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INTRODUCTION

Vocational evaluation is a comprehensive assessment process which uses a
variety of techniques including psychological assessment, work samples,
medical, vocational, and educational information, as well as other methods
and resources to not only assess the existent functional levels of
individuals with disabilities, but also, in many cases, to make predictions
about future functional capacity. These predictions are used for a variety
of purposes.

On a macro level, Shalock and Karen (1979), for example, indicated that much
of the data derived from vocational evaluation services is often used to make
decisions about a severely disabled individual's feasibility for vocational
rehabilitation services within the State-Federal vocational rehabilitation
system. Implicit in this process is the assumption that this data can be
used to make reasonably accurate predictions about the likelihood that a
program of vocational rehabilitation services will lead to employment or
other acceptable outcomes identified by the State-Federal system. This
assessment of "rehabilitation potential" is often difficult with severely
disabled individuals, particularly if they have had little or no previous
work experience or rehabilitation training. To overcome this difficulty, at
least in part, specialized services such as vocational evaluation have been
developed and utilized extensively during the last decade.

On a micro level, data derived from vocational evaluation techniques such as
work sample testing and job-site-evaluation in particular, is often used to
make specific predictions about employment potential for a given job or job
area, as well as the likelihood the client will benefit from related train-
ing. A client's performance on one or two administrations of a work sample
may be used to either screen a client out of further consideration for that
job cluster, or recommend that the client receive technical training for the
job, or be placed in the job area immediately.

The performance measures themselves are most often represented by what
Blakemore and Coker (1982) described as "static measures." Examples of these
types of static measures include mean time to complete a task such as a work
sample, total time, number of pieces produced and so on.

The essential characteristic of these static measures is that they do not
effectively take into account changes in an examinee's performance during
the actual assessment process. Performance scores on individual trials are
typically lumped together resulting in a mean score which is then compared to
a norm group or production standard. Rarely is any systematic effort made
by the evaluator to contrast changes in performance that occur during the
actual testing itself. As a result, a client may show dramatic gains in
performance during the latter stages of testing on a given task, but because
the scores are then combined with initial scores which may be significantly
lower, the end result is a depressed mean score which may not accurately
reflect the client's performance capability. In other words, no systematic
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effort is made to take into account variation in performance during the fixed
testing period.

The inherent assumption with this approach is that performance is highly
stable. A client's performance after a small number, or in many cases only
one administration of a task, is considered to be a reliable benchmark for
not only establishing his current capabilities, but also his future perfor-
mance potential. This assumption has been widely-accepted, at least
implicitly, within the practice of vocational evaluation despite the fact
that research in psychology, education, and industry has shown quite clearly
that on most tasks, and indeed psychomotor tasks in particular, performance
improves significantly with practice (Bilodeau & Bilodeau, 1961; Blakemore &
Coker, 1982; Chyatte, 1976; Grossman, 1959; Dunn, 1976; Fitts & Posner, 1967;
Newell & Rosenbloom, 1981).

While current definitions of vocational evaluation do not explicitly indicate
the predict6e component of this service (VEWAA, 1977), there should be
little doubt, as previous authors have i .ggested, that prediction is an
important component of vocational evaluation with many clients. Indeed, as
early as the 1960's, leading vocational evaluation authorities were suggest-
ing that prediction is an important focus of vocational evaluation. .

Nadolsky (1969) defined vocational evaluation as "a process which attempts to
assess and predict work behavior primarily through a variety of subject-
object assessment techniques and procedures," (p.23). Gellman (1967) noted
that vocational evaluation is primarily concerned with assessing an
individual's present level of functioning and making predictions about future
levels of functioning. More recently, Dunn (1976b) indicated:

...the predictive use of vocational evaluation underlies much of
current practice (although) there seems to be considerable con-
fusion among evaluators and others as to what prediction is all

about and how it is done.
(p. 41)

If one accepts the premise that prediction will continue to play an important
role in vocational evaluation, then it is important to carefully examine this
practice. Are the static measures typically used in current practice
adequate to ensure reliable and accurate predictions about client capabili-
ties? The research literature is relatively sparse in this regard. However,
it would appear that based on what evidence is available, the current
emphasis on using static measures as a basis for prediction is uncertain, at
best. Blakemore and Coker (1982), for example, in conducting research which
focused on comparing the accuracy of work sample measures versus learning
curves to predict future performance found:

...the traditional static work sample measures provided consistent-
ly worse estimates of the final performance level than did any
other techniques used in this study. This finding clearly supports
the need to use learning curves or other indices reflecting
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learning for prediction purposes rather than the traditional static
measures such as mean or total score.

(pp. 35-36)

Others (Feuerstein, 1979; Schalock & Karen, 1979) have suggested that with
regard to the assessment of individuals with mental retardation, the focus
should shift from the current traditional psychometric approach, one which
does not take into account dynamic changes in performance during the assess-
ment process, to an "edumetric" approach. The edumetric approach to assess-
ment would focus on measuring dynamic changes in performance as a result
of learning which occurs during the assessment process itself. These changes
in performance would then be taken into account whenever predictions are made
about future functional capabilities.

This approach is in direct contrast to the current psychometric orientation
of vocational evaluation services. This orientation often relies on using
one or two administrations of a task as a basis for making predictions about
future performance. And even within these administrations, little effort is
made to take into account learning and improvements in performance which may
occur as a result of increased experience with the task. Instead, the
client's total performance is combined and a mean score is developed and then
compared to that of a norm group or in some cases an industrial standard -

once again based on two important assumptions: performance is stable and
therefore initial performance is a reliable indicator of future practiced
performance levels; and sacondly, the performance of an inexperienced
worker or examinee can be reliably compared to that of experienced performers
to determine both short and long-range suitability for employment. Yet, as
Dunn (1976a) indicated, comparing the performance of inexperienced, un-
practiced examinees to that of experienced workers can lead to erroneously
screening the first group out of future employment despite the fact that
continued practice can lead to significant advances in performance levels to
the extent that the examinees may eventually achieve competitive performance
levels if allowed an adequate period for practice and learning.

Feuerstein (1979) also suggested that reliance on traditional static measures
of performance, particularly with regard to mentally retarded individuals
"... can only result in a tautological process in which a manifest level of
functioning, already known to be low, is once again demonstrated by poor
results obtained by the examinee" (p. 89).

Clearly, it is vitally important that vocational evaluation practices attempt
to take into account changes in client performance which are a direct result
of learning and experience with a task. This is particularly true with
regard to assessment of individuals with severe disabilities who have
relatively little work experience and often find themselves engaged in work
sample, situational assessment, and other psychomotor tasks as part of
the vocational evaluation process. Where dynamic changes in performance are
evident, it is essential that these changes be considered when making
predictions about an individual's performance capability.

Recognizing the important role prediction is likely to contiuJe to play in
vocational evaluation, both in terms of serving as a basis for making

3
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decisions about specific occupational outcomes, and training potential, as

well as feasibility for vocational rehabilitation services through the
State-Federal system, it is obvious that every effort must be made to ensure
that the tools and techniques used as a basis for making such predictions be
as reliable and accurate as possible. One approach that has been shown to be

a relatively accurate predictor of performance potential is the learning
curve. Learning curves have been used in industry, education, psychology,
and other fields for several decades, as a basis for making predictions about
human performance potential on a variety of tasks. They also appear to hold

much potential for use within rehabilitation services.

The primary purpose of this monograph is to describe how learning curves can
be applied to vocational evaluation procedures to enhance the reliability and
accuracy of performance prediction. Particular emphasis is placed on de-
scribing two techniques known as the "best 20% method" and the "Performance
Analyzer and Enhancer." The latter is a computer software program designed
for use with inexpensive microcomputers in both vocational evaluation and
work adjustment services. Together, they represent an effective and
practical approach to learning curve applications in typical vocational
evaluation settings. Both approaches were developed through research
conducted at the Research and Training Center at the University of
Wisconsin-Stout. This monograph is designed to enhance the utilization of
this research in applied rehabilitation service delivery settings.

Finally, it should be noted that while learning curves have much to offer the
practice of vocational evluation, they are certainly no panacea. As will

become evident in later sections of this monograph, learning curves are not
without their limitations. Indeed, they are to some extent, a misnomer.

Learning curves actually indicate changes in performance. These changes May

or may not be indicative of the extent of learning that has occured. For

example, an individual may quickly learn a repetitive task, but because of
boredom or fatigue, his performance scores do not reflect the amount of
learning that has taken place. As a result, they should be regarded as
useful tools which can further enhance existing vocational evaluation

techniques rather than substitutes for current practices. When used wisely

by properly trained vocational evaluation personnel, learning curves have

much to offer in further enhancing the evaluator's expertise and his or her
ability to successfully evaluate the widely varying capabilities of the
clients served.
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THE LEARNING CURVE

A learning curve is basically nothing more than a graphic depiction of
changes in performance or output during a specified time period. The term

learning curve is also used to refer to mathematical equations which describe
the relationship between practice and performance. Learning curves provide a
concrete measure of the rate at which an individual or group of individuals
are learning a task. In their simplest forms, learning curves are generally
depicted in either one of the forms shown in Figure 1 and Figure 2.
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It is important to note that both Figures are based on the same data.
However, as is readily apparent, one curve slopes downwards while the other

curve slopes upwards. Both are correct, But in most cases, the upward
sloping curve with the X (horizontal) and Y (vertical) axes depicted as shown
is preferred because it is generally regarded as less confusing. People tend
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to assume that improvement in performance should be associated with an
upward swing in a graph.

Another common way to express a learning curve is to use percentages instead
of time values for the Y axis. For example, in both Figure 1 and Figure 2,
time values are expressed on the Y axis with trials expressed on the X axis.
However, as is indicated in the example provided in Figure 3, these time
values can be replaced by another measure, the percent of standard. This is
a useful approach because it indicates quite clearly the extent to which an
individual's performance is approaching the production standard or norm.
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FIGURE 3

To convert an actual time score to a percent of standard value, the following
formula is used:

(Standard / Time Obtained) X 100% . % of Standard

For example, if the industrial standard for a simple work sample assembly
task is 15 minutes then it is possible to determine the percent of standard
for each of the time values shown in Figures 1 and 2. Using the formula, 30
minutes would convert to 50% of the standard and 20 minutes would convert to
75% of the standard and so on. Thus, it is apparant that the data displayed
by this type of learning curve would provide an evaluator with a readily
useful tool for assessing not only changes in a client's performance as a

result of learning, but also the relationship of the client's performance to
the standard.
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Learning curves are useful because they clearly indicate changes in perfor-
mance based upon learning. Some important characteristics of learning curves
in general are worth noting. First, performance tends to improve with
practice. Second, the rate of improvement is often very rapid when someone
first begins learning a task. This rate, however, tends to slow as the

amount of practice increases. This is the leveling off phenomenon observed
in most learning curves. Finally, there is some point beyond which further
signi;mant increases in performance will not occur. It should also be noted

that other factors besides learning can influence performance. These include

factors such as environmental concerns, fatigue, distraction and others.

Learning curves have been used to not only measure the rate at which an
individual or group of individuals learn a task, but also to compare that
rate to an existing standard. Thus, it is not surprising that learning
curves have been used to a limited extent, in industry, as performance
appraisal tools (Stevenson, 1982). They have also been used in industry to
make predictions about long-term improvements in performance that can be

expected as a result of the curvelinear relationship that exists between
performance level and the amount of practice an individual has. In other
words, industry has long-recognized that as workers' gain experience with a
task, performance can be expected to increase significantly. These increases

can be taken into account and predicted relatively early on for some tasks,
resulting in improved production scheduling, better labor cost estimates and
so on. The same principles can be applied, to some extent, to the use of
learning curves in education, psychology and vocational evaluation. A brief
review of how learning curves have been used in industry may be useful in

better understanding the diverse ways in which they can be used in rehabili-
tation facilities.

To date, the primary application of learning curves has been in manufactur-
ing. They have been used extensively since the 1930's to help manufacturers
better plan and schedule work. They have proven to be a useful tool for not

only better controlling manufacturing costs but also for increasing efficien-
cy. Learning curves have been developed for specific industrial applications
where research has shown that a relatively stable relationship exists between
changes in labor input and unit output. In other words, when first learning
a task, the more experience individual workers have with a job, particularly
those that involve psychomotor tasks, the more likely it is that they will
show significant improvement in performance. This improvement is often quite

dramatic during the intitial stages of learning and then begins to level off
and eventually stablize over extended periods of time.

The Boeing Company is perhaps best known for having recognized the 80%
learning curve effect for the manufacture of airframes. This effect is based

on their own research which indicated that for this specific activity, each
time unit output is doubled, there is a corresponding 20% decline in labor
input or the time needed to produce the end product.

For example, if 10,000 hours are needed to produce the first airframe (1

unit), it can be projected with the use of the 80% learning curve, that only
8,000 hours will be needed to produce the second unit, 6,400 hours to produce
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the third unit and so on. Of course, the curve begins to level off with
poduction reaching a point where improvements in unit output begin to
stablize. However, the value of such a predictive tool is obvious in terms
of enhancing manufacturing efficiency.

An important distinction should be made between different learning curve
rates. An 80% learning curve, for a given job, indicates that the typical
worker will show a 20% improvement in performance on that particular job. A
90% learning curve, for a specific job, indicates that only a 10% improvement
in performance can be expected from the average worker. A 100% learning
curve reflects the fact that for that particular job, workers will not show
any significant improvement in performance even as they gain experience with
the task. Thus, it is apparent that if one were to draw a learning curve
representing the tradional static approach to work sample performance
assessment, an approach which assumes performance is stable and therefore
will not change with additional trials, a "learning curve" much like the one
presented in Figure 4 would result.
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FIGURE 4

Tillman (1971) was one of the first proponents to suggest that learning curve
principles could be applied to vocational evaluation activities in re-
habilitation. He summarized the problem of using work samples as predictive
tools in the following manner:

Most often work samples are used on a single administrative basis.
This provides information on the client's present level of func-
tioning. From this information attempts are often made for
prediction of ability to succeed on a job. There is, however, some
doubt that knowledge of a client's present level of functioning
sufficiently indicates his potential for absorbing experience and
improving. Can we assume, for example, that a client who has had
no exposure to woodworking hand tools and does poorly on a work
sample involving these tools has no potential to learn? The answer

8

13



is no. Would it be feasible to give him a number of trials on the
task and note any level of improvement on progressive trials? The
answer is yes. If we plotted improvement on a graph we would
have a learning curve.

(p. 1)

Tillman (1971) went on to provide an example of how a learning curve might be
plotted for different clients involved in the same task. It is presented in
Figure 5.
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More recently, Coker and Blakemore (1984) used five different types of
hypothetical learning curves to indicate how this dynamic approach to
assessment differs from the more traditional static psychometric approach.
They indicated:

The advantage of the learning curve approach to evaluating work
sample performance is that this method reflects what changes occur
in the client's work sample performance during testing. A static
process of evaluating the level of functioning, such as using the
mean or total production rate, fails to account for differential
performance during the repetitions of the tasks within the work
sample and the potential for further learning. Individuals
functioning at the same average level on a work sample involving
several repetitions are not necessarily performing comparably
during the entire session. Figure (6) illustrates this point.

In Situation A, the idealized learning curve is presented where
skill aquisition increases consistently over time. In Situation B,
performance deteriorates over time rather than steady improvement.
It is clear that the client initially performed well, but perfor-
mance deteriorated; and may have been caused by fatigue, boredom,
confusion, etc. In Situation C, performance is relatively stable
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A.

C.

except that there is a momentary decline in task performance due to
distraction, forgetting of instruction, or perhaps lack of parts.
In Situation D, there is a rapid reaquisition of the task. It is

indicative of having previously mastered the task and of the
ability to rapidly return to that level. Finally, steady level
task performance from first to last repetition is graphed as is
assumed under traditional work sample administration. Only in

Situation E is the true current and potential level of task
performance of 67% of the normative criterion accurate. In

other situations, current and potential task performance is
underestimated and additional valuable information about the client
is lost. It would not be lost, however, if a learning curve
analysis was used.
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The previous learning curves represent examples of differential performance
during a work sample with the same normative score of 67%. They may be
summarized as follows:

A. Normal acquisition under an idealized learning curve.

B. Decline in performance due to fatigue or lack of motivation.

C. Acquisition and reacquisition due to temporarily forgetting tasks,
disruption, lack of attention, etc.

D. Rapid reacquisition to steady state indicating the relearning of a
previously mastered task.

E. Idealized practiced worker performance assumed under traditional work
sample administration.

Tillman (1971) suggested a method for developing learning curves with
individuals as well as standardized learning curves for use with groups. He
indicated:

If it is desired to establish a standardized learning curve for a
group, the steps to be taken are as follows: (1) The task must be
administered to a number of subjects and their time recorded for
a set number of trials. (2) The average (mean) time taken for each
trial must be calculated. (3) Each trial's average true is plotted
on a graph. (4) The final average curve is drawn through the
points determined by the average curve. The larger the number of
subjects the smoother the curve will be.

The number of trials needed to establish a peak of client perfor-
mance will depend upon the complexity of the task. It would be
difficult to establish a peak with less than four trials; six to
ten trials may be needed for more complex tasks. For any given
work sample, the most practical method of determining the optimum
number of trials is through the administration of the work sample
to a number of people. The important point is to give the client
enough trials to indicate his competency in a given task.

(p. 2)

Plotting a learning curve by this method is a relatively simple task.
However, Tillman's suggestion that clients be allowed to repeat work sample
performance until supposed "peak performance" is achieved, is a major
drawback to this approach. Learning and improvement in performance may
continue almost indefinately on some tasks. Indeed, studies in industry
(Grossman, 1959; Peterson, 1975) have shown that for some routine, repetitive
tasks, Tillman,s notion of "peak performance" may not be achieved until
several thousand trials have been completed. Obviously, such an approach is
not feasible within vocational evaluation programs. Dunn (1976a) rejected
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Tillman's approach, suggesting instead that learning curve equations offered
a viable method for predicting performance potential based on a relatively
small number of trials. He indicated:

A possible solution to this problem would be to predict an esti-
mated practiced performance level of the client from learning curve
data. Data from a relatively small number of trials could be used
to establish the equation for the individual's learning curve on a
work sample. Once this equation has been developed, the vocational
evaluator could use it to predict the client's estimated perfor-
mance level after being provided with a certain number of practice
trials (such as the number of trials provided to new workers by the
industry for learning) or the number of trials needed for the
client to reach the established industrial standard or norm.

(pp. 3-4)

Dunn conducted research to test this hypothesis with regard to work sample
testing (1976a). Using data collected by Botterbusch (1974), Dunn used the
performance scores collected during the first three days of testing to
predict performance on Day 4, the final day of testing. He found that the
final performance level could be predicted with less than 1% of error on the
average.

The results of this research were very encouraging; however, a major drawback
to this approach is that it requires evaluators to use relativley sophisti-
cated mathematical equations to make the predictions. Dunn indicated that
mathematical skills "at least adequate to develop and solve logarithmic
equations are required of the evaluator" (p. 11). In addition, this method
requires substantially more administration time as well as time needed to
make the actual calculations. These problems obviously tend to limit the
practical utility of this approach.

As a result of these problems, Blakernore and Coker (1982) conducted research
to determine if a simplified, yet accurate and reliable approach to the
predictive aspect of learning curve use could be developed and applied to
vocational evaluation activities.

As part of their research, they studied and compared eight different learning
curve formulas with regard to accuracy and ease of use in predicting work
sample performance. The accuracy of each of these methods was also compared
to the use of traditional static measures used to predict performance
capability (e.g. mean time, total time, norm reference). Subjects were
administered a work sample task which consisted of 50 trials per day for five
consecutive work days. Learning curve equations were applied to the data
collected during day one of testing, and predictions were made regarding the
level of performance expected at the conclusion of day five of testing.

Two major findings resulted from this research. First, all eight learning
curve methods were superior performance predictors in comparison to the
predictive accuracy of traditional work sample measures. Secondly, while the
learning curve methods varied greatly in terms of their complexity and ease
of application, the "best-20% method" was as accurate as the other more
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complex techniques. Because of its ease of use, the best-20% method appears
to hold significant potential for use in work evaluation settings although
additional research is needed to confirm the efficacy of this approach. In

addition, the feasibility of using inexpensive microcomputers to gather data
and perform the actual learning curve equation calculations was confirmed.
These findings and the actual processes involved in applying learning curve
equations and techniques to vocational evaluation practices are discussed in
the following section.
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LEARNING CURVE UTILIZATION

Recognizing that prediction is an important component of vocational evalua-
tion and that learning curves can provide an effective means for enhancing
the accuracy of these predictions, it is now important to examine how
learning curves can actually be applied to the vocational evaluation process
and related facility operations. In this section, five different approaches
to learning curve utilization are described along with cautions on each ones'
use.

METHOD NUMBER 1

Perhaps the simplest approach to learning curve use in vocational evaluation
and manpower selection in general was suggested by Tillman (1971). As
briefly indicated in section 2 of this monograph, this approach essentially
involves providing the examinee or worker with several repetitions of the
task and plotting the individual's performance on a graph. The end result
is often a learning curve much like the one indicated in Figure 7. As long
as the client continues to show improvement, additional administrations may
take place until Tillman's notion of "peak performance" is achieved.
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The main disadvantages of this approach have already been briefly discussed
in Section 2. First, many hundred or even thousands of trials may be needed
for certain tasks before the client begins to approach "peak performance."
Indeed, Cochran (1968) found that punch press operators continued to show
improvement through 8,000 trials. And Crossman (1959) found that approxi-
mately four million trials and four years were needed for this group to
achieve peak performance.

Secondly, since there is little scientific basis for this approach, it is
difficult to reliably predict when peak performance has been achieved. For

example, learning curves typically show a series of improvements followed by
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plateus in which performance levels off. However, given additional oppor-
tunity to continue with the task, significant advances in performance may
continue with new plateus resulting. Because of this, it is difficult for
the evaluator to reliably predict when the client's Final ultimate level of
performance has been achieved.

These two major problems not withstanding, this approach also is limited in
that it does not necessarily take into account the base performance level
needed to actually do the job. For example, a client's performance might
continue to improve as reflected in the learning curve. However, unless the
evaluator knows the industrial standard or norm for the job, it will be

difficult for him to reliably determine when this improvement has reached a
competitive level.

Industry has provided one limited solution to this problem. Stevenson (1982)
has suggested that learning curves can be useful in work settings to evaluate
new workers during training periods.

This approach can be achieved by recording the new worker's performance in
much the same manner as suggested by Tillman. However, an addition is made
to the graph so that the new worker's performance is compared to the typical
performance improvements shown by other workers who previously performed
the task. The new worker's performance may also be compared to the standard
time or production standard developed for the task through industrial
engineering techniques such as stopwatch time study, predetermined motion
time systems or other methods. In this way, the new worker's performance can
be readily compared to the expected rate of learning, which is a dynamic

measure, rather than the usual static measure such as mean score, alone. It

can also be compared to the production standard to provide a more concrete
basis for decision-making about a client's employability. An example of
this approach is depicted in Figure 8. It indicates that at the end of the
first week of training the average worker is expected to achieve 75% of the
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industrial standard (or produce 30 individual units when the standard for a

fully trained worker is 40 units). As a result, Worker A's performance is
far below this level and therefore he may be regarded as underqualified for
the task. Worker B is viewed as qualified and Worker C is overqualified in
that he far exceeds the normal level of performance.

While this approach has advantages over that offered by Tillman, it still has
many of the same limitations. For example, for a disabled client, the rate
of learning may be slower than the average rate as compared to a nondisabled
group of new workers. However, this does not necessarily ensure that the
disabled worker will not be able to reach the standard. Additional training
time may make it possible for the disabled worker to achieve the standard
within a reasonable period of additional training. If this factor is
overlooked, it may result in incorrectly screening clients out of jobs they
might otherwise be able to perform. In this regard, this approach has many
of the same limitations of traditional static measures of performance.

Additional problems with regard to the time needed to develop the worker
learning curves as well as the reliability of such curves and probable
shortage of workers on which to develop and test such curves also limits the
feasibility of this approach. Yet if the evaluation team has the time and
resources needed to overcome these obstacles, this approach can provide
useful data for decision-making. It certainly provides valuable information
not typically offered by the traditional static measures. It might be
especially useful in job site evaluations where it is possible to develop
worker learning curves or use existing data provided by the employer.
Additionally, it would also appear to have potential for use with many work
sample applications. It could provide learning curve data for comparison
purposes.

At the present time, this data is not normally available with either commer-
cial work sample systems or individual work samples developed independently
in facilities. However, given the large number of clients who typically
engage in work sample tasks during the course of a year, and the relative
ease with which this data can be accumulated and synthesized, it would seem
feasible to develop this type of learning curve data for specific work
samples or entire commercial work sample systems. Yet, time constraints,
costs, and the need for the evaluation staff to develop the learning curves,
as well as test them on nondisabled as well as disabled individuals alike,
once again limits their widespread use. Further, it is doubtful whether
commercial work sample system developers will be willing to make the invest-
ment needed to develop this data for complete work sample systems, despite
its usefulness to practitioners.

METHOD NUMBER 2

The second major technique involves the application of predetermined learning
curve rates to client performance. For example, it might be known that a
certain activity typically shows a learning curve rate of 80%. Another
activity might typically reflect a learning curve rate of 70% and so on.
Once these rates have been established for the assigned task, it is then
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possible to use learning curve formulas and coefficients which can be

applied to an individual client's performance in order to predict future
performance levels.

For example, let's assume that a work sample task is known to have a learning
curve rate of 80%. Once we have established the client,s initial level of
performance, we can then estimate future performance using a formula, like
the one noted below (Stevenson, 1982), along with the data presented in Table
1.

Tn = T1 x nb

Tn = Time for the nth unit
T1 = Time for the first unit
b = Log learning percent/log2

Let's assume in this example, that the client is involved with an assembly
work sample task. As indicated previously, an 80% learning curve rate is

considered appropriate. In other words, past experience has demonstrated
that on this task, examinees typically show a 20% improvement in performance
with practice. Let's assume it took the client 10 minutes to produce the
first unit. The evaluator would now like to predict how long it will
take the client to produce the 20th unit, without having to administer the
task another 19 times. To do this, he works through the following process.

T20 = 10 minutes ( 20 log .8/log 2 )

The evaluator may now use a calculator with a logarithmic function to work
through the entire formula. However, a more convenient technique is to use
the predetermined learning curve coefficients offered in Table 1.

To use the table, the evaluator works through the following process.

Step 1: Find the desired number of units on which the prediction is to be
based by simply reading down the unit number column. In this case, the units

are equal to 20.

Step 2: Now read across to the appropriate learning curve percentage; in
this example it is 80%.

Step 3: Select the applicable UNIT TIME from the appropriate column. In

this case it is .381

Step 4: Plug the numbers into the formula noted previously (In = Ti X nB)
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Predicted time 20th unit = 10 minutes(.381)

Predicted time 20th unit = 3.81 minutes

Table 1

LWIrt29.4
lemming curve oillletom

Vail
number

70%

Vail lora
time time

75%

Unit
time

70lal
time

80%

Writ
time

Thiel
time

85%

Unit
time

Total
time

90%

Unit
time

Total
time

1 1 000 1 000 1 000 1000 1 000 1 000 I 000 I 000 1 000 1 003
2 700 I 700 ,750 1750 .800 1 800 850 1 850 900 1 900
1 568 2 268 634 2 384 702 2 502 773 2 623 516 2 746
4 420 2 758 562 2910 G 10 3 112 723 3 315 810 3 556
5 .437 3,195 313 3 459 .5% 3 738 .686 4 011 .783 4 339

6 398 3 593 .475 3 934 562 4 299 657 4 688 .762 5 101
7 .357 3 900 416 4330 534 4 814 .611 5 :122 .744 5 845
8 313 4 303 422 4 802 .512 5 316 .614 5 936 729 6 574
9 .323 4 626 .402 5 204 493 5 539 .597 6 513 .716 7 290

10 .306 4 932 .385 5 589 .477 G 315 .583 7.116 .705 7 991

II 291 5 223 370 5 918 .462 G 777 .570 7 566 693 6 689
12 278 5 501 337 6315 .419 7 227 558 8 214 683 9 374
13 267 5 769 .315 6 050 .438 7 665 518 8 792 .677 10 052
14 257 6 026 .334 6 994 .428 8 092 .539 9 331 670 10 721
IS .218 6 274 .325 7.319 .418 8 511 .530 986! .663 11 384

16 210 6 514 316 7 515 .410 8 920 522 10 383 656 12 010
17 233 G 747 309 7 914 .402 9 322 .515 10 898 010 12 690
18 226 G 973 301 8 213 .391 9 710 508 I 1 403 614 13 331
19 220 7 192 295 8 510 .338 10 104 .501 I I 907 .639 13 974
20 214 7.407 288 8 828 ,381 10.485 .495 12.402 .631 14 608

21 209 7 615 283 9111 .375 10 860 .490 12 092 .630 15 237
22 201 7 819 277 9 388 370 11 230 484 13 376 625 15 862
23 199 8 018 272 9 660 364 II 591 .479 13 850 621 10 483
24 195 5 213 267 9 928 339 11 954 .475 14 331 417 17.100
25 .191 5 404 203 10 191 .355 12.309 .470 14 801 .013 17.713

26 187 8 591 259 10 419 350 12 659 .406 15 257 609 18 323
27 181 8 771 255 10 704 .316 13 003 462 15 728 606 18 929
28 180 0 914 211 10'55 342 13 317 458 16 185 603 19 531
29 177 9 131 217 11 292 31! 11 683 .454 16540 599 20 131
30 174 9 305 244 1141G 335 14020 .450 17091 .5% 20.727

31 171 9 476 210 11 5/10 311 11 351 417 17 518 .591 21 320
32 158 9541 217 11924 328 14 579 4 14 17 981 590 21 911
31 165 9 809 234 12 158 324 15003 411 10 122 588 22 498
31 163 9 972 231 12 319 321 15 324 437 18 859 585 21981
35 A% 10 133 229 12618 318 15 613 .131 19291 .583 23 665

36 158 10 291 220 12 811 315 15 958 .432 19 721 .580 21246
37 155 10417 223 13067 313 16 271 429 20 151 578 21 524
38 154 10 601 221 11288 310 16 551 126 20 580 575 25 399
39 152 10 753 219 13507 307 16888 421 21001 .573 25972
40 ISO 10 902 216 13 723 .305 17 191 421 21 425 571 26 541

41 118 I I 050 214 11 937 303 17 496 419 21 844 569 27 111
42 116 II 190 212 14 119 300 17 796 416 22 200 567 27 678
41 111 II 111 210 14 359 298 18091 414 22 674 563 28 213
14 111 11 481 208 14 567 295 18 390 412 2 1 086 561 28 805
45 141 11 625 206 14 773 294 18 681 .410 23 490 .561 29 366

46 119 11 751 201 14 977 292 18 975 408 21 903 ,559 29923
47 118 II 90'2 202 15 180 290 19265 405 21 309 557 30 482
411 116 12 038 .201 15 380 288 19 512 401 24 712 555 31037
49 131 12 173 .199 15 579 286 19 838 402 25 113 553 31 590
50 ,134 12 307 .197 15 776 281 20 122 400 25 513 .552 32.142

51 112 12 419 196 11 972 282 20 401 398 25 911 550 32 692
52 111 12 570 154 IGIGG 280 20551 395 20107 sin 31241
51 110 12 700 192 16 358 279 20963 394 26 701 517 31787
54 .128 12 828 191 16 519 277 21239 392 27 094 515 31333
55 127 12 995 .190 16 739 275 21 515 391 27.484 514 31877

56 126 13 %I 188 16 927 274 21788 3119 27 873 512 35419
57 121 132% 187 17 141 272 22060 388 28201 541 3590
58 121 13 110 .185 17 299 271 22 331 380 28 617 519 36 159
59 123 13 453 .184 17 483 259 22 600 351 29 031 538 37 037
60 .122 13 574 .183 I MG 268 22 868 383 29 414 .537 37 574

Source: Stevenson, Production/Operations Management pp.521-522
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The evaluator can also use the table to predict the total time that will be

needed to produce all 20 units, based on the time needed to produce the

initial unit alone. To do this, he works through the following process:

Step 1: Read down the unit number column and identify the number of units
to be produced. In this example, 20.

Step 2: Now read across to the appropriate learning curve percentage; in
this case it is 80%.

Step 3: Select the applicable TOTAL TIME from the appropriate column. In

this case it is 10.485

Step 4: Plug the numbers into the formula noted below:

Expected TOTAL TIME for all 20 units = T1 X na

Expected TOTAL TIME all 20 units = 10 min.(10.485)

Expected TOTAL TIME all 20 units = 104.85 minutes

With this information, the evaluator now has a relatively reliable estimate
of the client's expected performance level at the end of 20 trials, without
having to administer the task all twenty times. The advantages of this
approach are quite obvious and once the predictions have been established, it
is then possible to compare these performance levels to the applicable norm
groups or production standards. In this way, the evaluator might observe
that based on the client's initial level of performance, he was not able to
meet the production standard for experienced workers; however, through
application of the learning curve, it is then possible to determine if
additional trials are likely to result in the client achieving the production
standard.

However, it is also evident that there are numerous limitations to this
approach. First, it is necessary for the evaluation team to establish
learning curve rates for certain work sample, situational assessment or job
site evaluation tasks. This would obviously be a very time consuming task
and it is unlikely that in the near future commercial work sample system
publishers will provide this data as part of their systems, despite its

value. With regard to job site evaluation, however, this problem may be
overcome in the few instances where employers have enough experience with
the task to have developed their own learning curves.

A secondary problem of equal importance is the fact that in most cases, the
established learning curve percentage is based on the learning rate typically
displayed by average, nondisabled workers. The extent to which this rate

corresponds with that of disabled examinees in a vocational evaluation

setting is difficult to estimate. In many cases, it may be possible that
while an 80% rate for nondisabled workers is appropriate, it may be necessary
to allow for additional trials for the average client to achieve the expected
20% gain in performance. Unless this problem is recognized, it could lead to

errors in predicting client performance.
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It should also be reemphasized that for a given job, the lower the assigned
learning curve percentage, the more improvement may be expected from the
typical worker performing this specific job. For example, a 70% learning
curve for a specific job indicates that a 30% improvement in performance may
be expected from the average worker, while a 90% learning curve indicates
that only a 10% improvement in performance should be expected for the average
worker. A 100% learning curve indicates no expected improvement at all.

These expected levels of improvement are based on the specific job task and
cannot be arbitrarily assigned to other tasks.

Thus it is apparent that while this approach has many advantages over
conventional static measures, it too has significant limitations in terms of
practical implementation. If the problem of the time and related resources
needed to develop learning curve percentages for certain tasks can be
overcome, it is evident that this approach has many advantages over the
current practice which primarily relies on the intuitive judgement of the
evaluator or, in some cases, little more than educated guesses to predict
future performance levels for clients.

METHOD NUMBER 3

This method is somewhat similar to the previously discussed method in that it
involves using learning curve formulas to predict performance. The major
difference is that these formulas may be used without the need to have a task
or job already classified as either having a 70% curve, 80% curve, 90% curve
and so on.

Thus it would appear that this method has an important advantage over method
number two. However, in actual practice, the use of these learning curve
formulas is limited due mainly to the complexity of most of these formulas
and the resulting difficulty most evaluators would have in applying them, as
well as with regard to the time required to manually collect and manipulate
the data.

Many different learning curve formulas have been developed. Some are more
appropriate for certain kinds of tasks than others. Blakemore and Coker
(1982) for example, studied six different learning curve formulas with regard
to their predictive use in vocational evaluation. They included:

X
Y = K (

C

-1-C r

Y = AB

Y = A -1-(B log X)

21

25

A
y= + B

x

Y= AXB

Y = (LX) /(X-A)



Blakemore and Coker's research indicated that each of these formulas was a
more accurate predictor of performance capability than were traditional
static measures such as mean score. The following example illustrates the
use of one relatively simple learning curve equation for a client involved in
a work sample task.

CALCULATING A LEARNING CURVE EQUATION

The instructions below describe how to calculate the hyperbolic learning
curve equation (Y=LX/X-A) developed by Thurstone (1919) using the least-
squares method described by Barlow (1928). The data used in the example
were taken from the research study conducted by Blakemore and Coker (1982).
The data represent a client's performance on the first 25 trials of a work
sample task. The client eventually completed 250 trials on the task, 50
trials per day for 5 consecutive work days. The original scores were
response times but they have been converted to a percentage of (industrial)
standard measure.

Although the method described below looks somewhat complex, the calculations
involved are really quite simple and can easily be done with a hand held
calculator. The process can become quite time consuming, however, with a

large amount of data (more than 25 scores or so). For that reason, we
recommend the use of a microcomputer to perform the calculations if one is
available. This can simplify the task and speed it up greatly.

To calculate the learning curve equation, you need to determine the values
for L and A in the equation Y = (LX)/(X - A). These values, sometimes
called parameters, are calulated using equations 1 and 2 below:

L = EY2(EX2Y) - (EXY)(EXY2)*
EY2(EX2) - (EXY 2

A = EX2Y - L(EX2)
EXY

Equation 1

Equation 2

The first step in calculating the learning curve is to enter the data into a
table such as Table 2 and to calculate the values in the table. (Note that
we have included a blank table in the appendix for you to use with your own
data. Simply photocopy that form whenever you wish to calculate a learning
curve). As you can see from examining Table 2, there are 7 columns.
The values in the first 2 columns, labeled X and Y, you already have after
you have collected some data. The X values represent the trial numbers
(starting at 0 - that is, the first trial is labeled 0, the second is 1,

etc.). The Y column contains the scores the individual obtained on each
trial. The remaining values in the table, columns 3 - 7, are calculated
using the values in columns 1 and 2.

* The E in the formula represents a summing procedure, e.g., 2+2+5 = 9, and
the 2 represents a squaring procedure, e.g., 2x2 = 4.
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TABLE 2

Table to be Used When Calculating the
Hyperbolic Learning Curve Equation (Y = (L x X)/(X - A))

Total

Values Used in the Calculation

X Y X2 Y2 XY XY2 X2Y

0 39% 0 1521 0 0 0

1 41% 1 1681 41 1681 41

2 52% 4 2704 104 5408 208

3 52% 9 2704 156 8112 468

4 56% 16 3136 224 12544 896

5 52% 25 2704 260 13520 1300

6 51% 36 2601 306 15606 1836

7 65% 49 4225 455 29575 3185

8 68% 64 4624 544 36992 4352

9 68% 81 4624 612 41616 5508

10 65% 100 4225 650 42250 6500

11 72% 121 5184 792 57024 8712

12 59% 144 3481 708 41772 8496

13 70% 169 4900 910 61/00 11830

14 67% 196 4489 938 6284E 13132

15 59% 225 3481 885 52215 13275

16 76% 256 5776 1216 92416 19456

17 79% 289 6241 1343 106097 22831

18 66% 324 4356 1188 78408 21384

19 63% 361 3969 1197 75411 22743

20 76% 400 5776 1520 115520 30400

21 74% 441 5476 1554 114996 32634

22 74% 484 5476 1628 120472 35816

23 79% 529 6241 1817 143543 41791

24 84% 576 7056 2016 169344 48384

1,607% 4,900 106,651 21,064 1,501,068 355,178
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Follow the instructions below to calculate the values in the table and to use
the results of those calculations to compute the learning curve equation. We

assume to begin with that you will already have created (or copied) the table
and have entered the X and Y values and added the Y values.

Step 1. In the column labeled X2 (Column 3) put the square (the number
times itself) of each X value (found in Column 1). Then add the X2 values
and place the sum at the bottom of the column.

Step 2. In the column labeled Y2 (Column 4) put the square of each Y
value (Column 2), add all of the Y2 values, and place the sum at the bottom
of the column.

For example:
Y Y2

39 1521

41 1681, etc.

Step 3. Multiply each X value by its corresponding Y value and place the
results in the XY (for X times Y) column (# 5). Then add all of these values
and place the sum at the bottom of the column.

For example:
X....Y .. XY

0 .. 39 0

1 .. 41 41

2 .. 52 104, etc.

Step 4. Take each X score and multiply it by its corresponding Y2 (Column
4) value. Add all of these XY2 values and place their sum at the bottom of
the column.

For example:
X ... Y2 XY2

0 .. 1521 0

1 .. 1681 1681

2 .. 2704 5408, etc.

Step 5. Take each X2 value (Column 3) and multiply it by its correspond-
ing Y value (Column 2) and place the result in the X2Y column. Add the X2Y

values and place the sum at the bottom of the column.

For example:
X2 ... Y X2Y
0 ... 39 0

1 ... 41 41

4 ... 52 208, etc.

You have now completed the table and are ready to use the values in the table
to calculate the values of L and A (Equations 1 and 2).
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Step 6. Take the sum of the Y2 values (Column 4) and multiply it by the
sum of the X2Y values (Column 7).

106,651 x 355,178 = 37,880,088,800

Step 7. Take the sum of the XY values (Column 5) and multiply it by the
sum of the XY2 values (Column 6).

21,064 x 1,501,068 = 31,618,496,350

Step 8. Take the value obtained in Step 6 and subtract the value obtained
in Step 7 from it. This is the numerator (top part) of Equation 1.

37,880,088,800 - 31,618,496,350 = 6,261,592,450

Step 9. Take the sum of the Y2 values (Column 4) and multiply it by the
sum of the X2 values (Column 3).

106,651 x 4,900 = 522,589,900

Step 10. Take the sum of the XY values (Column 5) and square it.

21,064 x 21,064 = 443,692,096

Step 11. Take the value obtained in Step 9 and subtract the value
obtained in Step 10 from it. This is the denominator (bottom part) of
Equation 1.

522,589,900 - 443,692,096 = 78,897,804

Step 12. Divide the value obtained in Step 8 by the value obtained in
Step 11. This is the value of the L parameter in the learning curve equa-
tion.

3 )

6,261,592,450/78,897,804 = 79.36

Step 13. Multiply the value of L times the sum of the X2 values (Column

79.36 x 4900 = 388880

Step 14. Subtract the value obtained in Step 13 from the sum of the X2Y
(Column 7) scores. This is the numerator in Equation 2.

355,178 - 388,880 = -33702

Step 15. Divide the value obtained in Step 14 by the sum of the XY (Column

5) scores. This gives you the value of the A parameter.

-33702/21,064 = -1.599
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You have now completed the computation of the L and A parameters in the
hyperbolic learning curve equation. You can now use these values to compute
the Y value predicted using the learning curve equation for any value of X
(i.e., any amount of practice). To do this you simply plug the X, L, and A
values into the equation and compute the resulting Y value. For example,
using the values we arrived at in the example given above we can make a

prediction of where performance would be after 30, 40, and 50 trials of
practice at the task. These would be calculated as shown in A, B, and C
below:

A. The predicted Y value after 30 trials would be

Y = (79.36 x 30)/(30 - -1.599) =

2380.8 / 31.599 = 75.34

B. The predicted Y value after 40 trials would be

Y = (79.36 x 40)1(40 - -1.599) =

3174.4 /41.599 = 76.31

C. The predicted Y value after 50 trials would be

Y = (79.36 x 50) / (50 - -1.599) =

3968 / 51.599 = 76.90

These calculations indicate that the individual who was being tested on this
work sample could, based upon performance during the first 25 trials of the
task, be expected to perform at about 75% of standard during trials 30, 40,
and 50. The individual could also be expected to still be showing some
improvement on the task, as well.

As mentioned above, the data used in this example represent an individual's
actual performance on the initial 25 trials of a work sample task. As part
of the research that Blakemore and Coker (1982) conducted, ne data from the
initial day on the task was used to predict the average performance level
attained on the last day of practice (Day 5). The prediction was then
compared with the actual level of performance that was attained on Day 5.
The same was done with the data that was analyzed above. Using the parameter
values (L = 79.36 & A = -1.599) from above, the predicted average score for
Day 5 (Trials 201 - 250) is 79% which is 12% lower than the actual average
score (91%) for those trials. The difference between the predicted and the
attained scores represents prediction error. This difference is considerably
less than that which would have been obtained used the average score (64%)
for the first 25 trials been used, however. Thus, the benefit of using
learning curves to make predictions can be seen.
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It is important to note that while the results of the research conducted by
Blakemore and Coker (1982) clearly indicated that each of the learning curve
formulas they tested was more accurate in predicting eventual performance
levels than were traditional static measures used with work samples, the

authors noted the difficulty the average evaluator is likely to have in

readily applying these formulas because of the relative compexity of the
mathematics involved as well as the time needed to apply the formulas. In

addition, it must also be noted that any learning curve formula tends to lose
accuracy and reliability the further into the future the evaluator attempts
to predict. For example, while it might be realistic for an evaluator to
attempt to predict a client's performance at the twentieth trial or after 10
days of job training, based on a relatively small number of initial trials,
it would be unrealistic to try and predict performance on the 1,000th trial
or after 6 months of training, based on these formulas alone. Some
researchers in this area (Blakemore & Coker, 1982 ; Trussell, 1966) have

suggested that a general guideline to be followed is that it is only safe to
predict approximately five times as many trials into the future as the number
of trials on which the data is based. Thus, if. predictions are to be based
on data gathered from 10 trials, they should not go beyond the client's
fiftieth trial. Beyond this factor, the reliability and accuracy of the
predictions can decline substantially depending on the tasks involved.

Another important point for evaluators to keep in mind when using these
formulas is that it is generally advantageous to administer the task during
several discrete sessions, separated by rest periods for the examinee. This
will result in the accumulation of data which will, in most cases, better
reflect the client's potential for improvement. In thi: way, problems of
fatigue, distractability, and outright boredom with the task can be better
managed. If a learning curve is based on one continuous sitting over a
period of several hours, obviously the client is more likely to become
fatigued and this will generally depress performance. Using more sessions,
with breaks in between, often results in a learning curve like the one noted
in Figure 9. The fact that people tend to show significant performance
improvements and then level out followed by additional improvements in

the next session, with a new stabalizing level established and so on indi-
cates the advantage of this approach in terms of obtaining more accurate data

on client learning.

Finally, it should also be recognized that with regard to the use of any of
these formulas, the more trials the client actually engages in, the more data
can be accumulated, and the accuracy of the learning curve projections are
then enhanced. However, this can have practical limitations. For example,
administration of a single work sample or situational assessment task which
requires several hours to complete obviously limits the number of times it
will be repeated and the resulting improvements in performance that can be
plotted. On the other hand, some tasks that require only a few minutes to
perform might be repeated several dozen times, thereby providing a wealth of
data. Even in this case, however, there is a tradeoff. For as the example
in this section suggested, the more data that is accumulated, the more time
that will be required to compute all the data. Thus time considerations
must be considered in relation to not only the number of trials, but also the
additional time that will be needed to collect and analyze the resulting
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wealth of data. One practical solution to this problem is the use of
microcomputers to process the data in such cases. This method is described
in method 5 discussed later in this section. It provides a viable alterna-
tive to gathering large amounts of data reflecting client learning, without
overwhelming evaluators with manually computing all of the data and
translating it into a learning curve.

It should also noted that the example presented in this section represents
one of the simplest learning curve formulas available. Other formulas are
much more complex, require more data, and also more mathematical training
among users. This problem tends to severely limit their use in most evalua-
tion settings. Dunn (1976a) for example pointed out that evaluators
would need, in most cases, mathematical skills that would at least, as a

minimum, allow them to solve logarithmic equations. These skills are not
normally part of a vocational evaluator's training at the present time. One
solution to this problem is, however, as suggested earlier, to use micro-
computers to process much of the data.
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Of perhaps more significance, Blakemore and Coker (1982) found that another
technique termed the "best-20% method" was as accurate a predictor as any of
the learning curve formulas mentioned, and equally importantly, it was

relatively easy for evaluators to use. The researchers indicated:

...if one were to make a recommendation about which prediction
method to use, based upon the present findings, the best-20% method
would probably be the most reasonable choice. This method was
found to be as accurate as any of the learning curves yet is easier
to compute and requires data from only one practice session. This

conclusion should be tempered, however, by the possibility that
future research might demonstrate deficiencies in the accuracy of
the best-20% method.

(p. 32)

In the following section, the best-20% method is described and an example of
how to use it is presented.

METHOD NUMBER 4

The so-called "best-20% method" was developed and described by Blakemore and
Coker (1982) with regard to their work on learning curve use in vocational
evaluation. As the researchers indicated, this method was developed in an
effort to find a "practical yet accurate prediction technique that was based
on the well-demonstrated fact that performance improves with practice"
(p. 9). It was described by the researchers as follows:

this method consisted of using the mean of the fastest 20% of the
trials during the first practice session as the estimate of the
individual's final performance level.

(p. 9)

For example, in the case of Blakemore and Coker's (1982) work, the examinee
was administered a single work sample task each day for for five consecutive
work days. Each one of the administrations consisted of 50 trials. Using

the best-20% method then, the average score for the fastest ten trials,

during the first day of administration, was calculated. This score repre-

sented the predicted performance level which the client would achieve by
the end of the fifth day of work on the task; or, in other words, after
another 200 trials.

Suppose a client was involved in a simple assemby work sample. One admini-

stration of the work sample involved assembling 50 units and recording the
time score for each unit assembled. The following data depicted in Table 3

might then result.
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TABLE 3

TRIAL RAW SCORE
(in seconds)

1. 27.5
2. 26.4
3. 16.7

4. 16.8
5. 15.2
6. 20.6
7. 21.3
8. 16.7

9. 14.8

10. 41.9
11. 16.0

12. 16.6
13. 14.8

14. 19.4
15. 15.4
16. 16.2
17. 18.4

18. 13.2
19. 12.6
20. 26.4
21. 17.2
22. 24.2
23. 20.7
24. 14.5
25. 13.7

RANK TRIAL RAW SCORE RANK
(in seconds)

26. 15.8

27. 20.1

28. 14.0 8
29. 23.2
30. 16.5

31. 13.3 4

32. 32.5

33. 22.3

34. 14.2 9

35. 15.8

36. 22.6
37. 13.3 4

38. 16.5

39. 14.7

40. 15.7

41. 15.7

42. 16.5

I 43. 16.5

2 44. 14.8

45. 14.7

46. 18.5

47. 13.9 7

48. 17.2

10 49. 11.7 1

6 50. 15.1

Using the best-20% method, the evaluator would now take the 10 fastest scores
and determine the mean. In this case the ten fastest scores in seconds
are: 11.7, 12.6, 13.2, 13.3, 13.3, 13.7, 13.9, 14.0, 14.2, 14.5.

To find the mean, or the average, the evaluator now simply adds each of the
time values and divides the total amount by 10. The result is a mean value
of 13.44 seconds. This would then be considered the predicted performance
level which the client could be expected to achieve given additional trials
and opportunity to learn the task.

In some cases it may be necessary to modify this approach somewhat. For

example, in this research, a single administration of the work sample
actually resulted in 50 trials for the client and fifty time values. This

provided an adequate amount of data for making the predictions. However, in
some cases, a work sample or situational assessment task may result in
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obtaining only one score for the entire task during each administration.
And the actual standard time needed to complete the task may take several
minutes or even a few hours. In such cases, the evaluator obviously will not

be able to collect as many data points as in the research example. However,

it is recommended that the task be administered as many times as possible
since this will help ensure better accuracy in prediction. In most cases, at

least ten pieces of data or time values should be obtained for a task before
attempting to use the best-20% method.

Clearly, the best-20% method offers a number of advantages over other methods

previously described. Its ease of use makes it attractive for application in
vocational evaluation settings. And obviously, the research indicating its
accuracy is also a strong reason for using this method. However, like the
other methods described, it too has its limitations.

First, as was suggested previously, some evaluation tasks will not lend
themselves to this method. This is true with regard to many situational
assessment tasks, job-site evaluations, or work sample tasks which require
extended periods of time to complete with only one time value provided at the

end of each administration. For example, if a client is assigned to a

janitorial task which requires approximately three hours for the average

examinee to complete, practical considerations limit the number of times
the task can be readministered. And unless an adequate number of time values
are obtained, clearly the best-20% value will have little reliability.

Another possible drawback to this approach was suggested by Blakemore and
Coker (1982). They indicated that while this approach appeared to offer
accurate predictions in comparison to traditional learning curve formulas,
more research is needed to support their findings since relatively little

work has been done in this area. They specifically indicated more research

is needed to further test the overall reliability and accuracy of this
method, as well as whether or not the 20% factor is the best possible

value. Further research might indicate that a different percentage factor

might offer a more accurate basis for prediction.

Despite these drawbacks, the best-20% method has much to offer in terms of
accuracy and ease of use, particularly in comparison to current static

prediction methods. As Blakemeore and Coker (1982) indicated, the best-20%

method can certainly reduce the amount of prediction error when compared to
the use of the traditional static performance measure of work sample perform-
ance" (p. 33).

METHOD NUMBER 5

It should be apparent from reviewing each of the methods discussed thus far

that learning curves hold much potential for use in vocational evaluation.
In addition, learning curve formulas and the best-20% method offer proven
techniques for ensuring accuracy in these predictions. However, both

approaches also require that a relativley large amount of data be collected
on client performance. The more data collected, the better predictive

accuracy is enhanced. However, collecting the data is often time consuming
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and attempting to manually analyze it can be an overwhelming task for
evaluators with limited mathematical training. This process is also prone to
error. Thus, there is clearly an important tradeoff. These problems are even
more pronounced when evaluators attempt to use sophisticated learning curve
equations as described in method number 3. As a result, to date, the use of
learning curves has been limited by practical considerations.

One way to overcome these obstacles is to use relatively inexpensive yet
powerful microcomputer technology to not only assist the evaluator in
collecting the data but also in making the mathematical computations that are
involved in applying the learning curve formulas. The "Performance Analyzer
and Enhancer" is a computer software program designed to meet just these
needs. It runs on a relatively low cost 64K Commodore microcomputer. The
primary functions of the Performance Analyzer and Enhancer are to:

I. Collect data relating to the amount of time it takes an individual
to perform a repetitive task.

2. Analyze the data collected.

3. Calculate learning curves and make predictions about the level of
performance the individual can be expected to achieve with additional
learning and experience.

4. Increase or enhance the individual's level of performance by pro-
viding feedback following each repetition of the task, to the
examinee.

A photo of the Performance Analyzer and Enhancer configuration for a work
sample in Appendix B.

During administration of a work sample task, the microcomputer is basically
linked to a remote switch which is attached to the work sample and thereby
automatically indicates when the work sample or task has been completed by
the client. The time needed for the client to complete the task is recorded
by means of the switch which automatically starts and stops the timer. One
of the primary advantages of this system is that the switching can be hooked
up in a variety of different ways so that the software and the computer
itself can be used with a variety of different kinds of existing work samples
or job samples, particularly those that are repetitive in nature and involve
psychomotor tasks.

The Performance Analyzer and Enhancer is a versatile software program which
is designed to collect substantial amounts of data on client performance and
plot learning curves which can be used for predictive purposes. Three
different learning curves may be plotted based on each of the three
equations. In addition, the best-20% method may also be calculated. Users
may choose to plot curves using all four methods since some variation can be
expected. Once this variation is established, it can be taken into account
when making decisions about the most optimal performance level expected and
the least optimal perrformance level expected. In addition, calculating all
four methods also helps offset the fact that one technique or equation may be
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more appropriate and more accurate than other techniques, for a given
task. In most cases, the end result of this effort is that a printout
similar to the one shown in Appendix C is provided.

Clearly, this type of information is very useful to evaluators and clients in
terms of gaining a more accurate picture of improvements in a client's
performance as a result of learning. And the predictive use of the data is
equally important. Further, the Performance Analyzer and Enhancer, as a
computer based system, is able to overcome many of the problems associated
with the other methods described in this section, chief of which are the time
needed to compute the learning curves and analyze the data if a manual system
is used.

It should be noted that the Performance Analyzer and Enhancer has a number of
other uses beyond those related to learning curve applications. It can be
used in work adjustment programs to enhance client performance by providing
clients with visual and auditory feedback while they work. Clients may
observe a video monitor showing colorful graphics designed to display their
performance and compare it to some desired goal. Thus the Performance
Analyzer and Enhancer represents more than simply a feasible solution to the
need to use learning curves in vocational evalaution.

Finally, it must be noted that the Performance Analyzer and Enhancer is still
in the experimental stage. Initial field tests indicate much promise for
this software; however, additional testing and research will be conducted
throughout 1985 and possibly into 1986. It is not expected that this tool
will be available for widespread commercial use in facility programs until
each phase of the testing has been completed.
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SUMMARY

Learning curves have long held much potential for use in vocational evalua-
tion. However, to date, their use has been limited because of three im-
portant factors: (1) vocational evaluation personnel have had relatively
little training in the use of learning curves, particularly with regard to
the application of learning curve equations; (2) manually collecting and
computing the data that makes up most learning curves is a time-consuming
process for evaluators who are already constrained for time in many cases;
and (3) perhaps evaluators, educators, and to some extent referral sources
are guilty of complacency in continuing to accept the predictive validity of
current static approaches to assessment despite the glaring paucity of
research or other information supporting this notion of "presumptive
validity."

Yet, despite its value, it should be equally apparent that learning curve
technology is not without its limitations. The use of learning curve
equations can be a complicated, time consuming process unless microcomputer
technology is used. Current efforts to integrate microcomputer technology
into this process hold much promise but much work still needs to be done in
this area before a viable system is available on a widespread basis. One
possible alternative to this approach is the best-20% method. It provides a

practical and easy-to-use approach to learning curve analysis. Yet, even
here, additional research is needed to validate this approach. And while the
simplest approach, involving little more than administering a task several
times and plotting changes in performance, is useful in gaining more under-
standing of client capabilities than current static procedures offer, the

problems of objectively determining when "peak performance" has been
achieved, time needed for several administrations and related problems come
to the forefront once again.

Thus, it is clear that learning curves are not a panacea. Use of any of the
five methods described in this research utilization report will undoubtedly

add valuable information to one's understanding of a client's capabilities
when prediction is a significant goal of the evaluation. It must be recog-
nized, however, that there are boundaries to these predictions. Use of
even the most sophisticated learning curve equations, based on hundreds of
trials, still does not allow the evaluator to make absolute predictions about
"ultimate" performance capability. There is a limit to the predictive
capacity of learning curves and depending on the approach used, number of
trials available etc., this limit can be reached fairly quickly. One cannot
provide a client with a few trials and then predict into the infinite future
what absolute performance level is possible. Predictions must be tempered by
the reality of the evaluation setting itself and limitations of the tech-
nology. Thus, while it is possible to predict with relative accuracy how a
client will perform on the fiftieth trial based on only ten trials, evalua-
tors must recognize that as predictions extend further into the future, their
reliability and accuracy can become increasingly doubtful. With this in

mind, it should be apparent that learning curves offer much in terms of
complementing many existing existing vocational evluation practices. They
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should not, however, be viewed as a substitution or replacement for existing
practices.

This monograph has presented a rationale for the integration of learning
curve technology into current vocational evaluation practice. Five different
approaches to learning curve utilization have also been described. They

range in complexity from Tillman's simple notion of constantly readminister-
ing a task and plotting performance until "peak performance" is achieved, to
sophisticated learning curve equations and the use of the microcomputer-based
Performance Analyzer and Enhancer.

Each of these techniques, while having significant limitations, also has much
to offer current vocational evaluation practice. However, learning curve
technology should be viewed as a complement to current vocational evaluation

practices. It provides an additional means for better understanding client
capabilities and limitations. Continued research and field-testing, along
with an increased emphasis among educators in providing training in learning
curve technology to professional evaluation personnel, will perhaps lead to a
wider use of learning curves in vocational evluation programs as well as

further refinement and improvement of many of the methods and techniques
presented in this monograph.
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Table to be Used When Calculating the

Hyperbolic Learning Curve Equation (Y = (LX)/(X - A))

X Y

Values Used in the Calculation

X2 Y2 XY XY2 X2Y

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Total
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NAME: DAN
DATE. :::..1/84
TIME: 8 AM
TASK: MAIL SORT

SESSION NUMBER: 1

NUMBER OF PIECES/ASSEMBLY: 25
PIECES/ASSEMBLIES PER TRIAL: 1

NUMBER OF TRIALS: 25
PREVIOUS TRIALS CONPLETED: 0

NORMATIVE BASE LINE

TIME HOURS: 0
MINUTES: 1

SECONDS: 0
PER 1 PIECES/ASSEMBLIES

STANDARD TIME FOR ONE TRIAL. 60 SECONDS
STANDARD TIME FOR ONE PIECE/ASSEMBLY: 60 SECONDS

PERFORMANCE

MEAN TIME PEP TRIAL: 169.87 SECONDS
MEAN TIME PER PIECE/ASSEMBLY. 169.87 SECONDS
STANAP DEVIATION. 72.38 SECONDS
MEAN PERCENT OF STANDARD. 35.32

QUALITY

INCORRECT ASSEMBLIES: 0
CORRECT MEAN TIME PER TRIAL: 169.87 SECONDS
CORRECT MEAN TIME PER PIECE/ASSEMBLY: 169.87 SECONDS
CORRECT MEAN PERCENT OF STANDARD: 35.22

SUMMARY

TOTAL TIME. 4246.86 SECONDS
FAST ES TRIAL : 88.08 SECONDS
SLOWEST TRIAL: 227.01 SECONDS
MEAN OF THE FASTEST 20% OFTHE TRIALS: 100.25 SECONDS

47

44



F
Q

ft.
 P

., 
...

...
tz

 c
o 

-
C

ri 
f-

11
P

4:
C

o 
- 

j C
r1

 Y
 R

 4
.1

rt
.)

1 
co

N
 0

:t
N

-P
C

rl
1Y

,.,
 4

.1
 P

O
C

:1
1

1%
) 

C
O

ID
 P

.:,
 P

O
C

O

01
14

.; 
cr

,"
N

al
11

2.
-v

 c
o 

cD
.

co
 k

o
-.

4 
-.

4 
In

xC
.,

co
.1

 tR
P

 t 
1.

71
 4

.1
C

r,
 C

o
C

P
I I

-.
 L

ie
"

cn
ko

C
o 

1,
0 

'X
: t

..)
C

 . 
, 1

0 
: 1

 C
 C

 ,
i.i

 C
C

, C
C

, (
II 

C
O

C
O

o 
l

1:
6

rk
:

O
:,

C
P

I
rt

:1
 1

--
P

 C
O

 4
- 

P
O

 C
O

 C
o

14
3 

C
O

 N
 1

%
0 

4.
1 

1,
0 

1.
D

t
C

O
 C

O
 (

...
1

C
rl

ti

-11
11

11
11

11
1

II
II

I 
1 

I

=
1

C
t) in ,e
rn

iZ
a 

(1
1

in
 C

T
, -

1.
1



NAME DAN
DATE: 3/7/84
TIME: 1 PM
TASK: MAIL SORT

SESSION NUMBER: 2

NUMBER OF' PIECES/ASSEMBLY: 25
PIECES/ASSEMBLIES PER TRIAL: 1

NUMBER OF TRIALS: 25
PREVIOUS TRIALS COMPLETED: 25

NORMATIVE BASE LINE

TIME HOURS: 11

MINUTES: 1

SECONDS: 0
PER 1 PIECES/ASSEBLIES

STANDARD TIME FOR ONE TRIAL: 60 SECONDS
STANDARD TIME FOR ONE PIECE/ASSEMBLY: 60 SECONDS

PERFORMANCE

MEAN TIME PER TRIAL: 95.63 SECONDS
MEAN TIME PER PIECE/ASSEMBLY: 95.63 SECONDS
STANDARD DEVIATION: 15.37 SECONDS
MEAN PERCENT OF STANDARD: 62.74 74

QUALITY

INCORRECT ASSEMBLIES: 1.06
CORRECT MEAN TIME PER TRIAL: 99.68 SECONDS
CORRECT MEAN TIME PER PIECE/ASSEMBLY: 99.68 SECONDS
CORRECT MEAN PERCENT OF STANDARD: 60.1S

SUMMARY

TOTAL TIME: 2390.75 ECONDS
FASTEST TRIAL' 63.75 SECONDS
SLOWEST TRIAL: 137.66 SECONDS
MEAN OF THE FASTEST 20% iJFTHE TRIALS: 77.56 SECONDS
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NAME. DAN
DATE 3/7A:4
TIME: PM
TASK' MAIL SORT

SESSION NUMBER:

HUMBER OF PIECES/ASSEMBLY: 25
PIECES/ASSEMBLIES PER TRIAL: 1

NUMBER OF TRIALS 25
PREVIOUS TRIALS COMPLETED. 50

NORMATIVE BASE LINE

TIME HOURS 0
MINUTES: 1

SECONDS: 0
PER 1 PIECES/ASSEMBLIES

STANDARD TIME FOR ONE TRIAL: 60 SECONDS
STANDARD TIME FOR ONE PIECE /ASSEMBLY: 60 SECONDS

PERFORMANCE

MEAN TIME PER TRIAL: 94.29 SECONDS
MEAN TIME PER PIECE/ASSEMBLY. 94.29 SECONDS
STANDARD DEVIATION: 21.92 SECONDS
MEAN PERCENT OF STANDARD: 63.62

QUALITY

INUORREI....T ASSEMBLIES. 0
CORRECT MEAN TIME PER TRIAL: 94.29 SECONDS
CORRECT MEAN TIME PER PIECE/ASSEMBLY: 94.29 SECONDS
CORRECT MEAN PERCENT OF STANDARD 63.62

SUMMARY

TOTAL TIME: 2357.46 SECONDS
FnIEST TRIAL. 72.8 SECONDS
SLOWEST TRIAL: 184.69 SECONDS
MEAN OF THE FASTEST 20% OFTHE TRIALS. 75.29 SECONDS
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NAME DAN
DATE: 0/8/84
TIME: 10 All
TASK. ARIL SORT

SESSION NUMBER: 4

NUMBER OF P1ECES/ASSEMBLY: 25
IECES/ASSEMBLIES PER TRIAL: 1

NUMBER OF TRIALS: 25
PREVIOUS TRIALS COMPLETED: 75

NORMATIVE BASE LINE

TIME HOURS: 0
MINUTES: I

ECONDS:
PER 1 PIECES/ASSEMBLIES

STANDARD TIME FOR ONE TRIAL: 60 SECONDS
STANDARD TIME FOR OHE PIECE/ASSEMBLY: 60 SECONDS

PERFORMANCE

MEAN TIME PER TRIAL: 74.34 SECONDS
MEAN TIME PER PIECE/ASSEMBLY: 74.34 SECONDS
STANDARD DEVIATION: 9.23 SECONDS
MEAN PERCENT OF STANDARD: 80.7

QUALITY

INCORRECT ASSEMBLIES: 0
CORRECT MEAN TIME PER TRIAL: 74.04 SECONDS
CORRECT MEAN TIME PER PIECE/ASSEMBLY, 74.34 SECONDS
CORRECT MEAN PERCENT OF STANDARD: 80.7

SUMMARY

TOTAL TIME' 1858.62 SECONDS
FASTEST TRIAL: 50.38 SECONDS
SLOWEST TRIAL: 98.63 SECONDS
MEAN OF THE FASTEST 20% OFTHE TRIALS: 63.44 SECONDS
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