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FCREWORD

Leaders in any complex organization 2ike the Army are constartly required to

make decisions intended to improve organizational,performance. Effective

analysis and decision making by leaders require al) understanding of orga7

nizational functioning and the dynamics of Organizational c"lange in theory

and practice. Research can be designed to assist leadars in better under-

standing how their organization functions and how they may be improved.
However, for such research to provide sound guidance to leader;, the methods
that are employed must be capable of handling the complexities of dynamic
individual and group interaction. Unfortunately, many of the methods currently
employed by social scientists are best suited to handling less complex forms
of data.

0

The purpose of this report is to provide researchers with statistical tools
that will assist them in analyzing complex forms of data. The focus of this
report is on techniques for estimating meastrement error, using scores that
are aggregated by group. These scores are useful for evaluating group dynamics
in organizations as complex as the Army.

1(C:
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RELIABILITY ESTIMATION FOR AGGREGATED DATA: APPLICATIONS POR ORGANIZATIONAL
RESEARCH

BRIEF

Requirement:

In order to study organizations it is important to be able to measure
organizational functioning with a minimum of error. The report that follows
provides the statistical tools necessary to measure 'the extent of error that
exists in survey data, and organizational record data. Traditional methods of
measuring error are either inappropriate or incomplete when applied to organiza-
tional groups, necessitating the statistical development given here. Appropri-
ate methods of measuring error are particularly important_ when organizqtional
change is being studied. In this case, the same variables are measured at more
than one point in time. The investigator wants to identify real organizational
change. 'However, real change cannot be separated from changes in measurement
error, unless separate estimates of measurement error are available at each point
in time. This paper tells how to get separate error estimates so that real
organizational change can be studied.

Procedure:

When research is conducted in an organizational setting, group units of
analysis are often required. When group units of analysis are used, the values
of the variables generally consist of mean scores that have been aggregated
across both survey items and respondents within groups. Analysis of varianoe was
used here to derive the appropriate reliability formulas ror these aggregated
scores. From the definition of reliability, which involves the ratio of true to
total variance, formulas' are derided by finding the mean square components that
are equivalent to the reliability definition. This requires use of expected mean'
squares for the unit of analysis term and :ther "error" taints. Since the
aggregated scores typically contain repeated observations across items as well as
survey respondents, with respondents 'nested within groups, a split-plot
(repeated-measUres) design can usually describe the structure of the data, with a
hierarchical structure added also as needed. This split-plot uesigp contains two
"error" terms--a split-plot (within-subjects) error term typically associated
with inter-item agreement, and a whole plot 0)etween-subjects) error term
associated with consensus between respondents. Both types of error can enter
into the reliability formula for aggregated scores, d-Tending on whether survey
items and respondents are considered to be fixed or random, which in turn depends
on the sampling plan. For example, respondents may be fixed (or partially fixed)
if the populations of small groups are exhaustively sampled, or nearly so. When
respondents are fixed, the appropriate reliability formula is not the same as
when respondents are random.

vii
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Findings:

Most of the literature on organizations using "roup units of'analysis, have
estimated reliability either incorrectly or inconsistently.

The survey construction and item analysis techniquesthat typically maxi-
mize inter-item agreement, may tend to reduce consensus between respondents, so
that surveys like the Survey of Organizations, that,kere linitially constructed to

maximize inter-item agreement, may have poor reli4bili* when consensus between
respopdents is desired.

When seladying gripups,within organizations, what level of the hierarchy
should be studied? A statistical technique for estimating the level of the
heirarchy that actually controls the subject matter at hand is provided. This

measure can used as a guide for selecting groups at appropriate levels of
heirarchy for study.

Utilization of ,Firldings:

These statistical techniqiles provide improved procedures for studying the
operation of the Army and other organizations. These techniques are an
essential prerequisite to more advanced time-series procedures that are needed to
study organizational change. If an investigator wishes to examine real orgamtza.,1
tional change, the change,-must take into account changes in measurement err.
Sometimes change appears to ue real but is due solely to changes in measurement
error. Chabge in measuremervt. 'error \instead of real d, can be uscA as a
plausible alternative explanation 'for almost any sit of results involving,.-
organizational change. If separate estimates of measurement error are available 4
at each point in times measurement error can Ee taken into account. This,paper
.provides the tools necded'to get Sppropriate lunnAltnalaLsam estimates of(

measurement error, and to show how these estimates change with time. Once these
estimates are found, real organizational"change, as distinct from changes' in
measurement accuracy; can be pinpointed. .

I

1
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RELIABILITY ESTIMATION FOR AGGREGATED DATA:
APPLICATIONS FOR ORGANIZATIONAL RESEARCH

With the growth of organizational development over the last twenty years
there has been an increase in field research on the functioning of intact
organizations (Porras, 1979),. Such field research has obvious advantages over
laboratory research in terms of the possibilities for external validity, but at
the same time researohersAwking with intact organization: face a variety of
methodological questions that have not been satisfactorily answered to date.

One very basic question involves the selection of the unit of analysis for
the research design. Individuals are not the appropriate unit of analysis to
test most hypotheses about group functioning. When individuals are not appropri-
ate units, which of many possible groups, at what level of the organizational
hierarchy should be se3ected? The answer will be suggested by the hypotheses and

organizational structure. The researcher wishes to select units that are
responsible for and have control over the dependent variables. While organiza-
tional structure and the hypotheses may suggest which groups at what hierarchical
level control particular variabi and thus provide an appropriate unit of
ana'ysis, the researcher has no way test this hypothesis to find out if in fact

grourl3 at one level of the hierar .1 provide a better unit of analysis- than

groups at another level. In princ.Lpic, if groups at one level of the hierarchy
are responsible for and have control over particular dependent variables, then we
should find homogeneity within and heterogeneity between the independently
operating groups on the dependent measures (see Jones & Jones, 1975; Bass,

Valenzis, Farrow, & Solomon, 1975). This phenomenon will be called the principle
of synchronization, and will be used later to show how to select appropriate
units of analysis.

Evidence that researchers in the field are having trouble selecting units of
analysis is suggested by the inconsistency with which a particular unit of
analysis is used. Once a given unit of analysis is selected, this same unit
should be used for stating hypot)eses, calculating reliabilities and norms (when
survey feedback i3 involved), estimating validity, and generalizing to new
populations. A common problem is for researchers to state hypotheses and
generalizations in terms of intact organizational groups, but to calculate
reliabilities and estimate validity using individuals (see Bowers, 1973; also
Passmore, 1976, and Torbert, 1973 for a critique of inconsistent use of units of
analysis). The researcher may estimate validity with groups but calculate
reliabilities using individuals (see Taylor & Bowers, 1972, p. 5J4 for alternation
between using groups and individuals in calculating reliabilities).

The researcher who tries to use units of analysis consistently by computing
reliabilities on the appropriate group units, faces difficulties since an
adeqate outline of procedures for estimating reliability on aggregated scores
does not exist. Survey responses. are aggregated across both items and respon-
dents within each group to produce the dependent variablei scores. The sources of



true and error variance differ in these aggregated scores from the same sources

of variance in individual level scores, since the structure of the data differs

in the two cases, and for this reason the formulas for estimating reliability on
aggregated scores can differ from the common formulas used with individuals.

Some researchers have looked at inter-item agreement, and others at agreement

between respondents within groups, but none have examined both sources of

agreement in an integrated way. Researchers have looked It inter-item agreement
by computing, for example, Cronbach's alpha on either individuals or on data

aggregated over the unit of analysis for each item (see Taylor & Bowers, 1972);

and at agreement between respondents by using either a variation of the intra-

class correlation (see Jones & Jones, 1977; Ebel, 1951; Bass et al., 1975) or an

iterative jacknife procedure (Schneider, 1972; Schneider & Bartlett, 1970).

Estimates of construct validity (Cronbach and Meehl, 1955) are in many cases
dependent upon adequate measures of the reliability of the variables involved.
Construct validity consists of hypotheses that make up nomological networks of
expected relationships. The expected relationships involve expectations about
differential levels of association among variables. Differential levels of
association are frequently studied using regression or path analyses, or cross-
lagged correlation analysis (see Kenny, 1975). statistics that measure degrees
of association among variables are a function of the variables' reliability as
well as the degree of association in the population (McNemar, 1969, p. 163). lisz

attem t to measure differential levels of association must control for differen-

tial levels of' reliabilitylor demonstrate that differential levels of reliabili-

ty don't exist (KennzajEILJlr2shagILJIL12/Lc2aL Failure to
calculate reliabilities provides alternate explanations for any set of results.

In this sense, it is not possible to establish construct validity without taking
into account measurement error firrt no matter what method of analysis is used--
regression, path, or cross lagged panel correlation. In this way estimaticn of

validity is dependent on the measurement of reliability.

The purpose here, then, is (a) to provide criteria for selecting appropriate
units of analysis within intact organizations, and (b) to provide the appropriate
procedures for calculating internal consistency reliabilities on the aggregated

group scores. These internal consistency reliabilities are especially important

in studies of organizational change. They can be used to identify possible
reliability shifts over time. Real organizational changes can then be separated
from changes in measurement error.

An important advantage cf using group units over the common a?proach of

using individuals, is that it allows the researcher to study the nature of the
social interaction that occurs between' subgroups within the unit--between blacks
and whites, superiors and subordinates, parents and children - -in a way that is
not possible when individuals alone are the unit (see Hart, 1978, to illustrate
this application). This is an advantage that has not been recognized, even by
researchers with appropriate group data (see Taylor & Bowers, 1972). The

structure of the data that allows interaction to be studied will be illustrated.

14
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Analysis of Variance

Analysis of variance can be used both for reliability estimation (see Winer

1971, pp. 283-296; Myers, 1966, pp. 294-299; Ebel, 1951) and estimation of
synchronization for selection of units of analysis. The model statements used
with aggregated data can be complex, involving many terms that may vary from
design to design. For this reason an analysis of variance algorithim

1
is given

below, for balance designs, that is more parsimonious than that provided by many
commonly used texts (e.g., Winer, .1971, pp. 371-375), to assist the reader with
subsequent material and to clarify terminology and notation that is not complete-

ly standard.

Model Statement

Main effect terms are identified by a single alpha character in caps.
Nested relationships, if any, are identified by add_ itional alpha characters in
brackets next to the term in question, showing what this term is nested within.
Interactions are denoted by two or more alpila characters identifying the inter-
esting main effects. The full rank model includes interactions between all
combinations of terms, excluding, however, interactions between any terms that
share a common alpha character. Terms are ordered by examining the alpha
characters denoting terms. If the alpha characters of one term are a subset of
the characters of another, the term that is a subset must be placed ahead of the

other. Nonnested main effect terms with a greater number of other terms nested
within them are listed ahead of the nonnested main effects with fewer other terms
nested within them.

Expected Mean Squares

Expected mean squares (EMS) identify how mean squares are divided into the
various components that contribute to the makeup of the mean square. Since

expected mean squares are essential for deriving relic Ality formulas, the

following algorithm can be used to derive expected mean squares in the balanced

1 This algorithm, in similar form but with different notation, should be attribu-'
ted, to the author's knowledge, to Dr. Melvin Carter, Department of Statistics,
Brigham Young University.

3
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case. To see whether the variance components fcr other terms occur in the

expected mean squares for the term in question, the alpha characters of the term

in question are examined in relation to the alpha characters of the other terms.

If the term in question is a subset of another term, then ithe complement of the

characters is taken. If all of the nonbracketed characters belonging to this

complement designate random factors, then the variance component for this other

term does occur in the expected mean squares. The coefficient for this variance

component, that occurs in the expected mean squares, is found by finding the

alpha characters not listed as part of the term. Thl product of the levels of the

main effect terms not listed in this way equals the coefficient.

Sums of Squares

The sums of squares for any balanced complete-block design, can be readily

obtained by: (a) taking the sum over levels of main effects not listed, for the

term in question; (b) next squaring and then summing over levels of main effects

that are listed; and finally, (c) this sum is then divided by the product of

levels of main effects not listed. Then the sum of squares for the term in

question is obtained by subtracting all sums of squares of terms that are subsets

of the term in question. This includes the p term.

Degrees of Freedom

Degrees of freedom for each term are obtained by taking the product of the

levels of.the main effects.that are listed for the term in question, and then

subtracting the degrees of freedom of all terms that are subsets of the term in

question. Again this includes the p term.

Data Structure

Overview

Reliability estimation is dependent upon specifying the structure of the

data, which can be identified with an analysis of variance model statement. The

following analysis of variance model statement illustrates the type of structure

frequently encountered with survey data taken from intact organizational groups. .

The model statement is used to describe U.S. Army organization, but could equally

fit most organizations, and is used as an example throughout the paper.

4
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Y 4. A + B(A) + C(AB) + R + AR + DR(A) + CR(AB) + S(ABCR) + Q + AQ +

BQ(A) + CQ(AB) + RQ + AR + BRQ(A) + CRQ(AB) + SQ(ABCR) + E(ABCRSQ)

where, A = 1, a; brigade, random

B = 1, bi battalion, fixed

(1)

C = 1, c; company, fixed (r!xcept where explicitly specified as random)

R = 1, r; race, fixed

S = 1, s; subjects, fixed or random

Q = 1, a; questionnaire items, fixed or random

E = 1, 1; error, random

An Army company consists of approximately 150 soldiers who work together.
There are five companies within a battalion and three battalions within a

brigade. The hierarchical nature of the organization is specified by the
completely-nested hierarchical portion of the design (A, B, and C). Assuming

enough units were available, either brigades, battalions or companies could be

selected as the unit of analysis. Nesting any number of hierarchical levels is

possible. The hierarchical data structure is a very general one that can be
applied to most organizations in many societies. It can apply also to genera-
tional hierarchies in groups organized along familial lines. Mixed hierarchies

can also be examined with families nested within the parental occupational
organization(s).

Following the hierarchical part of the design, the term Race (R) appears,
which crosses the hierarchical groups (i.e., it is not nested.within them). This

crossed term, whether it designates a variable like race (black-white), or rank

(supervisor-subordinate), or even generation (parent-child) , designates sub-

groups that represent repeated measurements across the unit of analysis (e.g.,

companies, families). Repeated measurements across the unit of analysis can be
used to examine the interaction between the subgroups that are repeated, by

correlating the responses of the subgroup across the units, and when available,
across time using cross-lagged panel correlation or path analysis (see Hart,

1976). Interaction between subgroups can be examined over time in this manner.
In addition to the single-crossed term Race (R) , other crossed terms designating
subgroups with their associated interaction terms are possible, as well as

covariates without interactions.

The terin representing Questionnaire items (Q) is crossed with both the
nested Subjects term (S) and, the hierarchical terms (A, B, C), which means
questionnaire items can be considered repeated measures in two ways--across both

subjects and the unit of analysis (A, B or C). Just one such term is expected,

representing survey items. Succeeding terms represent interactions with Q. Data

that is repeated in both ways contain common-method variance (see Campbell &
Fiske, 1959) not found in data repeated only across the unit of analysis, so that

5



correlations between variables that are repeated in both ways should be inflated

in relation to correlations based on data that is reppated only across the unit

of analysis and not across subjects. Data that is repeated in two ways is

represented by the ratings of a single subgroup, within ,the unit of analysis, on

two different scales, while data that is repeated in only one way is represaJted

by ratings from two different subgroups on two different scales. Methods Of

reliability estimation that use the comvnality beVeen all variables in an

analysis (see Kenny, 1975, pp. 897-899; Joreskog & Sorbom, 1979, chap. 4) are

not appropriate for data structures, as above, in which correlations are influ-'

enced by whether the variable is "repeated" in more than one way. Internal

consistency reliabilities are preferable with the above data structure.

Overall, the model can be considered a hierarchical split-plot (or'repeated-

measures) design. The Q term and interactions with Q represent Within-Subjects

variance, while the hierarchical and crossed terms with their interactions

represent Behavior - Subjects variance, as found in a split -plot (repeated-

measures) design. The between subjects variance oan be fu-ther divided into

two parts--the hierarchical part representing Between-Grov-3 variance, and the

crossed term(s) with their interactions representing Within-Groups variance- -

thus creating the hierarchical split-plot design. Analysis of variance designs

like the above generally have more than one error term. For example, the term SQ

can be considered an appropriate error term to test within-subjects terms, and S

an error to test between-subjects terms. Furthermore, the hierarchical terms C,

and B might be considered error terms under some circumstances. Error terms are

dictated not only by the model but also by the terms considered fixed and random.

The determination of whether a term is fixed or random depends on the sampling

plan of the design.

Sampling Plans

In the previous model statement, Brigades (A) may have been sampled in a

random or at least representative fashion, while Battalions (B) and Companies (C)

may have been sampled in an exhaustive fashion. Brigades may therefore be random

while battalions and companies within brigades are fixed since the population of

these units was exhaustively sampled. ICI the preceding example the nested

hierarchical terms B and C were fixed, but in rare cases such terms could be

random. For example-, if countries were used as a unit of analysis, and in the

sampling plan cities were randomly selected to represent countries, with subjects

randomly selected within cities, the nested-hierarchical term, cities, could be

rancom as well as subjects.

The Subjects term (S) in the previoys example, nested within Companies (C)

and Race (A), will be considered fixed or random depending on how exhaustively

the population of subjects within companies is sampled. The subjects term is

fixed when all soldiers (approximately 150) are sampled, and random when a very

small fraction of the company population is sampled. The fixed-random distinc-

tion is determined by the sampling fraction (s/N, sample size over popuation

6
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size), with terms fixed when the ratio is one and random when the ratio is zero.

In practice, the subjects terms often will be neither fixed nor random. The

company populations are quite small and is not unusual at all for a sampling

plan to call for sampling a fraction of the population (e.g., 1/3) that

approaches neither one nor zero. In these oases, the subjects term will be

labeled semirandom. The Questionnaire items (Q) may likewise be considered

random if the items in the survey are considePed a random selection of a
potentially infinite population of items measuring the sathe concIpt, or fixed if

the items are considered to exhaust the population of interest.

Subjects could be considered random or semirandom and items fixed in a.

cross-lagged correlation design using groups as the unit of analysis (see Hart,

,1978). In this design, a .sample of subjects within companies can be selected to

represent the whole company population, so subjects are random or semirandom.

Cross-lagged correlation looks at time-related changes assuming stationarity--

constant item struoturie over time (Kenny, 1975). In such cases it may often be

reasonable to assume items are fixed when looking at time-related changes in this

way. Likewise, subjects can be considered fixed and items random in most single-

time, survey-feedback designs. In this case, entire company populations are
frequently sampled, while items are considered a sample of a larger conceptual

population. In this sampling plan subjects become fixed and items random. Of

course, in many designs both subjects and items may be random or at least

semirandom.

Reliability Formulas

Derivation

The sampling plans given above have a direct impact on the appropriate

reliability formulas. A requirement for measuring reliability is to divide the

variance associated with the unit of analysis into true and error components.

The unit of analysis in this cace is an aggregated group score instead of an

irdividual response. If the unit of analysis is the Companies term (C), the

expected mean squares for this term show the underlying components that are

expected in the make-up of the observed mean square. These underlying components

can be divided into true and error variance. This provides a way of allocating

the observed company mean square into true and error components. The sampling

plan determines which terms are fixed and random. This in turn affects the

expected mean squares for the unit of analysis and the allocation of true and

error components to the observed mean square, which then affects the reliability

formula. Table 1 shows how the expected mean squares in the balanced case

change, for selected terms, as a function of whether Subjects (S) and Question-

naire items (Q) are considered fixed or random. Reliability is defined as the

ratio of true to total variance. The variance component defined as true variance

is always that component associated with the unit of analysis--in this case

either Companies (C), Battalions (B), or Brigades (A). As indicated by Table 1

there is more than one "error" term when both items and subjects are random. In



Table 1

Balanced Expected Mean Squares with Fixed/Random

Subjects (S) and Items (Q)1

Term

A brigade bcrsqa2 +

B(A) battalion
2crsqaB +

C(AB) company rsq +

S(ABCR) subjects

AQ brigade X items

BQ(A) battalion X items

CQ(AB) company X items

SQ(ABCR) subjects X items

Expected Mean Sqllares
2

(2a)

(2a) (crsa2
BQ S

) + (a2
Q

)

(2P;)

+ (bersa2 ) + (a2 ) + a2
AQ SQ E

aa!

(rSa2 ) + (02 ) + a2
CQ C/ E

(02 )

QEE

122E2a2AQ (a ) a2(a Q) E

crsa B2
(

aE
2

SQ J
Q `

rsa2

CQ
Q2

2 2a
SQ

+ QE

1 The model and notation are found in the text (see Equation 1). The term A is

random with B and C fixed. Subjects (S) and Questionnaire Items (Q) are either

fixed or random. Lower case letters dencte the number of levels of the

corresponding factors in caps.

2When subjects are fixed, terms within brackets are deleted. When question-

naire items are fixed, terms within parentheses are deleted.
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general, as the number of wain effects following the unit of analysis, that are

random, increase, the number of components considered to be error increase

dramatically, (see Formula 11, Table 2).

Reliability for the group mean scores is f6rmally defined in Table 2. The

expected mean squares, shown in Table 1, for the unit of analysis (C), are divided

by nlq, the product of-the levels that are added to obtain the group means. The

divided expected mean squares represent the components expected in the group

means, components that vary according to the sampling plan. The component due to

the unit of analysis (C), divided by all components, represents the ratio of true

over total variance needed for the reliability definition. Mean square terms are

set equal to the corresponding expected mean squares, and then the equations are

solved for the variance components. For example, the variance components for

definition 3 in Table 2 equal:

a2 - (MS MS ) / 11.12C0 Sp2 + a = MS
-C S S E S

The mean square estimates of thu variance components are substituted for the

corresponding variance component in the reliability definition, and then simpli-

fied algebraically. This process produced the reliability formulas in Table 2.

The unit of analysis for Formulas (3) through (10) is Companies (C). When

the unit is Battalions (B) or Brigades ;A), the definitions and reliability

formulas are the same as in Table 2, with the :ollowing substitutions:

(a) a2 becomes al or a2* (b) a2 becomes a2 or a2 (c) MS becomes MS or
C E' A' CQ BQ' AQ' --C B'

MS
A'

and (d) MS
CQ

becomes MS
BQ,

or MS
AQ°

When the unit of analysis is Battalions
--

(B), the terms including B are substituted, and when the unit is Brigades (A), A

is substituted. The error terms in the denomi nator of the reliability defini-

tions ars divided by an additional coefficient p for Battalions and be for

Brigade:.

Estimating reliability involves estimating ratios of variance components.

The expectation of these ratios contains a slight positive bias. Winer (1971,

pp. 248-249; 282 -2i0) has given a correction for this bias for the standari

formulas (Formula 2, Table 2; Formula 26, Table 4). This correction, when

extended to any of the formulas in Table 2, has the following form:

- 2) MSMS - (df df
--unit --error

/(
--error. --error )

(12)

where, snit --eis the mean square for the unit of analysis, terror represer" , the
--u

mean square term(s) measuring error. The term(s) subtracted from MS in the

numerator of the formulas in Table 2 are Tor. In words, the correction

involves multiplying MS by a correction term that approaches one as the
--error

degrees of freedom for error increase. When MS involves more than one mean
error



Table 2

Aeliabllity Formulas for Mean Scores as a Function of Unit or Analysis and Sampling Plan

Unit or Analysis Sampling plan Reliability Definition
Formula

Number

Subjects Items random

a

3

(3) Subjects random 03 1 (01 01)qa

Companies 'toss fixed
01

(C) Subjects random of (29; ci)/ai

KS - MS
--S

3

MS HS
--C --3

143C

Campania. Items fixed
+ VE. aym ((% .11.4.12) + bin)

(C) Subjects 'emirs/14os of 41 1/21 --CM3

Companies Its.. random
01

(C) Subjects fixed OP/21

companies

(C)

Items stairendom

Subjects fixed

0! 1/N 01/1 MS . ((N 0.14 (M3 - MSS) ME)
It -1 Ex --C -2 -2 --ER --§a

+ (Elvis + o;) /rag
its-C

01
Companies Items random

- PA - Mai WS

(C) Subjects random at (Al inqs apna I isC

2 / rs
MS - ((N

q
C

s /N
sM3 KS KS )

Companies Items random - 1 1o --C -s
)/N
-s

(
--S

- ) --CR

(C) Subjects semirandom of (aq aro& of opal M3C

(2)

(3)

(5)

(6)

(7)

(8)



Table 2 (continued)

Unit of Analysts Sampling Plan Reliability Definition
Formula

Number

o gni 0 /s
Ise -1(N - 00_ (is - M3

AR
) MS )

Companies Items scairandum C ER
_ 1 -,-13 --SR

(C) Subjects random
a , 1

.1

1

Oc %Ails 09.3 olq op/rig Ms
--C

Companies Items semirandoa
0 a

C
e/N o

3
/rs + 1/N

I
03 /I ELIc

- (4 1)1K1 (MSS hIsq) (12 - 1)//19 itia - KIN) * Ma)
- - CO

(C) 3ub3eots .ealrandom 4
.1

(10; + ugsa 02a + 00/a, ms
--c

Battalion Items random a
4 -o 1.1

1.444 * 6201

(s)
Subjects random a ,

08 trIstO Ros erso + rise 01 04)foral KS
AR g --B

(9)

10)

Note. All formulas are based on the analysis of variance model tato:karat given in Equation 1, exat't for Formula (2) which is based on the following

model: I a S g sg mgq), with 3 and g random. The terms S and a are defined as in Equation 1. The terms g, and Bs refer to tae population site

for (a) the number of subjects in each ooapany,
and (b) the number of Italia in the population of interest, respectively.

V. gads is considered random,

and battalion and company nand in all 'nate except formula (11) where company Is considered random as well, to show how the formulas ohauge. Formulas

(4) and 0) assume of 0, ao that Mx* 14.
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square term, the adjusted )egreesiof freedom for these several terms are found by

referring to Formula (-2*)' given later. For all practical purposes the positive

bias in the reliability formulas in Table 2 is negligible with as many degrees of

freedom fOr terror as is customary with Organizational surveys.
--e

Another bias may be more serious. s with any analysis of variance design,

if significant terms are omitted from he model statement, these, omitted terms

will artificially inflate MSerror. R iability will be underestimated to the

extent significant terms are omitted frOn'rshe model statement. For example,

omitting Race (R) when it, or its interactions, are significant, increases the

size of MS
S.

It is desirable to specify Ipodel statements that cOture the

structure of the data as completely as posAble even if this creates model

statements with large numbers of terms.

Interpretation

The reliabilities are internal consistency measures of reliability. As such

they represent reliability at any one discrete point in time. At this point in

time the reliabilities measure the extent to which the researcher would expect to

obtain the same thing if the measurement process were repeated. They estimate

the correlation between the mean scores. for the unit of analysis, and another

set of mean scores that would be expected if the measurement process had been

repeated at the same time. The reliability would also be considered an estimate

of the'correlation between the observed sample means and the means that would

have been obtained if the entire population of subjects/items hadbeen measured.

The sampling plans differ for different reliability formulas. Sampling is

conducted without replacement (i.e., no respondent takes the survey twice at one .

..ime) which creates the practical effect of sampling from a population that can

be considered finite. When subjects are fixed, the "observations" that make up

the variation due to subjects QS, remain the same in the hypothetical new sample

as they were in the observed sample, and when subjects are semirandom the
proportion of these elements in each group that remain the same equals s /

(sample over population size). Likewise, when items are fixed, the "observa-

tions" due to the component e are identical in the observed and hypothetical
CQ

new sample, and in the semirandom case the proportion of elements that are the

same equals a / Ns.. When the sample size equals the population size (i.e., the

term is fixed), the same scores are selected twice, the mean scores are measured

without error, and the reliability is perfect. When a term is semirandom, the
hypothetical new sample mill contain n / N elements in common with the old sample

and the population. When a term is random, nova of the elements that make up that

component remains the same in the new Asample or pcpulation. Declaring e term

fixed or random, then, is the same as assuming the elements that go into a

particular variance component either change or do not change from the observed

sample tio\a hypothetical new one or to the population. They do not change if the

sample size equals the population size.

12
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Relationshi Between Formulas

In fact, there is a close connection between average intercorrelation, and
reliability as 'computed by Cronbach's alpha, and analysis of variance.

Cronbach's alpha is identical to the Spearman-Brown prediction formula applied to
the average intercorrelation between items (see Ebel, 1951). Formula 1 in

Table 2 differs from Cronbach's alpha only in that analysis of variance, with its
attendant assumptions, is used to estimate the average intercorrelation between
items (see Formula 26, Table 4). This estimate of the average intercorrelation
(Formula 26), when corrected by the Spearman -Brown prediction formula, equals
Formula 2.

When computing reliability for aggregated scales researchers typically
compute Cronbach's alpha on group means, computed separately for each item, which
is the same as computing the average intercorrelation between these item means,
and adjusting, the average correlation with the Spearman-Brown prediction formu-
la. This is closely approximated by Formula 5, Table 2. Thr average inter-
correlation between company mean scores for each item is estimated by Formula 27,
Table 4. Wen this analysis of variance estimate of the average intercorrelation
is corrected by the Spearman-Brown prediction formula it equals Formula 5. The

use of Cronbaclgs alpha to estimate the reliability of group mean scores requires
the same sampling assumptions as does Formula 5--subjeCts fixed and items random.
When subjects are sampled from large intact organizational groups, Formula 5 is
not appropriate and neither is Cronbach's alpha. Fo.' example, Taylor and Bowers

(1972) used Cronbach's alpha both on exhaustive and ten percent samples of
subjects. Formula 5 should have given way to Formula 8 with the ten percent
sample if ,the assumption of random items had been made.

A comparison of Formulas (2) and (3), Table 2, shows an interesting

relationship between variance components. When individuals are used as the unit
of analysis, the between subject-, variance QS represents true variance,ibut when

companies are the unit, and subjects are random, as in Formula 3, the beris as



represents error variance. It is true that the subjects components are not

identical in the two cases since the models differ, bvt they are very similar.

The subjects mean square (MSS) in Formula 3 has been reduced compared to the
INNIN

subjects mean square MSS in Formull 2, to the extent that other "between

subjects" terms from the model in Equation 1 are significant, but otherwise the

terms are the same. Maximizing the variance between subjects will increase

reliability as measured by Formula 2, but can decrease it as measured by

Formula 3; In constructing the Survey of Organizations (see Taylor & Bowers,

1972), "between subjects" variance was maximized by such techniques as (a)

positive wording of all questions, (b) contiguous placement of items from the

same scale, (c) positive response alternatives lined up on the same side of the

scale, and (d) selection of items with large "between subjects" distributions.

Theoe techniques will maximize reliability as measured by Formula 2. The

previous techniques seem to maximize subject differences by increasing variance

due to response sets. If this is the case, this subject variance would be

expect3d to inflate MSS as error in Formula 3. It is possible that these

tee! uques also reduce 61 so it may not always increase MS as error. In

Formula 3 we wish to maximize MS in relation to MSS. The preceding technique

used in Survey of Organizations could easily, but not necessarily, increase MSS

in relation to MS reducing reliability. Since the Survey of Organizations
--C'

and others like it, use intact organizational groups as units, Formula 3'irather

than 2 is most appropriate and should be used when subjacts-alone are random.

Formulas 2 and 5 have generally been used to establish reliability for

organizational surveys. It should be apparent from Table 2 that there is no

necessary relationship between reliability as measured by Formula 5 and 3.

Furthermore, there may sometimes be a negative relationship between reliability

as measured by Formula 2 and 3. Organizational Surveys that claim to have well

established reliabilities, using Formulas 2 or 5, have not established reliabili-

ty at all for the situations in which Formulas 3, 4, 7, 8, 9 or 10 are most

appropriate. In fact, it is reasonable to suppose that many of these "well

established reliabilities" will not prove to be'reliable at all as measured by

Formula 3, since no attempt nas been made, using pretest samples to select items

that discriminate well between group units, while a corresponding effo:t has been

made to find items that have high intercorrelations. It is important to find

which scales are in fact reliable using appropriate formulas. Research in this

direction may require a reassessment of the reliabilities of the scales used in

organizational research, as well as interpretations of results in this area.

Reliability for Record Data

Frequently variables representing group units of analysis are not measured

by survey but can be found in the form of frequency counts of events within the

14
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group, that occurred during a given time period. Often these frequency counts are
expressed in the form of rates (e.g., per NCO) or percentages. The use of rates

or percentages is generally not a good idea when the variables are to be
correlated, since this creates the attendant problems of index correlation (see

McNemar, pp. 180-182). A better approach is to use the raw frequency counts, and

partial out the effects of sample size (Cronbach & Furby, 1970). Reliability for

such frequency counts can be computed using analysis of variance, with the group

size variable used as a covariate. The model in this case differs slightly from

that shown in Equation (1). The following model defines the structure of the

data in the case with three levels of hierarchy:

Y = A + B(A) + C(AB) + D + AD + BD(A) + CD(AB) + E(ABCD) (13)

where, A = 1, a; brigade, random

B = 1, b; battalion, fixed

C = 1, ci company, fixed

D = 1, d; generally dichotomous split of frequencies, random

E = 1, 1; error, random

The addition of another crossed term like Race (R), that is fixed, does not affect

the reliability definition or formula, so it was omitted. In addition to the
above model the group size variable can be added as a covariate. The term D can
represent either a random dichotomous split, or a dichotomous split that controls
for a variable like time (e.g., one level represents events that occurred on odd
numbered days and the other lever events that occurred on even numbered days for

the time period in question). The split may have to be random when the time
variable is not available on a case by case basis. The fact that a random split,

is possible means that an internal consistency reliability can be computed when

only frequency counts'are available for each group. Researchers often assume it

is not possible to compute reliability in this case. The reliability definition

and formula are given as follows;

2a
c

115.2 - M_Scro

(14)

e
aE (aCD

E
a2) / d MSC

When random splits within groups are necessary to obtain the observations for the

term D, greater stability in the reliability estimates can be obtained by a
jacknife procedure in which MD in Formula (14) is estimated several times using

--C
different random splits each time. The different estimates can then be averaged
prior to using the averaged estimate in Formula (14). When the term D. is fixed

the record variable in question is considered to be measured without error and an
estimate of reliability is not needed. This would occur if (a) the researcher



was willing to limit generalizations to that particular variable alone, and (b)

the frequencies of that variable were a census rather than sample of the relevant

events.

Significance Tests

Di$Terence of Reliability from Zero

It is important to ask if it is possible to detect a significant amount of

true variance at all, i.e., is the reliability coefficient significantly differ-

ent from zero. One form in which this test can be made is to compare total to

error variance, forming an F ratio, to see if a detectable amount of true

variance exists. The form of the F test differs slightly from the reliability

ratio (true over total variance), but provides a test with the same components.

The Test definitions and F tests for reliability Formulas 3 through 10 are shown

in Table 3. The error terms in the denominators of the F ratios in Table 3 can be

found in different form as the quantity subtracted from MSc in the numerator of

the reliability formulas in Table 2. The error terms are expressed in different

form in Table 3 because tests (17) through (23) are quasi-F tests, i.e.,tests

involving more than two mean square terms in the F test. In this case, the F test

is an approximation which is obtained by adjusting the degrees of freedom for

both the numerator and denominator separately, by the for..lula given in

Satterthwaite (1946):

df adj. Ca1(ts1) 2
(MS

2
) + ...)2

(a
1
(MS

1
))

2
(a
2
(MS ))

2
...

- -

ddf
1

f
2

(24)

where, MS1 and MS
2

are independent mean squares, and a
1

and a
2

are the

coefficients for the mean squares. The mean squares in Table 3 are shown in a

form that gives separate coefficients for each mean square as required by

Formula 24. In the case where group size is unbalanced, and the coefficients,

a
1'

vary from company to company, the quantity a
1

MS
1

can be obtained most

accurately by weighting individual scores as appropriate (e.g., Formula 42, as

described later).

Difference Between Reliabilities

In some situations it is important to know whether reliabilities are

significantly different from each other. For example, using cross-lagged panel



correlation (Kenny, 1975), it is important to know whether reliability changes

over time. When reliability changes, corrections for reliability shifts are

made. A statistical test for reliability shifts is desirable and can be made

when the reliabilities are expressed in the form of F ratios as shown previously

in Table 3; and the assumption is made that the mean square terms are indepen-

dent. In the case where measurements are made on group units at more than one

point in time, with different subjects sampled on each occasion, the samples

involve the same group populations but different subjects. In analysis of

variance terms, the measurements are repeated across companies, but not across

subjects. The mean square terms under these conditions approximate independence.

The bias due to lack of independence is loss of power. Degrees of freedom are

large enough so that power is not low in any case. Following Winer (1971, pp.
245-247), hypotheses related to the equality of two F ratios can be tested as

follows:

F > (FS) ) (F (df numerator, df denominator))a (25)

where, FL and Fs represent reliabilities in the form of F ratios as sllwn in

Table 310 representing the larger F ratio ana F the smaller. To obtain F
S

a,

the degrees of freedom in the numerator and denominator should correspond tq

degrees of freedom in the numerator and denominator of EL and Fs. The degrees of

freedom for F should approximately equal those for F
5

the test to be valid.

When quasi-F ratios are used, the degrees of freedom for Fa should correspond

to adjusted degrees of freedom as given in Equation (24). The test should be

used with some caution with quasi-F ratios.

Sample Size Requirements

Organizational research :;.s costly and time consuming. For these reasons, it

is important to be able to estimate ahead of time the sample sizes needed to
obtain specified levels of reliability desired by the researcher. How many

subjects within each group, and how many items in a scale are needed to obtain a

specified level of reliability, say .75, as measured by the formulas in Table 2?

Estimates of the mean square terms in Table 2 can be obtained from a pretest

sample, and from the pretest sample the number of subjects and items that are

needed for a specified level of reliability can be estimated.

The way this problem has been solved in the standard case where individuals

are the unit of analysis, has beer to estimate the reliability of a single score

(Formula 26, Table 4) which is related to the reliability of the average score
(Formula 2, Table 2) in terms of the Spearman-Brown prediction formula. Solving
the Spearman-Brown prediction formula for the sample size, tells how many items

must be added to obtain the desired reliability (see Winer 1971, p. 287). This

same approach was Used in Table 4 for other formulas. However, when the unit of

analysis involves a group, the reliability of single scores involves contingen-

cies: the reliability of a single item given the same number of subjects as was

17
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Table 3

Statistical Significance of Reliability Coefficientsa

Reliability

Formula
b

Test Definition F Te t Formula

Number

2

3

.14

5

6

7

so + 0 + 0
a

S E

02 + 0

2 2 2

Ma9C 298 °E

MS

VAG +g QS
M-S

C S --C

((N - s) /N9 ge) + al
S E

(N - s) /N9 MS a/N MS
5 - --S - -3 SQ

rsgo2
2

123CQ °E
MSc

2

naE2 Gi
MS
gg

raga!, + rse, + 02
-- t.A4 E

r .Mg

((N - 1)/N rso2
Q
) + o2 (Na a)/YaLl2a) g /-Ng LIEN

-a C

2 2 2 2 2

1-13Pc goy Elqcs Gs + 0
E

2 2
R7,2 r50

--
+05. crE -1125QCSC

(15)

(16)

(17)

(18)

(19)

(20)
31



Table 3 (continued)

Reliability

Formula
b

Test Definition F Test° Formula

Humber

8

9

nup z * al 2

S
+ rS0 z + a 4 a 2

((N - s)/N gq2) + rso z + + a
-s - CQ SQ ti (Es .0/Es MSS (Es 2)/Es tiqa) ilICQ

E29Pc 111Pa) + cicIC. a MS
C

'l E 2.

(N-a)/N )) + aa2 02 a2 (N - g)/N MS (N R)/N Mas, + as
a s+ N+ E -9. --C_R -a 9.

1 0
2 2 2 2

E1S9c LIF722 IPs ON 0E
_rMS

(21)

(22)

2
((N - s) /Ns Ra2) + ((N - 9)/N rsa2 ) + a, + e + (Na a)/E1 LIEcc) (1 - Pitis Msc)

VD 3 S CQ oQ E

(23)

a
The test is for the significance of the reliability coeffiniont from zero. It is defined in terms of true plus error (total)

variance over error variance alone. It will answer the questivn of nether it is possible to detect any true yariance at all.

The component aSQ is assumed zero, MS,
0

= a!, for Formulas (17) and (19).
--o

b
The numbers refer to the reliability formulas in Table 2.

c
When two or more mean squares are found in the denominator, the F test is an approximation which is obtained by adjusting the

degrees of freedom for the denominator by Formula 24.



Table 4

Reliability Formulas for Single Scores as a Function or.UnitiOf Analyses and Sampling Plan

Unit of Sampling Plan

Analysis

Score Estimated Reliability Definition Formula Number,

Subjects Items random Single item
as MSS - MS

--SQ

(S) Subjects random + 02 + 02 MS + (g - 1) MS
s .E --s

MS
Companies Items random Single item/

0 MS
--C --CQ

(C) Subjects fixed subjects 02 + (rso + 02)/ra MS + (.1 - 1) ms
c gg E --C

MS
Companies Items fixed Single subject/

0 MS s
(C) Subjects random items o2 + (gon2 + 02)/zi Mc (3 1) MSS

c s E

02 MS MS - MS + MS
Companies Items random Single item/ --C --S -Cg --SQ

(C) Subjects random subjects
47J (99 EPPLa + 00.2 + (4)/Es ms ca - 1) ms (% - 1) ms - (g - 1) MS

-C SQ

Companies Items random Single aubjeot/ aC
t2a) tka

(C) Subje4s random items 02 + (.292 + rso2 + o2 + 02)/ra MS + - 1) MS + :15 - 1) MS - (a - 1) MS
C s SA E --c --S - --CQ - --SQ

.
(26).

(2i)

(28)

(29)

(30)

Note. All formulas are related to the corresponding formulas in Table 2 in terms of the Spearman-Brown prediction formula, which takes the following

form for sample size:

n

-w
(1 - A1)

R (1 R )
1

whore, II_
11

equals the reliability the researcher wants, R1 equals the reliability of a single score as given in this table and n equals sample size required.

.01/ If s2 equals the number of items required, 32 equals the number of subjects required in each group, Ri equals the number of items in the preteat, and 31 35

34equals the number of subjects within grotips in the pretest, n 2 s2, given Si II 82, or n = 12, given ni s R2.



found in the pretest sample, or the reliability of a single subject given the

same number of items as found in the pretest questionnaire. Given these

contingencies, the formulas in Table 4 are related to the corresponding formulas'

in Table 2, in terms of the Spearman-Brown prediction formula. The corresponding

formulas are those with the same unit of analysis and sampling plan. As shown in

Table 4, sample size can then be found from the Spearman-Brown formula. Formula

(28) and the Spearman-Brown formula can be expressed in more convenient form by

solving (28) in terms of the F ratio, F = MS ASS, and substituting thin, into the

Spearman-Brown formula. The number ol subjects needed in each.group (s2 ) can-
tnen be found as follows:

R s
-41-1

-2 F (1 -RW ) +R - 1

(31)

where, .11w equals the reliability desired, si the sample size in each pretest

group and F = MS / MSS.

The problem with using formulas (27) through (31) to estimate sample size

requirements is that the number of subjects needed is2) can only be estimated,

given that the number of items to be used in the final questionnaire (22) equals

the number of items (21) in the pretest sample. The number of items needed in the

questionnaire (g,) can only be estimated, given that the number of subjects to be

used in the final sample (s2) equals the number used in the pretest (si). Also,

if the unit of analysis is at a higher level than companies, the pretest sample

must be assumed to have the same subordinate group structure as in the final

sample. Another serious problem is that the preceding approach does not work for

some formulas--when subjects or items are semirandom. There are problems with

the concept of a single-score reliability in the semirandom case.

The sample size requirement problem was solved for all formulas without any

contingencies, by estimating variance components from pretest data independently

of the number of subjects or items in the pretest, substituting the sample sizes

desired, s2, 22, for pretest coefficients si and g1, where they appeared in the

reliability definitions, and then solving for s2 and TheThe required formulas

are shown in Table 5. From Table 5, the number of subjects or items required for

any formula in Table 2 can be estimated from pretest data without any contingen-

cies. For example, a researcher can estimate the number of subjects required

(s2), given that X number of items are added to a scale over what existed in the

pretest. Similarly, the number of items (22) can be estimated, given that the

sample size within each group in the final sample is larger than it was in the

pretest. Of course, the assumption is made that the items that are added are

intercorrelated together to the same degree as pretest items above, and subjects
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Table 5

Formulas for Determining Sample-Size Requirements

.from Pretest Data

f

Reliability

Formula

Defining Awa

Sample Size Formulas

Number of Subjects Number of Items

Formula

Number

3 s = A/C
2

(32)

4 s2 = A/(C + H) (33)

5

5 92 = B/D (34)

6 .... OM. MI= MOW 32 = 13/(D 4' I) (35)

7 s2 + A/(E - G) 22 = B/(E - F) (36)

8 s2 = A/(E - G + H) 92 = B/(E - F + H) (37)

9 s2 = A/(E - G + I) 92 = B/(E - F + I) (38)

10 s2 = A,*(E - G + H + I) 92 = B/(E - F + H + I) (39)

Note. A = siEw ,.(MSS - (92 - a1)/22 mssQ)

= g1Rw (klacc) (!2 21)% mEsQ)

C = - - msso -

D = MS._ (1 - - nix) (1 - Ew)

E = MSG R) - MSS (1 - LiscG (1 - + mssQ (1 - 47)

= .112-1/a2 MSSQ)

G = 1101/22 (Ma) Elascd

H = s1/Ns (MSS MSSQ)

I = al/Na (M2cQ - MSS))
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Table 5 (continued)

R
w
is the value of the reliability that the researcher wants to obtain in a newc-

sample. The symbol s2 reArs to the number of subjects within each group that is

needed to obtain the desired si is the pretest sample size

within each group. Similarly, g2 refers to the number of items needed to obtain

the stated 11, while 21 is the number of "items in the pretest. Ns is the

population size within each company, while N is the size of the population of

items. The mean square terms are based on the pretest data using the.original

model given in Formula (1). The assumption that a2
SQ

0 must be made for Formu-

las (32), (33), (34), and (35). When A or'B is the unit of analysis MSA or MSB is

substituted for 1E1/4, and MSAQ or MSBQ for Mar

aThe numbers refer to the reliability formulas found in Table 2.
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added discriminate between groups to the same extent as in the pretest. The

Formulas in Table 5 can be used for any of the units of analysis A, B or C,

without contingencies, using the appropriate substitutions given in this table.

Adding items to a survey scale will increase reliability as defined by

Formulas (3) and (4), only to a limited extent (i.e., increasing the coefficients

of a2 and a2 in relation to ark),) and likewise increasing the number of subjects

will increase Formulas (5) and (6) only to a limited extent (i.e., increasing the

coefficients of a2 and aCQ in relation to a2). Ther,efore, it is not meaningful

to solve the equations fcm items forfor Formulas (32) and (33), or for subjects

(s2) for formulas (34) and (35). Negative estimates from any of the formulas in

Table 5 mean an infinity of subjects or items would be needed to obtain the

requisite reliability, i.e., the desired level of reliability can't-be obtained

by adding to the sample size.

Unbalanced Designs

Effects on Formulas ,

The derivation of all the previous formulas has been based on the assumption

of a balanced design, i.e., equal sample and group sizes across levels of all

factors. This, of course, brarely occurs in intact organizations that are of

interest here. The impact of unbalanced designs on the expected mean squares,

for the model at Equation (1), is shown in Table 6. When balanced f Hulas are

used to calculate the mean squares for the model at Equation 1 when the .odel is

not balanced, the resulting mean squares contain elements of variance co,,ponents

from a variety of extra terms. A comparison of Table 6 and, 1 shows ad.itional

components or elements of these components, added by unbalance. 'ow the

confounding is handled depends eutirely on the hypotheses being tested. For

purposes of reliability estimation, researchers do not wish to generalize to

hypothetical organizations in which groups are all the same size, with equal

numbers of, say, blacks and whites in each. Such a balanced hypothesis is

clearly irrelevant and inappropriate for intact organizations. Generalizations

are made to the intact organization where subgroups vary. In the intact

organization the crossed term Raoe (R) and the subordinate hierarchical terms

BlA), and C(AB) are fixed. When these terms are all fixed, it is appropriate to,

consider all confounded elements added by imbalance to the "between people"

components of MS
A' --B

MS
' Cor MS as true variance, since,that sort of confounding

exists naturally in the intact orgadization to which generalizations are being

made. However, when questionnaire items OZI-lare considered random, all confound-

ed elements addedby unbalance to the "within .people" components of MSA, MS or

fiS
C

can best be oonSrdered'error. These confoundea elements all represent

interactions with the random term Q. Since Q is random, items change from one

sample:to another, and so would interactions with Q, which suggests these

confounded elements should be Considered error. When the preceding allocation of
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Table 6

Unbalanced Expected Mean Squarea

Model

Toccoa

Between People Within People

B(A) AR BR(A)

./

CRAB) S(ABCR) BQ(A) S(AB) as BRQ(A) CRQ(AB) AZABCR)

A abo ao so abu abo
4

abo abo abo ab a a ab ab ab ab abo

D(A) abo so abo abo abo abo , abo ab a ab ab ab ab abo

C(AB)

S(ABCR)

abo abo abo abo abo abo

abo

abo ao

abo

ab

40

ao

;Age

ab.

abo

abo

abo

ab

abo

abo

abo

ab

abo

abo

abo

ab

abo

abo

abo

abo

abc

abc

abo

abo

AQ

BQ(A)

CQ(AB)

PO
kri

SQ(ABCR)
*too

Note. The model is based on Equation 1. The expected mean squares for the terms at left are found in the unbalanced case by looking along tke rowk.

for common letters that represent the following londitiona: (a) confounding Between Groups, confounding with Race (R), g random; (b) no confounding

Between Groups, confounding with Race (R), g random; (o) confounding Between Groups, confounding with Race (R). g fixed. Ia each case Subjects (S)

is considered random.



confounded elements is made between true and error variance, the reliability

formulas, tests, and sample size requirements given previously in Tables 2, 3, 4

and 5 remain unchanged. However, it should be recognized that reliability and

test definitions contain additional confounded elements as shown in Table 6.

An additional problem remains for hypothesis testing with unbalanced de-

signs. Mean square terms are no longer independent--an assumption required for

numerators and denominators of F tests. Tests should be made with caution when

unbalance is severe. This problem is not unique to reliability estimation, and

is frequently encountered in unbalanced analysis of variance designs.

1121Arura Scores

Unbalanced designs and sampling requirements often necessitate weighting

individual scores in order to appropriately estimate reliability. Since sample

size affects reliability, as shown previously, weights must be applied inamanner

that does not affect the total sample size. Weights are appropriate in the

following three situations.

First, using a stratified sampling plan, the crossed term Race (R) might not

be sampled in proportion to company racial populations. Blacks might be sampled

at a higher rate in order to get a sufficient minority sample size. When

estimating a total company score, ignoring race, the individual scores within

each company need to be weighted to estimate what would have been obtained

without disproportionate sampling. In this case the individual scores within

each company are weighted according to the following formula:

-B
1 -i

E
-1

T -B
-1 -1

(40)

where, W represents the weight for black subjects in company i, NB and N-1 Ti
represent, respectively, the black and total population sizes in company i, and

n and n represent, respectively, the black and total sumey sample sizes. To

1
-Ti

obtain the weight for white subjects in company i, NW
and nw representing,

-1 -i

respectively, the population and sample sizes of whites in company i are

substituted to replace NB and n in Formula 40.
221.

A second reason for weighting individual scores is to insure that the units

of analysis are weighted equally. Since each unit, as a data point, is weighted
equally when used in correlation or other statistics, each unit should be

weighted equally when estimating reliability. Typically, ec al sample sizes are

obtained .from groups at twe level intended for use as the unit of analysis,

26

42



providing equal weights. However, weights equal at this level will not be equal

at another level when hierarchical levels are confounded. Furthermore, a simple

random sample may have been used which will produce unequal weights when group

sizes differ. In these oases, individual scores within each group or company are

weighted as follows:

w

Ni n
- T

-T
ni

(41)

where Wi is the weight given individual responses within each company, Ni and ni

represent, respectively, the population and sample size for company it and NT and

n
T

represent, respectively, the population and sample totals for all companies

combined.

A third reason for weighting individual scores, is to accurately estimate

the error terms in Table 2 when subjects are considered semirandom (Formulas 4, 8

and 10). Each unit should be weighted equally in terms of sample size, but the

company population sizes are unlikely to be equal also. That means the sampling

term, (Ns - s) / NIL found in Table 2 will differ from company to company. In order

to accurately estimate the error terms MS and MS for these semirandom

formulas, individual scores within each company should be weighted as follows:

(N - s) / N
W = -s -1 s
-1 -1

(42)

where, Wi equa-3 the weight in each company and Es andsi represent, respective-
-

ly, the population and sample sizes in each company. MSS and MSsQ, obtained from

scores weighted by (42) are substituted in Formulas 4, lq, and 10 to replace the

corresponding terms that are multiplied by (112 - s) / Ns. The other means square

terms are estimated without weighting.

The three types of weighting given in Formulas (40), (41), and (42) may be

used separately or together in any combination as appropriate. The weights given

in (40) and (41) maintain the original sample sizes as required.

Synchronization Measures

Making the Measures Comparable

Synchronization measures, are shown in Table 7. These measures are used for

selecting a unit of analysis. High synchronization for a unit pinpoints the

level of the organization that exercises responsibility and control over the
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Table 7

Synchronization Measures for Determining

the Unit of Analysis

Unit of Analysis Synchronization Definttiona Formula Number

Companies

(C)

Battalions

(B)

MS MSC S

2 (Re a2E ms
S

c-
B

2
k

S
'9:2 + a2)/mg.

2

Brigades
a
A

(A)

aSubjects are considered random and items fixed. Formulas (44) and (45)

differ from reliability formulas by an adjustment which makes the number of

sqbjects within Brigades (A) and Battalions CB) hypothetically equal, for

purposes of comparison, to the numbers within each company (C).

a2 (2a2 a2E

S

MS - MS
--B S

MS + (c - DHSS

MS - MS
--A

MS
A
+ (bc - 1)MS

s

(43)

(44)

(45)
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subject matter represented by the scale. These measures provide a way of

directly comparing the extent of synchronization at each level of the hierarchy,

A, B and C. At each level of hierarchy the number of subjects within the unit of

analysis increases. Increases in subjects also increases reliability as measured

by Formula 3. Reliability as measured by Formula 3 is again used as a
synchronization measure, but only for the lowest level in the hierarchy--in this

case for Companies (C). The synchronization definitions and formulas for the

higher levels of hierarchy B and A are adjusted statistically so that they have

the same number of subjects iithin-groups at the higher levels as was found at the

lowest level C. With this adjustment, the synchronization measures all become

directly comparable. If a comparison of Battalion (B) and Brigade (A)
synchronization is desired by itself, ignoring Companies (C), the sample size

adjustment can be made on Brigades, making Brigades equal in size to the level

just below, Battalions, as follows:

S . (MS - MS ) / MS
B B S --B

S
A --= (MS

A --3
- MS ) / (MS

A
+ (b 1) MS

s
)

-- -

(46)

(47)

where, SB equals synchronization for Battalions, and SA synchronization for

Brigades.

Significance of Difference Between Measures

With Formulas (43) to (45), the degree synchronization can be compared

directly for each level of hierarchy, to determine the best unit of analysis.

Finally, whether synchronization at one level is significatly greater than

synchronization at atother can be tested by forming appropriate quasi-F ratios as

shown in Table 8. Each of the synchronization measures shares a common "error"

term, MSs, which is ignored when comparing relative sizes of synchronization

measures, because it is held in common. Independent mean squares are needed for

F ratios. Comparing synchronization can be accomplished by comparing the

relative sizes of the "total" variance that has been adjusted for equal group

sizes ignoring MSs for the reason stated. Cumpany synchronization is compared to

Battalion and Brigade synchronization in Formulas (48) and (49), and Battalion

to Brigade in (50). For the latter comparison, Brigade size is adjusted to equal

Battalion size in order to get a test with independent mean squares in the

numerator and denominator of the F test. Power is greater for the test in Formula

(50) than for the tests in (48) and (49).

When the hierarchical levels A, B and C are confounded, individual scores

may need to be weighted by Formula (41), to insure that each *unit of analysis is

weighted equally. The weights, when needed, will change as confounded hierarchi-

cal levels change. The coefficients c and be in Formulas (44) and (45) are

averages when the terms A, B, and C are confounded and weights are used. When

different weights are applied at different hierarchical levels in a confounded
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Table 8

Significance of Differences Between Synchronization Measures

Comparison Test Definition F Test" Number

Companies (C) /

Battalion (B)

Companies (C) /

3rigade (A)

Battalion (B) /

Brigade (A)

2 2
212Ra 4. 9as aE

9E2a2B aqS
2

aE

2

SLIP
2

C TYS
2

aE

c MS
4.11111111C

MS
B

+ (c - 1) MS

Le MA

SE:qa2 + 2q2S a2 MS
A

+ (bc - 1) MS
S

eqrsaB + aq + a 2 b MSS

2eqrsa2 + aq2

S
+ a

E MA (2. 1) kSls.

(48)

(49)

(50)

Note. Formula (48) as writtea tests whether company synchronization is

greater than battalion synchronization. The numerator and denominator can

be reversed to test whether battalion synchronization is greatest.

aDegrees of freedom for quasi-F tests are found by referring to Formula (24)

in the text.
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design, the mean squares in tl:s numerator and denominator of the nrecedihg tests

are no longer independent, so that testing the significance of the difference

between synchronization measures in this case should be used with caution.

Removing Synchronization

When synchronization is found at more than one level of the hierarqhy, the

synchronization at the higher level can be partialed out using dummy regression,

if desired. The existence of synchronization at each level can be tested by

applying Formula (16) at each level of hierarchy to see if significant "true"

variance can be identified at each level. The power of the test in Formula (16)

is higher at higher levels. The number of degrees of freedom remaining after a

higher-level group is partialed out may be reduced sharply as a result of

removing synchronization. Removing synchronization from higher levels., however,

would leave the researcher with results that could be unambiguously attributed to

the lower-level unit and its leaders. Depending on hypotheses, this might be a

desirable or an artificial result. It is possible, however, to statistically
eliminate synchronization from higher levels when desired.

Computational Requirements

There are two primary difficulties in computing the reliability and synchro-

nization measures and tests giver in this paper. The most serious difficulty is

the computer core space required to compute a large split-plot analysis of

variance design. All of the commonly used general analysis of variance packages,

including SAS, RUMMAGE, BMD, MULTIVARIANCE, and IMSL, greatly exceed the core

limitations of virtually all computers, for even modestly sized split-plot
designs that involve even a moderate number of subjects. As the number of

subjects in a split-plot design increase, factors that include subjects become

huge. Commonly used analysis of variance packages attempt to store these huge

factors 1n core. One exception is BMDP2V program, which does not require an

unreasonable amount of core, but cannot compute the hierarchical portion of the

design. Only ale level in a hierarchy is possible. A general analysis of

varLnoe program lapable of analyzing any design, was written to compute reliabi-

lities for aggr,Jgated scores. The input data was organized by riorting to

alleviaa .Le cell storage problems. Multiple sorts are required for one run on

a given mcd%,1, but a large number of reliabilities can be computed during a

single run.

The amount of computer CPU time taken to compute these reliabilities is a

second problem. Most general analysis of variance packages create dummy vari-

ables to calculate either balanced or unbalanced designs, but in split-plot

designs the number of dummy variables required is often huge, requiring large

amounv,5 of computer time. The general analysis of variance program that was

written for c,)mputing reliabilities, uses the balanced algorithm given previous-

ly. The ba)anced algorithm is appropriate for unbalanced data when confounded

components in an unbalanced design are allocated between true and error variance,

48 outlined previously. The algorithm was modified slightly in order to make the
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algebr\appropriate in the unbalanced as well as the balanced case. Looking back

at the steps required to get sums of squares, step (c) follows immediately after

step .(a) when applied to the unbalanced case. Degrees of freedom are obtained by

getting the sum of the cells associated with main effects that are listed,

instead of the product of the levels of the main effects listed, as given for the

balanced case (see P. 4). The balanced algorithm in this program computes
reliabilities much more rapidly than do programs that generate dummy variables.

Multiple sorts on input data do, however, take some I-0 ("wall clock ") time,but

this is required to alleviate the more serious oe.die storage problems.2

Summary

When research is conducted with intact organizations, groups rather than

individuals are used frequently as the unit of analysis. One advantage of using

groups as units is that, in this case, interaction within these groups can be

studied. If groups are selected as the unit of analysis, what level of the

organizational hierarchy should be selected for study? A statistical technique

is suggested for selecting groups at the most appropriate level of the organiza-

tional hierarchy, at a level that actually controls and is responsible for the

subject ma,..ter. This technique measures the extent of synchronization within

groups at different levels of the hierarchy. The level selected for the unit

should generally be the level with greatest synchronization.

After selecting an appropriate group unit of analysis, how should reliabili-

ty be estimated? Survey variables consist of scores aggregated over both

subjects within groups and survey items. The tra5dtional methods of estimating

reliability are eitherwincomplete or inappropriate when applied to estimating the

reliability of these aggregated scores. Using analysis of variance, appropriate

reliability formulas were derived that depend on both the unit of analysis and

survey sampling plan. In addition, significance tests for these reliabilities

were given, as well as formulas to determine sample-size requirements from

pretest data. A technique for estimating the reliability of record data, in the

form of frequency counts within groups, is also given. Together, these statisti-

cal techniques provide improved methods for studying the operation of organiza-

tions.

2 information about the availability of this computer program may be obtained by

writing the authors at Army Research Institute Field Unit, P.O. Box 5787,

Presidio of Monterey, CA 93940. The program has been written so that it is easy

to use with simple model input statements. Implementation on different computers

could pose problems, depending on the extent to which the program is given

continued attention and development by the authors.
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