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PREFACE =~ - .

During the summer of 1984, under the auspices of the Summer Faculty
Research Program and the Graduate Student Summier Support Program of the
. Air Force Office of Scientific Research, administered by the Southeastern Center
for Electrical Engibeering Education, work was undertakensat the Air Force Hu-
man Resources Laboratory, Lowry AFB, Colorado, concermhg use=of the pro-
gramming language Ada“for artificial intelligence programming. Two pro,ects
were undertaken, both of which relate to “pattern-directed” ‘programming, by
John Kreuter and Kenneth Wauchope, under my direction. I have edited the
final reports on these projects and provided them wjth an-introduction, so as to
make them -mtelhglble to a larger audience than might otherwise have been the X

case. , 3 ' A

. ) i . » ’ . w M,

Mr. Wauchope, Mr. Kreuter and I would all like to-acknowledge the support

& of the Air Force Systems Command, Air Force Office of Scientific Research, and
the Air Force Human Resources Laboratory (Training Systems Division). At .

. AFHRL, L?a) Hugh Byrns deserves special thanks as the person with whom we

« _ interacted mosy closely, and Dr. Roger Pennell, as the person who interfaced
‘with the AFOSR/SCEEE summer program. Col. Crow, Dr. Yasutake arid Maj. -

Baxter were all very cooperatlve and helpful admmlstratlvely, as were Mr.

Marshall and Mgj. Bolz in the computing srea; and a number of AFHRL staff
members. made tBe vnsit pleasurable and productlvc -

.

O | LHR. ' -

NOTE -

. 5 - J
Opinions expressed in this’report are those of the authors
and do not necessarily reflect those of the Air Force.
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~ INTRODUCTION: Al IN ADA?

| . .
" Larry H. Reeker*
" Tulane University

If the programming language Ada is to be widely used in artificial intelligence applications, it .
will be necessary to demonstrate to programmers that i can provide superior facilities for use in
that domain. One meany of doing this is to provide facilities for “pattern-directed”’ programming
within Ada. This first paper is designed to serve as an. introduction to pattern-directed program-
ming and to.the significance of the two papers that follow. It includes discussiona qf artificial in-
telligence programming and the facilities provided by the Ads language, pattern-dirétted computa- -
tion, pattern matching and parsing. The other two papers deal with the use of Ada for pattern-
directed programming. One paper deals with efficient implementation of pattern matching (within
-Ada), important beoause pattern matching tends to be inefficiént, leading to problems with exces

" sive processing time. Another paper treats extensions of pattern-direction from strings to more
general data structures of the sort used in artificial intelligence. \ K

»

1. THE PROBLEM * L , _ .
., The question implicit in the title of this paper might be “Can artificial intelligence
be done in Ada”. It might also be ** Will artificial intelligence be done in Ads”, which is
more to the point, since-anything cam be done in Ada. The purpose of the research
reported in the three papers comprising this report is to explore methods of doing
artificial intelligence within Ada, using pattern-directed programming. ‘The goal is to
show that Ada, appropriately. used, can facilitate the ‘programming of artificial intelli-
gence applications. =~ . L L '

Ada is the new standard programming language developed for the United States
Department of Defense (DoD). It is intended that Ada be used for mission-oriented
applications programs within DoD, replacing a variety of languages that have been used
previously. Concepts ini Ads are based to a large extent on the languages SIMULA and
Pascal. Most artificial intelligence (Al) and computational linguistics (CL) research, on
.. the other hand, is done in the language LISP, with some done in Prolog, SNOBOL4; and
~ a variety of other languages. Even within DoD, such research contirues to be done in.
these Ianguages, rather than in Ada., But artificial intelligence research is ultimately
applications-oriented, and-what we consider to be Al today will be an important part of
‘applications of the future, at all levelsdrom office automationsand record keeping to

command and control and maintenance-aiding,. o W

If Ada is to be the common DoD language and if variods-“intelligen;t’.” applications -
are to be interfa¢ed to programs written in Ada, then it would be convenient to be able
- W program Al and CL applications in Ada. Brian Dallman [1984] has expressed the

problen} as follows: S S ' - ;,,/' :
' *Since Ads receiitly became the DoD standard computer language, ideally it should be
used for all programming applications within DoD. However, there are some applications

for which Ada, is not.currently practical. One of these areas is artificial intelligence. In
DoD, the majority of programming for Al spplications is done in LISP, Consequently, if

e

' *Current addte@, Navy

’

Cen‘e: for Applied Rt;oeu_eh in Artificial lntelli;on&, Code 7510, fg\h.vsl Research

Laboratory, Washington, D.C. 20375.
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new ares of software engineering will be severely limited and'DoD's effort to establish a
corhmon high order language will be hampered. - : ' : _

With these considérations it mind, Dallman suggests thie following objective: -
To develop an extension of the Ada language which will provide the capabilities for Al

. programmimg applications. This extension can involve possibly only an Ada package or '
colléction of packages. ' T, e - ' '

'LISP. remains the prirhary Al language, the'n'.Adn's,- usage and acceptance in a critical

Two research efforfs undertaken in the summer of 1984 toward: this.objectivé are’

methods for implementing efficient pattern-directed computation in Ada. The "second,
by Kenneth Wauchope, deals with the development of LISP-like list processing.and of a
. language for pattern-directed computation on list structures.. '

. reported in the papers. that follow inthis report. The ﬁx:si, by Jobn Kreuter, looks &t .

The objective here is not merely to mimie LISP in Ads, but o o‘mj;rqiw upon LISP,

which has some well-known defects, despite its popularity. We have chosen the
" pattern-dirécted paradigm of programming for this purpose. There is today a body of

* opinion, shared by this author, that says that pattern-directed facilities provide the most - -

©_ -effective means for creating.complex programs for non-numerical applications. That this

opinion is pot universally shared could have to do with different individuals’ program-

ming styles; but:.we quote here an opinibn that supports our viby.‘zin this matter [War- o

ren, Pereira and Pereira, 1977): - :

Pattern matching should not be considered an "exotic éxtra” whan designing a program-
ming language, It is the preferable method for specifying operations on structured data,
both from the usér's and the implementor’s point of view. This is especially so where
more than one recorg type is allowed. " i ‘ : .

The remainder of this paper will concern itself with some of the background issues
that will provide a rationale for the work being done and help the reader to understand
_the Kreuter and Wauchope papers. We shall first look at the programming requirements
. of art-i)ﬁcial imtelligence and the facilities provided by Ada at present. . - \

1.1. LANGUAGES FOR ARTIFICIAL INTELLIGENCE PROGRAMMIN

" Although one could write_artificial intelligence programs- in any language, certain
languages lend themselves to the task. This is largely because they have the data struc-
tures that are most natural for the complex! informatioy processing necessary in Al built
into the language, and because they alsd feature the operations that are needed to han-
" djly manipulate those data structures, o ' '

- The linked list (henceforth, “list”) is pervasive in artificial intelligenée program-
ming. In esrly languages, lists were always represented by arrays, and they can still be
so represented when it is necessary to use one of the common arithmetic languages, such

as FORTRAN®. In other langusges, such ss Pascal, PL/} anid Ads (see §1.2, below), lists

aré impleinented by the provision of s “pointer” dstatyps. But LISP has long been the’

most popular Al lsngusge because it focuses on lists, providing the needed list-
constructing {unctions and means of selecting the items of o list. ' '

b

*No references are given for the well-known pmjrlmming.ltnguueo, as manuals can easily be obtained at
, bookstares sad libraries. . '
C

e
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Another datatype that is common in artificial intelligénce‘-_'(p;irticularly in coriputa-
tional linguistics) is the . character string (benceforth, “string™). A string ¢an be

represented as an array of characters (as, for instance, in APL) or as a list of characters.

But programmers tend to' think about strings in a different way. ‘They tend Ao think
about patterns of charaoters, and patterns have therefore tended to be emphasized in
string processing languages, such as SNOBOL4 (see §2.1, below), - ' T '

Another dats structure that can be represented as a type of list or as a
parenthesized string, but Yhat is often conceptualized quite separately from/these, is the
tree, commonly. used in games, taxonomies, structural ‘descriptions of strings (parse
trees), and the like. Like the string, it is often procesfed in terms of loo ing-fgr & pat-
tern. This is particularly apparent in transformational grammars, sorhe examples of

* which will be seen in Wauchope’s paper in this rgport. Pattern-directed manipulation of

trees is not natural in most extagt languages, and Wauchope’s system is simed at mak-

ing it more natural in an extension of Ada.

/

L

There have been attempts to generalize structures like trees and)lists to directed or
undirected linear graphs, which may contain cycles (trees are directed acyclic graphs
with a single origin or “root node”), -These may yet turn out to be useful, ang it is sug- -
gested that pattern-directed“processing will also be useful in processing these generaliza- .
~tions. It is not clear, however, how to treat graphs that are noy trees directly, rather

than in- terms of. trees, for pattern matching purposes.

) N
- There are factors other than data structures that charactérize the languages and
environments in which productive Al work is taking place. Richardson [1983] cites the

- following: :

-~ strings, which are, by their nature, dynamis

L chué on symbol- manipulation and list processing

2. Support of representitioqs which change dynamically )
3 Su'pport of ﬂexil.;le control by pattern r;xatcping rather thap procedure calls .
4. 'Support.ivf progr'amming‘environmeno, including ‘
». An interactive (interpr 'd)'langudge .
= b. ‘A good editor (programy construc .ot:ie;ted, not text oriented) -
| ¢ Debﬁggﬁs facilities {iraces, breaks) L |

/

A
.

d. Standard systems input/output inctiogs -

Of these factors, the first two basically \have Yo .dé with the processing of lists and
throughout processing). Languages which/trly to do string and list processing with less
dynamic entities (e.g. fixed arrays), can quickijztfe elimimated from contention, unless
these entities can be made to appesr dynami he programmer. Pattéern matching we

- will address below. - We will not directly address the programming environment, except
" to commenrth{ the types of facilities that wf are seeking to provide in’ Ada can be

abstracted from the language and placed in a* anguageless” programming environment

(which is not reslly languageless, since there if always need for a representation, but is
‘not textually’ oriented, either). In this case, the underlying programming language is -
.almost.irrelevant — it could be LISP, or Ada, or anything else (see {Reeker and Bailes,

N

in preparation)). .

. Language éxtensibility, discussed in | .3, has also been important in Kl_‘and CL,

since the fields — and therefore, their language support needs — have been evolving

3 .

-

entifies (their ‘shapes and sizes change
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" rather quickly. Tliere is no.reason to believe that the pace of change s going to slow -

down in ‘the near future, so one might concludc that extenslbﬂnt«y is another need in an
Al langua.ge \ o . 5 - §

.4

1.2. PR»OGRAMMING FACILITIES PROVIDED BY ADA

"Rhe Ada’ language (see [Honeywell 1983 ,1984] .and a Virlety of texts presently on
the market and under,preparation) was designed-for the U. S. Department of Defense, in
- an attempt to promote language standardization in applications programs and program
_reliability and maintenance, while ma.mtammg program efficiency. It has a variety of

features desngned to make it useful in general a.pphca.tlons We shall briefly describe
_only. those that are relevant to the discussion in thls report and different from other .

}

commonly-used langua.ges such as Pascal. T , N
An Ada program may contain various types of _program units, each of which is a
subprogram, a package, a task, or a. generic unit, Each unit contains. a

specification .and a body: The specification ‘¢ontains information that must be visible

to other umits, while the body contmns 1mplementatlon details. Units may be compiled -

separately: Y

~ Subprograms consist of -the usual procedures and functions, and will not be dis-

“cussed further. Tasks are units that may be'invoked and executed in parallel with other.

“tasks. Geénerally, # the absence of parallel computatlon facilities; tasks are execfted in

an interleaved fashion, but multiprocessing is clearly possible, and it is envisioned that

s parallel executjon will be used .commonly as the hardware becomes availa¥. As an
" example of tasks, consnder a multi-player game. Each player could be considered as a

task, or-as instances of the same task with: different parameters (say, dlﬁ'erent hands in a

. tard game, passed to the instances on invocation),

Packagcs are usually used to define new datatypes and the operations on them.
_ Portions of the package can be'declared private, so that detalls not necessary to the

‘user are “hidden” from the user, thus adding to the apparent (though not necessarily -

the underlying) simplicity of the program Both packages and tasks are an-outgrowth of
SIMULA classes. | . _

_ (Generic subprograths or ;mekuges allof: the definition of program units that will be
applicable to all types of a given class (rpther than just 3 single type). Derived types
" can also be used to the same effect in many instances.

In addition to the usual bu(lwn arithmetic datatypes, Ada provnde‘s predeﬁned

character and string datatypcs Strings ‘are vectors (one-dimensional arrays) of char-
acters, indexed by positive integers. The concatenation operator (cdlled catenation) is
&. 'The built-in string facilities are, however, primitive, and require augmentation to be
- truly useful. Access datatypes (pomtci‘s) are used with record types to do list process-

ing, much in the manner of Pascal As with thelstring proccssmg facilities, the ‘list pro-.'_

cessing fa.clllt,lcs built mto the languase are clumsy and reqmre extcnslon

- «

1.3. AI'S NEEDS AND ADA'S FACILI

It has often been pointed out that LISP owes much of its success as an Al language
~ to its usefulness as a sort of hlgh-_levcl aysten;s programming language, in which'it is

‘Ad; ia Y repmred trademark of the U. 8, Government, Ada Joint Program Office. -
L VA a

-

“\
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possible to construct mterpneters lor hrgher-level languages In other words, it is ezterm-\f
ble, although it was not designed with extensibility .in mind, specifically. The fact that*

Recker. . - - 8 o _ Alih Adat

LISP programs are th&xsel\res representations of lists facilitates extensibility. (It. might :

" bt remarked here that the extension languages have tended. to share LISP’s syntactic

shortcomlngs partly for this reason:) The applicatixe’ nature of LISP also facilitates
extension. Ada has been designed for exten3|bll|ty ~-albeit of a linmi
packages, generic procedures and tasks It remains to be seen if thls h
will prove as usdul as that of LISP. ST

Ada ‘makes few concessions of a direct sort to Al (or to any particular appllcatlon '

area), the philosophy being that these facilities will be built upon the basig lgngpage. In
the Dallman quotation of §1, the padkage is mentioned. .This will be the &mary means

of add\ng Al-oriented features, including, but not limited to, string processing and list

processing (as described in §1. l) One might envision the creation of the following:
1. Stringgfefinition and manipulation facilities more flexible than those built into Ada. '
2. List’tessing functions l ' ' -
3. Pattern definition a.nd matchmg functions for sttings and lists’
4. Means of manipulating. llsts returnqd by the pattern matchlng functions

A package of string fuhctions has been written by Major R. Bolz [penonal communica-
: tion]. In the third paper included in this report, K. Wauchopé reports on the provision

- of hist: processmg facilities and pattern mat functions for lists, while J. Kreuter stu-

dies efficiency in string pattern matching methods ¢hat could be implemented |n Ada.
The manipulation of the lists returned by pattern matching functionis cduld be in the

manner of Post-X (see §2. 3), as Wauchope points out. The exact manner of buildinig in

the “actions” of Post-X is a subject for further lnv&tlgatlon

The tasklng mechanisms of Ada lead to & number of mterestlng posmbllmes One
of them is tentatively explored in the Kreuter paper. It is possible to use “coroutines”,

which are just a form: of task in Ada, to match patterns in a particularly elegant fashion. -

For the purposes of the type of processing envisioned in‘our project, the pattern match-

ing would have to provide a structural descnptlon of the item matched, as well as an -

indication of the match This can be done in much the same manner as §NOBOL4
* assignments, making an assignment to each subpart of the pattern. Other possibilitRs
for the use of tasks arise in artificial intelligence in any of the areas where qua&i-pamllel
processes have been used. An example is “word expert” parsing [Rieger and Small,
' 1979). : | ’ ‘

2. PATTERN-DIRECTED COMPUTATION

-

. . ' =
In a pattcm -directed computation, the operatlon that drives.the computatibn is that

. of finding-a pattern in the data and making a change in the data at that point. Pattern

directed computation has generally ‘been identified with the processing of character
strings. Let us therefore turn.to string: processing languages to get a feel for this style of
programmmg . .

. “An applicative langusge works by function application. LISP is an exunple'of an applicative lapguage.

r
5 -
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) 3.1. PATTERN-DIRECTED STRING PROCESSING LANGUAGES

» Hlstorlcally, .pattern -directed languageés are based on a philosophy built mtp the
normal algorithms of Markov [1954] and the canonical systems of Post [1943}; both
of which antedate modern electronic computers. Both Markov algorithms and Post sys-
tems provide languages adcquatc for writing any program (i.e. for realizing any algo-

. rithm), by encoding the data as strings, if one accepts ‘‘Church’s Thesis”, as most com- .
~ puter scientists and logicians do [Rogers, 1987). More |mportant, from our point of view
(sirce other programmmg'languages are tl;corctlcally adequate in this same way), is the °
{act that a partlcular style of programming, w,hlch many programmers ﬁnd sparticularly’

cordla.l is natural in these languages.

The COMIT programmlng“‘anguage of Victor Yngve [1958] was essentlally g com-
puter implementation of a version of Matkov, algorithms (labeled Markov algorithms: see’

[Galler & Perlis, 1970]). In tRat Yanguage, it is assumed that one is.
workspace containipg a sequence of constituents, which ma§ be ingg
or character strings.. Each step of the program consists of an opera’

erat_lpg on a

wblch tries to
left end of the

that portion. As.an example, the a‘hatement
' ;1-+ABC+81+D+8+E = F+3+1+5 R

would match a single constituent followed by a constituent- ABC, followed by another

single constituent, followed by a constituent D, followed by ‘any number of cohstituents,
followed by a constituent E, and would replace all of these by a constituent F followed
by the first, third, and fifth items matched by the left hand snde of thc ‘““equation”’. For
example, ‘the WOrkspacc contalned

QRS+ABC+DD+D +EFG+HI{+E

’

at the leftmost place in the workspacc wherc the pattcrn matched it would be chhngcd

.
' [ .
e . ) 4 N «

’ . F+DD+QBS+EFG +HlJ

COMIT hsd 3 number of problcms as a progrsmm'ng Ianguagc, but this pattern-dlrccted'
mode of computation was not one of ‘them, as it turned out to be-a natural mesns of
_ processing chatactcr strings in computations] linguistics and related felds. It also led to

a more successful family of’ languages, the first of Which was called SNOBOL [Farber et

dl, 1964|, and the last of which was called SNOBOLM [Griswold et o, 1973]. R
' . "The original SNOBOL ianguage was similar to COMIT, but with a number of

important improvements, The most fundamental of these was the inclusion of variables

that could take on the values.of atrlngs, rather thin the single workspace (COMIT had &
construct called “shelves” ;(%0 stoging away dportians of.the workspace, but ‘SNOBOL's.
sting variables were handiei) Sn\)

'COMIT and other improved features. .

By far the most populat of the SNO%QL anly of Ianguagos has been SNOB@M

BOL slso hed s more ﬂexlble flow of control than

ual chargcters -

i

The papers of Mr. Kreuter and Mr. Wl.uchope doth mention SNOBO[A pamerns, o we

pig )

e

ez
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" As mentioned above, the COMIT workspace constitaents were not necessarily

. gle charagters, but co*ki be strings. Each constituent was basically indivisihle, so if

“AND’} was a single-constituent, it was not treated as “A”, “N”, and “D". For the pur-
pose of illustration, however, assume that the l'lcon:',t,lmuents in the example above, except
for the constituent “ABC” are all slnglc chardcters. With this.assumption, the COMIT

statemnent .

-

U 81+ABQ+81+D+$3LE=-7F+3+i+5" A ,

could. be written in SNOBOL4 as - & .
- LEN(1). V1 ‘ABC’ LEN(1 ) V3 ‘D’ BREAK(‘E') V5 B = ‘F’ V3 V1 V5.

In SNOBOL4, all strings aYe based on sm;le ~-characters; the concept of multlchamcter

constituents does not exist (in the pattern /mat.chlng portion of the language, at least).

\

2.3. suonou 'PATTERNS A | N

. Patterns, in SNOBOLA, are data objects and may be given names in {;mgnment
statements. Patterns are constructed out of.pattern primitives, including variables and
string constants, usmg pattern operators. They may also contain assignment state-
ments. : .

N

@

.3.3.1. Pattern Operators ¥

Concatenatlon: (blank space) ¢eg. AB matches anythma matched by po.ttern A fol-
lowed by anything thatched by pattern B.

Altornutlom (blank)|(blank) e.g. A | B matches. anythlng matched by pattern A, if &
match is found. If not it matches anythmg matched by pattern | B if that can be found
~ If neither is found, it fajls. .

(Parentheses may be used«in the conventional way to group items snd establish- the
order of operations.) - :

-~

3.3.3. Pattein Variables

POSSI) roatches & null atrln; after the l-t.h character. (POS(0) is the left end of the
string
5

RPOS(I) matches a null string before the i-th character from the right. (RPOS(O) is
thé right end of the string.) w

ARB matches an arbitrary stnn; (the ahort.est. op poaaible.within the context of the
pattern in whick it is included). : }

RBM mM‘s everything to the end of the string.

BREAK(x) matches s arbitrary string up to — but not including — the first oc-
curgence of any character in the string x (¢.. BREAK(‘abe') matches s string up to
one of the characters a or b or ¢ that does not itself contain any of those charicters).

g SPAN(x) matches an ﬁbitnry string mndc up of characters in x (i.e. it BREAKSs at
" snything not in x).

. ANY(x)'matches sny single character inx. . ; ’

NOTANY(x) matches any single character ot T x.

LI

. 1 Y
+ . - a N ) . 1 4
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LEN(n) matches an arbitrary a-character string.
. BAL matches an a.'rb'itrary string balanced with respect to parenthesef, S

" Other "pajtern variables include FAIL, FENCE, ABORT, ARBNO, TAB, RTAB,
" SUCCEED, 0, for explanations of which the reader is referred to the SNOBOL4 manu-
.. ol [Griswold et ol, 1071]. .o : : ‘
o o ‘,\
3.2.3. Other Primitives

::H "

" Any t;'ln; (enclosed in single or double quotﬁtion marks) may be used as a pattern, It {
’ matcfes exactly itssH. - " ) : -
NULR matches the null (ioro‘length) string.

-

'3.3.4'. Assignhhent Operators -

R R 4
: Imihediate assignment (made to a matching element of.the pattern as the pattern .
/ match is attempted): (space)$(space). ’ v : )
¢ Conditlonal agslgnment (made only if the who(e‘ pattern match succeeds): N
(space).(space) (e.g. X . ¥ assigns whatever is matched. by Pttter}x X to variable Y
when X is part of & successful pattern match). - | . g
. o . - T N
.3:3. POST-X PATTERN MATCHING _

_ The ultimate goal of the work reported in these papers is to make possible the -
incorporation within Ada.of packages that allow pattern matching of the sort defined
within the Post-X language [Bailes and Reeker, 1980a,b]. - Post-X incorporates pattern
definition and matclting into an applicative framework. In*doing so, the powerful pat-
tern definition facilities of SNOBOL4 have been retained, while other aspects of the utili-
zation N patterns have been jmproved. - - ' :

In an applicative framework, the ﬁattem match ‘must retain a value th\ti can.be
‘ acted upon by other functions. The pattern itself has been generalized to a mor power-
’ ful object, called the form. ' - ‘

. A Post-X form consists of a seties of altqrnat:{%pattor&;l and telated® actions.
' Each pattern is very rituch like a pattern in SNOBOLA. A form may-be passed parame-
ters (by value), which are then used in the pattern or action portions of that form.

A pattern determines the structure of the string to which it is matched. The pat-
tern contains a sequence of concatenated elements, which are themselves patterns, primi-
tive patterns (as in, SNOBOL4), or strings. The value returned by the pattern is either
false (if it fails to match) or a parse tree designating the structure of the string that
‘corresponds to portions of the pattern. Portions of the parsq tree can be accessed by the N
use of selectors and used in the agtion portion. ' : -

As an example of some of these ideas, consider the definition of a forfh REPLACE
which takes & parsmeter GRAM. (a context free grammar that consists of a sequence of

" rules, with the nonterminals surrounded by aongle brackets). A _ o

REPLACE GRAM ‘= “<'""BREAKY>""4>" o B
| {$<"((REPLACE GRAM)< | - |
L : . SELECT_RHS . * (
| " (ALTLLIST< . ¢ e
(LHS_FIND $2 <GRAM))) s

’ | ' ‘ o




R 4

E "$>) ; . . >
INULL{$8};

The ° is a concatenation operator. Post-X allows an alternative postﬁx representatlon of #4
function conlposmon usmg an explicit postﬁx opcrator o whlch IS sometimes easier ta .
read:

REPLACE GRAM :== “<”‘BREAK“>"mc>n
' {$<"GRAM . :
(<(LHS_FIND $2).
(<)ALT_LIST. ‘ \
SELECT_RHS.
(<)(REPLACE“‘GRAM) . .
INULL{$$}; :

.~ The form REPI-ACE, in whichever form it is written, expects to be passed a gram-
mar, as described above. It utilizes the forms LHS_FIND, ALT_LIST, etc., which must
be.defined elsewhere in the program. It first finds the leftmost occurrence of a nontermi-
nal in that grammar. In the firstxalternative, which utilizes the SNOBOL4 function
BREAK, the first occurrence, of “<” is automatically denoted by $1, the item matchmg
BREAK“>" (the second item in the pattern; notice that Post-X does not require .
parentheses around the arguments of built-in functions, in order to lessen the number of
‘parentheses necessary) will be denoted by $2, and the “>" followmg will be denoted by
$3. These “$ variables” are all available to be used in the action or in other parts of the

pattern match. -
: REPLACE uses the nontermmal found ($3) as a parameter to LHS_FIND which is

pplied to the graminar GRAM to return the right hand alternatives. Then
SELECT_RHS selects an alternative, which is placed in the context of the nonterminal
*matched by the pattern part of the form. Finally, REPLACE is matched (recursively) to
the resul. If the first alternative fails, it means that there is no nonterminal. In that
case, the second alternative will be matched, and will return the entire string, which will
be a string in the grammar generated by GRAM.

Without understanding Post-X completely, it can be seen that pattern matching
and function application are the fundamental operations. Furthermore, it is necessary
for the pattern match to return a structural description of the string (the grouping of -
higher-level units in the pattern and ‘the selection of corresponding units of the matched
string is not illustrated in the example, but often turns out to be very useful). ‘A portion
of Pegt-X has been implemented as STRIP, and its design rationale has been cxplamed '
in de?all by Paul Bailes (1983]. :

ad. PROLOG AS A PATTERN-DIR.I&JTED LANGUAGE

“The language.Prolog hn.l been chosen as the language of the Japanese “fifth- genera-
tion” computer initiative. It is a language that is becoming’ more and more popular in
artificial intelligence and computational hngulstlcs A stp,ndard reférence is [Clocksln ,
“and Mellish, 1981]-

A program in Prolog conslsts of a series of clauses of the logncal form
Al&Az&...&A.DC ' ..

.16
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represepted in Prolbg as “C - A Ay, .,A ”, and interpretable as “to prove C, prove A,
. 1

then prove A,, ..., then prove A ”

The elementary terms, such as “A” above, are predicates anﬂ arguments (which
may be variables). For instance, % might be “BlGGER( ,y)” A problem is solved by.
a Prolog program by finding an instance of a formula that is true and”returning the
parameters that instantiate that instance. If the data provided in the program contains
pairs of, say people who are bigger than other people, then it -would be appropriate to
ask whether Paul is bigger than John (*1- BIGGER(Paul,John)”) or to find the people
bigger: than John (“?- BIGGER(x,John)”).. The process of attempting_to find true
instances is thé logical operation of uniﬂcstion, which can also be viewed as pattern
matching. Much of the popularity of Prolog is due to the naturalness of this pattern
matching method of program®hg. In fact the quotation from [Warren et al] in §1 is’

, talking specifically abouf Prolog.

The pattern matc ing embodied in SNOBOL4 and in Post-X is a more lnmlted form

- than in Prolog, in that there are control mechanisms other than pattern matching (pri-

marlly function composition or application in Post-X, both sequential control and func-
tion composition in SNOBOL4). The purer approach of Prolog (although, like the pure
applicative control of LISP, often modified in practice) has advantages and disadvan-
tages. We feel that the Post-X framework will be more naturally embedded in the Ada _
framework, ang that if this is carefully done, it can result in an excellent language for Al
programmmg :

Within the LISP commumty, pattern matching has been recognlzed as important,
but has not generally been viewed as fundamental. Thus Winston and Horn (1981]
include a chapter on pattern matching, commenting that

‘Although LISP itsell has no pattern matching built in, it is easy to write pattern-

matching functions in LISP. Hence, we say that LISP is a good xmplementatlon
language for pattern matchdrs. ’

An important experimental language built upon LISP, PLANNER [Hewitt, 1969), par-
tially implemented as MICRO-PLANNER [Sussman eta] 1971], features pattern-dirécted
procedure invocation. Winston and Horn conclude that many problems remain in pat-
tern .matching, including how to deal with more general data structures (the problem
that Wauchope [1984] is tackling). They also point out that a matcher which can do
partial matches and report on how close they are to a full match would be very useful.

Anothpr language that deserves mention in any discussion of pattern-directed pro-

. gramming is Awk |Aho et al, 19791 Although Awk’s pttterns are of ‘a restricted sort (for

purposes of efficiency), it is very easy to use, and i3 widely used as a utility wnthm the
UNIX system, as well as in file processing programs.

3. PATTERN MATCHING AND PARSING

We have described some design aspects.of pattern -directed languages Of course,
designing the language is only half of the task;-one must also'implement it. We wsll now

discuss a central problem of the implementation of pattern-directed -languages — the

pattern matching algorithm itself. Because we are interested in implementing facilities
along the line of Post-X, we will he interested in passing back a structural description of
a string. This is essentially the same thing as parsing a string according to a context -
free grammar, so we shall next examine context free parsing. '

/ ’ |
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3.1, CONTEXT FREE PARSING

_— Pattern matching can be considered to be a restricted form o[ context free parsing.

~ 'Withouf going into the details of context free-grammars (a good basic reference is [Lewis
and Papadimitriou, 1981}; a more advanced one is [Harrison, 1978]), it is possible to see

why this is so. A pattern P coffsisting'of'a concatenation of patterns P ... P, will match

some string S if and only if -there- exists a decomppsition of S into substrlngs such that S

=8, ... 8, and such that all of the s, are substrings matchad by the cbrresponding’ P. If

‘there are alternative patternsP | .. | P, (using the SNOBOLA alternation operator “|”)
then one needs to try’ matchmg P, then P, etc. One might want to return either the
* " first match or all matches. The operations of concatenation and of alternation are also

the basic operations of context free grammars. Context is often relevant to thé parsing -
process, but-if it is strictly the context of primitive patterns within the overall pattern
" (as it tends to be in pattern ma,tchlng) the power of a context free grammar will suffice.

In the case of P = P, .. P, an equivalent context free grammiar would have the
production P — P, .. P_.In the case of P = P |..| P, the grammar would have pro-
ductions P — P P — P,. In either ca.se ﬁndlng a successful pattern match is -

equivalent to,. recogmzlng the strlng S by the correspondlng grammar (determlnlng
whether or not it can be generated by the grammar).

As explained in section 2.3 above, we desire to return a structural r'cprcocntotion of
the string matched — that is, a parse tree that indicates how the match took place. It
is then possible to structire the patterns utilized so that this tnformatlon will be useful.
Post-X makes use of the parse information to select out certain portlons of the matched
string for modification in the action portlon . )

One of the key issues in the eﬁlclency of parsing, addressed in the Kreuter paper, is
the control of nondeterminism. A nondeterministic.slgorithm [Floyd, 1967] is one that
has “choices” of various alternative computations at certain points in its operation.
These choices can lead to a successful con'xpleted' computation or may lead to failure.

" The idea of the nondeterministic algorithm is that if a failure occurs, then another choice
can be tried. One could, in fact, try all choices at once if one had sufficient parallel com-
puting capabilities, and this may be possible in the future. At present, wt implement
nondeterministic algorithms on the machines that we have, which are dealgned for serial
computation. . One way of lmplementlng thém is to backtrack when a failure occurs and
try -another choice. Another is to try to keep around enough information to be able to,
try al] alternative choices in s “pseudo—parsllel" manner. These sltemetlves are best
illustrated by looking at some parsing algorithms. T g
3.1.1. Recursive Descent

Suppose a context-free grammar has a rule of the form

X —Y\Y,
whete esch of the Y, is elther s terminal symbol or » nontermlnel A rocunlvo descent
parsing slgorithm will parse & string : o _;u
1'2 nl ]

.that is suspected of -being genented by X, by calling a routine
PARSE(X‘,A‘,.. )

11
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, that Y, matches s, and Y, matches s S, etc 'I‘o check the first posslblhty, it
calls . *

_ PARSE(Y A ) followed by PARSF(Y s).
To check the second possnblllty, it calls
' PARSE(Y 31) followed by PARSE(YQ,S s)

#nd so forth: If any of the Y is nonterminal,’ then PARSE(Y) x) will make further calls,
according to the grammar. lf Y’ is a terminal (or A) then PARS['(Y) x) returns an indi-
cation of success if and only. if x is also terminal (or A) and Y) = X. The alternatives are

" tried in & nondeterministic fashlon either until a successful parse is found or until all

successful parses are found, dependlng on which one wants.

The algorithm can be extended in a stralghtforward fashion to cases where the ’

.nght hand side of the production consists of more or less than two symbols, either termi-

nal or nonterminal (or A)
As an example of recursive descent parsing, consider the grammar
§'— aTe

S — SU
S—T

T —e L _ .-
. Iz | v
on the mput stnng aecd. We start with PARSE(S,aecd), which calls

PARSE(a,A);PARSE(Tc, aecd)
PARSE(a,a);PARSE(Tc,ecd), ..

: .. PARSE(S,A):PARSE(U, aecd)

PARSE(S,a),;PARSE(U, ecd)
- PARSE(T, accd).

. Notice that PARSE(a,a) succeeds according to the criterion for success glven

above whereas PARSE(T,aecd) will call PARSE(c, aecd), which will not succeed. ‘A real

problem occurs with the calls to PARSE(S,x), for any x.” This is because of the produc-
tion S — SU, which means that PARSE(S x) will be called sgain and- again recursively,

~and that the program will therefore be in 4 loop. Any productlon of the form

X = XW.
] ]

(where W is any string of nonterminals and terminals) will cause this problem. There

are various solutions to the’left recursion problem, one of which leads to prednctgve pars-\

ing, discussed in the next section.

 3.1.3. Predictive Parsing . ' ‘ L.

In order to avoid ‘the problem of left recursion and the infinite loop that it can
cause in recursive descent parsing, one can put each production. into Greibach normal
form [Greibach, 1985),where each production is of the form _ ‘ :

* The symbol A is used for the empty (sero-lenigth) string.

1

12 19

*

4

" which must consider the possnblhtles that Y, matches the empty stngg and Y, matches' )
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where a_ is a terminal character and the X’s. are nontermmals (including thé case n = 0,
. wher€ no nonterminals are found on the right hand side). Actually, it is always p0331ble

to find an equaIent (in the sense thatef 5enerates the same language) grammar in

Greibach two form — that is, with all productions of one of the forms
’ () X, - aX X
(i) X - aX
: (iii) X — a,
and possibly
) (iv) X, — A

A recursive.descent algorithm will then work without getting into a{oop. It is also pos-

sible to write a simple non-recursive algorithm using a stack (which basically does what

. ..the_computer_would do in implementing the recursion, but does not generally have to
push down as much information into the stack, and is therefore marginally more
efficient). .

This method of’ parsmg, using a stack ‘to keep the information needed to do the

recursion, was used early in the history of computational linguistics, by Kuno and Oet-

tinger [1962], and is called predictive parsing. It operates smoothly and efficiently in
many naturally. occurring cases, especially if the strings do not become too long. An
- informal description of predictiv'e parsin'g is a3 follows: :

- 1) The algonthm is initialized by placing S® in the pushdown store and scanmng the left-
most, terminal symbol of the input string.

" 8) Whenever a character a_is under scan and )g is on top of the sttck pick one of the
productions with X, as lef’t hand side and 3, 28 leftmost character on the right hand
side, pop up X‘, and push X, followed by X, (so that X, will be on top), X, slone, or

_ nothing, depending on whether the production is of form (i), (ii) or (iii) above, respec-
tively, and move on to scan the next character to the right in the input stging. (In the
case of a A nght hand .side, X, can be popped up without. movmg on t*rl another

.

character.)

3) Accept the string if and only if the end of the string is encountered precisely at the
same time that the gt. becomes empty. Otherwise, the algorithm fails.

Notice that the formulation uses the “mondeterministic” phrasing 0{* ne of ..
til

and the notion of the algorithm “failing” in certain cases where itgig's

that does mot lcad to a successful parse), then it can backtrack oh'q and make
another choi¢e — until po more productions remain to be picked. An recognition.
schenmve must backtrack anyway to try all alternatives if ‘all, rather than merely one, of
“the..parses are to be found. The nondeterminism inherent in the predictive algorithm

means that the algonthm will require another stack (for the backtracking) and will tend

*When S is used as & n nurmiml lymbol ins grammar or s » stack symbol, it .will always be uud to

.Uenote the axiom, or mbol, of the gnmmn, 2 is conventionll
A

o R ; 13
-n S ' 2 O'

eq

~

X, - 8X,.X, S

'clear that :
no parse exists. This means that if the algorithm makes a mista! ‘tks, a'prgductlon ‘

4




* enough that the combinatorial exploslon of possibilities slows the process appreciably.
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o take exponentlal time in “bad cases”. Some of the pattern matching cases are bad

The algorithm dlscussed below (Earleys Algorithm) t.ends to be faster in these “bad”’
cases. / ,

 As an example of predlctlve parsing, chsnder the grammar of- 531 l converted to
Greibach two form to obtain: e , .

S—;oaTX
S —cTX . L
" S—evV o ' i
- V—=d . > o
V= dv | |
X —cV o 1
T —e

The follownng table shows the actions on the stack that would result from readlng“‘a
given symbol in the input for each posslble symbol on top of the stack: :

N , o
Action table for the grammar ' ’
| Symbolon | Nezt Input | - “Action
Tog of Stack Symbol -
S - a pop S, push X, push T |
S . ¢ pop S, push V
~ S c - pop S, push X, push T
\' d pop V -
\Y -d pop V, push V
X . c “pop X, push V
T c. pop T

»

" On-the input string aecd, the algorithm’s behavior is as shown in the following table:

Actions on the string “aecd”

Steck |  String to Ned\

-, be Read . - Stack - o

s .aecd T - '

v Ir “ed . | X ' N -

X .cd - \'

\'/ d <

.-

.
.

Now let us consider the generation of a structural description. .We start at the top,
with an S. Each time that a aymbol X, is popped up and replaced by a right hand side .

- q, we can expand the parse tree portlon X, to X‘[q] always expanding in a leftrftost . .
fashlon 'I‘he pa.rae tree for.our exa.mple is:

14
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S .
SIS
’ aT\
| X
e /\ .-
cV{
4

3.1.3. Earley’s Algorithm
'Earley’s parsing algorithm is mentnoned in both the Kreuter a.nd Wauchope papers.

One of Kreuter's tasks was to implement Earley’s algorithm in Ada 4s a method of pat--

tern matching. The original form of this algorithm is due to Jay Earley (1970, Rnd the
form used by Kreuter is based on a modification due to' Grasham, Harrison and Ruzzo

~ [1978] (see also [Harrison, 1978]). Earley’s algorithm is as efficient as any “practical” -
general context free parsing algorithm known (there are some theoretical results that are . -
marginally more efficient, including [Valiant, 1975]) and does not require that the gram- -

mar be converted.to any special form. The efficiency of Earley’s algorithm.is .achieved

" by carrylng around possible analyses in parallel, rather than backtracking, as in predic--

~ tive parsing, The analyses cannot actually be done in ‘paralle], of course, on the serial
machines that are standard today; but the algorithm ehmn/natea the repeated generation

of mformation on pa.rtlal parses that is'inherent i in the usual backtra.ckmg method.’

¥

We -will now give an informal description of the modified Earley a.lgorlthm as a
recognizer (the recovery of the parse tree will be: dlscuiscd later), based on the. descrip-
tion of Earley [1970], with modifications: ~ . SR

' The slgonthm scans an input string 8, .. 8, fromleft to nght Aa each symbol s, is s .
scanned, s set of ‘‘states” S, is constructed whlch represents the condition of the recogni-
tion process at that point m the scan. In the modaﬁ'e& slgorithm, each state set S io

represented as the column of an arr . Esch state in the set represents (1) a production _
such that .the algorithm is curren \nping & portion of the input string which is
derived from it right hand side (the poftion to the right 'of the arrow), (2) s point-of- -
scon marker (dot; also called & cursor) in that production which shows how much of the
production’s right hand side has been rccognized 8o far. In Easrley's original formulation,
a pointer was also kept to the position in the input string ot jwhich the slgorithm began to
,look Jor an instance of that particular proluchon This u ot necunry when using fhe
array ]ormat ' .

- The slgonthm continues as long as any one of thne opcntiona is ;pplic;ble to & pro-
4 duction in the atray. The operations sre mutually exclusive. The predictor operation -
"is spplicable to s state when there is & nonterminal immediately to the right of the dot.
Its effect ia to tdd one’ new state to 8, for each nlurnstive of that ronterminal. Thc

- N

\

" “Earley’s algorithm is.an-edémple of » more pnonl mthod of roducln( upoundd proennc to polynomial

processes.CThis topic will not be explored ben, it is beyond the scope of this work, and, in fact, has not
- been symematically developed in the Iiumun For a discussion of some relevant eoncidondom, oee [Tueel,
Jortheoming] and [Pereira and Warresi, 1083]. The latter reference also points out thai Earley's n.l;orllhm is

v

L mnlb s pndculu case of chut pudn‘, qﬂomlﬁud in [qu, lM]

s T
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lt.a eﬂect is to add one new state to S for euch a.lternative of that nonterminal. The

point-of-scan dot is placed at the beginning of the right hand side of each production ad- -
ded by the predicto™ since none of its symbols has yet been scanned. In the modified al-

. gorithm, these are always placed in the array at position (i,5). Thus the predictor adds to
the array at (i,i) all productions which might generate substrings.beginning at 3, (but

_ only adds one copy of any production, thus avolding the danger of mﬂmte looping in-
herent in recursive deaceut) : .

The scanner is applicable just in case there is termmal ‘to the nght of the dot in
some production in column i. The scanner compares that symbol with ‘1' and if they

match, it adds the production to column i+1, in the same row as the original production
in column i, with the dot' moved over one position in thé production to indicate that that
terminal symbol has been scanned. After the scanner is applied to all productidas i ina
column to which it lshpplicable, he algonthm moves on to the next column p -
‘* The tlnkd operation, the colipletor, is apphcable to a production if ns dot is at the
end of its'right.hand side. If the left hand side of the production is “P” and the produc- - o
“ tion is in row i, then the completer adds all productions from column § Which have P o : : (1
directly to the rlght of the dot, moving the dot one place to the right (i.. ‘over P). In- " '
. tuitively, colump:i is the state set the algorithm was in when it.predicted the posslblhty
of the praduction just completed (the one with left hand side P). Now that P has been :
successfully found,. the comploter goes back to all the states in S, which caused the algo- e
“a rithm to look for & P ‘#nd moves the dot over the P in these states to shqw that it has L
- been successfufly scunned ' . § . :

In the caoe(o/ rules with A right Mnindu,nmalurthcr modtﬁcaglaom to each of the. .-
procenu menlioned need to be made. These will not be detailed. hcre, but -may be Jound -
in tmy of the re/erencu mentwned above. )

E)
rd

Examples _ .
" The a.lgomhm described above, using the grammar \
- _ ' S —» aTc. . ,
8§ —SU ¢ S
S—T ‘ '
T =>e :
| U—d , b X
to recognize the input string
' _ \ . aecd ©- T PR : X E
_produces the array below. = - . o , S

‘V
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" Unread input (. indicates point of scan)
.aecd .ecd - .ed d

1y | ny | .y AL4) (9
S—aTc | S—aTec | S—aTc | S—aTec. , S
s-su { - | |s=su [s—su. | "~ N

T — e _ ,
SR U (29 (24) (19
, i T—oe |T—e . .
P TNCY UK BT
« T - . _ (4.4 '(tsz'.

U—d U—d

1

Commcntary on the, Examplez R - - \

The Arrey . - : '
: Sipte the input st.rmg is of length 4, t.he a.rray will have 6 columns These are labeled in )
' e example with the input string, with a point-of-scan marker to show how much of the . : ¢
string hoe been read pnor to entering any productions into that column. :

"Column 1: °

The array is initialized by the entry into (1,1) of the product.lons 8~ .aTe¢, 8 — .SU

8 — .T. The predictor then causes the production T =+ .e to be added to (l 1). Since
the predlctor and ¢ r/omplet.er are not applicable, the scanner ls invoked, causmg entries to .

be placed i in colunfn 2

Column £: . ' .

The scanner Iooks at t.he next charact.er and finds it to be a. Since t.lle only production

in column 1 with an a-at the point of scan is.8 —» AaTe, in row 1, the pro{gtlon 8- o
a.Te is entered into (1,2). The predictor is now sppllcsble, causing T — .e {3 be added

to (2,2). . - R . ‘* '

Colsmn 3: - “

The scanner first operat.ea on the production T —+ ., causing T — e to be entered into
(2,3). This latter causes the completer to be invoked. Since it occurs in:row 2, the com-
pleter searches column 2 and finds one production, 8 — a.Te, with & T lmmcdiat.ely fol-
lowing the point-of-scan marker. This producuon is thcrefore moved horizontally to
‘column 3, entered into (1,3) 88 8 — aT.c

Column §:

The scariner now llnds aeatthe polnt. of sean and moves 8 —» aT.c into this column as
8 — aTe.. The:completer then finds 8 — .8U in column 1 and moves it to (1, 4) as 8
- S.U This causes the predlctor to-enter U —+  into (4,4).

Cotamis: -
The scanner is used again, producmg the production U —» d. in (4,5). ‘This causes the -
completer to search column 4 for & production with U at the point of scan, and it finds 8
— 8.U and moves it across to (1,6) as 8 —+ 8U. The fact that there is a production in
, (1,5) with an'8 as left hand side and the fact that the string is now indicated together
« + indicate that s successful pm;e hu been found.

s
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. r : . . . .
To6 recover the 'parse, it merely needs ta be noted that the portion of the right hand.

side of a production ig the array to the left .of the polnt of 'scani has successfully been .- -
matched to a portion of the string bemg parsed that is given by the coordinates of its

- location ‘in the array. If the production is in the array at.(i,j), then that portion of the
right hand side has been Imnatched to positions i through j-1 (notice thatsthis means t
productions added by the predictor, which have nothing to the left of the dot and apgat/~> J\
(1,1) have been matched to nothing, as we would desire). - Completed productlons&ll
ones with the dot at the end of the.right hand side) constitute a siccessful parse of a .
portion,of the string, which, ik a parse tre€, would be dominated by the left hand_ side of h ¥
the production. In our example, for instance, 8 — 8U. is found in (1,5), so it consti- _
tutes a successful parse of positions 1 througl’ 4, that is, of the whole string, while U — .
d. parses only positions 4 through 4 — only the fourth character. The production § —
aTC. parses positions 1 through 3, while T — e, ‘parses position 2. The single charac-
ters a, e, ¢, and d cover posltlons 1,2,3, and 4, respectively, of course. 2

An algorithm to recover-the parse must start with the (1,n) position, where n-1 is
the length of the string, then check (1,k) and (k,n) for each k = 1 ... n. For eachl one
found, a recursive call will ¢heck in the same manner until everything i is reduced to sin-
gle Symbols. The details can be found in [Harnson 1978]-(though the reader should be

aware that he numbers h|s array from zero, rather than one)
'

3.3. USING EARLEY’'S ALGORITHM TO MATCH PATTERNS

Once the parse array has been formed, all parses can be found in time proportional

to n?, where n is the length of the input string, using the algorithm mentioned,in -the
last section. Formation of the array itself takes, in the worst case, time proportional to

.n® because the completer operation potentially has to examine a: :whole column of . the

array, which takes some multiple of n operations, for each of" some: multnple of n? entries
(see |Harrison, 1978] for a detailed analysis). Storage for a parse array is proportional to
n? (since it is two-dimensional and each dimension is proportional to n) but can be large
|f the grammar is large. However, once the results of the pattern match are no longer
needed the storage can be reclaimed. Theré is also the possibility of storing the array as
a list if it is sparse. These factors need to be investigated, as Kreuter 18 contmumg to do
(see the second paper of this collection). S : oo

In order to understand the emphasis of Kreuter’s paper, let us consider bneﬂy how
the pattern primitives of SNOBOL4 (§2.2), as used in Post-X (§2.3) would be treated. in
an appropriately modified Earley’s algorithm : ' -

) Concatenation and altérnation and “the grouping thcreof by parentheses are
‘reflected in the composltlon of the grammar rles. Thus

P = Q | (‘ab¢’ POS(5)) LEN(12) REM
(where Q is another pattern) would become the grammar °

P — R LEN(12) REM
R — ‘abe’ POS(5) ° '

'Ase'ignment operators are not used, since the branches of the tree according to the gram-
mar are used in the Post-X action statements. Notice that the parentheses used to
‘group the elemente of the pattern have affected . the grammiar produced, and will’

s e

18
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therefore affect the branches of the tree produced upon a successful match (parse) and

Reeker

-the selectors used to refer to matched substrmgs in ‘the action portnon of the form (see

§2 3) R
B The pattern prnmltwes can be dealt with when the Scanner or predictor are used
They are treated as follows: :

POS(1). If POS(i) is l‘ound at the point of scan, then the production POB(I) 4 A, can
be entered by the predictor in that column if and only if it is column i+) «indicating
.that i characters-have been scanned). - o W

RPOS(1). Treated snmxlarly, with the count bemg from the end of the string (this will
mean that the string length needs to be obtained before the parse, which is advidgble for
purposes of efficient storage allocation for the array anyway)

~ ARB, .If ARB is found at the point of scan in column i, then the production ARB —
A: is entered into position (i,i) in the arfay, ARB — s is entered into (i,i+1) where s,

is the i-th character.in the string being matched, etc. to the end of the string. (It is also
‘possible to deal with ARB on.a column-by-column basis by entering only the production .

‘mentioned in (i,i) and the productidn ARB —» s, .ARB This treatment will produce s - ‘

right-branching parse tree which can be modlﬂed into the desired tree by poab-
processing.) . :

" REM. When REM is found at the pomt of scan in column i, then the production REM -
~ X, can be entered into (i,n); where X is the remaxnder of the string and n is the last

column (J.e. Xiss, ...8.). . —

BREAK(x) is treated like ARB, except that’ it is neceuuy to check for the break cha:-
acters and enter the productions accordingly. That is, BREAK(x) — y. is entered
into the array only if y does not contain any occurrence of a character in x.

SPAN(X) is treated like BREAK, except th;t the string y in the descnptlon muut con-
tain only characters found in the string x..

ANY. (x) matches qply single characters. Thus the production ANY(x) -+ y. ia entered *

only into (i,i+1) — ¥nd only if the i-th character is in x.

NOTANY(:} is treated analogously to ANY except that the i-th chtracter must nqt be
inx. | .

LEN(n) is treated 1ike ARB, except that it.a_ production is only entered at (i,ij-n).

BAL can bé done analogously to ARB. If productions sre to be entered into (i,i),”
(i,i+1),... up to the end of the string, then it will be necessary to check for balance in the
_strings bel‘ore entering the appropriate productions. Alternatively, the productions BAL
-"os A, BAL-— (' BAL ')’ and BAL - ,BAL BAL can be entered at (i,i), and the’
parse obtained can be postpvocmed to obtain the sppropriate tree structure.

Othgr pattern variables are dealt with tntlogously The treatment of NULL and |it.on.l
lt.ringp should bé obvious (just the usual trottmcnt in Earley's a.lgorit.hm)

3.3. ALTERNATIVE PATTERN MATCHING ALGORITHMB

There are various fast string msatching algorithms svailable, but these were not
considered in the research because of the requirement for retuming s structural descnp-
tion, ip order to gnabde Post-X-like processing. For some specific string matching algo-

rithms and references to the literature, see [Liu and Fleck, 1979] The reader should be-

aware thatthe-SNOBOL4 patterns are more powerful than for instance, regular expres-
sions; which certain algorithms, such as those employed in text editors, match rather
» : E -

26
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‘of datatypes, which are basically list structurés, *
. pattern-dirécted, angd the trace and dump facilities‘are 1iot developed sufficiently to make

5. .CONCLUSION ' e

\ ’, . 4
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- ’ : ‘ .
EXTENDING THE PATTERNqDIRECTED PARADIGM '

.Given the fact-that so much of Al and even%h consists of mampul uon of lists
and trees rather than strings, the fact that SN §Ob4 wa3 pot considered a hat process-
lng langua.pe was undoubtedly one reason that it did not become a major Al proghm~
ming language, degpite its excellent pattern-directed ,string,processing facilities (and, not
incidentallysfree distribution by, Bell Laborpt.one ) SNOBOIA does allow the definition

iut the language for using these is not

them'easy to use. -(Other reasons for SNOBQLA’s Tailure' to capturmthe “Al market”
have to do with control structures [Bailes and Reker, 1980a]).. v <~

_ ‘The Post-X language (see §2.3), while orlgmally 'desngned Ibr smng processmg,
sought to provide pattern matching on trees in a mannper that would bo analogous £ the

string pattern matching facilities of the langusge. The method of doingthis: was to
extend the use of the SNQBOM Qattern BAL (see §2.2.2) to’ a,llow the specification of
the. value of the sttuctufe within a. balzu;ce(i set of parentheses designating a tree. In
addition, som® tree functions were added for use within the action portion of the forms -
dealing with ‘trees (see [Bailes- and Reoker, 1980b|).. The attempt-was only partially suces-
cessful. Though the specnﬁcatlons ‘weye easy to write and easy to.read in some cases,
they were confusing in others, partially because of confusion among labels within tices
and data iterns on the leaves of trees. Wauchope seeks to remedy this deficiency in the
work reported in the third, paper of this report, and in continuing work. As Winston °

.and Horn [1981] have said, “Bulldmg in these capablhtAes can be hard. The literature

oﬂers httle gmdance

¥ »

The following papers addTess in a tentative way two important issues in t(c provi-_'
sion of pattern-directed string and list processing in Ada, Kreuter's paper deals with
alternative algorithms for string pattern miatghing which will ‘also return parsés or struc-
tural descriptions of the string, where structural indicators are built into the pﬁtterns in
the manner of Post-X. ‘The matching process for such general patterns is time-

_consuming, so efficiency will be an important consideration. Wauchope 3 paper makes a

further extension of the pattern-dlrected paradigm — to arbitrary LISP-type data struc-
tures. This work should lead to a useful altematwe language for artificial intelligence,
using Ada, and is being continued. '

In consideraing future applicatigns of artificial lntelhgc)gce it § important to realize

" tha game playing, language processing, expert systems; and the other sorts of things

that we conventionally think of under the umbreﬂu. of Al are going to be combined with
snmulatlons numerical programs, large file processing applications, and the like. For
these “conglomerate” applications, the languages that have,m6it commonly beén used in

‘Al research may not he \he most useful. ‘In our view,> Ad® cam provide an excellent

environment for artificial i telhgence apphcatnons of the Tutire because of its flexibility
‘and. generality. The problems addressed in this report’ i prcqvmon of appropriate facili-
ties Shrough packages and making those facllmes efficient eno€gh that large and complex
progryms will be feasible within them —— are ‘ofea that need to be addressed if this 4
potentlal is to be realized. ¥ : )
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PATTERN MATCHING ALGORITHMS IN ADA
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To _pst. the unfulnul of Adq in artificial intelligence programming, it is desired to develop
Ads’ pac ages which mirror the hpuhyltiu of languages such as LISP or SNOBOL4 which have
proven their utility in artifi¢ial intelligence. The development of SNOBOL4-like pattern matchm; :
packages was undertaken by-this suthor. Viewing pattern matching as an extended parsing prob-

.lem, Ada packages fox’ patterh matching utilising Earley’s efficient parsing rithm yere

: developed, as well as packages implementing the more traditional backtracking (recursive descent)
o, approach. Since a full Ads implementation was not available at the time, these eﬂoru should be
toe " considered as pnhminary, but indicate a direction for fuxther research. -

1. lNTRODUCTIONz RESEARCH OBJECTWES

This project is pait of an overall effort to add useful amﬁclal mtelhgence program-
ming tools to Ada. One such toq} is pattermdlrected string processing, of the gort avail: -
able in the language Post-X [Ballea anilj&am/i%%,b] This involves the implementa-

e tion of pattern matching algorithms in"Ada which actually &eturn a parse tree of the
) match of a pattern according to a structured pattern. In other words, pattern matching
according to a context-free grammar with prlmmves like those of SNOBOIA [Griswold

et al, 1971] is the goal..  © %

Parsing can be an expensive operation, timewise, to use over and over as a basis of

‘ a programming language — especially when the patterns are as general as those in SNO-

- BOL4. The purpose of the research reported here was to consider the particular parsing

algorithms that can be implemented using Ada packages. Because a number of con-

siderations are involved, including the basic eﬁicnency of the algorithm and the eﬂ'lclency

of its implementation in the Ada environgment, it is advnsablo Whls in an experimen-
tal manner, implementing and tostlng

.

. B DEFINITION OF PATTERNS

Before any pattern mstchln; algorithm could be mplemented a suitable deﬁnmon

— one easily represented in Ada — had to be developed. The packsging facilities of
‘Ada would then sllow. the pattern répresentation and pattern building functions to be’
Saveloped and compiled independently from the pattern miatching routines. The pack- .
GaRng facilities allowed by the available compiler are at present incomplete (see the
“fecommendations in §4 of this paper for a discussion of t.he shortcomings of the current
version of the compiler used in this work) but it waé possible to demonstrate within
them a measure of enéapsulation. A fully validated Ada (one that implements the full
.definithon of the language) will enable more extensive uffe of the package to build hierar-

, chies of*libraries of packages, with each'library st a given level containing packages use-

* tul to the applications at the next higher level. Thus at the bottom levél the libraries
" . would contain packages of g®erally useful abstract data types such as stacks queues,
" linked lists, sequences, stnnga (a more complex variety of string than that bmlt into
Ada), matrices, etc., defined in terms of the built-in types provided by Ada. At the next
higher level would be packages that could use these lower level defined types. For
instance, the pattern matching packages would be defined at this level. At the next- .
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higher levelx:)uld be packages utllimng complex structures such as patterns — for
‘instance, a compiler could be defined at this level, uumg the pattern matching algorithms
to do the parsing. . ®

_The first working dcﬁnmon of 3 pattern was; -

—A PAT’I‘ERN i3 an (unconstralned) array of ALTERNATIVE:. :

—-—An ALTERNATIVE is an (unconstrained) array of BEADs. .(Bead is used here to
corr¢spond to SNOBOL4 terminology (Griswold et al, 1971}].)

- —A BEAD is any of : .
(i) astring; . : S
(ii) s PATTERN;

(iii) a primitive function (prlmmvc functions aclectcd corresponded to the moot
~ useful SNOBOLM primitives.) —

The available compiler, though it supports unconstrained. arrays, does not support
size-variant records, so the utility of using unconstrained arrays in a package is limited.
The next working definition for a pattern therefore made an Alternative a linked list of
Beads. Unfortunately, without generic packages, a linked list-could not be- convemently
defined outside the pattern package. Thus, although the type Alternative was imple-
mented as a linked list, a Linked List type was mever cxpllcltly defined, The working
definition for a Pattern then became, in Ada .

type p(un-funcls(ARBl REMAlNl POSl SPAN1, ANY1,

& . NOTANYI BREAK]1, TABI);
{¥pe Primitive is record o P
Name : prim-func; +. ° ’
Arg : atrlng-pomter ' . -
eng record; . : o -

type Paitern; '
type Kinds is (terminal, non-terminal, operation,
R, L);
--’R and L are used to hold the left and right
- unmatched aubstnngs

45

type Bead(Kmd Kmds) is record
‘ case Kind is 4
when non-terminal ==> Choice : Pattern;
when terminal ==> Str : string-pointer;
when operation ==> Op : Primitive;
when R ==> null;’ o _
when L => null;, o )
- end case; i
end record;

type salt-pointer;
type Alternates is record
C :Bead;

L R

' \o.
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next : alt-point;)r;_ _ N
end record;” | /
9 type a.lt—pointer is access Alternates;

type pata i8 arrty(Pomlve range <>) of Alteruates, .
type Pattern i is access pats;

Fma.lly a type Sys-Pa.t. was introduced, so that the pattern bulldmg functions could
distinguish between mterna\ly -generated sulbpat.tcrna and actual user-defined patterns.
For example, the pattern

. P= (“a.” + “b” + “c") o ' N
should have a length of 3; but the pattern
P = (A +“c”),
‘where
. A= (40”4 b”),
should have a length of 2. By overloading the pattern building functlons the compiler is

forced to choose the proper rcprescntatlon in both cases.

The-problem of pattern matching is given a pattern and a target string, to find a
substting such that for each set of alternatives a bead can be’ found which matches the
substring starting at the point where the last set of alternatives leaves off. In some
schemes the substring may start either flush left, flush right, or anywhere within the tar-
.-, get string, depending on a positional indicator passed to the pattern matching algorithm
" along ‘'with the pattern andathie target string. Since the patterns used here include the

.."* ARB primitive function (which matches any arbitrarily long string of characters) posi-

tional indicators have been left out of this initial work. All patterns are matched flush
left. However, provision has been made to include positional indicators in future ver-'
sions. '

3. SOME ALGORITHMS FOR PATTERN MATCHING

" 3.1. BACKTRACKING: nEcunsva DESCENT

. The most intuitive approach to the ] pattem matching problem is to try every possi-
bility for each pattern elemient individually. This leads to the “backtracking” method.
This method starts by trying each bead, for any given set of alternatives, until a match
is found. Then for the next set of alternatives each bead is tried, etc., until all sets of
alternatives have been matched. If for any set of alternatives no bead matches, then the
algorithm backtracks — that is, the previous set of alternatives is tried. ngain, starting
from the bead that just matched. Glearly every possible parse of the string will be
found in- this fashion, but there are sevenl problems which arise with this method which

. will be discussed Iatcr v :

A typical way of |mplemont.lng t.he bscktnckmg method :nd the way that,l choee,
is the 30 called recursjve descent parsing algorithm’. As the name imphes. recursion is
. used extensively. by this method upecully if the bea.d being mstchod is itself » pattern.
' [‘Sn m.n of the first paper in thlﬁ report. -eds) . ' .
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(Recall that a bead may be either a. strmg, a pattern’ or a prlmltlve functlon ) In this

case the recursive descent algorithm calls itself (i.e. recursion), passing the value of the
bead (i.e. the pattern) and the cursor position of the string. The positional indicator, if
used, would be flush left. In this fashion the algorithm ‘“descends” with recursive calls
unt.l the bead being matched is not a pattern. At this point, if the bead is a string it is
matched against the target. If the b‘iad is ‘'a primitive function, then a string is derived
from the function, the target string and the cursor position. This derived string is then
matched against the target. If this matching is successful the next set of alternatives at
this level of descent is tried. (This may be done by recursion also, by iteration, using a
stack, or by coroutines.) After cackp_et, of alternatives is matched (or if no match is
ext higher level with the matched substrinw:)r'the
null stnng if no match is found). ' -

3.2. COROUTINE IMPLEMENTATION OF BACKTRACKING

An elegant way ‘of implementing the backtrackmg aspect of the algorithm — that
is, when no match is found, returning to a prevlous set of alternatives and resuming

where the algorithm left off — is through the use of coroutinds, which in Ada are tasks.*

The task starts by examining each bead in the first set of alternatives. For each bead
that successfully matches, a new task is started, which examines the remainder of the
string and the remaining sets of alternatives. When the last set of alternatives has been

examined, the task passes back the matching substrings (or the null string if no match
has occurred) and terminates. The parent task then adds its substring to the beginning .

of each tree on the list which has been passed ta it. This new list of trees is then passed
back, and the task terminates, etc., until the topmost task completes all possible parse
trees. Thus although backtracking takes place (each possibility is considered individu-
ally) it occurs with a degrée of concurrency dependent on the run-time environment.

Unfortunately, once again the available compiler does not have tasking as one of its
features. The process described above can be implemented as a function, but with the
loss of coneurrency and elegance. Furthermore, as shown in the analysls below, back-
tracking can be aygry costly way of conducting pattern matching. Some of this cost
can potentially be absorbed by concurrency, where the system allows, but the implemen-

‘tation and run-time analysis of this must await a validated Ada (so that concurrent
tasks can be incorporated ‘into the algorithm). The run-time analysis could then con- -

sider both time and resource utilization. As multiprocessors appear this analysis could
provide some interesting insights into time consumption versus resource demands.

\ 4 . . . .
Twp noteworthy problems exist with the pattem matchmg method outlined above.
The first occurs if the pattern itself is left recursive — that is, it has the form P = P’
+ A, where P! is a pattern which can produce P, and A is any pattern (possibly null).

The récursive descent algorithm will examine P by first consldenng its first set of alter-

natives, f.e. P! . This will cause a recursive call, so that P! is considered. Since P!
can produce P, eventually the algorithm will rtursively consider P, which then causes a

- recursive call to P! , eventually leading to another call:to P, etc. without ever having

advanced the target string cursor. Thus the recursive descent method goes into an
infinite loop if it encounters a left recursive pgttern. Fortunately this is not a major

‘problem since it has been shown that any pathern can be generated by a pattern in

LY

['See §1.3 of the irst paper in this report. -ed.)
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’

Greibach Normal Form, which means the pattern has one of the following forms:.
P=a+Pl+P2+..+Pn "
P=a ' A

= pull - e

where a is any string, and the P’s are all patterns.” Clearly a.pattern in Gréibach Nor-
mal Form cannot-be left recursive, so if any given pattern is first modified into this
_ form, the recursive descent algorithm will work..Although this problem of handling left
recursion is not major since any pattern can be transformed into Greibach Normal
Form, the problem of the time requirements of the backtracking algorithim in the most
general cases of patterns remains. Consider as an'example the pattern P = (“a” + P +
P) or null. Suppose this pattern is to be matched against a string of a's. Clearly the left- . f
- most 8 will be matched by the “a” of P. All other a's can be matched by either the first '
(recursive) occurrence of P, or by the second, independent of how any previous or subse- -
" quept’ a’s are matched. "Thus if the string is L long, combinatorics tells us that the

number of possible parses is 1 + 2 — that is, the number of parses is exponential.
Since the backtracking algorithm considers each possible parse individually, it will
require exponential time to parse such a pattern. So, although the backtracking method
may be ugeful given certain restrictions on the allowable patterns, in the most general |
case the time constraints become burdensome. '

*

3.3. USE OF EARLEY'S ALGORITHM

Obviously, the way to reduce the time costs of parsing is to not treat each indivi-
“dual possibility by itself, rather to group them into classes. In the above example, for
instance, there is no need to consider both of the recursive P’s individually- since they
both reduce to the same tre¢. Both P's can be considered in parallel, and then the above -
example will parse in linear time! Even with more complex examples, it can be shown
that by developing a scheme to consider similar possibilities in parallel, parsing can be
accomplished in polynomial time, a vast improvement over the exponentisl time required
by the backtracking method. One such scheme, which can be implemented -without any
initial manipulation #f the pattern is known as Earley's algorithm, :

_Earley’s algorithm is described in its mathematical details in [Harrison, 1978 where
a modified (improved) version is called simply “a good .practical algorithm”. The main
problem | encountered in implementing this algorithny was developing reasonable data
structures to represent the rather complex mathematical formulas introduced — patterns
must be converted to ‘“dotted rules”, a triangular matrix of dotted rules must be

created, and the functions “X", “¢”, and “predict” must be implemented.! Once again
_ 1 . _ 5 gai

[1t should be mentioned here that it is not common for patterns to call themselves recursively. Recursive -t
patterns are, however, a possibility that one might not want to exchide, and are very handy in some in- '
stances. In SNOBOL4, they are implemented through the use of “unevalusted expressions”, and heurlstics .

are used to prevent infinite loops of recursive calls (which, in implementation, would tend to cause a stack

overflow). A good discussion of the use of unevaluated expremions.in SNOBOL4 can be found in [Griswold,

1975]; the heuristic mentioned is also discussed in [Griswold, 1984]. In Prolog, thers sre aleo problems with

left.recursion. These can be-solved either by automatie transformation of left-recursive clauses or by check-

ing for the occurrence of particular states (see [Enalle et o, 1084)). -ed] . o

['The “ X' operation is used to implement Earley’s “scanner” (wee §3.1.3 i the Arst paper of this repart), -

1
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the cffon was hampcrcd by the Iack of generic packaglng lacllitlca in t:hc currexitly-

structures had to be developed concurrently with the rest of the algornhm

Anothcr problem encountered in nnplcmcntmg Harrison’s version of Earley’s algo-
rithm is that this version (as most are) is deyeloped for a context-free grammar, not. for
pattern matching. Although for the most part context-free parsing is analogous to pat:
tern matching, the analogy breaks down when the primitive functions are considered.
. These primitive functions are in general string and cursor dependent, and so have no
context freerepresentation. Since they are at most dependent on the string and curser,
~ though, it was possible to alter the “predict” function so as to proluce simple string
derivations of each primitive function as ‘it is encountered during ghe parse. This
increases the. time requirements- as compared to a simple context-free p’mins problem,

but the modified algorithm still reqmres n¢ more than polynomial time.’

As can readily be seen from the' above dlscusalon, slthough Earley’s algonthm i
faster than the backtracking method, the price is paid in the complexity of algorithm
and the space it takes while running. The complexity also may make it more difficult
to develop Earley’s algorithm to take advantage of a eon\turrcnt environment. Now
that the algorithms have been developed into working programs, it remains to be stu-
died whether the dlﬂlcultles of Earley’s algomhm outwe&gh its bcncﬁta

4. COB&LUSIONS

Two working programs in Ada have been produced utilizing two dlﬂcrcnt methods
for pattern matching, but (clcurly, more work remains to be done. To provide maximum
utlhty to future users and résearchers, the programs developed should be rewritten in a
fully validated Ada, making use of the packaging facilities as detailed in the oD
specifications for the language. In the specific .case of the backtracking algorithm for
pattern matching, the rewrite should also. include ¢ e ise of tasks. In this fuller Ada -
environment, the two methods of pattern matghing could better be tested against ‘each
other in real time, to. provide a comptmon of their relatlve merits in tiine, space and
concurrency.

Two other suucstnow regarding Ada have arisen from these efforts: Flm Ada
makes no provision for treating functions as data types.. Such s treatment is eapeclally
useful in pattern matching, where it is desirable to associate an action to be tak#h with
a pattern to be matched, as in Post-X. Second, when producing large systems as is often
the case in Al programming it ‘would be beneficial to be able to declare subprograms
within a package to*be external, so as to be able to compile them separately from the
rest of the package. Although thc'sepmu compilation of the packages themselves is
very useful, in complcx systems tvhe package itsélf may grow to & cumbersome point,
with each updatc requiring inordinate amounts of compile t.nmo Facilities fo:* external
compllmou help to relieve this load. ' : :

In this paper, we have discussed motllodl of implemontmg within Ads the central
facilities for psttern-dlroctod pmgnmmm; with character strings (which ‘could be

and both the “X’* and “s” opontlon- are und lo Implomnt l‘.ulq’l “eomplour” in Harrloon's vmlon of
the algorithm. -ed.]

["Bes §3.2 of the first pupot in this upon for » dheualon of the modllmlou nndod -od ]
- >
i
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T | extonded to other datatypes as au“ested in [Wauchope, 1984]) Work is oontlnulng in
S compar,ng ‘these- methoda and-testing their eﬂlclency

’
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'PATTERN-DIRECTED LIST PROCESSING IN ADA

9

_Kenneth Wauchope®

e ' \ Tulqng University

Abstract o
A_pattern-directed list proceseing facility for the Ada programming language is presented.
Pattern lists for matching against source lists are constructed from a set of SNOBOL4-derived
primitives which have been extended to be applicable to arbitrasily complex LISP-like data struc-
tures. Patterns may also contain user-defined symbiols, which can serve as nonterminal symbols of
a context-free grammar. Basic list creation and manipulation are made available to the program-
mer via a package of LISP:like functions and data’types. Several examples of pomible applications
in Artificial Intelligence are explored-focusing on computational linguistics problems such as
transformational grammar and parsing-denionatrating the construttion of patterns and the use of
various operations available for testing and manipulating the values which the matcher returns.

’

;o

1. INTRODUCTION

~ The Ada language, with its goal of being the exclusive high level programming sys-
tem used in the Department of Defense, includes data abstraction facilities that in effect
make it possible to extend the language by creating new data types and defining the
operators that are to act upon them. For specialized ageas of application, a programmer

. can invoke the appropriate data abstraction (package) and proceed to write code using

the new high-level constructs it provides, just as if using a new 'language specifically
designed for that problem domain. One application area of potential interest to Ada

- ubers.is artificial intelligence-including the field of. computational Iin.guis‘tics, which offers.

such possibilities as natural language interfaces with computers, text understanding

*.and/or information retrieval, natural language programﬁ'ﬁng, and machine translation.

Programming tasks in this category are usually undertaken using specialized string- or
list-processing languages such as SNOBOL4 or LISP, and extending Ada’s ability to pro-
cess data structures of this sort would greatly facilitate the development of language
processing and other Al-related systems in that programming environment. '

Pattern matching is a computational .paradigm that is particularly appropriitc to
language processing applications, as a language can generally be described in terms of a
seriés of syntactic patterns and subsequent pattern-directed semantic mappings called a

. grammar. [f an input sequence of terminal symbols successfully matches the grammar’s
- set of patterns (rewrite rules), then it is s legitimate sentence in the language and

appropriate further actions (creation of a parse tree, or mapping to a deep structure or
mesning representation) can be carried out. Psttern matching can also be used to drive
the process in the opposite direction, such as matching certain deep structure kernels
and then performing appropriate grammatical transformations on them to yield new sur-

. face structure sentences. Many other Al applications also employ production rules that

are fired by a successful fiiatehing of symbolic state conditions, and so pattern matching
can be used to perform~such tasks as formula unification, symbolic differential and

. integral calculus, and similar problems involving sequences of symbols that are to be

analyzed for content and structure.

, "Ourrent address, Navy Oenter for Applied Research in Artificial Intalligence, Gode 7510, Navg) Resenrch. |
Laboratory, Washington, D.C. 20378, " : ) "

o . . . . .
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The objective of this research was to design and implement a pattern-directed list
processing package in Ada to test the hypothesis that such a package would provide a
practical and useful facility for artificial intelligence programmiing. A package of list
datatypes and list-manipulation functions were created. List patterns could then be con-
structed out of SNOBOL-like pattern matching’ primitives, and the matcher was to .
return a list of short-term variables corresponding to the values matched (perhaps only
partially) by the pattern components. These values should then be capable of being
tested, concatenated, or subjected to further matching. Once the matcher was opera-
tional, it would be tested in various areas of application (concentrating upon computa-
tional linguistics problems) to determine the usefiilness of the various matching primi- .
" tives and the operations l!pon the returned values.

2. DESIGN OF THE PACKAGE

2.1. LIST PROCESSING 4

_ The most widely used Al programming language in the United States is LISP,
which represents sequences of symbols (atoms) as binary linked lists. The primary - list
manipulators are CAR and CDR, which return the first element and remainder of a list,
respectively, and CONS, which creates a new list out of a pair of elements (themselves
¢either atoms or lists). Various predicates are also available to test the identity of data
items, and more powerful list manipulation functions can be built up out of these -
simpler ones. : ' . ' -

 Trees are a natural way of represénting the structural composition of sentences in a
.language, and binary lists c%be made to accommodate these structures quite easily.
_For example, a parse tree for b is in the garden” can be represented by the binary list

(S(NP(Pro{he))VP(V(is)PP(P(in)NP(Det{the)N(garden))),

where the constituents of each phrase marker are to be found asp sublist imm;diately
- following it.- ' '

The initial task toward creating a list pattern matcher in Ada was 'to provide
means for the creation and manipulation of atoms and lists. This was accomplished by
defining “S-Expression” as an abstract data type, with its internal structure (either a list
node having left and right child pointers, or atom node having a name field, value field
and next pointer) hiddén from view so that only the LISP functions exported from the
- package could be used to operate upon values of the type. S-Expression objects are
created by a function “Quote” which converts Ada strings (representing properly bal-
anced S-expressions) into linked-list atructures; the function bears little resemblance to
the LISP Quote (which suppresses evaluation) since no LISP interpreter is actuslly
involved, but the name was borrowed because of its analogous function. The most use-
ful core LISP functions and preflicates, as well as several higher-level ones (such as -
Member and Append), constitute the remainder of the operations available on the
abstract type. . t ' : '

! . )

3.3. LIST PATTERN MATCHING

Since patterns would be constructed by the user in’the same form as the source
lists (i.c. parenthesized strings of symbols), it was decided to convert the patterns them-
selves into lists (using Quote) and then perform the matching by stepping through each
list and mapping corresponding elements onto each other. - The matching itself is thus a

o

a' .- - . N ‘ ¥ . 29

36

R T LT "N




Wauchope , 30  List Processing in Ada -

lis-traversal process and so was 1mplementcd in Ada in much the %me way as a pattern
matcher would be written ln LISP itself, using recursive procedufes written'in thc Ada
pseudo-LISP.

To adapt SNOBOL-hke stnng matchnng pnmltlvcs to the job of lnst matching, two
versions of each primitive were defined: the first class matching list components (i.e. the
CARs of each node in a particular sublist, which can be either atoms or. lists), and the

second matching, individual atoms at arbitrary depths of nesting in the tree. Orce the -

pattern matcher became operational, it would then be possible to determine what use
might be made of the two classes of pmthes in actual applications. The primitives
implemented are listed below.

/

ceseneemee Class It List-Component Primitives —ieeeme- |
LIT(s): Matches if the next list element of the source is equal to the element e (atom or
- list). Examples: LIT(hello), LIT( ((hi)there) )‘ ,
LEN(n): Matches & series of n list elements. (st.oms or llst.s) Example LEN(B)
9 BAL: M;tches an arbitrary number of list elements. ,

ANY(s): Matchas if the next list element of the source is s member of the sequence of
elements s. Examples: ANY(boy cat dog), ANY(atom1 (list 2) ((list)3) ).

NOTANY(-) Matches if the next list element of the source is not a member of the se-
‘quence  of elements s. Examples: NOTANY(bad wom’), NOTANY( (real -
bad)(even(worse)) ). .

BREAK(s): Matches all llsQ elements until one is encountered that. iss member of the .
- sequence ‘of elements s. Examples: BREAK(stop), BREAK((go(no)further)).

SPAN(s): Matches list elements until one is_encountered that is not s member of the se-
) Quence of elementa s. Examples: SPAN(ok ;ood), SPAN(yea (ﬂne))

——--—v= Class II: Leaf (Atom) Prlmltlvu e
LITL(s): Matches it the next atom:in the source is the atom -“s". Example
LITL(hello). .
LENL(n): Matches the next n stoms in the source. Example: LENL(5).
ARB: Matches an arbitrary number of atoms (possibly none).

: 8): Matches if the next atom in the source Is & momber of the uequence of atomis
¢« 8. Exemple: ANYL(one two thres), .

R NOTANYL(s): Matches if the next atom in- the source is not member or the se‘guence
of atoms s. Example: NOTANYL(bad no).

BREAKL(s): Matches all atoms until one s encountered tlut. isa member of the se-
-, quence of atoms s. Example: BREAKL(stop).

SPANL(s): Matches atoms until one is epcountered that is not a member of the ge-
quence of atoms s, Example SPANL(go fine great).

Addltlolul Opﬂ'utou- .

‘RBM Matches the entire remdnder ol‘ thc list (pouibly empty). -

ALT: Attempts to match the first puurn in ite argument list followed by the remainder
of the original pattern. If the match fails, it tries the next nr;ument and so ‘on. Exun-
ple: ALT( (SPAN(v)) (SPAN(s b)) )

®.o
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I

When matching a Class I primitive in a pattern, the matcher steps down the spine
of the corresponding source sublist and matches the elements found hanging off of it. If
. the pattern brasiches off to the left; the matcher recurses on the CAR of each list and
then returns (if successful) to proceed down: the spine once again, also recursively. When
matching’ against a Class II primitive, however, the matcher begins a depth-first tree
- traversal in search of the atoms to mateh against the primitive. Here the problem arose
of how to allow. such a search through an arbitrary tree structure while still retaining the
recursive nature of the matcher; a leaf-matching might leave an “orphan” of subtree left
over with no way to bridge back up to higher unmatched levels of the tree for further
matching. The decision was thus made to continually reform the unmatched portion of
the source tree back into a single well-formed tree of comparable structure when- doing
leaf-matching, making further recursion always possible by matching the entire remain-
ing tree at each step. (The backtracking operators BAL, ALT and ARB retain the value
of the original tree to return to if hecessary.) In essence, then, the source tree is pruned
“of each successful match and any resulting empty list nodes are condensed out. It is
thus possible to freely combine primitives from the two classes in s single pattern,
although use of a primitive from Class I must always accurately reflect the structuse of
the remaining source which it is to match. For example, the source
| o (a(b(cd)e)f)
will be successfully matched by both patterns '
_ : R (SPANL(a b ¢) LITL(d) LITL{e) LITL(f) )
B | - (SPANL(a b ¢) (( LIT(d) ) LIT(e) ) LIT(f) ), _
viheré the bracketing in the latter patters is needed to specify the depth at which each
litprq'l-mgsy "gcpx;. S T : :

| ‘\ {\ o Wbcq ’b‘.#}f:"? f“f\_i.'lv.‘mg_’{,ghr‘gp}#aiﬁsi 'ﬁz‘p_rimitiv is made, the portion of the source tree
Vi) matched is Qn_i\"qiiﬁinﬁo ﬁ;‘:ﬁ&mpm‘ list in the pesition corresponding to the sequential
"1 pogition of the primitive 'wiﬁi'l‘n'ftlie patiern. If a dnatch is not completely successful, the
Saq values of ;ﬁhh?p&hi@l'matf}xestre._'i,et',ﬁi;icd. This list corresponds to the immediate vari-
. i 1 able assignménta made in the course of 4 SNOBOLA string matching, and is available for
.+ ! exhminption snd .tn’iﬁiptifat‘.ion until ‘thé next pattern matching is undertaken. Both
T classes of primitive rétirm the portion of the source tree that was traversed in making .
. thé match, except that'the values returned by Class II primitives are pruned of any
t . superfluous Higher level list nodes that may have been traversed in. reaching the “fruit-
- - ful”? branches:actually matched., ... o L _ |
- 'In. iddi?ibn to thede litenlmatching primitives and operators, patterfs may also
contain user-defined symbols, vipichvue atoms that fiave had values associated with
them using the “Setq” procedure (like “Quote”, s borrowed and somewhat redefined ‘

_Ll$P function). For example, s pattern could be constructed as follows:

y \

R P A

Setq (“DIGIT", “(ANY(0128450789)" ) -
; ) . S@tq (“DIGITS”, “(ALT( (DIGIT) (DIGIT DIAITS) )" ); - .
| | R%al__No_Pqt:“con_gtmt_ ?t._ring_' = “(DIGITS LITY.) DIGITS)?f. -.

Liaths

. When s user-defined symbol is encountered during m;scﬁihg,‘id':ﬁm. is substituted for
v o . . | ': S .‘ . : . K

|
" ' ot
L] . R

v " ':' " 31 : ) |q . v ! .
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’ . . .

.38




Wauchope | _ - L | | List Processing in Ada

the symbol in the pattern, and 'mntéhing then continues.

03 . ACTIONS b l ’

After a pattern mhtch as been performed the values returned by the matcher are

* available for subsequent actidns such as testihg, concatenation into new lists, or further

matchrng They ape accessed Yrom the result list by use of an infix operator “/ "(List,n)

) which selects the n-th member of the list and returns it. Such LISP predicates as Equal,

" Member, and Nullp are available for testing of these values, and actions taken canshe

conditional upon their results. Catenation of vaJucs is possible' using standard LISP

Cons or Append, but more convenient is the Ada'string concatenator “&” whioh has

been overloaded to append lists as an infix operator (string values cam also-be &’ed with

list values if they represent properly balanced lists). The function List is also useful in
correctly structuring the output desired, by forming its-argument into a sublist

"~ An example of pattern matching that illustrates the construction of patterns and
the use of several of these action operators is the followrng (highly simplified) grammati-
! cal transformatlon

i

- “ -

[4

Function Pronoun _Subst (Source: S ﬁxpr) return S; Expr rs
Success; boolean,
T: S_Expr;
Pattern: constant string :=
“(LIT<S>{LEN <2 >LIT<VP > {BAI,: LIT<S>{LEN <? >REM)}])”

begin - o ,
Match(Pattern,Source,Success T), ' ‘ - N
if Success then | \ :
if Equal(T/2,T/6) then return '
T/1 & Lisy( : ‘ . : ,
T/2 & T/3 & Lis{{ - -
| ' T/4 & T/5 & Lisy( : L
13 13 . .
. A (Profhe)” & T/7 )

else return Souree,
end Pronoun_Suybst;

]

Pronoun_Subst (Source) for’then.input L ) |
(S(NP(N(John))VP(V(said)S(NP( N(!ohn))VP(V(was)Adj(rich))))))
returps the transformation

| (S(NP(N(John))VP(V(sald)S(NP(Pro(he))VP(V(was)Adj(rlch))))))
‘3. APPLICATION EXAMPLES

\ -
)3
!

3.1. PARSING

Onc_nppiicatiun of user-defined symbols in patterns is to serve as grammatical
rewrite rules, where the symbol represents a nonterminal and its value represents the

. . . : . )
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right hand side tb be expanded to. When doing parsing, the list returned by the
matcher amounts to a parse tree of the input source, and an additional input parameter

to the matcher can cause nodes of the parse tree to be labeled with the appropriate non-

fugction package contains a procedure “Parse” which takes as inputs a start symbol (the .

pattern being matched against), source, and label switch, and returns a success/failure -

boolean and parse tree, as illustrated below:

) ~ )
Setq (usn’ u( NP VP )n . s
-Setq (“NP”, “( ALT((N)(Det N)))” )
Setq (“N”, *( ANY(ship plane pilot) )" );
Setq (“Det”, “( ANY(a the) )" ) '.
Setq (“VP”, “( ALT((V)(V NP)))" ); P
Setq (“V”, “( ANY(flew sailed) )* ), - :
Start_Symbol: constant string := “S”; 4 :
Source: constant'string := “‘(the pilot flew a plane)”; ’
Label: boolean := true;
Success: boolean;
Tree: S_Expr; _
.Parse (Start_Symbol, Source,:Label, Success, Tree);

-

“True” is returned as the value of Success, and for the list Tree,

(S(NP(Det(the)N(pilot))VP(V(Hiew)NP(Det(a)N(plane)))))

IS ieturned.

" The output of the parser is, clearly, in proper form for further pattern-directed pro-

cessing such as grammatical transformation, as outlined earlier.

In order to return a parse tree, a matcher must retain the portion of the result that
was matched by each non-terminal symbol so as to make it a (possibly labeled) sublist of
the tree. One approach to enable this would be to do a,“‘partial match” of the symboligh
right hand side against the- source, and

however, makes it difficult to backtrack to another alternative (such as ALT, BAL or
ARB) in the right hand side if the matching on the remainder fails. In the present work,
the matcher avoids this problem by always doing a “complete” match (with backtrack-
ing) on the entire pattern, and remembers where each subpattern is to end by the inser-
tion of an end-of-phrase marker into the pattern after each right-hand-side substitution.

When it encounters one of these markers~during the subsequent matching, it knows to

%n_x'mals, as well. As currently implemented, non-left:recursive contexi free grammak
- cah be handled by the matcher, and are parsed by recursive descent. The matching ™

if successful then match the remainder of the
pattern against the remainder of the source and append the results: This approach; ' -

A

“
Fy ]

lump the previous results at that level-into a separate list, which is stored in a level-“ "~

indexed array of subresults that are eventually assembled into the final parse tree.

When not doing parsing, however, the matcher instcaq lumps together the values that -
were matched by each primitive in the pattern, so'that these valies can be separately

~accessed from the result list after matching'is completed.

»
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J SYMBOLIO DIFFERENTIATION
- Another eppllcmon program written employm; peM.ern matching was a procedure .

0" perform symbolic differentiation .of arithmetic expressions. The expressnon is first .~
. parsed usnng s grammar of operator precedence, such as :

<8> -> <T> $ <8> | <T> - <S> | <T> Lo
TS b+ <UD | - <US | <U> S
- <U> > <V>'¢ <US | <V> [ <US> [ <V> -
T VD> > KWRTH <V | <W> :

-'/_ o SW> >t (<8>), . | |
*and if huccreful an. unlpbeled parse tree is returned. For exa.mple, pamng _ 'f
o ; R (lt2tt-—3+4) . R

re'turns the tree A B co . ‘ :

((1 (2 (- 3))) + 4).

lndxcatmg t.he correct order of operator appllcmon ‘Fhis tree is s"then eubject.ed to a
series of pattern matches and subsequent actions to generate the derivative, as abbrevn-

ated below: # . ] . : ’
» " : .
: ' ' Fuuctlon Deriv ('Tree S__EXpr) return S_Expr is o, 3 oy *.&9
. % begin -
LA 9';

Match( “(LEN(1) ANY(+ - / ") LEN(l))" Tree, Success, R)
if Success then - .
if Eq(R/2, “+”) or Eq(R/2, * ~) then
- D(x ++y) = D{x) +- D(y)
ret.urn Derivﬂ!/ l) &R/2 & Derw(R/a)

SN elsnf Eq(R/2 e) then v ' g

-~ ~ D{x *.y) = D(x)y + xD(y) - -
return List(Deriv(R/1) & '*+” & R/3) ?
. ‘o “+" ” .

ist(F l ks g Derw(R/a)),

P : . |
- else oy
; Match( 7‘(A '-) LEN(l))” 'l‘ree, Sueceu, R);-... .
' end Deriv; - X ;o
Denv(“(x u§2 + 5)”), for exmple, returns the tree B i S

} . (2% (X o (2- 1)—1))+0).

| to whech sddnionsl p»tern—du'eeud processing mlght then be..npplned to reduce the tree
- to (2 * X).’Note that s nmple rearrangement of the’'LIT and, ANY primitiges in the pat~
" terns eould proeese > pme in prefix or ponﬂx form. ‘ ,

- z‘? co
L ‘ o .
Pl e - / ' A ' o ! ' o
. R : o L o ' ' .‘i\. ST ‘
o ,'-‘S" o L 34.!.‘ | oy .
.‘\';.. , ' . - ' ' ‘ . ,A
, *y , - Coe ‘ o 41 . _ f
4 N r ‘; !1 ) ) . ) * a .
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4. EXTENSIONS AND FUTURE RESEARCH
4.1\ ALTERNATIVE ADA MLEMENTAT]@NS
This approach to a pattern matcher for lists was inspired by ‘Post-X [Bailes and
Reeker, 1980] .an applicative pattern matching language in ‘which phtterna have. been
generalized into ‘a structure called a Form, consisting of an alternating series of patterps .
and corresponding actions combined into s single data object. In Ads, Form could be
realized as s generic package that would be instantiated with a pattern part and an
action part, hence serving as s template for new data objects of this type. In the vemoﬁ\
of Ada that was available for this resenrch, genqric packages and procedure-variant gen-
eric functions had not yet been implemented, xzd 80 more powerful pattern matching
structures such as Forms could not be created except as adshoec procédures or clauses.
« The applicative appreach to pro;re.mmms used in Post-X and eeponsed by Backus [1978]
and others can alsq be realizéd in Ada throu;h the use of generics and abstract types,
snd so further work on this pmject using & more complete. Ada compiler would lead
closer to the Post-X deslgn ) : -

]

4.3. PATTERN MATCHING mwmATION E

Pattern matching itself can be considered a form of parsing: for instance, the pat-
tern (BAL LEN(I)) can be represented by the grammar

S — BAL LENI .
- BAL ~ t | t BAL
e ' LENL — ¢ -
and, matching a list against the pattern is equivalent to returning agparse of the Jist in
terms of the grammar. In this rcgard 3 backtnckmg pattern matcher is equivaledt ta a

recursive-descent. pafser, which is limited in the’ classes of grammar it can accépt and
runs in. exponentlal time as well. Kreuter [1984) has implemented a string pattern
matcher in Ads using Earley’s pemmg algorithm, which has & worst case time behavior
of N cubed and a more powerful grammar handling capability. Earley’s algorithm could
certainly. be applied to this list pattern matcher as well and thus provide substantial
_improvements. Alternatively, heuristic methods ‘such as SNOBOL's Quickscan mode

tould be added to the backtracking design to pruae the search space and afford spaed-
ups. AR . ,

4.3. BELECTORS

In Post-Xg simple pattern matching returns its result in the form of s tree
corresponding in structure to the pattern used; valués are then accessed by multiple use
of a selector operator, e.g. R/3/2 would eelect the second subtree of the result’s third

.subtree. In the present work, values are instend returried as » linear list, Each approach
'might be useful in certain spphcetionl, and the cuirent matcher could be easily modified
to allow the user to ulecz which result mode was desired.

4.4. LEAF MATOH!NG PRIMITIVES

In writing application programs for this matcher, only small use was made of the
leaf-matchiig primitives. Further meueh uhould determi:n areas where these operators
mlght prove more pawerful. _ . . . ‘

¢
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; . The prognmmmg of pattern-dlrected packages for) vanety of datatypes within
" Ada appears not only feaslble but quite worthwhile. “Work i is contlnmng in the areas
described above. - . -

-
-
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