
dIED 259 708

11LUTHOR
TITLE

INSTITUTION
.

.SPONS AGENCY
REPORT -'NO'

DATE.$
CONTRACT
NOTEAL
PUB TYPE

EDRS PRICE
DESCRIPTORS

,JDENTIFIERS

,".

DOCUMENT RESUME

IR 011 740

Reeker, Larry. H... And Others
Artificial Intelligence in ADA: Pattern-Directed
Processing. Final Report.
Air Force Human `Resources Lab., Lowry AFB, -Colo.
Air Forde Human Resources Cab., Brooks AFB, 'Texas..,
AFHRL- TR--85 -12
May 85
F49620-82-C-0035
46p.
Reports Descriptive (141)

MF01/PCO2 Plus Postage.1
'Algorithms; *Artificial Intelligence;:*Computers;
"Computer Software; *Programing; *Programing
Languages; *Systems Development;'.Technical
Assistance;'Technological Advancement
*Ada (Programing Language)

111

ABSTRACT
To demonstrate to cdmputer programmers that the

programting language Ada provides superior facilities foribse in
artificial intelligence applications, the three papers idcluded in
this ieport investigate the capabilities that exist' within. Ada for
"pattern-directed" programming. The'first paper (Larry H. Reeker,
'Tulane University) is.designed to serve as an introduction to
,pattern-directed programming and to the significance of the two
papers that follow. It includes discussions of artificlal
intelligence programming and4thefacilities provided by the Ada.
langUage), pattern-directed computation, pattern matching, and
parsing. The second paper (John Kreuter, Tulane University) describes

. a project which was part of an overallvefort to add .useful
artificial intelligence tools to Ada through use of pattern-directed
string processing of the sort available in the language Post-'X
(Bailes and Reeker., 1980). The third paper (Kenneth WauchOpe, Tulane
Unversity) presents a pattern-directedlist processing facility for
the Ada programming language. Pattern lists for matching against
source lists are cdnstructed from a set of SNOBOL4Tderived primitives
which have been extended to be applicable to atbArarily'complex
LISP' -like data structures. A ligt of 'references completes the
document. (JB)
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0 -Pattern-Directed AI in Ads

PREFACE

During the summer of 1984, under the auspices of the SumMer Faculty
Research Program and the Graduate Student Sumner Support Program of the .

Air Force Office of Scientific Research, administered by the Southeastern Center
for Electrical Engineering Education, work was undertakeli4it the Air Force, Hu-
man Resources Laboratory, Lowry AFB, Colorado; concerning usenof the pro-
gramming language ikda-for artificial intelligence programming. Two projects
were undertaken, both of which relate to "pattern-directed" 'programming, by
John Kreuter and Kenneth Wauchope, under my direction. I have edited the
final reports on these projects and provided them with an introduction, so as to
make them intelligible to a larger audience than might otherwise have been the
case.

Mr. Wauchope, Mr. Kreuter and I would all like to, acknowledge the suppoirt
.et of the Air Force Systems Command, Air Force Office of Scientific Research, and

the Air Force Human Resources Laboratory (Training Systems Division). At
AFHRL, Mai. Hugh Bprns deserves special thanks as the person with *hom we
interacted moat' closely,. and Dr. Roger Pennell, as the person who .interfaced
with the AFOSR'SCEEE summer program. Col. Crow, Dr. Yasutake and Maj.
Baxter were all very cooperative and helpful administratiiely, as were Mr.
Marshall and Mj. Bois in the computing area and a number of AFHRL staff
members.made ihe.visit pleasurable and productive.

0

L.H.R.

NOTE"

Opinions expressed in this,report are those of the authors
and do not necessarily reflect those of the Air Force.
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INTRODUCTION: AI IN ADA?
s .,

liKirYna eHtteeetr;
..

Ilstrect
Ir`If the programming language Ada is to be widely used in artificial intelligence applications, it

will bp. necessary to demonstrate to programmer!' that it can provide superior facilities for use in
that domain. One unaryr of doing this is to provide facilities for "pattern-directed" programming
within Ada. This first paper is designed to' serve as anintroduction to pattein-directed program-
ming and to the significance of the two papers that follow. It includes. discussiomuf artificial in-
telligence programming and the facilities provided by the Ada language, pattern-diriited computa-
tion, pattern matching and parsing. The other two papers deal with the use of Ada for pattern-
directed programming. One paper deals with efficient implementation of pattern matching (within
Ada), important because pattern matching tends to be inefficient, leading to problems with excess.
sive processing, time. Another paper treats extensions of pattern-direction from strings to more
general data structures of the sort used in artificial intelligence.

1. plE PROBLEM
The question implicit in the title of this might be "Can artificial intelligence

be done in Ada". It might also be "Will artificial intelligence be done in Ada", which is
more to the point, since anything cif; be done in Ada. The purpose of the researc)
reported in the three papers comprising this report is to explore methods of doing
artificial intelligence within Ada, using pattern-directed programming, The goal is to
show that Ada, appropriately, used, can facilitate' the -programming of artificial intelli-
gence apPlications.

Ada is the new standard programming language developed for the United States
Department of Defense (DoD). It is intended that Ada be used for mission- oriented
applications programs within DoD, replacing a variety of languages that have been used
previously. Concepts in Ads are based to a large extent on the languages SIMULA and
Pascal. Most artificial intelligence (AI) and computational linguistics (CIA) research, on
the other hand, is done in the language LISP, with some done in Prolog, SNOBOL4; and
a variety of other languages. Even within DoD, such research contirrues to be done in.
these languages, rather than in Ada., But artificial intelligence research is ultimately
applications-oriented, 'andwhat we consider to be AI today will be in important pan of
applications of the future, at all levelsAfrom office automationl4nd record keeping' to
command and control and maintenance-aiding.

If Ada is to be the common DoD language and if various "intelligent" applications
are to be interfaced to programs written in Ada, then it would be convenient to be able
to .program AI and, CL applications in Ada. Brian Dallman [19841 has expressed the
problem as follows:

Since Ads recently became the DoD standard computer language, ideally it should be
used for all programming applications within DoD. However, there are some applications
for which Ad:is not currently practical. One of these areas is artificial intelligence. In
DoD, the majority of programming for AI applications is done in LISP. Consequently, if

'Current address, Navy Center for Applied Research in Artificial Intelligence, Code 7510, Naval Research
Laboratory, Washington, D.C. 20376.
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4.17.,

LISP remains the primary Al language, then'.Ada's, usage and acceptance in a critical
new area of software engineering will be severely limited and'DoD's effort to establish a
common high order language will be hampered:

With these considerations iti mind,:Dallman suggests the' following objective:
To develop an extension of the Ada language which will provide the capabilities for Al

rogrammitg applications. This extension can involve' possibly only an Ada package or.
collection of packages.

Two research efforts undertaken in the summer Of.1984 toward this.objective are
reported in the papers that follow in this report. the first, by John Kreuter, looks it
methdds for implementing efficient pattern - directed computation in Ada. The "second,

by Kenneth Wauchope, deals with the development of LISP-like list,processing. and of a
language for pattern-directed computation on list structures..

The Objective here is not merely. to mimic LISP in Ada, but to improim upon LISP,

which has some well-known ..dliects, despite its popularity. We have chosen the
pattern-directed paradigm of prisgramming for this purpose. There Is toy a body of
opinion, shared by this authdr, that says that pattern-directed facilities provide the most
effective means for creating complex programs for non - numerical' applications. That this
opinion is mot universally stared could have to do with different individuals' program-
ming styles; b.ut:.we quote he're an -opinion that supports our viey` in this matter [War-
ren, Pereira and Pereira, 1977]: .

Pattern matching should not be considered an "exotic extra" when designing a program-
ming language, It is the preferable methOd for tipecifying operations on structured data,
both from the Wes Ansi the implementor's point of view. This,is especially so where
more than one record type is allowed.

The remainder of this paper will concern itself with some of thibackground issues
that will provide a rationale for the worf being done and help the reader to understand
the Kreuter and Wauchope papers. We shallfirst loot at the programming requirements
of artificial intelligence and the facilities provided by Ada at present. .

)
14. LANGUAGES FOR ARTIFICIAL INTELLIGENCE PROGRAMMING

Although one could writurtificial intelligence programs in any language, certain
languages lend themselves to the task. This is largeli because they have the data struc-
tures that are most natural for the comelexl informatibl. processing necessary in Al built
into the language, and because, they ala6 feature the operations that are needed to ban-

,
dily manipulate those data :structures,

The linked list (henceforth, "list") is periasive in artificial intelligence program-
ming. In early languages, lists were always represented by arrays, and they can still be
so represented when it is necessary to use one of the common arithmetic languages, such

as FORTRAN'. In other,languages, ouch as Pascal, PL/1 and Ada (see $1.2, below), lists
are imileinented by the provision of a "pointer".datatype. .But LISP has long been the
most popular AI language because it focuses on lists, providing the needed list-
constructing functions and means of selecting the items of a list.

'No references are given for the well-known programminclanguages, as .manuals can easily be obtained at
bookstdres tad libraries.

d
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Rooker 3 AI In Ada?

Another datatype that is common in artificial intelligence (particularly in co puta-
tional linguistics) is the character string Mienceforth, "string"). A string an be
represented as an array of chnracters (as, for instance, in APL) or as a list of ch racters.
But programmers tend to° think about strings in a different way. They tend to think
about patterns of characters, and patterns have therefore tended to tie. .emp asized in
string processing languagessuch as SNOBOL4 (see §2.1, below),

Another data structure that can be represented as a type of 1 t or as a
pirenthesized string, but That is often conceptualized quite separately from these, is the
tree, commonly used in guiles, taxonomies, structural °descriptions of trings (parse
trees), and the like. Like the string, it is often procesIed in terms of loo ingf9T a pat-
tern. This is particularly apparent in transformational gramiriars, so e example& of
which will be seen in Wauchope's paper in this report. Pattern-directed manipulation of
trees is not natural in most extant languages, and Wauchope's system aimed at mak-
ing it more natural in an extension of Ada.

There hive been attempts to gederalise structures like trees and lists to directed or
undirected linear graphs, which may contain cycles (trees are dir cted acyclic graphs
with a single ,origin or "root node "); -These may yet turn out to be , seful, antkit is sug-
gested that pattern-directedoprocessing will also be useful in proce Sing these generaliza-
tions. It is not clear, however, how to treat grstphs that are no trees directly, rather
than in- terms of trees, for pattern matching purposes.

There are factors other than data .structures that chant
environments in which productive Al work is taking place: ft.
following:

1. Focus on symbol- manipulation and list processing

2. upport,of representations which change dynamically

3. Support of flexible control by.pattern matching rather tha

4. Supportiv4 programming environment, including

a. An interactive (interpr d)
.
language

, .
.

b. A good editor (progra construe .oriented, not text oriented).
c. Debuggliiig facilities races

d. Standard systems input/but

Of these tfa'ctors, the first two basically
strings, which .are, by their nature, tlyn
throughout processing). Languages .which
dynamic entities (e.g. fixed arrays), can
these entities can be made to appear dyna
will address btwielo . We will not directly adt.

to commen at the types of facilities that
abstracted rom the language and placed in a.
(which is not really languageless, since there i

not textually' oriented, either). In this case
almost: irrelevant ..it could be LISP, or A
in preparationj). . .

Language extensibility, discussed in .3, has also been important in Al and CL,
since the fields and therefore,. their 1. ---gunge support needs have been evolving

, . r .

rise the languages and
hardson 119831 cites the

procedure calls

'1
Yi

with the processing of lists and
ies (their 'shapes and sizes change
string and list processing with less
eli ed from contention, unless

e rogra ismer. pattern matching we
the progra s s ing environment, except

w are seeking to provide in; Ada can be
anguageless",programming environment
always need for a representation, but is

the underlying programming language is
or anything else (see Meeker and Bailee,

3 .
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\ , .,
rather quickly. There is no,.reason to believe that the pace of change is wing to slow .

down in 'the near future, so one might conclude that extensibility is ano? ther need in an .

Al language. .
,..;-.

4)

1.2. PR,OGRAIVIMINGFACILIT*S PROVIDED BY 'ADA

'she 'Ada' language (see [HoneYwell, 1983,19841.and a Ninety of texts presently on
the market and undere.preparation) was designed.for the U. S. Department of Defense, in ,

an attempt to promote language standardization in applications programs and program
reliability and ,maintenance, while ,maintainiog program efficiency.. It has a variety of
features designed to make it useful in general applications. We shall briefly describe
only those' that are relevant to The discussion in this report and different from other
commonly used languages, such Pascal,.

An Ada program may ,contain various typeS of program 'units, each of which is a
subprogram, a package, a task, or a generic unit, "Each unit contains, a
specification .and a bedy-o The specification contains information that must be visible
to other units, while the body contains implement Lion details. Units May be compiled
separately: .

Subprograms' consist of the usual procedures and functions, and will not be dis-
cussed further. Tasks are units that may beinvoked and executed in parallel with other.
tasks. Generally, the; absence of parallel computation facilities, tasks -are exec died in,
an interleaved fashion, but multiprocessing is clearly possible, and it is envisioned that

,s, parallel execution will be used commonly as the hardware becomes availal0t. As an
example of tasks, consider a multi-player game. Each player could be considered as a
task,. or as instances .of the slime task with different parameters (say, different hands in a
card game, passed to the instances on invocation).

Packages are usually used to define new datatypes and the 'operations on them.
Portions of the package can be 'declared private, so that details. not necessary to the
user are "hidden" 'from the user,' thus adding to the apparent (though not necessarily
the underlying) simplicity of the program. Both packages and Lath are an.outgrowth of
$IMULA classes.

generic subprogratts or packages allo* the definition of program units that will be
applicable to all types of a given class ( rjther than just a single type). Derived types
can also be used to the same effect-in many instances.

In addition to the usual built-in arithmetic datatypes, Ada provides predefined
character and string datatypes. Strings 'are vectors (one-dimensional arrays), of char-
acters, indexed by positive integers. Thee concatenation operator (called catenation) is
&. -The built -in string, facilities are, however, primitive, and require augmentation to be
truly useful. Access datatypes (Pointers) amused with record types to do list process-
ing, much in the manner of Pascal. As with the tring processing facilities,; the 'list pro-
cessing facilities built into the language are aim and require extension.

. ,

1:3. 'AI'S NEEDS AND ADA'S FACILI
It has often been pointed out that LISP owes much of its success as an AI language

to its usefulness as a, sort of high-level systems programming language, in which' it is

*Ado is a registered trademark of the U.. Ocnrernment, Ada Joint Program Office.
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possible to construct interpreters for. higher-level languages. In other words, it is extensi.:
Me, although it was not designed with' extensibility in mind, specifically. The fact that';
LISP programs are .thiOnselites representations of lists facilitates extensibility. (It might
bb remarked here that the extension languages have tended. to share LISP's syntactic '
shortcomings, partly for this reason:) The applicatiges nature of .pIS,P also facilitates
extension. Ada has been designed for 'extensibility --, albeit of a limi sort, using
packages, generic procedures and tasks. It remains to be seen if this.li sibility
will prove as useful is that of LISP.

Ada makes few concessions of a direct sort to Al (or to any particular application
area), the philosophy being that these facilities will be built upon the basisAngnage. In
the Dallman quotation of' §1, the vackage is mentioned. .This will be the Ntmary means
of addlg Al-oriented features, including, bat not limited to, string processing and list
Processing (as described in §1:1). One might envision the creation of the following:

1. Stringifinition and manipulation facilities more flexible than those built. into Ada.

2. List °ceasing functions

3. Pattern definition and matching-functions for strings and lists'

4. Means of manipulating.lists returne,d by the pattern matching functions

A package of string functions has been written by Major R. Bolz [pereonalcommunica-
lion]. In the third paper included in this report, .K.. Wauchope reports on the provision
of list `processing facilities and pattern Matctink functions for lists, while J. Kreuter stu-
dies efficiency in string pattern matching methods that could be implemented in,.Ada.
The _manipulation of the lists returned by pattern matching functions cc?uld be in the
manner of Post-X (see §2.3), as Wauchope points out. The exact manner of building. in
the "actions" of Post-X is a subject,for further invettigation.

The tasking mechanisms of Ada lead to a number of interesting possibilitiei. One
of them is tentatively explored in the Kreuter paper. It is possible to use "coroutines",
which are just a form of task in.Ada, to match patterns in a particularly elegant fashion.
For the purposes of the type of processing envisioned in'onr project, the pattern match-
ing would have to provide a structural description of the item matched, as well as an
indication of the match. This can be done in much the same manner as 3NOBOL4
assignments, making an assignment to each subpart of the pattern. Other pOssibilitits
for the use of tasks arise in artificial intelligence in any of the areas where quasi-parallel
-processes have been used. An example is "word expert" parsing [Rieger and Small,
19791.

2. PATTERN-DIRECTED COMPUTATION

In a pattern-directed computation, the operation that drives the computatibn is that
of findinga pattern in the data and making a change in the data at that point. Pattern
directed computation has generally been identified with the proceising of character
strings. Let us therefore turn. to string: processing languages to get a feel for this style of
programming. .

a

'An applicative language work. by function application. LISP is an example of an applicative leoguage.

A
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PATTERN.DIRECTED STRING PROCESSING LANGUAGES
Historically, .pattern-ditected languages are based on a philosophy built into the

normal algorithms of Markov 119541 and thecanonIcal-systems of Post 119431, both
of which antedate modern electronic computers. Both Markov algorithms and Post sys-
tems provide languages adequate for writing any program (i.e. for realizing any algo-
rithm), by encoding the data as strings, if one accepts "Church's T4ertis", as most corn- .

puter scientists and logicians do (Rogers, 198J. More important, from our point of view
(since other programminglanguages .are tleoretically adequate in this same way), is the
fact that a particular style of programming, which many programmers find.varticularly'
cordial, is natural in these. languages.

The COMIT programminglangtiage of Victor Yngve 119581 was essentially a com-
puter implementation of a version of Maikov, algorithms (labeleiMarkov algorithms; see
(Caller & Perlis, t9701). In teat language, it is assumed that one is 'crating on a
workspace Containing a sequence of constituents, which ma,' be in ual characters
or character strings. Each step of the program consists of an opera. , which tries to
match a pattern to * portion of the workspace (starting from Left end of the
workspace in its matching attempts and .working to thi right) and ffects'a change' in
that portion. M.an example, the statement

;14-ABC+fli+D+S+E = F+3+1+5

would match a single constituent followed by a constituent ABC, followed by another
single constituent, followed by a constituent D, followed by 'any number of constituents,
followed by 4 constituent E, and would replace all of these by a constituent F followed
by the first, third, and fifth items matched by the left hand side of the "equation ". For
example, *the workspace contained .

...QRS-FABC+DD+D+EFG+HL1+E...

at the leftmost place in the workspace wkere the pattern matched, it would be changed
to

...F+DD+Q4S+EFO+HIJ...

COMIT had a number of problems as s programming language, but this pattern-directed
mode of computation was not One of ahem, as it turned out to be--a natural means of
processing character strings, in computationillinguistiCs and related fields. It also led to
a more successful family &languages, the first of %which was called SNOBOL (Farber et
el, 19841, and the last of which was called sNoc0L4 (Griswold et el, 19731.

The original SNOBOL language was :similar to COMIT, but with .a number of
important. improvements. The 'most fundamental of these was the inclusion of variables
that, could take on the, valuekof strings, rather tiltn the single workspace (COMIT bad a
construct called "shelves" ai sto4ng away portions ot:,,the workspace,. but 'SNOBOL 's
etting variables were handie4 SNOBOL also, had a More flexible flow of control than
COMIT and other improved. ,

By fir the most populat of the srtolivt, f*mily-of languages has b'een,S.N0Fi6L4..,
The papers of Mr. Kreuter and Mr. WauchoPe Aloth mention SNOBOL4 patterns, ao we
shall discuss them briefly here. '

.14
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. A's mentioned above, the COMIT workspace constituents were not necessarily)iinrt---
gle characters, but colblfil be strings. Each constituent was basically indivisilllerso if
"AND", was a single constituent, it As not,treated as "A", "N", and "D1'. For the pur-
pose of illustration, however; assume that the constituents in the example above, except
for the constituent "ABC" are all single .,characters. With this ,assumption, the COMIT
statement

$I +ABC +$1 +D +$ +E = F+3+1+5+

could, be written in SNOBOL4 as

LEN(I) . VI 'ABC,' LEN(1) . V3 `IY BREAK(`E'), V5 'E' V3 VI V5.

In SNOBOL4,- all strings 'ate based on single characters; the concept of multicharactei
constituents does not exist (in the pattern Matching portion of the language, at least).

2.2. SNOBOL4 PATTERNS
.

iPatterns, in SNOBOL4, are data objects, and may be given names in assignment
statements. Patternsare constructed out of:pattern primitives, including variables and
string constants, using pattern operators. They may also contain assignment state-
ments.

.2.9.1. Pattern Operators
ConcateRatIon: (Wank space) e.g. A B matches anything matched by pattern A fol-
lowed by anything thatched by pattern B.

Alternation: (blank)Olank) e.g. A I B matches anything matched by pattern A, if a
match is found. If not it matches anything matched by pattern B, if that can be found.
If neither is found, it fails.

(Parentheses may be used,in the conventional way to group items and establish the
order of operations.)

2.2.2. Pattern Variables
4 P,

. P08(1) matches a null string after the i -tb character. (P08(0) is the left end of the
ar string). .

,

. r.:*)

itpos() matches a null string before the i-th charac r from the right. (RP011(0) is
thi right end of the string.)

ARB matches an arbitrary string (the shortest op possible within the context of the
pattern in which it is included).

REM mattitts everything to the end of the string.

BREAK(X) matches art arbitrary string up. to but not including the lIrst oc-.
currence ce any character in the string x (e.g. IIREAKeabel matches a string up to
one of the characters a or b or e that does not itself contain any of those characters).

SPAN(x) matches an-stbitrary string made up of characters in x (i.e. it BREAK. at
anything not in x).

ANY(x)vnatches,tny single character in x.

NOTANY(x) matches any single Character notTh x.

4 .
14
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LEN(n) matches an arbitrary a-character string.

BAL matches an arbitrary string balanced with respect to parentheset

Other 'pil,tern variables include FAIL, FENCE, ABORT, ARBNO, TAB, RTAB,,
SUCCEED, 0, for explanations of which the reader is referred to the SNOBOL4 manu-
al [Griswold et al, 19711. A

/-

2.2.1. Other primitives

r

Any trine (enclosed in single or double quotation marks) may be used as a pattern, It
mate es exactly itssif.

NUL matches the null (zero length) string.

2.2.4. Assigninent Operators

Inuilecilate assignment ('made to a matching element of. the pattern as the pattern .

match is atterrpted):IspaceMspace).

Conditional assignment (made only if the whpC pattern match succeeds):
(space).(space) (e.g. X . Y assigns whatever is matched by patterp X to variable Y
when X is part Of i successful pattern match).

,23. POST PATTERN MATCHING
The ultimate goal of tha work reported in these papers is to make possible the

incorporation within Ada of packages that allow pattern matching of the sort defined
within the POst-X language [Bailes and Reeker, 1980a,b). post-X incorporates pattern
definition and matching into an applicative frameworlf. Ind doing so, the powerful .pat-
tern definition facilities of SNOBOL4 have been retained, while other aspects of the utili-
zationf patterns have been improved.

In an applicative framework, the pattern thatch 'must retain a vp.lue thokt can .be
acted upon by other functions. The pattern itself has been geieralized to a mot)! power-
ful object, called the form.

e.
A Post-X form consists of a series of alternative atterns and telated' actions.

Each pattern is 'very diuch like a pattern in SNOR0L4. At form may- be passed parame-
ters (by value), which are then used in the pattern or action portions of that form.

A pattern determines the structure of the string to which it is matched. The'pat-
tern contains a sequence of concatenated elements, which are themselves patterns, primi-
tive patterns (as in, SNOBOL4), or strings. The value returned by the pattern is either
false (if iti fails to match) or a parse tree designating the structure of the string that
corresponds to portions of the pattern. Portions of the parse tree can be accessed -by'the
use of selectors and used in the action poition.

s an example of some of these ideas, consider the definition of a ford REPLACE
which takes a parameter GRAM. (a context free grammar that consists. of a sequence of
rules, with the nonterminals surrounded by angle brackets).'

REPLACE GRAM :: "<'"13REAK">"4">"
IS TREPLAPE.GRAM)<

SELECT_RHS
(ALT_LIST<
(LH§JIND $2 <GRAM)))

8"
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I'

'$>)
INUI/L(V);

The is a coneatenationioperator. Post-X allows an alternative postfix representation of 4
function' composition, using an explicit postfix operator ., which is sometimes easier to
read:

f

REPLACE GRAM "<"^BREAK">"^">"
($<^GRAM.

(<(LHS_FID *2).
(<)ALT_LIST.
SELECTRHS.
(<XREPLACE'PRAM)

^$>)
INULL{$$);

The form REPLACE, in whichever form it is written, expects to be passed a gram-
par, as described above. It utilizes the forms LHS_FIND, ALT_LIST, etc., which must
be..defined elsewhere in the. program. It first Finds the leftmost' occurrence of a nontermi-
nal in that grammar. In the firsb% alternative, which utilizes the 'SNO13OL4 function
BREAK, the 'first occurrence, of "<" is automatically denoted by $1, the item matching
BREAK">" (the second item in the pattern; notice that Post-X does not require
parentheses around the arguments of built- in 'functions, in order to lessen the nu-rnber of
parentheses necessary) will be denoted by $2, and the ">4' following will be denoted by
$3. These "$ variables" are all available to be used in the action or in other parts of the
pattern match.

REPLACE uses the nonterminal'found ($2).a$ a parameter to LHS fIND, which is
pplied to the 'gramtnar GRAM to return the right hand alternatives. Then

SELECT_RHS selects an alternative, which is placed in the context of the nonterminal
'matched by the pattern part of the form. Finally, REPLACE is matched (recursively) to
the result, If the first alternative fails, it means that there is no nonterminal. In that
case, the second alternative will be matched, and will return the entire string, which will
be a string in the grammar.generated by GRAM.

Without understanding Post-X completely, it can be seen that pattern matching
and function application are the fundamental operations. Furthermore, it is necessary
for the pattern match to return a structural description of the string (the grouping of
higher-level units in the pattern and.the selection of corresponding units of the matched
string is not illustrated in the example, but often turns out to be very useful). A portion
of Plit-X has been implemented as STRIP, and its design rationale has been explained
in detail by Paul Balks 119831.

2.4. PROLOG AS A PATTERN-MRAITED LANGUAGE
The language.Prolog had been chosen as the language of the Japanese "fifth genera-

tion" computer initiative. It is a language that is becoming/more and more popular in
artificial intelligence and computational linguistics. A stp,ndard reference is (Clocksin
and Mellish, 19811'

A program in Prolog consists of a series of clauses of the logical form

Ai & A2 & & An D C



Reeker 10 Al in Ada?

represented in Prolog as "C :- AI,A2,..A.", and interpretable as'"to prove C, prove A1,
then prove A2, ..., then prove A.".

The elementary terms, such.as "A" above, are predicates anti arguments (which
May be variables). For instance, "A" might be "BIGGER(x,y)". A problem is solved by.
a- Prolog program by finding an instance of a formula that is true 'and-returning the
parameters that instantiate that instance. It the data provided in the prograni contains
pairs of, say people who are bigger than other people, then it would be appropriate to
ask whether Paul is bigger than Jphn ("?- BIGGER(Paul,John)") or to find the people
bigger: than John ("?- BIGGER(x,John)"). The process of attempting_to find true
instances is the logical operation of unification, which can also be viewed as pattern
matching. Much of the popularity of Prolog is due to the naturalness of this pattern
matching method of programming. In fact the quotation from [Warren et ail in §1 is

talking specifically abo Prolog.,

The pattern mate 'lig embodied in SNOBOL4 and in Post-X is a more limited form
than in PrOlog, in that there are control mechanisms other than pattern matching (pri-
marily function composition or application in Post-X, both sequential control and funic-
tion composition in SNOBOL4). The purer approach of Prolog (although, like the pure
applicative control of LISP, often modified in practice) has advantages and disadvan-
tages. We feel that the Post-X framework will be more naturally embedded in the Ada
framework, and that if this is carefully done, it can result in an excellent language for AI
programming.

Within the LISP community, pattern matching has been recognized as important,
but has not generally been viewed as fundamental. Thus Winston and Horn [19811
include a chapter on pattern matching, commenting that

Although LISP itself has no pattern matching built in, it is easy to write pattern-
matching functions in. LISP., Hence, we say that LISP is a good implementation
language for pattern matchdrs. .

An important experimental language built upon LISP, PLANNER [Hewitt, 1969), par-
tially implemented as MICRO-PLANNER [Sussman etal 19711, features pattern-directed
procedure invocation. Winston and Horn conclude that many problems remain in pat,
tern .matching, including how to deal with more general data structures (the problem
that.Wauchope [1984] is tackling). They also point out that a matcher which can do
partial matches and report on how close they are to a full match would be very useful.

Another language that deserves mention in any discussion of pattern-directed pro-
, gramming is Awk jAho et al, 19791. Although Awk's *terns are of'a restricted sort (for

purposes of efficiency), it is very easy to use, and is widely used as a utility within the
UNIX syetem, as well.as in file processing programs.

3. PATTERN MATCHING AND PARSING
We have described some design aspects.of pattern-directed languages. Of course,

designing the language is only half of the task; .one must also' implement it. We will now
discuss a- central problem of the implementation of pattern-directed -languages the
pattern matching algorithm itself. Because we are interested in implementing facilities
along the line of Post-X, we will he interested in passing back a structural description of
a string. This is essentially the same thing as, parsing a string according to a context
free grammar, so we shall next examine context free parsing,

I

a
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3.1. CONTEXT FREE PARSING .

Pattern matching can be considered to be a restricted form o( context free parsing.
Without going into the details of context free-grammars (a good basic reference is [Lewis
and Papadimitrtiou, 1981J; a more advanced one is [Harrison, 1978J), it is possible to see
Why this is so. A pattern P consisting of's concatenation .of patterns P1 ... Pa will match
some string S if and only if-there-exists a decomppsition of S into substrings such that S

sl ... sa and such that all of the si are substrings matched by the cbrresponding Pi. If

there are alternative patterns Pi I ... P. (using the SNOBOL4 alternation operator "I")
then one needs to try 'matching P1, then P2'

etc. One might want to return either the
first match or all matches. The operations of concatenation and of alternation are also
the basic operations of context free grammars. Context is often relevant to the parsing
process, but if it is strictly the context of primitive patterns within the overall,Tattern
(as it tends to be in pattern matching), the power of a context free grammar will suffice.

In the case of P P1
.
13,

a'
an equivalent context free gramillar would have the

production P P1 ... P.. In the case of P s 131 I ... I P., the grammar would have lira
ductions P -. P1, .., P -- Pe. In either case, finding a successful pattern match is
equivalent to, recognizing the string S by the corresponding grammar (determining
whether or not it can be generated by the grammar).

As explained in section 2.3 above, we desire. to return a structural representation of
the string matched that is, a parse tree that indicates how the match took place. It
is then possible to structure the patterns utilized so that this information will be useful.
POst-X makes use of the parse information to select out certain portions of the matched
string for modification in the action portion.

One of the key issues in the efficiency of parsing, addressed in the Kreuter paper, is
the control of nondeteinilniam. A nondeterministic.algorithm [Floyd, 19071 is one that
has "choices" of various alternative computations at certain points in its operation.
These choices can lead to a successful completed computation or may lead to failure.
The idea of the nondeterministic algorithm is that if a failure occurs; then another choice
can be tried. One could, in fact, try all choices at once if.one had sufficient parallel com-
puting capabilities, and this may be possible in the future. At present, we. implement
nondeterministic algorithms oh the machines that we have, which are designed for serial
computation. One way of implementing thiim is to backtrack when a failure Occurs and
try-another choice. Another is to trx to keep around enough.information to be able to
try all alternative 'choices in a "pseudo-parallel" manner. These alternatives are beat
illustrated by looking at some parsing algorithms.

QP

3.1.1. Recursive Descent
Suppose a context-free grammar has a rule of the form

Xi Y
1
Y2

where each of the Y is either s terminal symbol ors nonterminal, ,A recursive descent
parsing algorithm will parse a string

5 5I 2 ..5 &a-I a

that is suspected of being generated by Xi by calling a routine

PARSE(Xpsi...a.)

11

18
Jo.

I



4

V

Reeker 12 Al in Ada?

which
F

matches
si...s., that Y1 matches-s1 and Y2 matches s2...s., etc. To check the first possibility, it
calls *

. PARSE(Y VA') followed by PARSE(Y s ..s ).2' I. n

To check the second possibility, it calls

PARSE(Yi,si) followed by PARSE(Y2,s2...s.)

den )soforth. If any of the Y. is nonterminal, then PARSE(Y, x will make further calls,
according,to

4(Yii
ihe grammar. If.Y. is a terminal (or A), then PARS x ) returns an indi-

cation of success if and only. if x is also terminal (or A) and Y3 = x. The alternatives are
tried in a nondeterministic fashion either until a successful parse is found or until all
successful parses are found, depending on which one wants.

The algorithm can be extended in a straightforward, fashion to cases where the
right hand side of the produCtion consists of more or less than two symbols, either termi-
nal or nonterminal (or A).

As an example of recursive descent parsing, consider the grammar

aTc
s-+SU
S.-. T
T e ..

U --+ d

on the input string seed. We start with PARSE(S,aecd), which calls

PARSE(a,A);PARSE(Tc,aecd),
PARSE(a,a);PARSE(Tq,ecd),
PARSE(S,A);PARSE(U,aecd),
PARSE(S,a);PARSE(U,ecd), ..., and
PARSE(T,aecd).

. Notice that PARSE(a,a) succeeds, according to the criterion for success given
abOve, whereas PARSE(T,aecd) will call PARSE(c,aecd), which will not succeed. A real
problem occurs with the calls to PARSE(S,x), for any x: This is because of the produc-
tion S SU, which means that PARSE(S,x) will be called again and again recursively,
and that the program will therefore be in a loop. Any production of the form

Xi 7-6 XiW

(where W is any string of nonterminals and terminals) will cause this problem. There
are various solutions to the left recursion problem, one of which leads to predictive parsL
ing, discussed. in the nett section.

3.1.2. 'Predictive Parsing
In order to avoid the problem of left recursion and the infinite loop that it can

cause in recursive descent parsing, one can put each production. into Grelbach normal
form [Greibach, 1985J,where each production is of the form

The symbol A Is used for. the empty (seroefigth) string.

12
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aX.
i
-- IX ..X .. ,

I i' a

the
ir

where a. is a terminal character and the X's. are nonterminals (including C n- = 0,
1

wher-e- no nonterminals are found on the right hand side). Actually, it is always possible
to find an eciuivalent (in the sense that4i generates the same language) giaMmar in
Greibach two form that is, with all productions of one of the forms

and possiI3,1y.

0) Xi --0.ajXkX,

(ii) Xi aiXk

(iii) -- ai

(iv) Xi A

A recursive descent algorithm will then work without getting into a loop. It is also pos-
sible to write a simple non-recursive algorithm using a stack (which basically does what
the computerwould do in implementing the. recursion, but does not generally have to
push down as much information into the stack, and is therefore marginally more
efficient).

This method of 'parsing,. using a stack to keep the information needed to do the
recursion, was used early in the history of computational linguistics, by Kuno and Oet-
tinger 119821, and is called predictive parsing. It operates smoothly and efficiently in
many naturally occurring cases, especially if the strings do not become too long. An
informal description of predictiVe parsing is as follows:

1) The algorithm is initialized by placing Se in the pushdown store and scanning the left-
most terminal symbol of the input string.

2) Whenever a character ai is under scan and Xi is on top of the stack, pick one of, the
productions with X1 as left hand side and al as leftmost character on the right hand
side, pop up X1, and push ; followed by Xk (so that Xk will be on top), Xk alone, or
nothing, depending on whether the production is of form (i), (ii) or (iii) abOve, respec-
tively, and move on to scan the next character to the right in the, input 8t ing. (In the
case of a A right hand .side, Xi can be popped up without moving on t n another
character.)

3) Accept the string if and only if the end of the string is encountered precisely at the
same time' that the Bt. becomes empty. Otherwise, the algorithm fails.,

Notice that the formulation uses the "nondeterministic" phrasing ip one of ...",
and the notion of the algorithm "failing" in certain cases where itikst tlear that
no parse exists. This means that if the algorithm makes a mista1VSks;',ATpiiduction
that does not lead to a successful parse), then it can backtrack on'Aft4and make
another choke until no more proAuctions remain to be picked. Any alcrrecognition
ithenve must backtrack anyway to try all alternatives if 'all, rather than merely one, of
the.,parses are to be found. The nondeterminism inherent in the predictive algorithm
means that the algorithm will require another stack (for the backtracking) and will tend"

When S is used as axerminal symbol in s grammar or se a stack symbol, it will alwaya be used to
denote the axiom, or mbol, of the' grammar, u is conventional.

Olt
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to take exponential time in "bad cases". Some of the pattern matching cases are bad
enough that the combinatorial explosion of possibilities slows the process appreciably.
The algorithm discussed below (Earley's Algorithm) tends to be faster in these "bad"
cases.

A

As an example of predictive parsing, c ,isider the grammar of.§3.1.1, converted' to
Greibach two form to obtain:

'0
S' aTX
S cTX
S eV

d
dV

X -4 cV
T e

The following table shows the actions on the stack that would result from reading%
given symbol in the input for each p9ssible symbol on top of the stack:

Action
Symbol on

Top of Stack

table for
Next Input

Symbol

the grammar
Action

.

S
S.
S
V
V
X
T

0

a
e

c

d
.d .

c

e,

pop S, push X, push T
pop S, push V
pop S, push X, push T
pop V
pop V, push V
pop X, pull V .

pop T l'

Onthe input string aecd, the algorithm's behavior is as shown in the following table:

Actione
Stack '

on the string
String to
be Read

"aecd"
Neill%

Stack

S .aecd T

T .ecd ''X

X .cd V

V .d

Now let us consider the generation of a structural description. We start at the top,
with an S. Each time that a symbol Xi is popped up and replaced by a right hand side
q, we can expand the parse tree portion Xi to Xilqj; always expanding in a leftthost
fashion. The parse tree for our example

14
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a.

/I\'
aT

I X
e / .
c V

d

3.1.3. Earley's Algorithm

at

Earley's parsing algorithm is mentioned in both the Kreuter and Wauchope papers.
One of Kreuter's tasks was to implement Earley's algorithm in Ada es a method of pat-
tern matching. The original f.arm of this algorithm is due to Jay Earley [1970],11nd the
form used by Kreuter is baied on a modification 'clue to Graham, Harrison and Russo
[1978] (see also [Harrison, 1978]). Earley's algorithm is as efficient as any "practical"
general context free parsing algorithm known (there are some theoretical results that are
marginally more efficient, including [Valiant, 1975]) and does not require that the gram-
mar he converted to any special form. The efficiency of Earley's algorithm is .achieved
by carrying around possible analyses in parallel, rather than backtracking, as in predic-
tive parsing. The analyses cannot actually be done in parallel, of course, on the serial
machines that are standard today; .but the algorithm eliminates the repeated generation
of information on partial parses that is'inherent in the usual, backtracking method.'

144

We will now give an informal description of tilt modified Earley algorithm as a
recogniser (the recovery of the parse tree will be discuised later); based on the descrip-
tion of Earley [1970], with modifications:

a

The algorithm scans An input string al % fromleft to right. As each symbol al Is
scanned, s set of "states" Si iaconstructed which reprents the condition pf the recogni-
tion process at that point in the scan. In the modified; algorithm, each state set Si is
represented as the column of an arr . Each state in the set represents (1) a production
such that the algorithm is curren iiring a portion of the input string which is
derived foam its right hand side (the portion to the right f the arrow), (2) a point-of-
scan marker (dot; also called 8 cursor) in that production hick shows how much' of the
production's right hand side has been recognised so tar. In Arley', original formulation,
a pointer was also kept to the position in the input string at which the algorithm. Began to

.look for an instance of that particular production. This is of necessary when using the
array format.

The algorithm continues as long as any one of three operations is applicable to s pro-
duction in the array. The operations are mutually exclusive. The predlctor-operation
is applicable to a state when there is a nonterminal Immediately to the right of the dot.
Its effect is to add one new state to. S1 for each alteioative Of that tionterminal. The

'Earley's algorithin likaaeiliornpli of a more postal method of reducing exponential processei to polynomial
processmerhis topic will not be explored here, se it is beyond the :cope of this work, and, in tact, has not
been systematically developed in the literature. For a discussion of some relevant considerations see 1Tueel,
ierlkesneind and Pereira and Warren, 1031. The latter reference also points out thai Earley's algorithm
actually a particular case of chart parsing, systematised in Kay, 19114

15
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Its effect is to add' one new state to S. for 'each alternative of that nonterminal: The
point-of-scan dot is placed at the beginning of the right hand side of each production ad-
ded by the .predictoP, since none of its symbols has yet been scanned. In the modified al-
gorithm, these are always placed in the array at position Thus the predictor adds to
the array at (i,i) all prodictions which might generate substrings.beginning at al (but
only adds one copy of any production, thus avoiding the danger of infinite looping in-
herent in recursive descent).

The scanner is applicable just in case there is a terminal o the right of the dot in
some production in column i. The scanner compares that symbol with a; and if they
match, it adds the production to column i +1, in the same row as the original production
in column i, with the dot' moved over one position in the produ,ction to indicate that that
terminal symbol has been scanned. After the scanner is applied to all productidns in a
column to which it issapplicable, he algorithm moves on to the next column.

411/ The third operation, the completer, is applicable to a production if its dot is at the
end or itkright,hand side. If the left hand side of'the production is "P" and the produc-.
tion is in row i, then the completer adds all productions from column i which have P
directly to the right of the dot, moving the dot one place to the right (i.e. f;)yer P).'
tuitively, column; i is the state set the algorithm was in when it,predicted the pOssibility
of the production just completed (the one with left hand side P). Now thit P has been
successfully tound,th4 completer goes back Will the states in Si which caused the algo-
rithm to look for P,'knd moves the dot over the P- in these states to show that it has
been successfully scanned.

In the cadeol rule* wit/L/1_24M hantilidriviame further modifiCationt to each of the
procease mentioned need to be made. These will not be detailed here, but -may be found
in any of the references mentioned above.

4

Examples

The algorithm described above, using the grammar

S aTc
S SU
S 0 T
Tie
U 0 d

to recognize the input string

stied

produces the array below.

a ,
16.
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Unread input (. indicates point of scan)
.ecd .cd .d

(1,1)

S -0 .aTc
S U

S *-4 .T
T -0 .e

(1, I)

a.Tc
(1,19

S aT.c
1i,41

S aTc.
S S.0

(1,5)

SU.

(As)

T e. .

(z 4)

. As) (5,4) 0,51

(4, 4)

U .d.
(4 5)

U d.

Al in Ada?

Commentary on the.Eiample: -.

rke Array . .

..AakSi e.theinput string.is of length 4, the array will have 5 columns. These are labeled in
e example with the input string, with a point-of-scan marker to show how much of the

string had been read prior to entering any productions into that column.

Cohomusi: <,

The array is initialized by the entry into (1,1) of the productions 8 ---+ .aTe, S -+ .SU,
S -. .T. The predictor then causes.the production T ,= a to be added to (1,1). Since
the predictorand c mpleter are not applicable, the scanner is invoked, causing entries to
be placed in colu n 2.

Cuomo 8: . ,

The scanner looks at the next character and finds it to be a. Since the only production
in column. 1 with an a-at the point of scan is s-8 -- .aTc, in row 1; the pr uction 8 -+

. a:Te is entered into (1,2). The predictor is now applicable,cauaing T 4 .41 be added
to (2,2).

i
Column S:
The scanner first operates on the production T a, causing T a. to be entered into
(2,3). This latter causes the completer to be invoked. Since it occurs in row 2, the com-
pleter searches column 2 and finds one production, 8 -+ aTe, with a T immediately fol-
lowing the point-of-scan marker. This production is therefore moved horizontally to
column 3, entered into (1,3) as 8 - aT.e

Cohan 4:
The scanner now finds a e at the point of scan and moves 8 -+ aT.e into this column as

-- aTe.. The-.completer then Ands 8 -+ .8U in column 1 and moves it to (1,4) as
.- B.U. This causes the predictor to-enter U into (4,4).

Colendri:
The scanner is used again, producing the production U -+ d. in (4,6). -This causes the
completer to search column 4 for a production with U at the point of scan, and it finds 8
--+ S.0 and. moves it across to (1,0 as 8 -* OU. The fact that there is a production in
(S) with an- 8 as left hand side and the fact that the string is now indicated together
indicate that a successful parse has been found.

17
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r.b

TO recover the parse, it merely needs to be noted that the portion of the right hand.
side of a production ig the array to the left .of the point of 'scan has successfully been
matched to a portion of the string being parsed that is given by the coordinates of its
location'in the array. If the production is in the array at .(i,j), then that portion of the
right hand side has been matched to positions i through j -1 (notice that'this means t
productions added by the predictor, whiCh halie nothing to the left of the dot and awl
(1,1) have been matched to nothing, m we would desire). Completed productions --(tie
ones with the dot at the end of the right hand side) constitute a successful parse of a
portion, of the string, which, its a parse tree; would be dominated by the left hand,:side of
the production. In our example; for instance, S SU. is found in (1,5), so it consti-
tutes a successful parse of positions 1 through'4, that is, of the whole string, while U
d. parses only positions 4 through 4 only the fourth character. The production S --0
aTC. parses positions 1 through 3,,while T --0 e. parses position 2. The single charac-
ters a, e, c, and d cover positions 1,2,3, and 4, respectively, of course.

An algorithm to recover the parse must start with the (1,n) position, where a-1 is
the length of the string, then check (1,k) and (k,n) for each k = 1 n. For each one
found; a recursive call wilt check in the same manner until everything is reduced to sin-
gle Symbols. The ditails can be found in.[Harrison, 1978] -(though the reader should be
Aware that he numbers his array from zero:.rather than one).

4
3.2. USING EARLEY'S ALGORITHM TO MATCH PATTERNS

Once the parse array has.been formed, all parses can be found in time proportional
to n2, where n is the length of the input string, using the. algorithm mentioned, in the
last section. Formation of the array itself takes, in the worst case, time proportional to

n3 because the.cosmpleter operation potentially has to examine a;whole column of.the
array, which takes some multiple of n operations, for each orsome;multiple of n2 entries
(see (Harrison, 1978] for a detailed analysis). Storage for a parse array is proportiOnal to
n2 (since it is two-dimensional and each dimension is proportional to n) but can be large
if the grammar is large. However, once the results of the pattern match are no longer
needed, the storage can be reclaimed. There is also the Possibility of storing the array as
a list if it is sparse. These factors need to be investigated, as Kreuter is continuing to do
(see the second paper of Ns collection).

In order to understand the emphasis of Kreuter's paper,. let us consider briefly how
the pattern primitives of SNOBOL4 ( §2.2), as used in Post-X ( §2.3) would be treated in
an appropriately modified Earley's algorithm.

Concatenation and alternation and the grouping thereof by 'parentheses. are
'reflected in the composition of the grammar rules. Thus .

P Q Cabe POS(5)) LEN(12) REM
.1

(where Q is another pattern) would become the grammar

P Q
P --0 R LEN(12) REM
R --0 `abc' POS(5)

Assignment operators are not used, since the branches of the tree according to the gram-
. mar are used in the Post-X action statement's. Notice that, the parentheses used to

group the elements of the pattern have affected .the grammar produced, and will

18
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therefoke affect the branches of the tree produced upon a successful match (parse) aad
the selectors used to ,refer to matched substrings in the action portion of the form (see
§2.3) .

. . i.'The pattern primitives can be dealt with when the scanner or predictor are used.
They are treated as follows:

POS(I). If POS(i) is found at the point of scan, then the production-110S(l) A. can
be entered by the predictor in that column if and only it it is column i- (indicating

,that i characters have been scanned).

RPOS(1). Treated similarly, with the count being from the end of the strini(this will
mean that the string length needs to be obtained before the parse, which is.advitible for
purposes of efficient storage allocation for the array anyway).

ARB. If ARB is found at the point of scan in column i, .then the production ARE
A. is entered into position (i,i) in the allay, ARB sr is entered into (i,1+1) where si
is the i-th character. in the string being matched, etc. to the end of the string. (It' is also
possible to deal with ARB on.a column-by-column basis by entering only the productio4
mentioned in (i,i) and the productidn ARB =- s '.ARB This treatment will produce a
right-branChing parse tree which can be modified into the desired tree by pint;
processing.)

REM. When REM is found at the point of scan in column i, then the produCtion REM r.

". X. can 'be entered into (i,n); where X is the remainder of the string and n is the last
column (i.e. X is si s.). .--

BREAK(x) is treated like ARB, except that 'it is 'necessary to check for the break char-
acters' and enter the productions accordingly.. That is, BREAK(x) -- y. is entered
into the array only if y does not contain any occurrence of a character in x.

SPAN(*) is treated like BR1AK, except that the string y in the description must con-
tain only characters found in the string x.

ANY(x) matches of ly single characters. Thus the production ANY(x) y. is entered
only into (0+1) Ynd only if the i -tb character is in x.

NOTANYOsi is treated analogously to ANY except that the i-th character must net be
in x.

LEN(n) is treated like ARB, except that its production is only entered at (i,i+n).

HAL can be done analogously to ARB. If productions are to be entered into (Li),
(i,i+1),... up* to the end of the string, then it will be necessary to check for balance in the
strings before entering the appropriate productions. Alternatively,.the productions HAL

A. BAL.-. .1' BAL -')' and BAL. -+ .BAL HAL can be entered at (1,1), and the
parse obtained can be postpeocessed to obtain the appropriate tree structure.

Othr pattern variables are dealt with analogously. The treatment of NULL and literal
strings should be obvious-(just the usual treitmentin Earley,'s algorithm).

4

8.3. ALTERNATIVE PATTERN MATCHING ALGORITHMS
There are various fast string matching algorithms available, but these were not

considered in the research because of 'the requirement for returning a structural descrip-
tion, in order to pnativie Poit-X-like processing. For some specific string matching algo-
rithmi and references to the literature, see [Liu and Fleck, 1979]. The reader should be
aware that'the- SNOBOL4 patterns are more'powerful than, for instance, regular expires-
pions, which certain algorithms, such as those employed in text editors, match rather
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.4: EXTENDING THE PATTERN.DIREGTED PARADIGM.
.Given the fact that so much of Al and eventL.Consists of manipul4ion of lists

and trees, rather than stringi, the fact that SNO1110154 yot considered at process-
ing languafe was undoubtedly one reason that it did not become a major Al proiiim%
ming language, degpite its, excellent pattern-directed ,..string.,processing ficilitiesland, not
incidentally free .discribution"by,.Bell Laborptorieq)? SNOBOL4 does allow the definition
of datatypes, which are basically list structuA, 'kW.' the language for using these is not
pattern-diActed, alid the trace' and dump fa,,cilities;:are it developed sufficiently,to make
them easy to use. (Other reasons for.SNOBQL4's failure' to capturs,the "Al market"
have to do with control structures [Hades and Reeker, 1980a1).

. . .

The Post-X language (see §2.3), while originally tlesigned414 sOing prOCessing,
sought to provide pattern matching on trees in a manner that would tte'analogous 6-the
string pattern matching facilities of the language, The method of doing was to
extend tile use of the: SNQB0L4 Rattern AAL (see. §2.2:2) to (pow the specification of
the. value of the structure 'within a balaved set of patentheses designating a tree. In
addition, somit tree functions were added for use within the action portion of the forms
dealing with 'trees (see [Baffles- and 1980131)., The attemptWas only partially suc.:r
cessful. Though the specifications wee easy to write and easy toread in some cases,
they were confusing in others, partially because of confusion among label's within dices
and data items on the leaves of. trees: Wauchope seeks to remedy this deficiency in the
work reported in the third,paper of this report, and iti continuing work. As Winston
and Horn (19811 have said, "Building in these"Capahilities'can be hard. The literature
offers little guidance."

4

AI in Ada?

5. CONCLUgION
The following papers address in a tentative way two important issues in the provi-

sion of pattern-directed string and list processing" in Ada, Kreuter's paper deals with
alternative algorithms for string pattern matching which will also return parses or struc-
tural descriptions of the string, where stn.ictural indicators are built into the *terns, in
the manner of Post-X. The matching process for such general patterns .is time-
consuming, so efficiency will be an important consideration. Wauchope's paper makes a
further extension of the pattern-directed paradigm to arbitrary LISP-type data struc-
tures. This work should lead to a useful alternative language for artificial intelligence,
using.Ada, and is being continued.

In consideraing future applications of artificial-intelligeNce, it important to realize
thae game playing, language prbcessing, expert systems; and the other sorts of things
thit we conventional!), think of under the umbrella of AI are going to be combined with
simulitions, numerical p grams, large file processing applications, and the like. For
these "conglomerate" ap lications, the languages that haveAlst commonly been n-used 'in
.?tI research may not he be most useful. In our viewrAds can provide an excellent
invirOnment for artificial i telligence applications of the 'future because of its flexibility
and. generality. The problems addressed in this 'report' 1 Prision of appropriate facili
ties through packages and making those facilities efficient enolgh that large and complex

/progrkIns will be feasible within them are "Ozrea. that need to be addressed if this s..
potentialls to be realisek

.
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PArryittN,MA.TalING.AIJGORITHMS IN ADA
1

John Kreuter
ruligne Unsimrsity

Abstract

Tartest, the usefulness of Adaln artificial intelligence programming, it is desired to develop
Ada' packages which mirror the tapabVities of languages such as LISP or SNOBOL4 which have
proven their utility in artificial intelligence.; The development of SNOBOL4-11ke pattern matching
packages was undertakin by'this author. Viewing pattern matching as an extended parsing prob-
lem, Ads packages fox: paiterh matching utilising Earley's efficient parsing alerithm yere
developed, as well as pickaps implementing the more traditional backtracking (recualvie descent)
approval'. Since a full Ads implementation was not available at the time, these efforts. should be
considered as preliminary, but indicate a direction for further research.

1. INTRODUCTION: RESEARCH OBJECTIVES ,

This project is part of an overall effort to add useful artificialintelligence program-
ming tools to Ada. One such toot is pattern-directed string processing, of the Dort avail.: 4

able in the language Post-X [Bailes and Redar4980a,b1. This involves the implementa-
tion of pattern matching algorithms in Ala which actually ireturn a parse tree of the
match of a pattern according to a structured pattern. In other words, pattern matching
according to a context -free grammar with primitives like those of SNOBOL4 (Griswold
et al, 19711 is the goal. V

Pitiling can be an expensive operation, timewise, to use over and over as a basiii of
a programming language especially when the patterns are as general as those in SNO-
BOL4. The purpose of the research reported here was to ccinsider-the particular parsing
algorithms that can be implemented using Ada packages. Because a number of con-
siderations are involved, including the basic efficiency of the algorithm and the efficiency
of its implementation in the Ada anviro

ent
it is advisable this in an experimen-

tal manner, impleMenting and testing. T'
2. DEFINITION OF PATTERNS

Before any pattern matching: algorithm could be implemented, a suitable definition
one easily represented in Ada had to be developed. The packaging facilities of

Ada Would then allow. the 'pattern representation and pattern building functions to be"
eloped and compiled independently from the pattern matching routines. The pack-
ng facilities allowed by the available compiler are at present incomplete (see tlie

'recommendations in 14 of this paper for a clibcussion of :the shortcomings of the current
version of the compiler used in this work) but it wad possible to demonstrate within
them a measure of enbapsulation. A fully validated Ada (one that implements the full

,definittim of the language) will enable more extensilve tufa of the package to build hierar-
chies oflibraries of packages, with each 'library at a given level containing packages use-
ful to the applications at the next higher level. Thus at the bottom level the, libraries
would contain packages of gliterally useful abstract data types such as stacks, queues,
linked lists, sequences, strings. (a more complex variety of string than that built into
Ada), mittricee, etc., defined in terms of the built-in types provided by,, Ada. At the next
higher level would be packages that could use these lower level defined types. Por
instance, the pattern matching packages would be defined at this level. At the next 4
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higher leveUould be packages utilizing complex structures suet as patterns for
'instance, a caviler could be defined at this level, using the pattern matching algorithms
to do the .parsing.

The first working definition of a pattern was:

A PATTERN is an (unconstrained) army of ALTERNATIVEs.

An ALTERNAIWE is an (unconstrained) array of BEAM. ,(Bead is used here to
correspond to SNOBOV terminology [Griswold et al, 1971).)

A BEAD is any of ry

(i) a string;
(ii) a PATTERN;
(iii) a primitive function (primitive functions selected corresponded to the most

useful SNOBOL4 primitives.)

The available compiler, though it supports unconstrained arrays, does not support
size-variant records, so the utility of using unconstrained arrays in a package is limited.
The next working definition for a pattern therefore made an Alternative a linked list of
Beads. Unfortunately, without generic packages, a linked list could not be conveniently
defined outside the pattern package. Thus, although the type Alternative was imple-
mented as a linked .list, a Linked List type was never explicitly defined, The working
definition for a Pattern then became, in Ada

type prjm-func is (ARB1, REMAIN1,-POS1, SPAN1, ANY1,
NOTANYli BREAK1, TABi);

Opel Primitive.is record
a.

Name : prim-func;
Arg : string-pointer,

enj record;

type Pattern;
type Kinds is (terminal, non-terminal, operation,

R, L);
--It and L are used to hold the left and right

unmatched substrings4.1

type Be&d(Kind : Kinds) is record
case Kind is

when non - terminal Choice : Pattern;
when terminal Str : string-pointer,
when operation ow> Op : Primitive;
when R null;'
when L mg> null;

end case;
end record;

type alt-pointer;
type Alternates is record

C Bead;

22
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next : alt-pointer;,
end record;
type alt.pointer is access Alternates;

type pats is array(Poeitive range <>) of Alternates;
type Pattern is access pats;

Finally a type Sys-Pat was introduced, so that the pattern building functions could
distinguish between internally generated stibpatterne and actual user-defined patterns.
For example, the pattern

p (ta') + +

should have a length of 3; but the pattern

P .3-, (A + "c"),

where

A ("a" + "b"),

should have a length of 2. By overloading the pattern building functions, the compiler is
forced top choose the proper representation in both cased.

The - problem of pattern matching is given .a pattern and a target string, to find a
substring such that for each set of alternatives a bead can be found which matches the
nubstring starting at the point where the last set of alternatives leaves off. In some
schemes the .substring may start either flush, left, flush right, or anywhere within the tar-

.- get string, depending on a positional indicator passed`to the pattern matching algorithm
along with the pattern andpthe target string. Since the patterns used here include the
ARE primitive function (which matches' any arbitrarily long string of characters) posi-
tional indicators have been left out of this initial work. All patterns are matched flush
left. However,' provision has been made to include positional indicators in future ver-'
sions.

3. SOME ALGORITHMS FOR PATTERN MATCHING

3.1. BACKTRACKING: RECURSIVE DESCENT
The most intuitive approach to the pattern matching problem is to try every possi-

bility for each pattern eleMent individually. This leads to the "backtracking" method.
This method starts by trying each bead, for any giien set of alternatives, until a match
is found. Then for the next set of alternatives each bead is tried, etc., until all sets of
alternatives have been matched. If for any set of alternatives no bead matches, then the
algorithm backtracks that is, the previous set of alternatives is tried, again, starting
from the bead that just matched. clearly every possible parse of the string will be
found in. this fashion, but there ire several problems which arise with this method which
will be discussed later. ., , , . . r . ii,, ,

A typical way of implementing the backtracking method, and the way thatTI chose,
is the so called recursive dekint parsing algorithm'. As the, name implies, recursion is
used extensively, by this method, especially if the bead being matched is itself a pattern.

*NI

Nee 1311 of the first paper in thW repo& .444
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(Recall that a bead may be dither astring, a pattern! or a primitive, function.) In this
case the recursive descent' algorithm calls itself (i.e. recursion.), passing the value of the
bead (i.e. the pattern) awl the cursor position of the string. The positional indicator, if
used, would be flush left. In this fashion the algorithm "descends" with recursive calls
until the bead being matched is not at pattern. At this point, if the bead is a string it is
matched against the target. If the bad is 'a primitive function, then a string is derived
from the function, the target string and the cursor position. This derived string is then
matched against the target. If this matching is successful the next set of alternatives at
this level of descent is tried. (This may be done by recursion also, by iteration, using a
stack, or by coroutines.) After eachoet, of alternatives is matched (or if no match is
found), the algorithm returns to the Text higher level with the matched substringOor the
null string if no match is found).

3.2. COROUTINE IMPLEMENTATION OF BACKTRACKING
An elegant way of implementing the backtracking aspect of the algorithm that

is,. when no match is found, returning to a previous set of alternatives and resuming
where the algorithm left off is through the use of coroutinbs, which in Ada are tasks.'
The task starts by examining each bead in the first set of alternatives, For each bead
that successfully matches, a new task is started, which examines the remainder of the
string and the remaining sets of alternatives. When the last set of alternatives has been
examined, the task passes back the matching substripgs (or the null string if no match
has occurred) and terminates. The parent task then adds its substringto the beginning
of each tree on the list which has been passed to it. This new list of trees is then passed
back, and the task terminates, etc., until the topinost task completes all possible parse
trees. Thus although backtracking takes place (each possibility is considered individu-
ally) it occurs with a degree of concurrency dependent on the run-time environment.

Unfortunately, once again the available compiler does not have tasking as one of its
features. The process described above can be implemented as a function, but with the
loss of concurrency and elegance. Furthermore, as shown in the analysis below, back-
tracking can be costly way of conducting pattern matching. Some of this cost
can potentially be absorbed by concurrency, where the system allows, but the implemen-
tation and run-time analysis of this must await a validated Ada (so that concurrent
tasks can be incorporated into the algorithm). The run-time analysis could then con-
sider both time and resource utilization. As multiprocessors appear this analysis could
provide some interesting insights into time consumption Versus resource demands.

y*P
TWP noteworthy problems exist with the pattern matching method outlined above.

The first occurs if the pattern itself is left recursive that is, it has the form P = P'
+ A, where P' is a pattern which can produce 13, and A is any pattern (possibly null).
The recursive descent algorithm will examine P by first considering its 'first set of alter
natives, i.e. P' . This will cause a recursive call, so that P' is considered. Since P'
can produce P, eventually the algorithm will rkursively consider P, which then causes a
recursive' call to P' , eventually leading to another call,to P, etc. without, ever having
advanced the target string cursor. Thus the recursive descent method goes into an
infinite loop if it encounters a left recursive Fortunately this is not a major
problem since it has been shown that any pat ern Can be generated by a pattern in

Nee f1.2 of the first paper in this report. -Ed.)
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Greibach Normal Form, which means the pattern has one of the following forms:.

P a -F. P1 + P2 + + Pn

P = a
P null

where a is any string, and, the P's are all patterns.' Clearly a. pattern in Greibe.ch Nor-
mal Form cannot be left recursive, so if any given pattern is first modified into this
form, the recursive descent algorithm will work...Although this probleni of handling left
recursion is not -majbr since any pattern can be transformed into Greibach Normal.
Form, the problem of the time requirements of the backtracking algorithhi in the most
general cases of patterns remains. Consider as an"example the pattern P = ("a" + P +
P) or null. Suppose this pattern is to be matched against &string of a's. Clearly the left-
most a I be matched by the "a" of P. All other a's can be matched by either the_.first
(recurs e) occurrence of P, or by the second, independent of how any previous or subse,
que a's are matched. 'Thus if the string is L long, combinatorics tells us that the
number of possible parses is 1 '+ 21' that is, the number of parses is exponential.
Since the backtracking algorithm considers each possible parse individually, it will
require exponential time to parse such a pattern. So, although the backtracking method
may be u4eful given certain restrictions on the allowable patterns, in the most general
case the time constraints become burdensome.

3.3. USE OF EARLEY'S ALGORITHM
Obviously, the way to reduce the time coats of parsing is to not treat each indivi-

dual possibility by itself, rather to group them into classes. In the above example, for
instance, there is no need to consider both of the recursive P's individually since they
both reduce to the' same tree. Both P's can be considered in parallel, and then the above
example will parse in linear timel Even with more complex examples, it can be shown
that by developing a scheme to consider similar possibilities in parallel, pansing can be
accomplished in polynomial time, a vast improvement over the exponential time required
by the backtracking ;method. One such scheme, whiCh can be implemented without any
initial manipulation if the pattern is known as Earley's algorithm.

Earley's algorithm is described in its mathematical details in [Harrison, 19781 where
a modified (.improved) version is called simply "a good.practical algorithm". The main
problem I encountered in implementing this algorithm/ was developing reasonable dal"
structures to represent the rather complex inathematicil formulas introduced patterns
must be converted to "dotted rules ", a triangular matrix of dotted rules must be
created, and the functions "X", "*", and "predict" must be implemented.t Once again

ehould be mentioned here that it is not common for patterns to call themselves recursively. Recursive
patterns'are, however, a possibility that one might not Want to exclude, and are very handy in some in-
stances. In SNODOL4, they are implemented through the use of "unevaluated expressions", and heuristics
are used to prevent infinite loops of recursive calls (which, in implementation, would tend to cause a stack
overflow). A good discussion of the use of unevaluated expretnionsin SNO80141 can be found in 'Griswold,
19761; the heuristic mentioned is also discussed in (Griswold, 12841. In Prolog, there are also problems with
left. recursion. These can be solved either by automatic transformation of left-recursive clauses or by check-
ing for the occurrence,of particular states (eft. (Ensile et el,. 10841). -ed.)

[The "x" operation is used to implement Earley's "scanner" (see 13.1.3 in. the first paper of this report),
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the effort was hampered by the lack of generic packaging facilities in the currently-
available compiler. The development. process ceztainly could have made good use of a
lower level of abstract data types whjsh included sets and matrices. As it was,- these.
structures had to be developed concurrently kith the rest of the algorithm.

Another problem . encountered in implementing Harrison's version of .Earley's algo-
rithm is that this version (as most are) is developed for s context -free grammar, not for
pattern matching. Although for the most part context-free parsing is analogous to pat=
tern matching, the analogy' breaks down when the primitive functions are considered.

. These primitive functions are in general. string and cursor dependent, and so have no
context free, representation. Since they are at most dependent on the string and cursor,
though, it was possible to alter the "predict" function so as to prolluce simple string
derivations of each primitive function u it is. encountered during Oe parse. This
increases the. time requirements as compared to a simple context-free parsing problem,
but the modified algorithth still requires no more than polynomial time.'

As can readily be seen from the above discussion, although Earley's algorithm is
faster than the backtracking method, the price is paid in the complexity of algorithm
and the space it takes while running. The complexity also may make it more difficult
to develop Earley's algorithm to take advantage of a con'current' environment. Now
that the algorithms have been developed into working programs, it remains to be stu-
died whether the difficulties of Earley's algOrithRoutwAgh its benefits.

4. COItLUSIONS
Two working programs, in Ada have been produced, utilizing two different methods

for pattern matching, but (clearly, more work remains to be done. To provide maximum
utility to future users and researchers, the programs developed should be rewritten in a
fully validated Ada, making use of the packaging facilities ss' detailed in the 40oD
specifications for the language. In the specific ,case of the backtracking algorithm for
pattern matching, the rewrite should also include tease of tasks. In this fuller Ada
environment, the two methods of pattern milling could better be tested against each
other in. real time, to, provide,a comparison o their relative merits in tithe, space and
concurrency.

Two other suggestiorke regarding Ads have arisen from these efforts: First, Ads
makes no provision for treating functions as data types. Such's treatment is especially
useful in pattern matching, where it is desirably to associate an action to be takiiii with
s pattern to be matched, as in Post-X. Second, when producing large systems u is often
the cue in AI programming it would be beneficial to be able to declare subprograms
within a package to'be external, so as to be able to compile them separately from the
rest of the package. Although the separate compilation of the packages themselves is
very useful, in complex systems the package itself may grow to a cumbersome point,
with each update requiring inordinate amounts of compile time. Facilities for external
compilation help to relieve this load.

In this paper, we have discussed methods of implementing within Ada the contra'
facilities for pattern-directed programming with character .strings (which could be

and both the "X" and "*" operations are used to implement Eariq's "oompieter" in Hs/Aeon's version of
the algorithm. -od.1

rfies $3.2 of the first paper in this report for $ discussion of the modification" needed. -od.I
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extended to other datatypes as suggested in IWauchopc, 1984)). Work is continuing in
comparing.these roethod-andtesting their efficiency.

4
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PATTERN-DIRECTED LIST IiROCESSING'IN ADA

4:-
Kenneth Wanchopes

Tulane University

Abstratt
A pattern- directed list proetseing facility for the Ada programming language is presented.

Pattern lists for matching against source lists are constructed from a set of SNOBOL4-derived
primitives which hive been extended to be applicable to arbitrarily complex LISP-like data struc-
tures. Patteris may also contain user-defined symbols, which can wive as nonterminal symbols of
a context-free grammar. Basic list creation and manipulation are made available to the program-
mer via a package of LISP like functions and dati types. Several examples of possible applications
in Artificial Intelligence are explored-focusing on computational linguistics problems such as
transformational grammar and parsing-denionstrating the construction of patterns and the use of
various operations available for tasting and manipulating the values which the matcher returns.

1. INTRODUCTION
The Adi, language, with its goal of being the exclusive high level programming sys-

tem used in the Department of Defense, includes data abstraction facilities that in effect
make it possible, to extend the language by creating new data types and defining the
operators that are to act upon them. For specialized areas of application, a programmer
can invoke the appropriate data abstraction (package) and proceed to write code using
the new high-level constructs it provides, just as if using a new language specifically
designed for that problem domain. One application area of potential interest to Ada
ubers is artificial intelligence-including the field of. computational linguistics, which offers.
such possibilities as natural language interfaces with computers, text 'understanding
and/or information retrieval, natural language programbiing, and machine translation.
Programming tasks in this category are usually untliAiken using specialized string- or
list-processing languages such as SNOBOL4 or LISP, and exynding Ada's ability to pro-
cess data structures of this sort would greatly facilitate the development of language
processing and other Al-related systems in that programming environment.

Pattern matching is a computational 'paradigm that is particularly appropriate to
language processing applications, as a language can generally be described in terms of a
series of syntactic patterns and subsequent pattern-directed semantic mappings called's
grammar. If an input sequence of terminal 'symbols successfully matches the grammar's
set of patterns (rewrite rules), then it is a legitimate sentence in the language and
appropriate further. actions (creation of a parse tree, or mapping to a deep structure or
meaning representation) can be carried out. Pattern matching can also be used to drive
the process in the opposite direction, such as matching certain deep structure kernels
and then perforMing appropriate grammatical transform' ationb on them to yield new sur-
face structure sentences. Many other Al applications also employ production rules that
are fired by a sucdessful lb-Whim of symbolic, state conditions, and so pattern matching
can be used to perform,such tasks as formula unification, syMbolic differential and
integral calculus, and Similar problems involving sequences of symbols that are to be

analysed for content and structure.

4.0u/tam address, Navy Center for Applied Risearch in Artificial Intelligence, Code 7610, Nall Research
Laboratory, Washington, D.O. 20375.
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The objective of this research was to design and implement a pattern-directed list
processing package in Ma to test the hypothesis that such a package would provide a
practical and useful facility for artificial intellipnce programming. A package of list
datatypes and list-manipulation functions were created. List patterns could then be con-
structed out of SNOBOL-like pattern matching' primitives, and the matcher was to
return a list of short-term variables corresponding to the values matched ,(perhaps only
partially) by the pattern components. These values should then be capable of being
tested, concatenated, or subjected to -further matching. Once the matcher was opera-
tional,. it would be tested in various areas of application (concentrating upon computa-
tional linguistics, problems) to determine the usefUlness of the various matching primi-
tives and the operations gpon the returned values.

2. DESIGN OF THE PACKAGE

2.1. LIST PROCESSING
The most widely used Al programming language in the United States is LISP,

which represents sequences of symbols (atoms) as binary linked lists. The primary list
manipulators are CAR and CDR, which return the first element and remainder of a list,
respecti'vely, and CONS, which creates a new list out of a pair of elements (themselves
either atoms or lists). Various predicates are also available to test. the identity of data
items, and more powerful list manipulation functions can. be built up out of these
simpler ones.

Trees are a natural way of representing the structural composition of sentences in a
.language, and binary lists ca4t be made to accommodate these structures quite easily.
For example, a parse tree forti6 is in the garden" can berepresented by 'the binary list

(S(NP(Pro(he))VP(V(is)PP(P(in)NP(Det(the)N(garden )))))),

where the constituents of each phrase marker are to be found ast.sublist immediately
following it.

The initial task toward 'creating a Est pattern matcher in Ada was to proyide
means for the creation and manipulation of atoms and lists. This was accomplished by
defining "S-Expression" as an abstract data type, with its internal structure (either a list
node having left and right child pointers, or atom node having a name field, value field
and next pointer) hidden from view so that only the LISP functions exported from the
package could be used to operate upon values of the type. S-Expression objects are
created by a function "Quote" which converts Ada etrings (representing properly bal-
anced S-expressions) into linked-list structures; the function bears little resemblance to
the LISP Quote (which suppresses evaluation) since no LISP interpreter is actually
involved, but the name was borrowed because of its analogous function. The most use-
ful core LISP functions and predicates, as well as several higher-level ones (such as
Member and Append), constitute the remainder.' of the operations available on the
abstract type.

1.2. LIST PATTERN MATCHING
Since patterns would be constructed by the user in: the same form as the source

lists (i.e. parenthesized strings of symbols), it was decided to convert the patterns them-
selves into lists (using Quote) and then perform the matching by stepping through each
list and mapping corresponding elements onto each other. The matching itself is thus a
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14list- traversal process and so was implemented in Ada in much the me way as a pattern
matcher would be written in LISP f, using recursive procedu es written'in the Ada
pseudo-LISP. . .

.

To adapt SNOROL-like string matching primitives to the job of list matching, two
versions of each primitive were defined: the first claw matching list components (i.e. the
CARs of each node in a particular sublist, which can be either atoms or. lists), and the
second matching, individual atoms at arbitrary depths of nesting in the tree. (Mee the
pattern matcher became operational, it would then be possible to determine what use
might be made of the two classes of primitives in actual applications. The primitives
implemented are listed below.'

-----.- Class It List-Component Primitives --4----,
LIM): Matches if the next list element of the source is equal to the element e (o.tomor
list). Examples: LIT(hello), LIT( ((hi)there) r.

LEN(n): Matches series of n list elements (atoms or lists). Example: LEN( &).

BAL: Matches an arbitrary number of list elements.

ANY(s): Males if the next list element of the source is a member of the sequence of
elements s. Examples: ANY(boy cat dog), ANY(a 1 (list 2) ((list)3) ).

NOTANY(s): Matches if the next list element of t source is not a member of the se-
.quence of elements s. Examples: NOT (bad worse), NOTANY( (real
.badXevens(worie)) ).

BREAM.): Matches all list elements until one is encountered that is a 'member of the
sequencot elements a. Examples: BREAK(stop), BREAK((go(no)further)).

SPAN('): Matches list elements until one is.,encountered that is not a member of the se-
quence of elements a. Examples: SPAN(ok good), SPAN(yes, (fine)).

Class Leaf (Atom) Primitives -----------

LITL(a): Matches If the next, atom in the source is the atom "a". Example:
LITL(hello).

LENL(n): Matches the next n atoms in the source. Example: LENL(&).

ARII: Matches an arbitrary number of atoms (possibly none).

ANYL(i): Matches if the next atom in the source is a member of the sequence of atoms
a. Example: ANYL(one two three).

NOTANYL(s): Matches if the next atom in the source is not a member of the nquence
of atoms s. Example: NOTANYL(bad no).

BREAICL(s): Matches all atoms until oni is encountered that is a member of the se-
- quence of atoms s. Example: BREAKL(stop).

SPANL(s): Matches atoms until one is encountered that is not a member of the se-
quence of atoms a. Example; SPANL(go fine great).

REM: Matches the entire remainder of the list (possibly empty).

ALT: Attempts to match the first pattern in its argument list followed by the remainder
of the original pattern. If the match fails, it tries the next argument, and soon. Exam-
ple: ALT( (SPAN(s)) (SPAN(' b)) ).
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When matching a Class I primitive in a pattern, the matcher steps down the spine
of the corresponding source aublist and matches the elements found hanging off of it, If
the pattern branches. off to the the matcher' recurses on the CAR Of each list and
then returns (if successful) to proceed down. the spine once again, also recursively. When
matChing against a Class II primitive, however', the matcher begins a depth-first tree
traversal in search of the atoms to mateh against the primitive. Here the problem. arose
of how to allow. such a search through an arbitrary tree structure while still retaining-the
recursive nature of the matcher; a leaf-matching might leave an "orphan" of subtree left
over vs,ith no way to bridge back up to higher unmatched levels of the tree for further
matching. The decision was thus made to continually reform the unmatched portion of
the source tree back into a single well-formed tree of comparable structure when- doing
leaf-matching,. making further recursion always possible by matching the entire remain.,
ing tree at each step. (The backtracking operators BAL, ALT and ARB retain the value
of the original tree to return to if necessary.) In essence, then, the source tree is pruned
of each successful match and any 'resulting empty list nodes are condensed out. It is
thus possible to freely combine primitive's from the two classes in a single pattern,
although use of a primitive from Class I must always accurately reflect the structure of
the remaining' source which it is to match. For example, the source

(a (b (c d),e) f)
will be successfully matched by both patterns

(SPANL(s; b c) LITL(d). LITL(e) LITL(f) )sod
(SPANL(a b c) (( LIT(d) ) LIT(e) ) LIT(f) ),

w.bere :the bracketing in the latter patter- is needed to specify the depth at which each
literrilmust\

Wh fii)n*lk 14sinsi ;Vprimitiv 'nide, the portion of the source tree
t' ''..inrite4e4 Is ,Crint'it ' into aid oput list in the sition corresponding to the sequential,

' poptson of thcOriniitive witiln the patitern,'. If a atch is not completely successful, the
valires of:Ore!piittia I iiiatihea ara:tet'tirted. .This list corresponds to the immediate vari-
able 144 in the course.Of kSNOB914string matching, and is available for
ex*miniition andMastptitation until 'the'next'pattern matching is undertaken. Boti
classes .of,rirtritfre. ri4iiir the., portion of the source tree that was traversed in making
the' match', except that'.the.. values returned by Class II primitivei are pruned of any
,suPerfilious higher level list notes that may hive been traversed in reaching the "fruit,
fur braircheitscOilly matcheif.

In i.dditfon to theie literat,matching primitives and operators; paWn may also
contain userdefined symbols, which are stoma that fiave had values associated with
them using the "Sete procedure (like "Quote", a borrowed and somewhat 'redefined
LISP function). For example, a pattern Could be constructed as follows:

, ,.

.i-s

Sett' ("DIGIT", "(ANY(0 1 2 3 4 5.8.7 8 9))" );

Siktq ("DIGITS", "(ALT( ( DIGIT) (DIGIT DIGITS) );

Ilid_No,Pat: constant string "(DIGITS LIT(.) DIGITS) ".
, .

stomowoulowesomem4awsweroortorwrommominsfara....«osomprrruiraiwomm

J.

When a usetud4fined symbol is encountered during matching,tita value if substituted for
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the symbol in the pattern, and matching then continues.

2.3. ACTIONS '
After a pattern mktch as been performed, the values returned by the matcher are

available for subsequent act' s such as testing, concatenation into new lists, or further
matching. They aye accessed rom the result list by use of an infix operator "/"(List,n)
which selects the n-th member of the list and: returns it. Such LISP predicates as Equal,
Member, and Nullp are available for testing of these values, an4 actions taken earlobe
Conditional upon their results. Catenation of values' is possible! using standard LISP
Cons or Append, but more convenient is the Ada'string concatenator "&" which has
been overloaded to append lists as an infix operator (string values can also be &'ed with
list values if they represent properly balanced lists). The function List is also useful in
correctly structuring the output desired, by forming its .argument into a sublist.

An example of pattern matching that illustrates the construction of patterns and
the use of several of these action operators is the following (highly simplified)' grammati-.,
cal transformation:

List Processing in Ads

HOW. IN.IOW MME MI1011.1. 0114001/.. ON1041111M1MO OMB IMO 4001101....110.001.0101110.10

Function Pronoun_Subst (Source: S,Expr) return S_Expr is.
Success; boolean;
T: S_Expr;
Pattern: constant string

"(LIT<S>.[LEN<'2>LIT<VP>{BAL-LIT<S>(LEN>REM)}1)";
begin
Match(Pattern,Source,Success,T);
if Success then

if Equal(T/2,T/6) then return
T/1 & List(

T/2 & T/3 & List(
T/4 & T/5 & List(

"(Pro(he))" & T/7 )));

else return Source;
end Pronoun_Subst;

am* alloMK* emm as.... woesonomm momm. ems Mims m was waselleemsalaso

Pronoun_Subst (Source) for the input

(S( NP( N( John ))VP(V(said )S( NP( N(John))VP(V(was)Ad j(rich))))))

returns the transformation

(S(NPOI(John))VP(Y(said)S(NP(Pro(he))VP(V(was)Adj(rich)))))).
4

3. APPLICATION EXAMPLES

3.1. PARSING
One application of user-defined symbols in patterns is to serve as grammatical

rewrite rules, where the symbol represents a nonterminal and its value represents the
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right hand side th be expanded to. When doing parsing, the list returned by the'
matcher amounts to a parse tree of the input source, and an additional input parameter
to the matcher can cause nodes of the paise tree to be labeled with the appropriate non-
erminals, as well. As currently implemented, non -left recursive context free grammats

can be handled by the matcher, and are parsed by recursive descent. The matching
function package contains a procedure "Parse" which takes as inputs a start symbol (the
pattern being matched against), source, and label switch, and returns a success/failure
boolean and parse tree, as illustrated below:

1.010141MONNI111.11N..0100 6110110111.11111*.1111.0.41 -11.1141.0.0 IMMN.1011

Setq ("S", "( NP VP )" );
Setq ("NP", "( ALT( (N) (Det N) ))" );
Setq ("N", ANY(ship plane pilot) )" );
Setq ("Det", "( ANY(a the) )" );
Setq ("VP", "( ALT( (V) (V NP) ))" );
Setq ("V", "( ANY(flew sailed) )" );

Start_Symbol: constant string := "S";
Source: constant'string :=-- "(the pilot flew a plane) ";
Label: boolean := true;
Success: .boolean;
Tree: S_Expr;
Parse (Start_Symbol, Source,,Label, Success, Tree);

=woo am. a.* MANN woo olr as NDwWomie on-. mew sivolv. =MO 01.0.410111.111

"True" is returned as the value of Success, and for the list Tree,

(S(NP(Det(the)N(pilot))VP(V(liew)NP(Det(a)N(plane)))))

I

is returned.

The output of the parser is, clearly, in proper form for further pattern-directed pro-
cessing such as grammatical transformation, as outlined earlier.

In order to return a parse tree, a matcher must retain the portion of the result that
was matched by each non-terminal symbol so as to make it a (possibly labeled) sublist of
the tree. One approach to enable this would be to do a,"partial match" of the synibol.
right hand side against the source, and if successful then match the remainder of the
pattern against the remainder of the source and append the results; This approach;
however, makes it .difficult to backtrack to another alternative (such as ALT, BA4. or
ARB) in the right hand side if the matching.on the remainder fails. In the present work,
the matcher avoids this problem by always doing a "complete" match (with backtrack-
ing) on the entire pattern, and remembers where each subpattern is to end by the inser-
tion of an end-of-phrase marker into the pattern after each right-hand-side substitution.
When it encounters one of these markers`during the subsequent matching, it knows to
lump the previous results at that level into a separate list, which is stored in a level- ''
indexed array of subresults that are eventually assembled, into the final parse tree.
When not doing parsing, however, the matcher instead lumps together the values that
were matched by each primitive in the pattern, so'that these vahies can be separately
accessed from the result list after matchingis completed.
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8YMBOR3 DIFFERENTIAMICN
. I

Another application proem written enipioying pattern- matching was a procedure
to .Perform symbolic 'differentiation of arithmetic expressions. The expression is first
Parsed using a.grammar of operat6r precedence, such as

<ff> <T> + <T> <5> I <T5
<T> + <U> I <U> I <U>
<U> 7i> <V>"4. <U> I <V> / <U> I <V>

, ><V> a. <W? ** <V> I <W>
W> t I (..<S> ),

and if succrsful anunIsbeled parse tree itrreturned. Fir example, parsing

(1 * 2 ** 3 + 4)
.

/ .

returns the tree

((I (2 'los (-.3)))-+ 4),

indicating the correct order of operator application. 7'his tree "hen subjected to a
series of pattern matches and subsequent actions to generate the derivative,' as abbrevi-
ated below: o' ..

4

' ems104140.1 40044011101,110410.11101-04111111MIFIMIIMMUMINIOUNIMP4MOINONI04161.1411.01114111140119.1010

FunetiOn Daly (Tree: Sxpi) return S_Expr is
begin
Match( "(LEN(1) ANY(+ *,/ **),LEN(1))", Tree, Success, R);,
if Success then '

if Eq(R/2, "+") or gq(R/2, ",") then
D(x +44y) D(x) +- IY(y)

return Deri0/1) & R/2 & Deriv(R/3);

elsif Eq(R/2, `,`*14,1) then
D(x D(x)y + xD(y)

return List(Deriv(R/1) & "s" 4 R/3)
14+11,

else ...

else:
Match( NA
end Deriv;

List( 1 & "*" & Deriv(R/3));

LEN(1)r, Tree, Success, etc.

!"

Derivv("(X **/ 2 + for example, returns the tree

((2 (X ** (2 , 1).* 1)) + 0),

to which additional pattern-directod processing, might then be applied to reduce the tree
to (2 * X).;Note;that a simple rearrangement of therLIT and:ANY prirpitiii in the pit'
terns could protest a parse in prefix or postfix form. , r.
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4. EXTENSIONS AND IhrTURE RESEARCH

4.XALTERNATIVE.ADA IMPLEMENTATIPNS
This approach to a pattern matcher for lists was inspired by Post-X (Bailee and

Reeker, 19801, . au applicative pattern matching linguage whiCh patterns have been
generaliied into 'a structure called a Form, consisting of an alternating series of pattern; .

and corresponding actions combined into a single data object. In Ada, Form could be
realized as a generic package that would be instantiated with a, pattern part and an
action part, hence serving as a template for new data objects of this type. In the iersior`
of Ada that was available for this research, genekric packages and procedure-variant gen-
eric functions had not yet been implemented, And 'so more powerful pattern matching
structures such as Forms could. not be created except as adahoc procedures or clauses.
The applicative approach to programming used in Poet -X and espoused by Backus [19781
and others can alsq be realized in Ads through the use of generics and abstract types,
and so further work on this project using a more complete. Ada compiler would lead
closer to the Post -X. design.

List Processing in Ada

_

4.9. PATTERN MATCHING IMPLEMENTATION
Pattern matching itself can be considered a form of parsing: for instance, the pat-

tern (BAL LEN(1)) can be represented by the grammar

S 0BAL LEN1
BAL t 1 t BAL
LEN1, t -"

an: matching a list against the pattern is equivalent to returning sparse of the pat in
terms of the grammar. In this regard, a backtracking pattern matcher is equivaleit to a
recursive-descent parser, which is limited in the classes' of grammar it can accept and
runs in. exponential time as well. Kreuter [19841 has implemented a string pattern
matcher in Ada using Earley's parsing algorithm, whit!) has a worst cue time behavior
of N cubed and a more powerful grammar handling capability. Earley's algorithm could
certainly, be applied to this list pattern matcher as well and thus provide substantial
improvements. Alternatively, heuristic methods such as SNOBOL's Quickscan mode
could be added to the 'backtracking design to prune the search space and afford speed-
ups. .

4.3. SELECTORS
In Post-X1 simple pattern matching returns its result in the form of a tree

corresponding in structure to the pattern used; values, are then accessed by multiple Use
of a selector operator, e.g. R/3/2 would select the second' subtree of the result's third
subtree. In the present work, values are instead returned as a linear list, Each approach
might be useful in certain applications, and the curent matcher could be easily modified
to allow the user to select ivhich :result mode was desired.

4.4. LEAF MATCHING PRIMITIVE.
In writing application programs for this matcher,' only small use was made of the

leaf-matching primitives. Further research should determiix areas where these operators
might prove more powerful. I

O
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4.5._CONOWSI014

The prognunming of pattern-directed packages for) variety of datatypea within
Ada appears pot only feasible, but quite worthwhile. Work is continuing in the areas
described above.

4.9

43

AL-

b.



Reeker, Kreuter Si Wauchope 37 Pattern-Directed Al in Ada

REFERENCES

Aho, A. V., B. W. Kernighan and P. J. Weinberger [19791. Awk a pattern scanning
and processing language, SoftwarePractice and Experience, 9, 287 -279. .

Backus, J. [19781. Can programming be liberated from the Von Neumann st let A func-
tional style and its algebra of programs, Communications of the Asso r Comput,
Machinery, 21, 8, 613 -641.

go

Bailes, P. A. (1983). The Derivation of An Applicative Programming Language for String
Processing, Ph.D. Thesis, Department of Computer Science, University of Queens-
land. ,

. .

Bai les, P. A., and L. H. Reeker 119804 Post-X: An experiment in language design for
string processing, Australian Computer Science Communications, 3, 2, 252 -287.

Bailes, P. A., and L. H. Reeker [1980b1. An experimental appIicative programming
language for linguistics and string processing, Proceedings, 8th Intl. Conf. on Com- o.,
putational Linguistics , Tokyo, 520-525.

Bo lz, R. [personal communication). A packilie of string functions in Ada.'
Clocksin, W. F., and C. S. Mellish [1981j. Programming in Prolog, Springer- Verlag,, Ber-

lin.
Dallman, Brian [1984). AFHRL Program for Artificial Intelligence Applications to

Maintenance and Training, Artificial Intelligence in Maintenance: Proceedings of the
Joint Services Workshop, TR-84-25, Air Force Human Resources Laboratory,
Training Systems Division, Lowry AFB, Colorado.

Earley, Jay [1970). An efficient context-free parsing algorithm, Communications of the
Assoc. for Comput. Machinery , 13, 94102.

Enalls, R., J. Briggs and D. Brough [19841. What the naive user wants from Prolog,
Implementations of Prolog Campbell (ed.), Ellis Norwood, Chichester, England, 370- ,a)
386.. -.-

Farber, D. J., R. 'E. Griswold and 1. P. Polonsky 119041. SNOBOL, A string manipulation.
language, Journal of the Assoc. for Comput. Machinery, 11, 1, 21-30.

Floyd, R. W. [1887). Nondeterministic algorithms, JoUrnal of the Assoc. for Comput.
Machinery, 14, 4, 030-644. ,

Caller, B. A. and Perlis, A. J. 11910h- A View of Programming Languages, Addisort-
Wesley, Reading, Massachusetts.

Graham, S. L., M. A. Harrison and W. L. Russo [19781. On-line ,context-free recognition
in Less than cubic time, Proceedings 01 the Eighth Annual ACM Symposium on
Theory of Computing, 112-120.

Greibach, $. A. [19651. A new normal form for context-free grammars, Journal q the
Assoc. for Comput. Machinery, 12, 1, 42 -5g.

Griswold, R. E. [19751. String and List Processing in SNOBOL4: Te chniques gini.Appli-
cations, Prentice-Hall, Englewood Cliffs, New Jersey. .A.

Griswold, R. E. [19841. The tontrol of searching and backtracking in string pattern
matching, Implementations of Prolog, Campbell (ed.), Ellis Norwood, Chichester,
England, 50-84. .

Griswold, R. E., J. F. Poage and 1. P. Polonsky [19711. The SNOBOL4 Programming
Language, Prentice-Nall, Englewood Cliffs, New Jersey.

Harrison,. M. A. [19781. Introduction to Formal Language Theory, Addison-Wesley,
Reading, Massachusetts.

Hewitt, C. E. [19091. PLANNER: A Anguage for manipulating models and6proving

37

44



Reeker, Kreuter & Wauchope 38 1 -Directed Al in Ada

theorems in a robot, Proceedings of the International Joint Conference on Al, 295-
301.

Honeywell, Inc. (1983]. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A. Produced for the United States Department of Defense by
Honeywell Systems and Research Center, Minneapolis, and Alsys, La Celle Saint
Cloud, France.

Honeywell, Inc. [1984]. Rationale for the Design of the Ada Programming Language. Pro-
duced for the United. States., Department of Defense by Honeywell Systems and
Research Center, Minneapolis, and Alsys, Ls Celle Saint Clbud, France.

Kay, M. 119801. Algorithm schemata and data structures in syntactic processing, Techni-
cal Report, XEROX Palo Alto Regearch Center, Palo Alto, California.

Kreuter, John [1984]. Pattern-Matching Algorithms in Ada, Final Report, 1984 USAF-
, SCEEE Graduate Student Summer. Support Program. Edited version included as

the second paper of this report.
Kuno, S. and A. G. Oettinger [1962]. Multiple-path syntactic analyzer, Information Pro-

ceasing 62, Popplewell (ed.), North-Holland, Amsterdam, 306-311. -

Lewis, H. R. and C. H. Pepadimitriou [19811. Elements of the Theory of Computation,
Prentice-Hall, Englewood Cliffs, New Jersey.

Liu, Ken-Chih, and Arthur Fleck [1979]. String pattern matching in polynomial time,
Proceedings of the Sixth ACM Symposium' on Principles of Programming Languages,
San Antonio, Texas, 222-225.

Markov, A. A. [1951]. Theory of algorithms, Trudy Mathematicheskogo institute imeni V.

A. Steklova, 33, 178-189 [in Russian; English Translation, American Math. Society
Trans., 2, 15, 1-14 (1980)].

Pereira, F. C. N., and D. H. D. Warren [19831. Parsing as deduction, proceedings of the
Elst Annual Meeting of Mk .Assoiation for Computational Linguistics, Cambridge,
Massachusetts.

Post, E. L. (19431. Formal reductions of the general combinatorial decision problem,
AMerican Mond of Mathematics, 05, 197-215.

Reeker, L. H. and P. A. Bailes [in preparation]. A proposal for a- graphic progratnming
environment for flexible "language less" programming.

Rieger, C., and S. Small 119791. Word expert parsing,. Proceedings, Sixth Intl. Cent on
Artificial Intelligence, Tokyo, 1979.

Richardson, J, Jeffrey [1983]. Artificial Intelligence: An Analysis of Potential Applica-
tions to Training, Performance Measurement and Job Performance Aiding, TP-113.
1111, Air Force Human 'Resources Laboratory, Training Systems Division, Lowry
AFB, Colorado.

!losers, Hartley,, Jr. [19671. Cambridge, Masaachusetts. The Theory of Recursive Func-
tions and Effective Computability, McGraw-Hill, New York, 1987.

Sussman, G. J., T. Winograd and E. ,,Charniak 119711. MicROPLANNER Reference
Manual, AI Memo !OSA, Massachusetts Institute of Technology, Cambridge, Mu-
sachusetts.

Tucci, Ralph I forthcemingi. Analysis and Development. Master's Thesis, Department
of Computer Science, Tulane University.

Valiant, L. G. 110761. General context-frei recognition in less than cubic time, Journal of
Computer and Systems, Sciences, 10, 308-315.

Warren, D. H. D., L. M. Pereira and F. .Pereira (19771. Prolog the language and its
implementation compared with LISP, Proceeding: of the ACM Symposium on
Artificial Intelligence and Programming Languages, Rochester, New York, 109416.

38



Rooker, Kreuter 3c Wauchope 39 Pattern-Directed Atin Add'

Wauchope, Kenneth [19841. Pattern-Directed List Processing in Ads, Final Report, 1984
USAF-SCEEE Graduate Student Summer Support Program. Edited version
included gu the third paper of this report.

Winston, P. H., and B. K. P. Horn [19811. 'LISP, Addison-Wesley, Reading, Mu
sachusetts.

Yngve, Victor H. [19581. A programming language for mechanical translation, Mechem*.
ell Tress lotion, 5, 1, 25-41.

*u.s. SOVIIINMINT PwriNa 011101114 11 f 5 5 51 0 II t 2 0 0 21

e.

r

4.6
39_

rr


