
DOCUMENT RESUME

ED 261 660 IR 011 809

AUTHOR Heines, Jesse M.; Grinstein, Georges G.
TITLE Implications of Windowing Techniques for CAI.
PUB DATE 5 Aug 85
NOTE 15p.; Paper presented at a conference on Visions of

Higher Education: Trans-National Dialogues (Pomona,
NJ, August 5, 1985).

PUB TYPE Reports - Descriptive (141) -- Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; *Computers; Computer

Science Education; *Display Systems; Higher
Education; Information Systems; *Input Output; *Input
Output Devices; Online Systems; *Systems
Development

ABSTRACT
This paper discusses the use of a technique called

windowing in computer assisted instruction to allow independent
control of functional areas in complex CAI displays and simultaneous
display of output from a running computer program and coordinated
instructional material. Two obstacles to widespread use of CAI in
computer science courses are given: the need to display a large
amount of information on the screen atone time, and the need to
either simulate sophisticated computer processes so they can be\
demonstrated from within a running CAI program, or to exit the CAI
program so that students can have some hands-on experience. Windowing
is suggested as a solution to these problems because it allows a
single terminal to act as either a multiple output device for a
single computer program, or as a single output device for multiple
computer programs. Implications of this dual function are discussed.
Sample windowing applications, with nine corresponding screen
examples, illustrate the technique's potential for instructional
application, and three suggestions for handling the system of
interwindow/interprocess are given. Two systems for implementation of
windowing are discussed--UNIX and VAX/VMS--and it is concluded that,
although windowing is a highly desirable CAI feature, its actual use
has proven difficult, and more practical approaches need to be
devised. A list of four references completes the paper. (JB)

Reproductions supplied by EDRS are the best that can be made

from the original document.

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION

CENTER {ERIC)

TM document has been reproduced as
received from the person or orgenuahon
originating it.

0 Mow changes have Wain nude to improve
reproduction quality.

Points of view or opinions stated in this docu

meet do not necessanly represent official NIE
position or policy.

Aes. 'T'2014S OF WINDOWING
IGH14 ICI L.7S FOR GA I

Jesse M. Heiner, Ed. D.
Georges G. Grinstein, Ph.D.

University of Lowell
Dept. of Computer Science

Lowell, MA 01854

paper presented st a conference on

Visions of Higher Education: TransNational Dialogues

Stockton State College
Pomona, New Jersey

August 5, 1985

ABSTRACT

Windowing is a technique that allows a single computer terminal
to act as either multiple output devices for a single computer
program,. or a single output device for multiple computer pro-
grams. This paper discusses the use of windowing in computer-
assisted instruction (CAI) programs to allow independent control
of functional areas in complex CAI displays and simultaneous
display of output from a running computer program and coordinated
instructional material.

INTRODUCTION

One of the basic fixtures of the tomorrow's learning environment
for higher education will be instructional progra:As delivered by
computers. The vision of highly interactive and adaptive teach-
ing machines has been around for decades, but the move to devel-
oping such systems always seems to stall before it gets up a

significant head of steam. Two of the obstacles to widespread
use of computer-assisted instruction (CAI) in computer science
courses are:

BEST COPY AVAILABLE

- 1 -

2

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Jesse M_ He:41es

TO THE EDUCATIONAL RESOURCES
INFORMATIORCENTER (ERIC):'

v

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heinen & Grinstein, University of Lowell

the need to display a large amount of information on the
screen at one time, and

the need to either simulate sophisticated computer pro-
cesses so they can be demonstrated from within a running
CAI program or to exit the CAI program so students can
try out the concepts being taught.

This paper examines the implications of using windowing tech-
niques to address both these problems, so that more effective
computer science CAI programs may be developed in the future.

USING WINDOWS

Windowing is a technique that allows a single terminal to act as
either:

multiple output devices for a single computer program, or

a single output device for multiple computer programs.

The availability of this technique has a number of implications
for CAI, where screen display space is often at a premium. The
two main implications we examine are:

the independent control of functional areas in complex
CAI displays, and

simultaneous display of output from a running computer
program and coordinated instructional material.

The first part of our effort is to specify a virtual windowing
system by defining the features we would like to see in a
computer science CAI windowing system. The second part is to
examine how such a system might be implemented in current envi-
ronments, concentrating on the trade-offs that might be made to
enhance simplicity and performance.

THE VIRTUAL SYSTEM

CAI screens are often complex, combining explanatory text and
graphics with representations of the sub)ect matter such as

- 2

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

simulated computer screens. Heines (1984) has pointed out the
advantages of establishing discrete functional areas for various
screen components. Windowing can be used to make control of
these areas truly independent, greatly simplifying coding and
debugging. Rudimentary windowing is already available in some
CAI authoring aws,tams, but these implementations can only handle
non-overlaid windows. We know of no CAI authoring system that
currently provides windows of arbitrary dimensions and overlay
levels, dealing fully with the problems of occlusion and restor-
ation.

Even in more sophisticated windowing systems, the missing fea-
ture, from a CAI point of view, is the ability for a process
running in one window to "filter" a process running in another
window. One often finds that sophisticated CAI programs contain
simulators for software (such as command 'interpreters or com-
pilers) that already exist on the system but that are inacces-
sible from inside an executing image. It is certainly true that
most of today's major operating systems allow a main process to
spawn a child process, !pass control to it, and then analyze its
results when the subprocess is terminated by the user. These
systems do not, howeve, generally allow the parent process to
"eavesdrop" on the child, analyze its results as the student
works, and interrupt asisoon as an error is spotted. ("Shelley,"
a new CAI authoring system for the IBM PC that was demonstrated
at Data Training's Completer-Based Training Conference in March,
1985, is a notable exception.)

!The functionality described above may, at first reading, seem to
have little relevance to windows. It is, however, extremely
relevant because it governs the types of interactions that one
can implement in a windowing system. Without the ability to
"filter" processes in the manner described above, wiudows supply
little more than a convenient technique for the control of func-
tional areas. While this minimum functionality is still useful,
it leaves the contribution of windowing techniques to CAI far
below its promise.

Sample Applications

During the 1984 spring term, Heines worked with Karen Smith at
Brown University to explore the development of a CAI course with
the features described above. Brown makes extensive use of
Apcllo Domain systems in its introductory Pascal programming
course, and these systems have a number of hardware features
specifically designed to simplify the implementation of windowing
systems. To this hardware Brown's programmers have added BALSA,

- 3 -

4

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Iowell

the Brown Algorithm Simulator and Animator, a system that pro-
vides software interfaces to the windowing hardware along with
other, more sophisticated features. (For a fuller description of
BALSA, see Brown and Sedgewick, 1984.)

One of the applications that Heines and Smith built was an in-
structional game to help students master the concepts and syntax
of Pascal passing parameters by value and by reference. The game
was called "The Parameter Mystery", and its initial scenario was
simply that someone had been murdered. The students' task was to
determine who murdered whom with what. To play the game, stu-
dents typed Pascal assignment statements and procedure calls as
if they were writing a program. They could assign values to
seven predeclared variables and Call seven predefined procedures.
Each procedure required certain information to be passed to it

and returned certain information in turn. The students' entries
were evaluated interactively, with detailed error messages for
incorrect statements. Procedures called correctly with the
appropriate parameters yielded clues to the mystery, from which
students could eventually deduce an answer. (For a more complete
description of "The Parameter Mystery," see Smith, 1985. Exten-
sions of this work are now being pursued by Heines at The Univer-
sity of Lowell under a grant from Digital Equipment Corporation.)

Insert Figure 1 about here.

The initial screen for "The Parameter Mystery" is shown in Figure
1. This figure shows the BALSA logo and basic screen layout with
five windows:

1. The first window is the topmost line of the screen in which
the message "Type your first entry" appears. This is where a
student's input appears as s/he types it.

2. The second window is the large (and currently empty) rectan-
gle taking up most of the left-hand side of the screen. This
is where feedback on the student's input will appear. This
feedback will be either an explanatory error message (see
Figure 2), a confirming message for an assignment statement
(Figure 3), or a clue for a valid procedure call (Figure 4).

Insert Figures 2, 3, & 4 about here.

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

3. The third window at the top of the right-hand column of rec-
tangles contains a standard help message on additional com-
mands the student may enter. These are "quit" to terminate
the program, "scalars" to display all known scalar values,
and "formals" to display the predefined procedure names and
their formal parameter lists.

4. The fourth window is the narrow one-line message that dis-
plays the number of statements already entered.

5. The fifth window at the bottom right of the screen is a
dynamic display of the values of all user-assignable vari-
ables. At the beginning of the program, all of these values
are undefined (see Figure 5).

Insert Figure 5 about here.

Each student entry caused information to be updated in four of
the five windows. Note, however, that none of these windows
overlapped. The use of windowing in this instance therefore did
not result in an increased display space, but rather simplified
the display of updated information and the overall management of
this rather complex screen.

A more sophisticated windowing application can be seen in a com-
plementary application built by Smith and Heines. This applica-
tion reinforced material presented in lectures and prepared
students for playing "The Parameter Mystery" by visually demon-
strating actual programs that make use of procedures and param-
eters. <This application is also described more fully in Smith,
1985.)

Insert Figure 6 about here.

Figure 6 shows one screen from this application, containing four
windows.

1. The first window is again the topmost line of the screen in
which the message "Press Return To Continue" appears. This
is where program output appears and where a student's input
appears as s/he types it.

2. The second window is the short, wide rectangle below the logo
that displays explanatory messages.

- 5 -

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lcwell

3. The third window is the large rectangle at the lower left of
the screen that contains the program code being demonstrated.

4. The fourth window is the narrow rectangle at the lower right
of the screen that displays parameters and their values.

As each line of the program in the third window is executed,
BALSA encloses it in a narrow box (see the fourth line from the
bottom in Figure 7). When a procedure is called, the actual
parameters are displayed in Window #4 (Figure 7). The called
procedure is then overlaid on top of Window #3, occluding the
calling code and the formal parameter identifiers are displayed
in Window #4 (Figure 8). The actual parameter values are then
shown to be assigned to the formal parameters in an animated
fashion to drive home the concept of parameter passing (see the
time exposure in Figure 9). When the called procedure termi-
nates, the overlaid code is removed and the screen in Figure 7 is
automatically restored by BALSA. We believe that the visual
power of this system is unprecedented in demonstrating the rela-
tionship between actual parameters in a calling procedure and
formal parameters in the procedure being called.

Insert Figures 7, 8, & 9 about here.

THE PHYSICAL SYSTEM

While the advantages of windowing systems are easy to conceive,
the implementation of these capabilities is complex. Even in
systems that handle only non-occluded windows, keeping track of
which window you are addressing and where positions in that
window are located in its own relative coordinate system can be
mind-boggling ' %," the applications programmer. PC Pilot offers
such a capabili , and Heines' experience is that the task is
still complex even though PC Pilot windows only support text and
the language provides macro commands for switching' from one
window to another (see Using IBM Pilot, 1984).

When each window contains a separate process, the system must
also handle interwindow communication. Since most modern oper-
ating systems provide some capability of interprocess communica-
tion, the problem can be reduced to template matching: one window
to one process. Interwindow/interprocess communication can then
be implemented'in several ways:

- 6 -

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

set up a parent process that periodically monitors its
child processes,

set up a parent process that continually monitors its
child processes,

set up a parent process that only responds upon an inter-
rupt from its child processes, and

s- set up a parent process that periodically interrupts its
child processes.

Terminal independence is an additional requirement of the imple-
mentation, as it is not reasonable to expect student or faculty
usage to be restricted to a single terminal type. In addition,
the window manager should conform to international graphics
standards, and most o.4. these require device independence as a
primary feature. Given the diverse university environment and
the large amber of possible extensions to this work, we feel
that toola development is as important as the final implemen-
tation itself. A large amount of time has therefore been spent
developing tools that will be used to implement interwindow com-
munication.

Implementation Under UNIX

The Apollo Domain systems used to implement the sample applica-
tions discussed above ran a version of UNIX. UNIX is well-known
for its sophisticated interprocess communication capabilities via
"pipes," and BALSA handled virtually all of the required window
management tasks. The master CAI program for both of the sample
applications was actually run as a subprocess with BALSA as the
controlling process. Each windowing operation was coded in the
CAI program as an "interesting event" that signalled an interrupt
to BALSA. A second set of procedures (written in C and Pascal)
told BALSA what to do at each interrupt. Such procedures
included updating variables, displaying data in one of the win,
dows, demonstrating a Pascal program, and accepting keyboard and
mouse input from the user. The program ran quite quickly, since
each Apollo system was an semi-independent workstation.

The combination of UNIX and BALSA therefore proved to be a highly
functional, albeit somewhat opaque, environment for implementing
the sample applications. However, this software was intimately
tied to the Apollo systems, particularly the high resolution
Domain display. We therefore began experimenting with implemen-
ting similar functionality under VAX/VMS.

- 7 -

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heiner & Grinstein, University of Lowell

Implementation Under VAX/VMS

The run time library supplied with VAX/VMS Version 4.1 includes a
number of scre:In management functions that provide the primitives
needed for windowing. Such primitives include defining a

pasteboard (a physical screen area) and defining windows (virtual
screen areas) on this pasteboard. The run time library also
provides utilities to delete a window, make a winnow visible or
invisible, move windows, change priorities, accept input from a
window, etc. These operations are somewhat terminal independent.
We have tested them on a VT100, a GIGI, and a VT240. While we
have encountered some problems running applications on more than
one terminal type, we are not sure at this point whether those
problems lie in our software or the run time library.

When we looked at the possibility of using interprocess communi-
cation with different windows, we ran into great difficulty.
First, as is usual, we found that the system documentation is
written for very sophisticated applications programmers and
leaved a great deal unsaid. Second, we found that the system
overhead involved- in the creation of internal "mailboxes" for
interprocess communication was large and caused the application
to run very slowly.

When our prototype windowing communication software ran with one
user there was a noticeable set up time, but the windows communi-
cated with reasonable speed. When several users were on the
system, interprocess communication was slow. The most successful
implementation we have accomplished to date involved spawning a

number of processes, some to handle interprocess communication
and others to handle output to the different windows.

We succeeded in setting up a parent that continually monitored
its child processes and in setting up a parent process that only
responds upon an interrupt from its child processes. We are
still looking at ways of implementing the other two approaches
under VAX/VMS.

CONCLUSIONS

We have demonstrated that windowing is a highly desirable CAI
feature, but implementation has proven difficult. BALSA and UNIX
provide most of the needed capabilities on Apollo Domain systems,
but this software system is difficult to transport to other
systems. VAX/VMS screen management utilities are in some ways

- 8 -

9

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

more device independent, but they provide considerably less
functionality. In addition, the high overhead of interprocess
communication on VAX/VMS makes use of these routines untenable
under normal system loads.

In some ways, our work thus Ear has provided more questioas than
answers. The prototype applications discussed above have signif-
icantly helped us to organize our thoughts about asynchronous
processes in the CAI environment, but at this time more practical
approaches still need to be devised.

REFERENCES CITED

Brown, Marc H., and Robert Sedgewick, 1984. A system for algo-
rithm animation. Brown University Dept. of Computer Science,
Technical Report No. CS-84-01.

Heines, Jesse M., 1984. Screen Design Strategies for Computer-
Assisted Instruction. Digital Press, Burlington, MA.

Smith, Karen E., 1985. Developing and evaluating a computer-
assisted instruction dialogue on parameters. Brown University
Dept. of Computer Science, Technical Report No. CS-85-04.

Using IBM Pilot, 1984. IBM Corporation, Irving, TX.

- 9 -

10

I
M
P
L
I
C
A
T
I
O
N
S

O
F

W
I
N
D
O
W
I
N
G

T
E
C
H
N
I
Q
U
E
S

F
O
R

C
A
I

H
e
i
n
e
s

&

G
r
i
n
s
t
e
i
n
,

U
n
i
v
e
r
s
i
t
y

o
f

L
o
w
e
l
l

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

F
i
g
u
r
e

1
.

I
n
i
t
i
a
l

B
A
L
S
A

s
c
r
e
e
n

l
a
y
o
u
t

f
o
r

"
T
h
e

P
a
r
a
m
e
t
e
r

M
y
s
-

t
e
r
y
.
"

F
i
g
u
r
e

2
.

C
l
u
e

f
r
o
m

a

c
o
r
r
e
c
t

c
a
l
l

t
o

p
r
o
c
e
d
u
r
e

"
k
n
e
w
"

i
n

"
T
h
e

P
a
r
a
m
e
t
e
r

M
y
s
t
e
r
y
.
"

-

1
0

-

B
E

ST
 C

O
PY

A
V

/ V
" elL

E

I
M
P
L
I
C
A
T
I
O
N
S

O
F

W
I
N
D
O
W
I
N
G

T
E
C
H
N
I
Q
U
E
S

F
O
R

C
A
I

H
e
i
n
e
s

&

G
r
i
n
s
t
e
i
n
,

U
n
i
v
e
r
s
i
t
y

o
f

L
o
w
e
l
l

t
"
1

1
1
1
1
1
1
1
,
1
1
1
1
1
1
1
1
1
1
1
1
1

F
i
g
u
r
e

3
.

C
o
n
f
i
r
m
a
t
i
o
n

o
f

a
c
o
r
r
e
c
t

a
s
s
i
g
n
m
e
n
t

t
o

v
a
r
i
a
b
l
e

"
n
a
m
e
"

i
n

T
h
e

P
a
r
a
m
e
t
e
r

M
y
s
t
e
r
y
.
"

it

l
a
i
s
t
r
t
a
n
d
u
)
:

T
e
e

s
t
e
t

s
e
w

t
v
i
s
l
i
t
e

o
f
,
V
e

M
I
M
I

s
e

U
S

actaetpersests fir M
I
b
e
c
e
s
s
e

t
h
e

c
a
r
o
s
p
e
t
e
s
e

t
i
r
e
d

sw
asem

p t
prom

ise S. M
e
O
g
e
e
*

V
e
r
.

i
s
t
t
a
i
t
I
s
e

V
e
t

s
r

W
o
o
,

091
i
s

p
u
s
s
e
sIt

t
o

pet =
11U

" grease +
e: litera

l
e

se los
re 104

i
s

O
i
e

s
o
t

W
i
t

s
e
s
t
i
p
t

e

s
o
l
v
e

to M
E

 t 1M
s
i
s

t
l
e
s

u
s
eM

a se pr. acted
pessets tss readve tee sel se getM

I som
e bust,

Figure 4.
E
r
r
o
r

m
e
s
s
a
g
e

f
o
r

"
k
n
e
w
"

i
n

"
T
h
e

P
a
r
a
m
e
t
e
r

M
y
s
t
e
r
y
.
"

a
n

i
n
c
o
r
r
e
c
t

c
a
l
l

t
o

p
r
o
c
e
d
u
r
e

-

1
1

-
B

E
ST

 C
O

P" A
V

IA
':

E

12

HC
Z

0IL.
ID3

alto a(4.1
H

o4.3 >
.

to$4

0 C
D

Z
 >

1-4 +
4

3 C
0Z3 -.1

tuO
 toC

tnZ
 $4

O
 0

H

07
H.-1 C

H

PII 4
a
F:

$4

G
a

-4to
to

to
tC

 .13
0 C

I
O

 -.4

-0 G
I

$4>

to
to

.0
44

cl
O

 0a
)

$4
taC

O

41 0
O

I
O

 14
C

O
07

G
I ,

.0-0to 44
C

O
a to
Oco

:
toa m

 >
,

O
 .0

$4
4-) 0

C
+
3

-.4
to

3 '0 >
.

C

$4

In
0

1:1
4-3

w
 o w

$4
$4

E
c

G
I 0

17 +
1 14

C
u 4

m
a O

.

4)-0C04)C
.1

0.a.17

H

113

$40944
,OC$4

tr)

.0ci 30
.-1 1:1
0 0
4-1 3

C
 1:1

H
 41:1

ki)

0
$401341

04:13

C
u 0

c
.a.0C

Alal

N

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heines & Grinstein, University of Lowell

.1=1I PI wog

UMMENEMGMMIRM . I : IMUM_

t

smres4-41-41,te,...","---

Figure 7. Highlighted procedure call and appearance of actual
parameters in adjacent window.

FAIWZI
1111

.--...T..m.~MMPOISMIPM9.11TIMmvm.

Figure 8. Overlaid code of called procedure and appearance of
formal parameters in adjacent window.

13 BEST COPY AVAILABLE

14

IMPLICATIONS OF WINDOWING TECHNIQUES FOR CAI
Heinea & Grinstein, University of Lowell

s----.11vf

I

=3
a

11.1...

Figure 9. Movement of actual parameter values to formal param-
eters in an animated fashion.

BEST COPY AVAILABLE

- 14 -

15

