.099 6.183 6.100 5.879 5.787
13.45 14.40 15.00 14.36 15.40
5.802 5.766 5.886. 5.752 5.814

Table D.3 Structure Valﬁes for the Three Difficulty Indices on the
42-Ttem Test (Plotted as Figure 4.8) (All values rounded)

o s i
Sample Difficulty ample size

design index : 190 120 , 160 © 200 ¢ 240 320

SRS-1 R . . . .639 5.6.3 -<5.703 .708 5.659 .835
T 6. . . .517 6.598 6.619 .863 6.510 .826
yA - . . .113 5.041 .171 166 5.107 .32

.067 5.879 .917 .781 5.761 5.495
.012 8.150 .307 .509 7.044 5.857
L449  5.256 .342 .161 5.187 4.923

6.971 6.820 6.552 6.621 6.523 6.391
12.28 13.26 13.77 -12.92 11.93 10.83
6.110 6.135 6.053 6.044 5.888 5.821

8.588 8.840 8.458 8.483 8.163 8.130
20.56 23.10 22.17 23.23 22.03 23.80
7.643 7.804 7.557 7.697 7.470 7.571

Aruitoxt provided by Eic:
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'Table D.9

Structure Values for the Three Difficulty Indices on the

32-Ttem Test (Plotted as Figure 4.9) (All values rounded)

Sample Difficulty—

Sample size

design index 40 60 80 100 120 160 200 240 320
SRS-1- R 5.538 5.279 5.343 5.284 5.317 5.327 5.284 5.261 5.199
T 6.117 5.941 6.229 6.200 6.223 6.294 6.078 6.247 6.360
z 4.747 4,571 4.484 4.661 4,568 4.691 4.552 4.527 4.551
CLS-5 R 6.086 5.970 5.726 5.762 5.543 5.562 5.391 5.335 5.036
T 8.477 9.266 8.331 8.788 7.668 7.929 7.183 6.612 5,380
z 5.222 5.180 4.972 -5.022 4.740 4.886 4.692 4.689 4.403
CLS-10 R 6.708 6.712 6.608 6.731 6.528 6.073 6.277 6.248 6.089
T 13.76 13.60 12.98 11.92 12.95 13.43 12,70 11.63 10.52
y/ 5.790 5.897 5.603 5.770 5.747 5.487 5.633 5.488 5,344
CLS-20 R 9.013 8.802 8.359 8.136 8.575 8.116 7.974 7.694 7.715
T 23.95 22.07 22.49 20.04 22.89 21.88 22.65 21.59 23.34 /_
A 7.743 7.592 7,231 7.207 7.340 7.087 7.095 6.904 6.966
Table D.10  Mean Rasch Item Fit Values for the Three Test Lengths
(Plotted as Figure 4.10) (All values rounded)
Test Sample Sample size '
.length design 40 60 80 100 120 160 200 240 320
55 SRS~-1 -0 073 -0.104 -0.127 -0.147 -0.161 -0.199 -0.224 -0.246 -0.287
items CLS-5 -0.073 -0.105 -0.121 -0.148 -0.167 -0.194 -0.220 -0.247 -0.286
CLS-10 -0.067 -0.101 -0.117 -0.146 -0.169 -0.199 -0.222 -0.249 -0.288
CLS-20 -0.049 -0.099 -0.115 -0.146 -0.163 -0.194 -0.226 -0.247 -0.292
42 SRS-1 -0.106 -0.138 -0.165 -0.186 -0.208 -0.245 -0.274 -0.304 -0.351
items CLS-5 -0.103 -0.138 ~0.162 -0.187 -0.210 -0.240 -0.269 -0.300 -0.346
CLs~-10 -0.101 -0.137 -0.157 -0.188 -0.211 -0.247 -0.274 -0.303 -0.350
CLs-20 -0.082 -0.133 -0.157 -0.191 -0.208 -0.244 -0.278 -0.302 -0.354
32 SRS-1 -0.138 -0.177 -0.210 -0.237 -0.260 -0.306 -0.348 -0.380 —0.439
CLS-5 -0.134 -0.176 -0.209 -0.238 -0.267 -0.302--0.339 -0.377 -~0.43q.,
CLS-10 -~0.134 -0.176 -0.202 -0.238 ~0.266 -0.308 ~-0.346 -0.379 -0.439 7?
CLS-20 -0.110 -0.172 -0.201 -0.241 -0.265 -0.309 -0.350 -0.381 -0.445
bl
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Table D.11 Mean Point-biserial Discrimination Values for the Three Test

Lengths (Plotted as Figure 4.11) (All values rounded)

Sample size

" Test Sample

length design 40 60 80 100 120 160 200  240-. 320
55 SRS-1  0.3652. 0.3635 0.3659 0.3667 0.3650 0.3695 0.3689 0.3696 0.3690 .
items CLS-5  0.3484 0.3579 0.3590 0.3642 0.3646 0.3677 0.3658 0.3676 0.3665
CLS-10  0.3372 0.3497 0.3478 0.3554 0.3590 0.3644 0.3652 0.3672 0.3674
CLS-20  0.2846 0.3235 0.3309 0.3517 0.3496 0.3567 0.3579 0.3600 0.3642
42 SRS-1  0.3995 0.3993 0.4002 0.4002 0.4005 0.4042 0.4031 0.4041 0.4037
items CLS-5  0.3838 0.3926 0.3933 0.3993 0.399 0.4026 0 4005 0.4025 0.4014
CLS-10  0.3705 0.3830 0.3813 0.3884 0.3934 0.3984 0.3999 0.4015 0.4015
CLS-20 -0.3155 0.3561 0.3632 0.385Z 0.3835 0.3909 0.3921 0.3936 0.3986
32 SRS-1  0.4079 0.4068 0.4072 0.4072 0.4085 0.4107 0.4117 0:4119 0.4105
items CLS-5  0.3908 0.4002 0.4007 0.4060 0.4065 0.4099 0.4082 0.4106 0.4095
CLS-10  0.3768 0.3897 0.3889 0.3954 0.4010 0.4055 0.4066 0.4093 0.4085
CLS-20  0.3182 0.3633 0.3701 0.3917 0.3907 0.3970 0.3991 0.4008 0.4061

Table D.12 Mean Rasch Item Fit Values of the Core of 32 Items for the

Three Test Lengths (Plotted as Figure 4.12) (All values rounded)

Test Sample Sample size

length design 40. 60 80 100 120 160 200 240

320

55 SRS-1 - =-0.332 -0.422 -0.481 -0.535 ~0.596 ~0.693 -0.797 -0.876 -0.998
items CLS-5 '~0.325 ~N.411 -0.480 -0.546 -0.608 -0.706 -0.787 -0.878 -1.014

--CLS-10 -0.303 -0.395 -0.457 -0.528 ~0.602 -0.693 ~0.781 -0.869 -0.

CLS-20 ~0.238 -0.376 -0.440 -0.525 -0.585 -0.678 -0.773 -0.843 -0.999

- 42 SRS-1 -0.203 ~0.253 ~0.294 -0.333 -0.376 -0.422 -0.491 -0,549 -0.631
", items CLS-5 -0.195 -0.254 -0.300 -0.332 ~0.374 -0.431 -0.485 ~0.545 -0.630
CLsS-10 - -0.188 -0.249 ~0.288 -0.335 -0.375 ~G.433 -0.478 -0.541 -0.616
CLS-20 -0.145 -6.242 =0.282 -0.333 -0.371 -0.418 -0.484 -0.533 -0.627

32 SRS-1 -0.138 -0.177 -0.210 -0.237 -0.260 -0.306 ~0.348 -0.380 -0.439
items CLS-5 -0.134 -0.176 ~0.209 -0.238 -0.267 -0.302 -0.339 -0.377 -0.436
CLS-10 -0.134 -0.176 -0.202 -0.238 -0.266 -0.308 -0.346 -0.379 -0.439
* CLS-20 -0.110 -0.172 -9.201 -0.241 -0.265 -0.309 -0.350 -0.381 -0.445
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"Table D.L3.

Mean Rasch Item Difficulty ‘Variance of the Core of 32 Items

‘for the Three Test Lengths (Plotted as Figure 4.13) (All values

rounded)
Test Sample Sample size
length design 40 60 80 100 120 160 ° 200 240 320
55 SRS~1 3.19 1.95 1.46 1.14 0.94 0.68 0.53 0.43 0.31
items CLS-5 3.56 2.27 1.59 1.25 0.97 0.71 0.55 0.44 0.30
CLs-10 4.06 2.64 1.86 1.48 1.16 0.80 0.64 0.52 0.36
CLS-20 5.68 3.49 2.49 1.83 1.57 1.07 0.82 0.65 0.47
<
42~ SRS-1 3;32 2.05 1.54 1.19 0.97 0.72 0.57 0:47 0.34
items CLS-5 3.72 2.36 1.65 1.30 1.02 0.74 0.57 0.46 0.31
CL5-10 4.15 2.69 1.91 1.53 1.21 0.83 .0.67 0.54  0.37
CL5#20 5.65 . 3.54 2.53 1.89 1.61 1.11 0.85 0.67 0.48 -
32 SRS~-1 3.47 2.14 1.60 1.23 1.01 0.74 0.58 0.47 0.33
ltems CLS-5 3.85 2.45 1.72 1.35 1.07 0.77 0.59 0.47 0.32
CLs-10 4.30 2.78 1.97 1.58 1.26 0.85 0.69 0.56 0.39
CLs-20 5.75 3.63 2.58 1.93 l1.67 1.13 0.87 0.69 0.50
Ry & ‘
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APPENDIX E

COMPLETE TABLES OF THE RATIO OF CALCULATED RASCH STANDARD
ERROR TO EMPIRICALLY DETERMINED SAMPLING STANDARD
: , > DEVIATION OF THE RASCH ITEM DIFFICULTY
(Summarized-as Table 4.2)
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Table E.l Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation -of Rasch .ltem Difficulty
for-55 Item Test and Sample Design SRS-1 (All values>rounded)

Mean Standard Minimum . Maximum
ratio deviatiov ratio ratio

1.017 : 0.098 0.862 1.456
1.025 .074 .861 - 1.245
.031 .066 .891 T 1175
.025 .073 .851 .175
.873 .269

.899 .222
.929 206 *
923 - .243
.931 .205

046
.066
.077
.094

.067
.068
.069

.069

0
0
0
.036 0.072
0
0
0
0

o O O O 0o O o o

Table E.2 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampling Standard Deviation of Rasch Item Difficulty

for_55 Item Test and Sample Design CLS-5 (All values rounded) .

Sample Mean - Standar; Minimum Maximum
“size P ratio deviation ratio ratio

40 0.977 0.097 . 0.690 1.370

60 0.973 0.077 0.747 1.236

80 0.997 .0.082 0.746 l 1.275
100 0.998 0.076 0.725 1.155
120 1.017 0.072 0.842 1.179
160 1.037 0.066 0.844 1.191
200 1.049 0.070 0.884 1.272
240 ) 1.067 ' 0.071 0.904 1.217
320 1.114 0.084 0.939 (1.314
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Table E.3

Ratio of the Calculated Rasch Standard Error to Empirically

Determined Sampling Standard Deviation of Rasch Item Difficulty

for 55 Item Test and Sample Design CLS-10

(All values rounded)

“Sample

ERIC

Aruitoxt provided by Eic:

Mean Standard Minimum “Maximum
size 4 ratio deviation ratio ratio
40 0.949 0.128 0.561 1.523
60 0.928 0.093 0.567 1.212
80 0.951 0.099 0.563 1.201
100 0.954 0.093 0.614 1.122
120 0.960 0.089 0.646 1.183
160 0.992" 0.092 0.606 1.175
200 0.991 0.099 0.640 1.222
240 1..008 0.086 0.707 1.197
320 1.034 0.084 0.709 1.179
Table E.4 Ratio of the Calculated Rasch Standard Error to Empirically -
Determined Sampling Standard Deviation of Rasch” Item Difficulty
for 55 Item Test and Sample Design CLS-20 (All values rounded)
Sample Mean Standard Minimum Maximuﬁ
size ratio deviation ratio ratio
40 0.858 0.144 0.440 ©1.389
60 0.866 Q.122 0.403 1.240
80 0.871 0.114 0.432 1.173
100 0.890 0.125 0.421 1.089
120 0.877 0.113 0.402 1.081
160 0.904 0.114 0.431 1.102
200 0.9Q4 0.116 0.481 1.117
240 0.926 0.115 0.464 i.106
320 0.946 0.120 0.467 1.205
717 N
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Table E.5 Ratio of the Calculated Rasch Standard Error td”E@pirically

Determined Sampling.Standard Deviation of Rasch Item Difficulty
for 42 Ttem Test and Sample Design SRS~1 (All values rounded)

Sample Mean Standard ’ Minimum Maximum

size - ratio deviation ratio ratio
40 1.010 ' 0.065 0.878 ' 1.133 -
60 , ©1.029 0.065 .- 0.912 1.144
80 1.036 0.067 . 0.886 1.158
100 . 1.038 0.066 - ~0.902 1.171
120 1.052 0.071 0.940 1.233
160 , . 1.050 0.062 0.972 1.222
200 1.060 - - 0.073 0.962 1.203
240 1.073 0.063 0.954 1.283
320 1.080 0.074 0

.929 : 1.288

°

Table E.6  Ratio of the Calculated Rasch Standard Error to Empirically .
Determined Sampling Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-5 (All values rounded)

ERIC
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Sample Mean ‘ Standard . Minimum Maximum
size . ratio deviation ratio ratio
40 0.971 0.073 . 0.681 1.115
60 , 0.972 0.070 0,742 1.111
80 1.005 0.074 0.733 1.126
100 1.010 0.080 0.711 1.153
120 . 1.027 0.067 0.833 1.161
160 1.038 0.066 0.836 1.192
200 1.056 0.071 0.865 1.252
249 _ 1.073 0.072 0.900 "1.223
320 . 1.122 0.083 0.954 1.330
78
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Table E.7 Ratio of the Calculated Rasch Standard Error to Empirically
Determined Sampiing Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-I0 (All values rounded)

‘Sample i Mean Standard . Minimum Maxjimum
o size ratio - deviation ' ratio ratio
40 0.945 . 0.097 0.563 1.116
60 0.936 0.088 0.560 1.058
80 0.959 0.103 0.561 1.146
100 0.961 0.097 0.607 1.100
| 120 0.965 0.089 0.641 1.189
| 160 0.998 9.098 0.603 1.176
- — 200 - 1.002 —— 0.099 0.637 1.185 - -
240 1.012 0.084 0.702 : 1.179
320 / 1.046 0.088 0.699 1.181

Table E.8 Ratio of the Calculated Rasch Standard Error to Empirically
’ Determined Sampling Standard Deviation of Rasch Item Difficulty
for 42 Item Test and Sample Design CLS-20 (All values rounded)

Sample * ' _ Mean Standard " Minimum Maximum

size i ratio deviation ratio ratio

40 S 0.845 : 0.114 0.441 _ 1.070

60 0.854 0.110 0.398 0.999

80 0.871 0.115 0.427 1.104

100 0.893 0.125 0.421 © 1.098

120 0.882 0.114 0.398 . * 1.087

160 0.913 -~ 0.121 0.428 1.094

200 ©0.911 . 0,119 0.477 1.123

240 0.933 0.118 * 0 461 . 1.126

320 0.953 0.125 - 0.464 . 1.202
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Table E.9

Ratio of the Calculated Rasch Standard Error to Empirically

Determined Sampling Standard Deviation of Rasch Item Difficulty

for 32 Ttem Test and Sample Design SRS-1

(A1l values rounded)

Sample

Mean Standard Minimum Maximum
size " ratio deviation “ratio ratio
40 1.008 0.065 0.885 1.117
60 1.034 0.060 0.917 1.146
80 R 1.045 0.072 0.898 1.172
100 1.045 0.064 0.903 1.188
120 1.0?6 0.059 0.935 1.150
160 1.060 0.066 0.973 . 1.240
200 ~. 1.076 0.065 0.926 1.188 -
240 ' 1.095 0.068 0.928 1.237
© 320 1.118 0.058 1.005 1.202
Tablé E.10 Ratio of the Calculated Rasch Standard Error to Emﬁirically
Determined Sampling Standard Deviation of Rasch Item Difficulty
‘for 32 Item Test and Sample Design CLS-5 (All values rounded)
Sample Mean " Standard Minimum Maximum
size ratio deviation ratio ratio
40 0.967 0.081 0.681 1.118
60, 0.979 0.071 0.750 1.112
80 1.004 0.078 0.731 1.133
100 1.015 0.084 0.708 1.153
120 1.035 0.071 0.829 1.157
160 1.046 0.072 0.834 1.206
200 1,063 0.071 0.864 1.222
240 1.034 0.064 0.935 1.225
320 1.137 0.070 - 1.006 1.316
80
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Table E.l1 Ratio of the Calculated Rasch Standard Error to Empirically
: Determined Sampling Standard Deviation of Rasch Item Difficulty
for 32 Item Test and Sample Design CLS-10 {All values rounded)

Sample Mean Standard Minimum ‘ Maximum
size ratio deviation »ratio ratio
40 0.943 : 0.106 0.565 ©1.107
60 0.939 0.093 0.563 1.067
80 0.964 0.105 0.565 1.149
100 0.955 - 0.103 0.612 1.099
120 0.966 0.098 0,643 1.181
160 1.015 0.100 0.606 1.164
" 200 1.006 ©0.105 — 0.642 1.137
240 1.010 0.093 0.700 1.179
320 1.051 0.095 0.699 1.187

Table E.12 Ratio of the Calculated Rasch Standard Error to Empiricallj
: Determined .Sampling Standard Deviation of Rasch Item Difficulty
Tor 32 Iltem Test and Sample Design CLS-20 (All values rounded)

Sample Mean Standard Minimum Maximum
size ratio deviation ratio ratio
40 0.848 -~ 0.126 Y 0.440 1.041
60 0.863 0.122 0.399 1.016
80 0.876 0.130 '0.432 1.110
100 0,897 0.133 0.426 1.113
120  0.886 0.126 0.401 1.061
160 0.919 0.134 0.430 1.081
200 o 0.922 0.129 0.480 1.143
240 0.947 0.133 0.463 1.135
320 0.964 0.139 0.466 1.188
(
o
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APPENDIX F

RAS(‘H ITEM ANALYSES AND OUTLINE OF THE ITEMS DELETED
(on mierofiche)
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