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lhe effects ot varying degrees of correlation between

abilities and of various curreiation configurations betwean

item parameters on ability and item parameter estimation

us:hg the three-parameter logistic model was examined. Ten
two-trait and one unidimensional test configurations for
thirty item tests were simulated for 5000 simulees. Each
configurration cr sists aof a gpecific item  parameter
contiguration and a specific correlation between traits on
two dimensions. Six conditions were simulated for each
contiguration, ranging +rom a very easy to a ver? hard
test. The accuracy of item and ability parameter
estimation was examined using correlations; KR=20
coetficients and factor analyses were also performed. The
factar analyses supported a division of the simulated
multidimensional data sets into groups ac:brding to how the
discrimination parameter “loads" on the two dimensions. The
tests either both load heavily on both dimensions, (both
tests are multidimensional), one tests lgads heavily oan one
dimension and the other lpoads heavily on the same dimension
(both tests are unidimensional), one test 1s unidimensional
and one 15 multidimensional, or one.test loads heavily on
one dimension and the other test loads heavily on the other
dimension. lhe results indicate that tne poorest 1tem
parametsr  éstimations occur +ar the situation 1n wnich one

test 1= un1di1mensional and ore 1s multidimensional.
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EXAMINING THE éFFECTS OF MULTIDIMENSIONAL DATA ON
ABILITY AND ITEM PARAMETER ESTIMATION USING
THE THREE-FARAMETER LOGISTIC MODEL

9

INTRODUCTION

Several multxdimensional'models.héve been proposed and
some research has been conducted using these madels.
(Doody-Bogan. % Yen, 1983; Hattie, 198237 McKinley, 1983;
McKinley & Reckase, 1992, 1983a,  1983b, 1984: Reckase,
1979; Reckase % McKinley, 1982). However,  use of these
models has_not vet proven feasibie..

Most of the item response theory ([RI) methaodalagy -
that has been developed is applicable only to .the limited
case of one-dimensional data, in which case the assumption
of unidimensionality 'is required in order to estimate the
i1tem and ability parameters. Unfortunately, since in most
practical applications that assumption is not realistic,
and useful multidimensional estimation procedures are not
yat available, practitioners must either +fall back on
traditional methodology or inappropriately apply IRT
methodology while hoping for robustness to violation of the
unidimensionality assumption. Such robustness remains
undemonstrated.

Violation of the unidimensionality assumption has been
suggested as a prablem 1n estimation of i1tem parameters
(Loyd & Hoover, 19803 Cook & Eignor, 1981). It is
1ntormative to ‘examine the e+fect of vialation ot the
unidimensionality assumption on the estimation of the 1tem

perameters, a, by and c. and an the estimation ot ability,
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. This eftect can then be considered when parameters are
estimated in situations 1in which multidimensionality 1s
nown or suspected and no usable éstimation pProcedure for
multidimensional data can be tound.
Test Analvsis Model

Ihe statistical model tc be used i1n this study for
analyzing 1tem responses 1s the three-parameter logistac
model. This madel assumes that an individual 's performance
on a test is influenced by only one important unabservable
characteristic, ©, which 1is called a (latent) trait or
"ability. The three—-parameter logistic model assumes that
the praobability of a correct response to 1tem 1 by person j

with ability level, ®, is:

Fe (B3) = Cs + (1)

1 + expt(~1.7a,(03-bsy))

where ai., bi, and cs. are the discriminating power,
dirticulty, anc lower asymptote or guessing parameter of
item 1, respectively.

The accuracy ot item parameter estimation is affected
by several things, including the accuracy of the estimation
program ((Mckinley & Reckase, 1980), the size of the
calibration sample (Hambleton, Swaminathan, Cook, Eignor, %
Gifford, 1978; Reckase, 1977), and the percent of test
variance accounted for by the first tactor found when the
data are factor analysed (Reckase, 1979). Violation aof the
unidimensicnality assumption has LCeen suggest-d as a
oroblem 1n estimation of 1tem parameters (Loyd & Hoover,

19803 Look & Eignor, 1981).
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ObJectives )

The purpose of this research is to investigate the
robustness of 1tem and ability parameter estimation using
the three-parameter logistic model to violation aof the
unidimensionality assumption, and teo examine the eft+ects of
specific multidimensional data configurations on parameter
estimation using the three-parameter logistic model.

Educational or Scientific Importance of the Study

Most commonly used IRT models assume unidimensiocnaliity.
However, this assumption is not strictly satisfied by 1tem
pools in mast practical situations (Lo}d, 1968). . While the
assumption of unidimensiohality is acceptable in the case
of aptitude tests, that assumption is unrealistic for many
tests, including most achievement tests (McKinley‘ %
Reckase, 1982:; Reckases, 1979, 1?81; Sympson, 1978). ANy
factor that influences an examinee’'s score on a test, other
than the one latent trait <(ability) assumed <for the
one—-dimensiocnal model, will vioclate the assumption of
unidimensionality. Guessing, speedednass, fatigue,
cheating, random answering, or accidently overlocoking or
skipping an item are possible factors. The existence of
two or more cognitive traits i1s one such pn;sible factor. -
AN achievement test in mathematics might require both
reading skill and mathematical reasonina. #n achievement
test in science might require both reading and knowledge of
sci1ence facts. If so, the assumption of unidimensiocality
does not appear to be met. Nevertheless, IRT methodolagy
has well—-known advantages over traditional methodology and
1s applied in situations where it may not be appropriate.
Hencu it 1s 1nformative to determine the effects of
multidimensionality on parameter estimation. [t 15 equaliy
imoortant to develop Quidelines for educators and
researchers concerned with achievement testing. who wish to

benetit fraom the advantages ot 1kl methaodologv.
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the simulations begin with Ethe generation of
'twq-dxmensional data sets from a multidimensional model
using prespecified parameters througn an investigation into

the  effects on parameter estimation of . various

— -

mul tidimensional conditions, and end with a re-examination
of jthe accuracy of the parameter estimation . through
crdéé—valiqation.
Data Generation

The main Question to be examined in this research is
tiow robust parameter estimation . based - on the
three—parameter logistic model is to violation of the
unidimensionality assumption underlying the estimation. The
unidimensionality assumption 1s violated whenever the
scores that are being equated are multidimensional ‘in the
sense thet an examinee’'s score on a test is the result of
more than one latentil trait. The data can be the result of
mare than one latent trait and can also vary in the degree
of carrelation that exists between these traits. . Since
infinitely many multidimensionalidata sets fulfilling these
requirements are paossible, this research praject 15
necessarily limited to a few of the possibilities.

Number of dimensicons and dearees _of correglation. ine

two-dimensional case was chosen for this researcih as
tvpical of published tests and as a starting ooint 1n
examining the robustness ot parameter estimation to
vioclatian o+ the unidimensicnality assumption. Examining
all possipilltles 1s beyond the scope o+ this research.

lhe choice of correlations was limited to that which

seemed possible +or a published test, the Comprenens:ve

Tests_of_ Hasic Skills, Forms U and V (CTES/U, Cliorvs

CTB/Mcuraw—H111, 19481) . A correitaticon Gt cero wes chosan

7
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to simulate data sets on which Trait 1 and I~ * 2 have no
correlatian. Correlations of .3 and .- 2 chosen to
simulate data sets on which Trait 1 and Trait 2 have low
correlation, correlations .aof .3, .6, and .75 were used to
simul ate two traits that are mpre hrghly correlated, and .9
was used to simulate two traits that are hignly carrelated.
One unidimensicnal data set, which is representative of a
situation in which the correlation between traits is 1.0
was also generated to be used as a criterion against which
the analyses of the multidimensional‘data sets caould be
compared. )

Multivariate model. Two-dimensional data sets were
generated using the multidimensional model described by
Doody-Bogan and Yen (1983). This model is an extension of
the three—-parameter i0gistic latent-trait model. The

multivariate logistic model) is:

(1 - ca)

Fi(Bs5e) = cap + (2)

~m
1 + exp(~1.78a,e(Gse = Da~))

P
where Py (Use) = Puo(Q942,04290..493m), the probability af a
correct response to item 1 by a persun j whose location 1n
an m—dimensional latent space is described by abilities
Gi1+ Y324..2493m5 93¢ represents the abiiity ot person 31 on
trait t, @i« i5 the discrimination o+ item i with respect
tao latent trait t, bie is the difficulty of item i with
respect to latent trait t, and c4 1s the guessing parameter
for 1tem 1. Note that when m = 1, this model reduces to the
univariate logistic three—-parameter maodel of Birnbaum
(1968) . Ihe model was used with m = 1 to simulate the

unidimensional data. Thirty item tests were used.
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Item parameter values and item pool. Discrimination,

difficulty, and guessing values were chosen as in Doody—
Bogan and Yen (1983). The base pool consists of 30 items.
Since the existence aof two traits is assumed, two discrimi-
- nation parameters, two difficulty parameters, and ane
guessing parameter per 1tem are required. Two test levels
were simulated, a harder test (Test 2) and an easier test
(Test 1). ltem parameters for the harder test were estima—
ted using simulees with higher ability levels than those
used to estimate item parameters for the easier test.

Si1x data sets were simulated per data contiguration,
- ranging from a vecﬁgéésy test toc a very hard test. For
different levels of difficulty, 1.0 was added to the base
b: values to simulate the hardest test and 1.0 was
subtracted +from the base bi values to simulate the easiest
test. Similarly, .S was subtracted +rom and added to the
base values to simulate slightly different levels o+
difficulty. These differences in difficulty are represented
as 52 - E; = Q.0, 1.0, and 2.0, where ba is the r2an
difficulty of the harder test (Test 2) and bs is the m=an
diffi-ulty ot the easier test (fest 1)..

For each test configuration, item parameters A114 by,

212, Diz, and c. were randomly assigned to Traits L and 2
tor both lests 1 and 2, with the restriction that the
desired correlations between parameters were approximated
as closely as paossible. Randomizations were tried until

the desired correlations were obtained.

Test configurations. Tern two-traitc data test
contfigurations were chosen to be simulated. Each was

chosen as being typical o¥ a4 possible achievement test.

lTable 1 shows the desirea trait arnd 1tem parameter
correlations {or the simulated data sets. Table 2 sznows
cossible tests where such correiatlions mignhnt exist. lable &

shows tix@ 1tem parameters used tor each data contiduration.



Table |

Correlations for Sisulated Data Sets

’-

Parameter Estimatins

Configuration
!

Lower Level

Upper Level

Trait | Trait 2

Trait | Trait 2
f(91.9:) s 0
f(i“hg) 2 0 f(ia,ba) s 0
rlaggda) = 0 riby,ba) 3 0
r(e['ea’ s 33
f(ig|bg) 2 -3 f(az,ba) z 0
f(ig.ia) 2 0 r(bg,ha) s _0
ridy,03) s .4
r(al'b[) = .2 r(32|h2) 3 .5
riag dal = 0 ribyybal = 0
f(91,92) = 15_
f(ag,bg’ - 14 f(ia,ba) s 0
rag,aa) = 0 rtby,ba) = 0
f(91.923 s .5
r(a.,b.) s ) f(Ba.h:) 2 0
rlas da) = =.8 ribyeba) s 0
Fi0y,82) = .5
rlag,by) = =3 rlaaha) = 0
r(il|aa) s '-5 r(b[|hai s 0
f(ea,ea) s 06
riag,by) = 0 rlaz,ba) = 0
rfag,aa) = 0 f(bt,bg) = 0
f(eg,ez) = |75
r(a1|b|) 2 |4 f(d:.b:) s O
f(&;,az, = 9 f(b‘.bz) = 0

10

5388 15
lower
level

r(0yy02) = .3

rlaggdy) = =3 rlagba) = 0

riag,ag) = .2 riby,ba) = 0

sdee as
lower
level

f(eg.ea) = n5
r{as,be) = 4 rlazbal =.7
rlaggaal = 0 riby,bal = .5

sase s
lower
level

same as
lower
level

sase as
lower
- level

Saee as
lower

level

[tabia continues:

——~—
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Table | (continued)

Lower Level Upper Level
Configuration Trait | Trait 2 Trajt | Trait 2
9 rifsy82) = .9 sage a5
riag bs) 3 0 rligba) = 0 lower
r{agyaal = 0 ribyybal = 0 level
10 rifs,02) = .9 sage as
Plagybe) 3 0 rfagsba) = 0 lower
rlay az) 3 .8 - rlby,ba) = .8 level
U unidisensional unidicensional

Note: ites paraseters are written without the ites subscrigg, 1.

Al
All ability paraaseters are written mithout the person subscript, j.

Table 2
Applications to Real Data

Test 1 Test 2

Test Nase Trait 1 Trait 2 Trait | Trait 2
. tanguage Hechanics ﬁag:tuation ;ﬁgg{Sation gngctuation ;ﬁggiﬁation
2. Matheoatics Cosputation  other iteas decinals* other itess  decisals
3. Mathesatics Concepts _ fractions & _ fractions &

and Applications other iteas conversions other itess  conversions
4, Mathesatics Cosputation  other iteas fractions® other itess  fractions
5. Social Studies reading y-aphs reading graphs
b, Mathesatics Computation  aother iteas decisals other itegs  decimals
7. Science reading science facts reading science facts
8. Mathesatics Concepts ) _ . .

and App:ications patheaatics reading sathesatics  reading
?. Languige Hechanics reading punctuation reading punctuation
1. Rreading Conprehension reading vocabulary reading vocabulary

o

1
* not ee3scres 3t ihis levei.
t

11
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Table 3

Base [tee Paraqoters

Hard Test

Easy Test

AH2 BH1 BH2 CH

AR1

AL2 BLI BL2 (L

ALl

Configuration
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Table 3 (continued)

Hard Test

Easy Test
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Easy Test

Table 3 (cnntinued)

Hard Test
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Table 3 (continued)
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Table 3 {(continued)

——- - Eagy Test S Hard Test
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Note:

ALl and BLI are discriaination and difficulty for Trait | on the easy test. .

AL2 and BL2 are discrisination and difficulty for Trait 2 on the easy test.

AH! and BHI are discrisination and difficalty for frait 1 on the hard test.

AH2 and BH2 are discrisination and difficulty for Trait 2 on the hard test.

Base itea parasaters are before +0, +1, or +2 are added to the difficulty paraseters.

T



FParameter Est1mati?2

For Configuration 1, both traits were assumed to be
measured by both tests (Test 1, the easier test or lavel,
and Test 2, the harder test or level). .Zero correlation is
assumed between Tréit 1 and Trait 2. All correlations for
difficulty and discrimination, both within and between
traits, are assumed .to bhe zero. This contfiguration was
chosen as approximating a situation such as Language
Mechanics where .Trait 1 is end punctuation (i.e., period,
question mark, exclamation mark), and Trait 2 i3 middle
punctuation (i.e., comma , colon, semicaolon). End
punctuation is typically taught before middle punctuation.
It is assumed that no correlation exists between Trait 1
(end punctuation) and Trait 2 (middle punctuation) since
the ability to understand how to use periods, exclamation
points, and question marits appears to be 1ndependent of the
ability to understand commas, colons, and semicolons.
Theoretically, a Student could understand and/or master
either trait without any knaowledge of the other trait.

‘The concept of decimals is usually introduced after
-other, more basic, concepts (number, addition, subtraction,
etc.) have been taught. Therefore. items measuring
knowledge of decimals usually do not occur in the lowest or
easiest levels of a series of tests designed to cover
kindergarten through high school. Configuration 2 was
chosen to represent such a situation where the second trait
(such as decimals) is measured only by a few items on the
harder test. For the harder test, these few items are
assumed to have equal difficulty on both traits. The
discrimination <for these items is assumed to be medium on
Trait 1 (other items) and high on Trait 2 {(decimals). All
other 1i1tems include a range of discrimination values on
Trait 1 and O discrimination on Trait 2. A low correlation
between the two traits (knowledge of decimals and knowledge

of otk 2r items) i1is assumed.
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Configquration 3 inVolves a situation in which Trait 2
is measured on the easier test by a few items, and on the
harder test by most or all of the items. For the easier
test the discrimination is assumed to be high for these
items on both traits, while all other itemé have a range of

discrimination on Trait 1 anq 0 discrimination on Trait 2.

.The harder test has a range of discrimination on both

traits. This situation might occur if knowledge of
fractions and fraction tonversions to decimals was one
trait measured on a test (Trait 2 here) and all other items
were measuring Trait 1 (not fractions or conversions). For
the easier test, a few items (the ~fraction/fraction
conversion items) are assumed to have high discrimination
on both traits. It is assumed that these few items are
included in the test in order to measure knowledge of
fractions and fraction conversions and hence should be
highly discriminating on the trait that they are assumed to
measure. It is assumed that they have hinh discrimination
on Trait 1 (addition, for example) since conce:ivably, 'a
test of knowledge of fractions would measure'noﬁ 6n1y
whether a student grasps the concept of fractions but also
whether or not the student can add fractions. ' :
Configuration 4 was chosen as a situation in which the
second trait is measured only by a few items on the. .harder
level. The correlation between traits is assumed%ta he
moderate. Difficulty and discrimination are assumed to be
moderately correlated {for both tests on Trait 1 and highly
correlated on Trait 2 on the harder test. The difficulty
parameters are assumed to have a medium correlation on the
harder test. This configuration was chosen to reflect a
situation such as Mathematics Computation, where Trait 2 is
ability with fractions (measured unly by a few items on the
harder test) and Trait 1 1s ability with nonfraction items

(measured at both levels).
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For Contiguration S, both traits are assumed to be
measured by' both tests as in Configuration 1, except that
both traits are not assumed.to be measured by all items.
Some items are assumed to be measuring’nnly Trait 1 while
having zero discrimination on Trait 2. Some 1tems are
assuﬁed to measure Trait 2 only, having zero discrimination
on Trait 1. A few items are assumed tao measure both
traits. Alsa, a medium carrelation is assumed between

traits, and discrimination is assumed to be negatively

.correlated across traits. This configuration was chosen to

reflect a situation, such as Social Studies, where the two
traits might be reading ability and ability to understand
graphs. A typical Social Studies test usually contains some
items pertaining to graphs only. A few items may require
both reading ability and an understanding of graphs. QOther
items require reading only.

For Configuration &, it is assumed that both traits are
measured by both tests and the correlation between traits
is .5. A few items are assumed to have low discrimination
on Trait 1 for both tests, low discrimination on Trait 2
for Test 1, and high discrimination on Trait 2 for Test 2.
All other items are assumed to have a mixture of high,
medium and low discrimination on Trait 1 and zero
discrimination on Trait 2. This configuration was chosen
as being similar to a situation such as Mat! 2matics
Computation, where Trait 2 is ability in computation
problems involving decimals ‘and Trait 1 is ability in
computing all problems not involving decimals. A few items
involving decimals are assumed to have low discrimination
on Trait 1| (no decimals) for both tests, low discrimination
on Trait 2 (the decimal trait) for the lower level, and
high discrimination on Trait 2 for the harder test. The 25
other i1tems are assumed tao not measure decimal ability so

have zero discriminatior on Trait 2.
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Configuration 7 igs the same as Configuration 1 (both

traits are measured by both tests, randomly assign a, b,

and c) except that a moderate correlation is assumed to

exist between Traits 1| and 2. This configuration might
result from a situation such as a Science *fest where an
examinee’'s item reSponsasz.could be the result af two
traits: reading ability and knowledge of science facts.
Configuration 8 assumes that both traits are measured
by both tests and that a high (.75) correlation axists
between the two traits. Discrimination and difficultv are
correlated .4 in Trait 1. A test that involves boath
mathematics and reading, such as Mathematics Concepts and
Applications, might produce such a configuration.
'Configuration 9 is the same as Configuration 1 (both
traits are measured by both tests) except that a high
correlation (.9) is assumed to exist between Traits 1 and
2. This configuration could represent a test such as
Language Mechanics, where Trait 1 is reading ability and
Trait 2 is punctuation ability. A high correlation beatweaen
reading and punctuation is aésumed since in order to
understand the mechanics of language, both ability in
reading and ability in punctuation must be present. '

In a test that might involve both reading and

vocabulary as separate traits,' such as 'Reading
Comprehension, a high correlation between traits would
probably exist. Such a situation is assumed for

Configuration 10, with discrimination and difficulty highly
correlated across traits.

Configuration U is tﬁe unidimensional criterion. This
configuration is simulated by setting m = 1 in the

multidimensional model used to generate the data.
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Data conditions. Cambining the above . described

configurat.ons results 'in 33 data conditions: 11 (item

parameter/correlation configurations) x 3 (E; - Bb1) valués.

Simuwlated Data. The Simuiated Data sets include three
groups of simulees for each of the two traits: 2,000 of low
ability, 2,000 of middle ability, and 2,000 of high
ability. The 2,000 theta values far each of the three
levels were generated Qsing thé IMSL multivariate normal
random deviate generator, GGNSM (IMSL, 1979). In each case
a normal distribution is éssumad (& = -0.87y SD = 1.0 +or
the low ability group, @ = 0.0, SD = 1.0 for the medium
ability group,-a = 0.957, SD = _1.0 for the high ability
group). | These aifferences in means were cnosen to be
similar to the differences between ability leveis in
published. tests (CTBS/U, Levels E & F, and H % J). For the
35 data conditions, respunse vectors were generated for
each of the three groups of observations far tests of 30
items each.

Separate sets of data were generated for parameter
estimation and for cross-validatien. For parameter
estimation, data were generated for each of the 33
conditions described abave. Thirty—-three new sets were
generated to be used for cross—validation purposes.

Response vectors. Using the prespecified “true"
parameters (aii, &a=, b1z, biz, Ci, 641, O52) and the
multidimensional model, Pi(9;,,0;2) was computed for each
observation. From these Pi1 (0,4, ,9,2) values, (0O,1)
responses, Ui sk, were generated for each item i, simulee 3j,
and test k, where U, is 1 if a random number is less than
ar equal to P.(0,41,952) aor O otherwise. The resagum number
was generated from a wuniform distribution using IMSL
subroutine GGUBS (IMSL, 1979).
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Responses were generatéd for all simulees for both
tests (Test 1 and Test 2). For item parameter estimation,
only responses to Test | were used for the low ability
group and only responses to Test 2 were used for .nhe high
ability group. For the medium ability aroup, only
responses to the anchor test were used. Responses for all

simulees to both tests were used to examine the +Ffactor
analyses. '

Data veri fication

The means and standard deviations of the number-correct
scores, item difficulties (p—valués),'and the KR-2C tast
reliability coefficients from tha- simulated tesfs were
examined in order to verify that the simulations are
realistic.

Verifying Multidimensionalit-

in order to determine whether the generated data
accurately simulate real data, the following factor
an\lyses were performed: . principal component analysis of
tetrachoric correlations and principal factor analysis of
phi coefficients (McKinley & Reckase, 1982:; Reckase, 1979).
Both principal component analysis of tetrachoric
correlations and principal factor analysis aof phi
coefficients were used.

The factor analyses were examined in terms of the
proportion of variance accounted for by the first factor.
This is based on the assumption that a set of items is
unidimensional 1if a large amount 92f the variance 1is
accounted for by the principal factor or component. For
this study, a procedure similar to that suggested by Lord
and Novick (1948, PP. 381-382) for evaluating
unidimensionality by performing a Vprincipal axis factor
analysis was used. The first four factors were extracted
using estimated communalities in the diagonai. (The

diagonal values in the correlation matrix are replaced by
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the squared multiple correlation ot each variable with ail
other variables.) The items may be considered as arising
trom a unidimensional latent space if the first common
factor accounts for a "large'! proportion of the common
variance and if all factors after the +irst account for
much smaller and approximately equal proportions of the
common variance.

Determination of whether the first two factors account
for a “large" proportion of the common variance was done by
comparing the data generated by the multidimensional madel
with that geﬁerated, by the unidimensional model. The
deviation of the multidimensional data from the
unidimensional data was then determined by comparing the
percent of variance »cuounted for by the tirst two factors
in both sets of data. |
Parameter Estimation

For eacn of the 33 data conditions, item parameters
were estimatad with LOGIST (Wingersky, Barton, & Lard,
1982). Item parameters for Test 1 were estimated using
responses from the low and medium ability groups.
Similarly, item parameters for Test 2 were estimated using
responses from the medium ana high ability groups. This
allows combined samples of 4,000 simulees, a sample sice
that has been found to be adequate for abtaining very
stable item parameter estimates (Yen,1983). Since separate
pairs of LOGIST runs were made for each of -the 33 data
conditions, the result is two sets of estimated item
pia-ameters and estimated thetas per pair of tests. For each
of these 33 conditions, the accuracy of the parameter

estimates was examined.
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Accuracy of the Parameter Estimation

A desirable characteristic of a parameter estimation
procedure is the ability to obtain accurate item
parameters. For use of IRT estimation procedures for the
one—-dimensional case, the assumption of unidimensiaonality
is required in order to estimate the parameters for a given
set of items and the examinee‘'s trait levels (Lord &
Novick, 1968, Ch. 16). Violation of this assumption has
been suggested as a problem in estimation of ilam
parameters (Loyd & Hoover, 19803 Cook % Eignqr, 1981).

The data used here are known  to exhibit
multidimensignality. Therefare, it is informative to
examine the effect of this multidimensicnality on the
estimation of the true parameters, a, b, ¢, and ©. ' This
effect can then be considered when the estimated item
parameters, 3, 3, and 2, are used to perform an equating or
for other purposes.

Although in real 1life situations tne real parameters
are not known, one of the advantages of using simulated
data is that the “real" item parameters are known: the
“rcral" item parameters are those used to generate the data.
Hence comparisons between real and estimated parameters can
be made and such comparisons can be used to examine the
accuracy of the estimation procedure.

Within level parameter estimation. Examining the

accuracy af the parameter estimations within levels
1nvolves comparing in some way the multidimensiaonal true
(generating) parameters and the unidimensional estimates.
The approcach used by Yen (1984b) is the method used here.
Fat@u) = Fy(Ous,0mm) if

A
C1+ & €4, and (4)
~ o~ ~

A1 (B = be) = a,; (B, - Di1) + a12(Bu= - bia). (3
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The closed form relationship betwee.: the unidimensional
estimated parameters and the multidimensional true
parameters 1s approximated by +finding thé unidimensional
parameters that minimize the sum of the squared differences

between the two sides of Equation S. Then

asibsis + asabia

/N

by = SNTS
”
ay

AN

Qs Dy =B as1bya + aszbia2, (7)

A A A

A4 = A21r(0;,8) + a,ar (62,9, and (8)

A ~
(iag;a‘)uul + (§34231)9Qz
Pa ) 4 A
Qe = ()

A
£a,=
A

Equations 4, 4, 8, and ? give the approximation of the
relatiaonship between the unidimensional estzmaged
parametuers and the multidimensional generating parame,ers}\

within tLevel Comparisons

The accuracy of the estimation procedure was examined
by comparing both sets of true item parameters, from Test 1
and from Test 2, to the estimated item parameters, and by
comparing true thetas tao the estimated thetas using
correlatiaons. Estimated b.i values were caompared with each
of the two sets of true by values (bsa and b,z) for both
traits. Similarily for a, values. The estimated ci values
were compared with the one set ot true ci values. The
estima.ed thetas (35 were compared with the true thetas (v,

andgd we +tor the two traits.
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Cross Validation

- The (Cross Validation dat$ were generated in the same
manner as ware the Simulated Dgﬁa (i.e@. using the same data
configurations and item parémete;S, but different seed
numbers for the data .generation).” The Cross Validatian
data sets consist of a pooled group aof three sets of
observations: 2,000 of low ability, 2,000 of middle
ability, and 2,000 of high ability. Response ve:tnrs-aﬁa
p-values were also generated as for the Simulated Data.

Using the fixed item parameters that were estimated
from the original data, thetas were estimated for the Cross
Validation data. In the first run, éhetas were estimated
for Test 1 using item responses for all three ability
levels on Test 1 and not reached (NR) for Test 2. Item
parameters were fixed at the values estimated in the-
parameter estimation runs far the original data.

Similarily, in the second run, thetas were estimated for

- Test 2, using item responses on Test 2, NR on Test 1, and

fixed item parameters. The accuracy of the item and ability
parameter estimates was then examined in the same manner as
for the Simulated Data.

* RESULTS

True Item Parameters

All desired and attained correlations among the item
parameters used faor generating the two~-trait data are
within +,10 of the desired correlations, hence the attained
correlations appear to be acceptable.

Simulated Thetas

Attained correlations between generated thetas on both
traits are all within .04 of the desired correlations.

Mean thetas are all within .08 of the desired mean ability
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for all three ability levels and the standard deviatiqn of
the generated true thetas are all within .05 of the desired
standard deviations. The simulated thetas appear to be
acceptable for Simulated and the Cross Validation data.

Simulated Item Responses

Table 4 contains means and standard deviations for
number—-caorrect scores for thé'pairs of simulated tests for
Simulated ‘and Cross Validation data. The simulated tests
appear ta be realistic, although for " the ba -_5; = 2
conditions, Tests 1 and 2 differ a great deal in
difficulty. Recall that Test°l and Test 2 are simulated ta
have equal difficulty when Ba — B: = 0. When bz — b2 = 1
or 2, Test 2 is the harder of the pair of tests. Tests 1
and 2 have very similar difficulties for all configurations
when bz - b, = 0. For all configurations, Test 1 appears
easiest and Test 2 hardest when ba - by = 2. The Cross
Validation data follow the same pattern.

T;ble S contains the KR—Zb'%yalues for the pairs of
tests for the Simulated and the Cross Validation, data. The
KR-20 values range from .74 to .94. wifh the exception of
Configuration 3 and the medium+high ability group of
Configuration 35, all KR-20 values decrease or else increase
at most .01 as the tests go from easiest to hai-dest.

For Test 1, Configuration 3 has only five items that
measure Trait 2. These five items have high discrimination
aon both traits. Test 2 measures both traits with all
items. When bz =- b, = 0, the KR-20 for Test 1 is .05 to
.06 less than the KR—~20 for Test 2. This contrasts with
the .00 to .02 differences for all other configurations.
Also, for bz -~ b, = 0, the Test 2 KR-20 is larger than any
Test 1| KR~20 in Configuration 3.

Configuration S alsag breaks the trend of KR-=20
decreasing with increasing test difficulty by having 1its

next to smallest KR-20 on the easiest test +for the
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medium+high group of simulees. The overall trend appears

to be that the harde#t“test for each configuration (E: - ba
= 2, Test 2) has the smallest KR-20.

Another overall trend is that Configurations 1., through
6 and the uﬁidimens{onél configuration have ranges of KR-20
values from the upper 70s to the upper 80s and lbyer 90s
for vhe low+tmedium group and a range of 80s to:ubpgr 80s

and lower 90s for the medium+high group. Hawever,

Configurations 7 through 10 have overall higher KR-20'

values. The low+medium group ranges fraom the laower 80s to
lower 908 and the medium+high graoup are ull in the lower
90s. ]

The Cross Validation KR-20s follow the same patterns as
the Simul ated Data. ““'All-i crass validation KR-20s
are within .02 of the original data KR-20s.
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Tables 6. through 8 contain the results mf ..the factor
analysesn? for the Simulation Data and for the Cross
validation. Tnble.b contains the cor}elations between the
first two factors for the oblihdé rotétinns. There appears
to be no pattern in the correlations that discriminates
between the unidimensional criterion = and the
multidimensional data configurations. All. correlations
range between .33 and .60 for the principal components
analyses (PCA), and between .53 and .76 for the factor

analyses using squared multiple correlations in the
diagonals (SMC). R

A few patterns appear. For the ﬁCA, all correlations
for Test 2 decrease as the test gets harder (ba ~ b,
increases from Q to Tfto 2), and most correlations faor Test
1 decrease as ﬁhe test gets aasier (Ez - E;.increases'from
0 to 2). Also f&r PCA, the smallest correlations in each
cnnf;qg;&tion\area¥gr,the condition where bz ~ by, =.2. This
is aléq:frue for moéﬁ_of the configdkatiuns for SMC. For
both fypes af ana1§sesg Configuration 4 has the highest
correlatians per condition and Configuration $ the lowest.

Configuration 2 has the greatest range af correlations,
with a spread of .22 points (.33 to .S5) on PCA compared to
.05 to .11 for all other configurations, and a spread of
.13 points (.58 to .71) on SMC compared to .02 to .06 for
all other comfféurations.. One other” pattern that emerges
is that Canfigu?ations 2 and 7 have smaller cnrrélations
for Test 2 than for' Test 1 on both PCA and SME. All other
configurations have c;erlapping correlations for Test 1 and
Test 2. -

Overall, the Cross Validation correlat‘ons follow the
same general - dgtterns as the Simulated Vata. The Cross
Validation correlations are at most +. 05 +rom the

corresponding Simulated Data.



Hilie

t
Lipeni

4

St g

32



Parameter Estlmatxon
.)4-

e

Tatle 7 contains the first four eigenvalues from the
prindjpal components analyses. For all data sets,
includ%ng_ the/unidimensional, there appears to be a strong
firet Yactor and a much smaller 'second factaor. In
additiaé; 'Configurations. Sy &6, and 10 appear to have a
third small factor,. which for Configuration 4, Test 2 is
almost as large as the second fattor. Configuration 9
appears to have the largest f;rst factar and Configuration
S appears to have the smallest. , “

Recall that the cahfzguratians are:arranged such that
the correlation between traits increases ‘from «00 for
Configuration 1 to 1.00 for Configuration U (.0, .3, .4,
Sy ey «3Ty 6y 73, P, Py 1.00). With the exception of
Configurations 1, S, 10, and the unidimensional criterion,
the size of the first eigenvalue increases as the
correlation between traits increases. Also, as the test
gets harder within a configuration (i.e. moving from the
first entry <for a given configuration through the last),
the size of the first eigenvalue decreases. The only
excepﬁicn is that the condition Ez -ba = 0, Test 2 has the
largest eigenvalue for Configuration 3, and for all other
configurations, the condition Ez - E; = 1, Test 1 has the
largest.

The first-eigenvalues ot Configuratioms 1, 7, 8, 9, 10,
and Test 2 of Configuration 3 are clearly greater than the
first eigenvalues of the unidimensional criterion. The
first eigenvalues of Configuration S are clearly smaller
than the corresponding eigenvalues aof the unidimensional
criterion. The first eigenvalues of the remaining
configurations (2, 4, 6, and Test 1, Configuration 3) are
appraximately equal to* the firet eigenvalues of the
undimensional criterion.

In general, the Cross Validation data follaw the same

patterns as the Simulation Data.
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Table B8 contains the first ¥nur'eigenva1ues from the
tfactor analyses using squared multiple correlations (SMC).
8MC follows the same patterns as PCA.  All data sets appear
to have _a strong first factor and a much smaller gaecond
factor. Configurations S, &, and 10 appear.to have a third
small factor, uhich for Configuration 6, Tast 2 is almost
as large as the second factor. Configuration 9 appears to
have the largest first factor and Configuration S appears
to have the smallest.

The size of the,first eigenvalue generally increases as
the correlation bat&eeh traits increases, - with the
exception of Configurations 1, 5, iooand the unidimensional
criterion. The size of the first eigenvalue decreases as
the test gets harder within a configuration except that
condi tion S; —ME,'a 1, Test 1 has thé largest for all
cohfigurationsl (except Coﬁfiguration 3 where the condition.
bz - 61 = 1, Test 2 is largest). - |

The first eigenvalues of Configurations i, 7, 8, 92, 10,
and Test 2 of Configuration 3 are clearly greater tpan_the
first eigenvalues of the unidimensional criterion. Thg//
tirst eigenvalues of Configuration 5 are clearly smallef
than the carresponding eigenvalues of the unidimensional
criterion. - The first eigenvalues of the remaining ]
configurations (2, 4, &6, and Test 1, Confiquration 3) are
approximately equal. to the first eigenvalues of the
undimensional criterion.

As with the principal components analyses, the Cross
Validation data generally follow the same patterns as the

Simulation Data.

“n
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Table 9 contains the nercent of variance accounted for
and the cumulative percent af variance accounted_far by the
first four eigenvalues. The percent of variance accounted
tor by the first eig=nvalue ranges from 146 to 40 percent.
The percentages for Configurations 1, 7, 8, 9, 10, and Test
2 of Caonfiguration 3 are mustly in the thirties and upper
twenties, while for Configurations 2, 3 (Test 1 only), 4,
'S, 6, and U, the percentages are all-in_the upper teens and
’iower twenties. The Cross Validation values are all within
+.01 of the Simulated Data values and are not reported
here. | ' - |

Table 10 contains the percent of.variance accounted for
and tﬁe cumulactive bercent of variance accounted for by the
first four eigenvalues for the factor analyses using SMC.
Faor Configurations 2, 3 (Test 1 anly), 4, 6, ang'u, the
first eigenvalues account for at least 101%Z aof theiaariance
in most conditions. For Configuratidns 1, 3 (Test 27, S,
7,8, 9, and 10, the percent of yarianéé actounted #or is
mostly between 90 and 100 \with the exception of conditions
where bz — b, = 2, Test 2 (the hardest test in each
configuration). The second eigenvalue accounts for & to 10
percent of the variance in Configurations 2y, 3 (Test 1), 4,
&, and U, and accounts for 9 tao 14 percent'of the variance
for Configurations 1, 3 (Test 2), 7, 8, 9, and 10. Most
notable is Configuration S, for which thelﬁecond eigenvalue
accounts for 19-22 percent of the variance.

The p=rcent of variance accounted for by the third and
fourth eigenvalues is near zero for all configurapions'and
all conditions. The cross validation data values are all
within +.02 of the Simulated Data values and are not

reported here.
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Parameter Estimation, Tables 11 and 12 cantain

camparisons of true versus estimated parameters. Table 1%
contains the correlations of the true and estimated item
parameters for the Simdlated Data. For Configurations 2, 3
(Test 1), 4, &6, 10, and U, the correlations between
difficulty on Trait 1 (ba) and estimated difficulty (D) are
all .90 and above. 1In particular, the correlations for 3
and bs are all .98 and .99 for Configuration U. For

Configurations 1, 3 (Test 2), 5,' 7, 8, and 9, the

'corralations ~are all under .80 with most between .40 and

-.78. The most notable exception is that the cofrelations
betwenn b and by for Configuration S, Test 2 are .26, <36,
and .34 in order as the test gets harder. These are the’
only carrelations between estimated difficulty and
difficultf on Trait 1 that are under .59.

For the correlations between estimated difficulty (3)'

.»and difficulty on Trait 2 (ba), the best cal -elations (.87

to .95) are for Configuration 10, the multidimensional
configuration with the highest correlation (.90). between
traits. All other correlations between b and b2 are .78 or
less. For Configufations 2, 3 (Test 1), 4 (Test 1), and 6,
the correlations are all below .20. Tthe /orrelations for
Configuration 5, Test 1 are .24 to .30. For Configurations
1, 3 (Test 2), 4 (Test 2), S (Test 2), 7, 8, and 9, the
correlatians are all between .50 and .77.

The correlations between 3 and b= are all within +.15.
of the Correlations between 3 and bis for Configurations 1,
S (Test 2, 7, 8; 9, and 10. For Configuration 4 (Test 2)
these caorrelations are within .21 ta .30 of each other and
for Configuration S they are within .33 to .S3. However,
the largest differences for the correlations of estimated
difficulty .and difficulty on Trait 2 versus estimated
difficulty and difficulty on Trait 1 occur for
Confxgurationgx'zyils (Test 1), 4 (Test 1), and &. These

40
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carrelations range from .78 to .96 less for r(g,bz) than
for r(g,b;).

Note the large differences and the.in:rease in size of
the cnrrelations"r(g,b;) and r(G,bz) for Configurat;on S.
For Test 1, the correlations of estimated difficulty with
difficulty on Trait | are .77 or .78 and for Test 2 the
correlations are .26 to .36. The réverse is true for Trait
2. Test 2 has the higher correlations. (.67 to .77) and
Test 1 has the lower (.24 to .30).

The correlations of g with (aibs + a=zbz)/a are mostly
.98 and higher. A few are iﬁ the lower .90s with aone . 89.

The correlations of estimated discrimination (&) with
true discrimination on Trait 1 (a.) follow same of the same
patterns as the correlations between estimated and true
difficulty. The higﬁest carrelatiaons between'& and ai. are
for Configurations 2, 3 (Test 1), 4, &, and U, as was true
for the correlations between g and bi. However, the only
"configurations with - correlations in the « 70s are
Configurations 3 (Test 1), 4, and U. Configurations Z and
& are in the .70s and .80s. Configurations 1, 3 (Test 2),
7, 8, 9, and 10 are all between .4C and .72, with one
exception. Condition bz - b = 2, Test 2, Configuration 7
is a very low .31. Configuration S has the lowest overail
correlatiqns on Trait 1 (.11 to .41), and with the
exception of Configuration 4, Configuration U has the
largest correlations.

For the correlations of estimated discrimination (@
with discrimination on'Trait 2 (az), the first 2 conditions
of Test 1, Configuration 3 have the largest correlations
(.80 and .83). All other correlations are .73 or less.
Configurat.ons 1, 8 (Test 2), 9, and 10 are mostly between
.50 and .73. Coarrelations for Configuration 7 range from
.44 to .55, and Configuration 3 (Test 2) correlations range

from .25 to .33. Configuration S correlations are mastly
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in the .30s. All correlations for Configurations 2, 4, ¢,
and 8 (Test 1) are less than .31i. In particular, for
Configuration é, all correlations of estimated
discrimination with discrimination on Trait 2 are negative.

Note that, except for Configuration 10, the same
configurations (2, 3 Test 1, 4, &, and U) have the best
correlations for Trait 1 dis:rimination.as have the best
correlations for Trait 1 difficulty.

Configuration U has the best overall correlations (.90
to .95) between 2' and aib, + azba. Correlationg for
Contiguratiuns 2 (Test 1), 3 (Taest 1), 4, S, and & (Test 1)
are mastly in the upper .865. Correlations for
Configurations 1, 3 ‘Test 2), 7, and 9 are mostly in the
.70 and lower .80s. Far Configurations 8 and 10, the
correlations are mostly in the .40s and .70s. Test 2 <for
Configurations 2 and 6 has the lowest correlations: .S3 to
-394 for Configuration 2, Test 2, and .46 ta .55 for
Configuration 6, Test 2. Note the difference in size of
correlations between Test 1 and Test 2 for Configurutions
2, 3, and 6.

There appears to be no pattern for the correlations
between é'and C. These correlations all range bhetween -.05
to .79 with sowe aof the paocrest correlations ocurring for
the unidimensiunal criterion.

With wvery few exceptions, all Cross Validation
correlations are equal to the corresponding Simulated Data
correlations. The exceptions are all within +.02 of the

Si.ilated Lata correlations.
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Table 12 contains the carrelations between the true ana
estimated trait values for both Simulated Data and Craoss
Validation. The correlations between estimated ability (3)
and ability on Trait 1 (©.) range from .44 to .92.
Configurations 2, 3 (Test 1), 4, &6, and U have correlatians
ranging from .79 to .92 with most correlations in the .90s.
For each of these configurations, the smallest correlation
is for condition Bz - E; = 2, the hardest test. The
correlations for Con%igurations 3 (Test 2, 5, 7, 8, 9, and
10 are mostly in the .70s and .80s, except the hardest test
of Configuration 9 with .67, and the easiest test of each
of Configurations 7, 8, 9, and 10 which are .32, .95, .56,
and .59, respéctively. Overall, Configuration 1 has the
smallest correlations between & and ©: of all the
configurations, ranging from a low of .44 for the easiest
test and from .62 to .48 for the other conditions.

In ggnerél, the correlations for Configurationé 1, 3
(Test 2, 5, 7; 8, 9, and 10 increase as the correliation
between traits increases.

The correlations of estimated ability with ability on
Trait 2 are all approximately equal, to the correlations of
estimated ability with ability on Trait 1 for coarresponding
conditions of Canfiqurations 1,'3 (Test 2), S5, 7,-8, 9, and
10. For Configurations 2, 3 (Test 1), 4, and 6,-the Trait
2 correlations are all .28 to .Se& less than the
corresponding Trait 1 caorrelations. In general, these
differences decrease as the correiations between traits
increases.

The caorrelations between 3 and ©* are mostly in the
-80s and .70s. The smallest correlations are .58 for the
easiest test of Configurations 7, 8, 9, and .&0 for the
easiest test of Configurations 1 and 10. All  other
correlations are .76 and above. The smallest correlaticns

tor each ot Contigurations 2, 3, 4, S, &, and U are all on
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the hardest test and range from .77 to .83.

For Configurations 1, 3 (Test 20, 5, 7, 8, 92, and 10,
the correlations between 6 and ©* are larger than the
corresponding correlations of (2] with both 9. and 9=. 'lhis
ditference decreases as the cbrralation between 91 and ©=
increases. For Configurations 2, 3 (Test 1), 4, and 6, the
correlations between 8 and ©* are approximately equal to
those between 6 and ©: and hence the correlations between @
~and ©= are much larger than the corresponding correlations
between 3 and 92 (since the correlations between 6 and o,
are much larger than *he corresponding correlations between
© and ©= for these configurations). This .difference
decreases as the :arrela;ian-between Y1 and 9=z increases.

The Cross Validation correlations are all +.03 of the
corresponding Simulated Data - correlations . with one.
exceptinn. The correlations for Configuration 2, Test 1,
E; - Ex = 0 is .17 points larger for the Simulated Data
than for the Cross Validation data for both r(g,e;) and

-~
r(B’UZ) "
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DISCUSSION

The purpose of this research i1s to examine the effects
of various multidimens:ianal data’ caontigurations on
Vparameter estimation with the three-parameter logistic
model . Ten two—-trait data configurations and one
unidimensional criterion were chosen. For each of these
eleven configurations, three di#ficulty conditions were
simulated.- Data were generated using a muitidimensiaonal
model for degrees of correlation between traits of .00 to
«?0 and one Qnidimensional criterion.

Simulations. fhe simulaied_item parameters and thetas
were well within aﬁcnptable limits -of the desired values.
' Means, standard deviations, ° and -KR-20 ~ values of
number—correct scores indicated that all the conditions
simulated realistic test configurations. o
.. Multidimensionality. Two ?actor analyses were examiaéd
ih'nrder to verify the multidimenﬁionality of the generated
data. The factor analyses do not seem to consistently
discriminate since for aill data sets; including fhe
unidimensional criterion, there appears to be a strong
tfirst factor and a much smaller secona factor. Hence, -all
the data sets appear to be two—-a:mensional. The
correlations between the first twa factors do not appear to
have any pattern that discriminates between the
unidimensional criterion and the multidimensional data
configurations. | These correlations certainly fail to
follow the pattern ochorrelations batween traits ranging
from .00 to .90 for the multidimensional configurations. I

This 1is similar to the MckKinley and Reckase (1984)_
tindings that correlations between factors did naot follow.

the pattern ot caorrelations between traits for
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two-dimensional simulated data. However, for the McKinley
and Reckase data, the size of the first eigenvalue

decreased and the size of the second eigenvalue 1ncreased

 as the correlation between the two traits decreased. This

is in direct contrast to. tha general trend that can be seen

in the data presented hera. In general, as the

correlations between traits decraases, the size of the

first eigenvalue increases. The multidlmen51ona1 model

used by McKznley and Reckase to generate their data is an

extension of the Birnbaum (1948) two-parameter model that

uses two discrimination parameters and 6na item parameter

" related to difficulty. Clearly, the.multidimensional model

used here and the multidimansional model used by McKinley
and .Reckase are generating different data configurations.
Upon examining the first four eigenvalues of the
.principal compdnents analyses (FCA) and the factor analyses
using squared multiple correlations (SMC), a few patterns
emerged that caused ‘a rethinking/restructuring of the
multidimensionality (or lack of it) for each of the chosen
configurations. The ‘true’ item discriminations for each
test weré chosen to represent real data in that if an item
does not measure a trait on a test then the dxscr1m1nat1an

for that item on that trait is zero. If an item does

' measure a trait an a test, then the discrimination of that

©y em on that trail is non-zero.

The iten discriminations for each test for each
configuration wure examined from the point of view that if
most or all of the items "load" (discriminate) on one
dimension only, then tha test is probably unidimensional or
near enough so to be called unidimensional. I¥f most or all
of the items "load" on both dimensions, then the test is
prabably multidimensional.

This causes a grouping of the multidimensional

coufigurations into three groups (actually four), based on
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the dimensionality of the tests. Clearly, bhoth tests of
Configurations 1, S5, 7-10, and Test 2 Configuration 3, are
‘multidimensional since for Caonfigurations 1; and 7-10,
every item measures both dimensions, and for Configuration
9y 17 items (over half) measure Trait 1 and 17 items
measure Trait 2. Hence, Grnup. ML, a multidimensional
group, consists of‘Coh#igurations 1, and 7-10. Group M2,
also a multidimensional group, consists of Configuration S
alone since it is the only configuration with about half of
the items measuring each dimension.

Aﬁother group (Group U) can be considereq as a group
with unidimensional tests. Gfuﬁp u consiéts of
Configuraﬁions 2, 4, 6, and U. Both tests on these
confiqurations and Test 1 Configuration 3 can be expected
to be unidimensional because Trait 2 is either not measured
at all or i{a measured by only five of the 30 items, (i.e.,
Discriminations on Trait 2 are all zero or only five items
"load" on Trait 2). For Test 1 of Configqurations 2 and 4,
Trait 2 is not measured at all, hence has zero
discriminations for all items. Therefore, Test 1 for
Configurations 2 and 4 are expected to be unidimensional.
Similarily, Test 1 of Configurations 3 and &, and Test 2 of
Configurations 2, 4, and & are all probably unidimensional
since 235 of 30 items do not locad on the second trait.

The two tests of Configuration 3I fit in different
groups (Test 1 is unidimensional and Test 2 is
multidimensional). For the sake of brevity of discussion,
Test 1 will be considered as pari of Group U and Test 2 as
part of Group M1, although, strictly speaking, the groups
consist of two-dimensional configu*ations, not individual
tests.

The tactor analyses were then reexamined taking these
groupings into account. The first eigenvalueg of Group M1

are all greater than the first eigenvalues af the
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unidimensional criterion. For Group M2, the fifst
eigenvalue is clearly less than the first eigenvalue of the
unidimensional criterion. For  Group U, the first
eigenvalue is approximately equal to the first eigenvalue
of the unidimensional criterion. Recall that the tests of
Group U are considered unidimensional by the discrimination
(loading) criterion. Note, then, that these factor
analysis results do suppoart the grouping of the
confiqurations . into those with multidimensional tests
versus those with unidimensional tests. When the
configurations consist of unidimensional tests, the first
eigenvalues are approximately equal én the first eigenvalue
of the unidimensicnal criterion. When the configurations
consist of multidimensional tests, the +first eigenvalues
are ei ther larger than or smaller than the first
eigenvalues of the unidimensional criterion.

Configuration S is similar to the McKinley.and Reckase
Test 1 data and the Group M1 configurations are similar to
the McKinley and Reckase fest 2 data. In particular,
keeping in mind that different generaiing models are
involved, the McKinley and Reckase Dataset 2 with a
correlation of S befkeen traits is similar to
Configuration S which also has a correlation of .35, and
McKinley and Reckase Dataset 8 has the same correlation (0)
as Configuration 1. For Dataset 2, the correlation between
factors for the PCA was -.59, compared to correlations of
.45 to .30 +for Configuration 5. The correlations for
configurations 8 and 1 versus Datasets S and 8 are .55 to
.60 and .46 to .57 versus .62 and -.57. These latter
correspond maore closely than the Configuration S versus
Dataset 2 correlations. The McKinley and Reckase Test 2
correlations between factors varied as correlations between
traits decreased, as is also true for the corresponding

data sets here (Group M1 configurations).

ou



Parametar Estimatigg

The +irst four waigenvalues for Dataset 2 were 9.09,
1.79, 1.30, and 1.28, indicating a strong first factor and

a smaller second one. In contrast, the Configuration S

and weaker second and third factors. Again, the generating
models seem to be simulating different things. = For ~all
McKinley and Reckase Test 2 datasets, the first four
-eigenvalues indicatad-a large first factor and an extremely
small ar nonexistent—second factor. The size of the first
eigenvalue decreases and the size of the second increases
as the correlation between traits decreases. Al though not
as clear} the same general trend of a decrease in the first
eigenvalue as corralations between ability decreases
appears in the data reported here for Brbup Mli. Hawever,
Group M1 appears to have a small second factor, while the
McKinley and Reckase Tast 2 data do not.

The percent of variance accounted for by the <€irst
eigenvalue for the PCA also supports the pattern of
groupings. Group M1 percentages are mostly in the 30s énd
upper 20s. Group U and the unidimensiocnal criterion
percentages are all in the tens and lower 20s. Group M2
also has percentages in the tens and lower 20s.

Far the SMC, the percent of variance accounted for
discriminates between these groups even better than the FCA
does. For Group U and the unidimensional criterion, the
first eigenvalues accounted for at least 101%Z of the
variance in most conditions, and the second eigenvalue
accounts for 6-10%. of the variance. Far Group Mi;' the
percent of variance accounted for by the first eigenvalue
is between 90 and 100, except for the hardest tes§ in each
configuration, and the second eigenvalue accounts for 9-14%
of the variance. The +first eigenvalue for Group M2
accounts for 92-102% of the variance. The second eigenvalue

for Group MZ accounts for 19-227% of the variance.
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Therefore, clearly, Configuration S (Group M2) is
multidimensional, with a dominant +first factor. The

multidimensionality of Group M1 2=~ also verified by the

factor analyses using SMC. The Sﬁéwmgﬁgiygésmwghﬁport'Mm"”.““.“

unidimensionality for Group U and the unidimensional
criterion. (i.e. Those multidimensional configurations that
appear to have unidimensional tests appear to be as
unidimensional a3 the unidimensional criterion. Those
multidimensional configurations with multidimensional tests
are supported by the SMC factor analyses as being composed
of two-dimensiocnal tests as they were constructed to be.)

The multidimensionality of Configuration S supports
the McKinley and Reckase (1984) conclusions that when the
two dimensions underlying the tests are independent of each
other (i.e. aach item discriminates on only one of the
dimensions) then correlated abilities tend to yield
response date with a dominant compaonent.

McKinley and Rickase alsoc found that when the two
dimensions underlying the test do not operate.independently
of each other (each item discriminates on both dimensions),
then the effect of the correlations between abilities is
the same, but less extreme, (i.e. correlated abilities tand
to yield response data with a dominant component). The
Group M1 data also appear to yield a dominant conponent.
However, in contrast to the McKinley and Reckase Test 2
data having extremely small or no second factors, the Group
Ml data appear to have a small second factor and in some
cases a third factor.

It appeérs that the size of the correlation between
traits used in generating the data with the
multidimensior.al model used here was not as important in
causing the data to be multidimensional as was the pattern
of the loadings of the discriminations on the traits for

the two tests. Hawever, with the fMcKinley and Reckase
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model, the dimensionality of the response data appears to
depend on the ability correlations. Correlated abilities
tended to vyield response data with correlated dimensions

(tended to be unidimensional) and uncorrelated abilities

SUVIPPE

tended to yield—response data with réi;EfQéiy dn&orrelated
dimensions (tend=d to be multidimensicnal).

Parameter estimation. How well the item parameters
were‘estimatad appeared to depend to some extent on whether
or not the tests were unidimensional or multidimensional.
For Group U and the unidimensional criterion, b; was
estimated well. Configuration 10 also has very good
estimates for b,. For Group Mi, 6; was not estimated as

\well. Especially notable is the extremely poor estimation
of by, for Configuration S, Tesf 2 (Group M2).

Configuration 10 had the best estimation aof bz. This
rwculd be expected since the correlation between bx and ba

jis .80. The poorest estimations of ba occurred for Group U

I

| (except Configuration 4 Test 2), and for Configuration S,
j:Test 1. Group M1 (except Configuration 10), Configuration
' 4 Test 2, and Canfiguration S5 Test 2 estimates, while also

poar, were a little better than Group U.

Since LOGIST produces only one b, then b has to
estimate both Bi. and ba. If the correlation between b, and
b2 is law, either o can estimate b, well, or b can estimate
bz well, cor it can estimate both poorly, but it cannot
estimate both well. If the correlation between b, and b=
is medium, then the estimate of both b. and b= by b can ‘be
medium to poor, or possibly one can be estimated well and
the other medium to poor. If the correlation between b,
and b= is high, then the estimation of both bi: and b= must
be about the same, ranging from pocor to goaod.

If the correlation betwesn b: and b=z is high, then
LOGIST is trying to estimate practically the sanme
difficulty values. If LOGIST did not estimate both b, and
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ba well, then perhaps LOGIST would be suspected of dcing a
poor job of estimating the difficulty parameter.
Note in Table 1 that the corralation between b, and ba

1s _zero for all configurations except Configuration 10, — . .

where the correlation is .8 and Configuration 4 Test 2,

whare the correlation is .S. For_Configuratinn 10, since

the correlation between b, and b=z is so high, the excellent

estimation of both would be expected. Similarily, the

medium corrulatidn between b, and b for Configuration 4

Test 2 could be expected since the correlation between by
and bz is .S5. However, since there is zero correlation

between b, and bz for all other conditions, and bi: was well

estimated for Group U, then ba could not be estimated very

well. - ~

Both b, end bz were estimated very poorly for
Configuratiaon S. ©Note the large differénces and the
increase in size of the correlations r(b,bi) and rib,b=).
For Test 1, the correlations of estimated difficulty with
difficulty on Trait 1 are .77 or .78 and for Test 2 the
correlations are .26 to .34. The reverse is true for Trait
2. Test 2 has the higher correlations (.47 to .77) and

; Test 1 has the lower (.24 to .30). These two sets of
correlations are the lowest of all configurations for the
correspon<cing traits. Configuration S Test 2 has the
lowest correlations for%Trait 1 and Configuration S Test 1
bhas the lowest for Trait72 for the multidimensional tests.
For Group Mi, the estimation of ba was mediocre, not as
Poor as the Group U estimates and nearly as goad as the
Group M1 estiﬁates.

In spite of the fact that LOGIST is intended for only
unidimensional tests, i: has done an excellent jou of
estimating difficulty for these various multidimensional
data sets. wWwhen the correlation between b, and bz was

high, the estimatiaon o{:both Di: and bz was good. When the
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correlation between bis: and ba was medium, b: was well
estimated and bz was estimated neither poorly nor well.
Similarly, when the correlation between bi: and b= was zerao,
and Trait 2 was measured by-few or no items, Tthen the b
parameter was estimated well +or the trait that was
measured and very poorly for the trait that was not
measured. This would clearly indicete support for the
belief that LOGIST is doing the task for which it 1s
intended, at least as far as estimating difficulty is
concerned.

The differences between the correlations F(g,bx) and
rb,ba) also tend to follow the grouping pattern. The
largest differences are for Group U, where b, is estimated
very well and bz is estimated extremely poorly. For Group
M2, Test 1 Configuration S has fairly good estimates of b,
and poor estimates of’ b=, whfiésrest 2 has fairly good
estimates of b= and poor estimates of b,. This follows
logically from the fact that nearly hal$ the .tems (13 of
30) do not measure Trait 1, 13 others do not measure Trait

<y and only 4 items measure both traits. Theretore,

approximately hal+ the items "load" (discriminate) on frait.
\

1 and half on Trait <. This allows one trait to be
estimated fairly well while the other is estimated pooriy.
[t appears that how well the difficulty parameter 1s
estimated depends on an interaction between whetﬁer-br not
the test 15 unidimensional according to the *loading"
criterian, and how closely correlated the difficulty
between the two traits is. If the item clearly measures
one trait and noc the other, the difficulty parameter on
the trait measured is estimated well. However, if the test
measures both traits, then medioc~e estimation o+ the
aditficulty parameter for both traits can be expected unless

the correlation between ditficulty on both traits i1s high.

|
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ln all cases, r«b,b") is very high. lhis supports  the
accuracy of Yen's (1984b) equation for predicting haw the
unidimensional ditficulty parameter is related to the

multidimensional di+ficulty parameters.

The estimation of the discrimination values follow some

of the grouping patterns established. Discrimination <or
the unidimensicnal criterion was estimated better than for
any other configurations. For Group U, a; is estimated
well. For Group Mi, the estimatioq of ai is mostly
mediocre. Group M2 has the poorest. Q;Erall correlations
for discrimination on Trait 1. '

The estimation  of discrimination of Trait 2 (az) does
not seem to follow a useful pattern. Most correlations are
mediocre to poor. In general, the estimation of az for
Group M1 is better than tﬁat for Group U. The size bf the
correlation between a, and a=x appears to have no effect on
the estimaégon of erther a: or ax. However, the estimation
of ai: and a=x does appear to be dependent on whether or'nnt
the tests are considered to be unidimensional according to
the discrimination “loading” criterion. If the test is con-
sidered to be unidimensional according to this criterion,
then ai. is well estimated and a= is poorly estimated. If
the test is considered to be multidimensional, then the
estimation of both ai:-.and a=z is &ediocre to poor.

The instability of the discrimination parameter shown
here 1s comparable to Yen's (1980) +findings of unstable

item discrimination estimates found for items from ar.

achievement test. Yen hypothesizes that a possible cause .

for the instability in the estimatiaons for the real data
could be a carefulness dimension. However, Yen used very
small sample- sizes (183-668), which thave been shown to
vield unstable parameter estimates.

The results found here for the discrimination estimates

for Group U configurations suppart the Reckase (1977, 1979)

t
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conclusion that the three-parameter model computes 1tem
discrimination paramater estimates related to one t+ac*or.
This 15 the result that woulc,fbe theoretically predicted
(Christoffersson, 1975). Results for the other
multidimensional configurations aré not so clear cut. 1€
LOGIST were drawn to one dominant factor, one would expect
the discriminations for . aone of the two traits tao be
estimated better than the other. However, in the Ml and M2
groups, this is not the case. ' In all conditions, the
discrimination for both traits showed, at most, mediocre
estimation. This supports the Drasgow and Farson’‘s (1983)
conclusion that for some mul tidimensional data
confiaurations LOGIST is not drawn to a general factor. ‘

Equation 15 predicts that if both traits are equally
influencial, then the discrimination of both traits will be
given equal weight in obtaining 3. The low correlations
between 3 and both a, and a=z for Group M2 support the
accuracy of this equation. However, r(Q,a’) 15 very high
for all conditions of Group M2. As with the difficutly
parameters, the accuracy of Yen's (1984b) equations far
predicting the relationship between the unidimensional and
the multidimensional itém parameters is upheld.

Note alsc that it 1s assumed here ‘that a high
correlation implieé that tﬁe parameters are wel& estimated.
This might no* be true. If the twc sets of discriminations
had equal standard deviations but different means, th-
correlation could be 1.00, even though none of the
corresponding values are equal. However, th:s wouid not
change the conclusions drawn from the low correlations
tfound here. 0Obviously, if LOGIST ware drawn to one grouwp
tactor (1L.e. computes 1tem discrimination estimates
related to one factor), then the 1tem diserimination
parameters for one of the two traits should have been

better estimated.
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The estiﬁatinn of the c parameter is poor to mediocre
for all conditions of all configurations. This is
consistent with the Ree and Jensen (1983) results of low
correlations between c and estimated c (.031 to .315) for
sample sizes from 2350 to 2000. Their data were generated
'using the one-dimensional thren-parameter -model. No
comparisons could be made fo- c estimated from data
generated with a three-parameter multidimensional model,
since none of the multidimensional research reported data
for c.

In order to adequately estimaté the guessing parameter
a substantial number of low ability examinees are required
(Lord, 19735; Hambieton & Martois, 1983; Ree & Jensen, 1983;
Wingersky, 1983). For very easy items ar items that do not
discriminate well, ths item response,qunction will not
become asymptotic at the lower end of the range. of
abilities in the sample. I+ there are no or faw examinees
at the lower end of the range of abilities, there is no
information with which to estimate c. Hence, LOGIST
estimates a (the same) fixed c for all such items. There
may have been too few examinees with low test scores for
this data. However, this appears implausible as exblained
below. .

It would be expected that as the difficulty of the
ittems increases there would be more examinees with low test
scores. Hence, tshould be better estimated for the harder
tests. This certainly does naot appear to be the case here.
Recall that the difference in average difficulty of the
easiest to the hardest tests in each configuration is 2.00:
The difficulty parameter for each item had 1.0 addec or
subtracted to obtain Test 1 and Test 2 with a 2.0
difference between average difficulty. Therefore, every
1tem for the harder test of the each configuration has a

difviculty value that is 2.0 larger than the difficulty
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value for some item on the easier test. Hence, ¢ should be
better estimated for the harder tests. The carrel ations
between c and estimated c do not increase as the test gets
harder. In fact for some caonfigurations, the opposite
occurs. In general, no consistent pattern.occurs at all.

Lord (1973) and others have shown that LOGIST parameter
estimates for the three-parameter model are adequate if N pd
1000 and n > SO. The item parameters used here were
estimated using 4000 simulees (2000 low + 2000 medium).
(ARll 6000 simulees were not uéed since the program used to
get the response vector data from tape to LOGIST could not
handle 6000 simulees and 60 items.) Possibly the 30-item
tests were too small for good parameter estimation.

The correlations between true and estimated trait
values also follow the multidimensional/unidimensiaonal
grouping. Group U and the .unidimensional criterion have
the highest correlafiqns between estimated ability and
ability on Trait 1. Groups M1 and M2 have correlations
about .1 to .2 lower. Configuration 1 has the lowest.
Notice for Groups Ml and M2, that 1in general, the
correlation between estimated © and 9, increases as the
cortelation between ©, and 9z increases.

The ditference between Groups ML and M2 versus Group U
is clear cut when the correlations between estimated © and
©=2 are compared to the correlaticons between estimated © and
. For Groups M1 and M2, these correlations are nearly
equaly for Group U, the correlations of estimated ability
with ability on Trait 2 are all .28 to .5& less than the
corresponding correlations of estimated ability with
ability on Trait 1. [hese dif+erences mastly decrease as
the carrelation between traits decreases.

Apparently, when baoth tests area unidimensional
accord:ng to the "loading"” criterion, ability aon Trait { is

well estimated (as well as the unidimensional criterion is
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estimated), obut Trait 2 1s very poorly estimated. ihese
dift+terences decrease (i.e. Trait 2 1s estimated better) as

the correlation between traits i1ncreases. When one or both
tests are considered to be multidimensional, then the
estimation of both traits is approximatelv the same. Also,
when one or both tests are considered to be
multidimensional, as the correlations between traits
increases, the Correlations between estimated © and true ©
increase until thkey are as good or better than the
correlations for the corresponding configurations of the
unidimensional criterion (except for the easiest test where
the correlation remains less than - 60).

For most tests, the correlation decreases as the test
gets harder; The reason far the ocurrence of the
noticeatly smaller correlation on the easiest test in each
of the Group M1 configurations appears to be due to
excessive loés of simulees aue to zero or perfect scores.
Examination of Table 12 shows *hat five configurations (1,
7, 8y, 9, 1Q) have a correlation under .60 for the easiest
test for both traits. A gap of .19 to .34 exists between.
the easiest test and the  next tesﬁ in all of these
configurations compared to virtually equal correlations for .
these two tests for all other configurations. For these
five configurations, the loss of simulees (1150, 1412,
1336, 1442, 1079, respectively) is noticeably larger than
nearly all other conditions for all other configurations.
It apprears that a loss of over 1000 examninees will
noticeably lower the correlations between estimated thetas
and true thetas on both dimensians.

Examination aof the situations in which examinees are

lost due to Zero or pertect goscores reveals other
interesting results. From Table 1., the Group M1
contigurations show a loss ot 17/ to 1442 simulees

(..3-24.0%) with an average loss of 7.1%, 9.9%4, 9.67%, L1.1%,
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and /.4% +tar Contigurations 1, and 7-10 respectively. Lroup
M2 (Lonfiguration S) shows a loss ot 7 to 694 simulees
tel=-11.6%) with an average loss of 3.4%4 +or -the~31x
conditions of.Con+jguration 9. Group U shows a loss ot S
to 687 (.1-11.4%4) with an average loss of 2.5%, 4.6%, and
3.3% for Contfigurations 2, 4, and &, respectively. This is
comparable to -the unidimensional criterion which shows a
loss of 8 to 569 (.1-9.8%) with an average loss of 3.0%.
Configuration 3 has an average loss of 4.2% over the
six conditiaons but breaking it up into Test 1 (4.9%) versus
Test 2 (3.44) again allows é comparison of Test 1 with the
other unidimensional tests and Test 2 with the other
multidimensional tests. The Group U Test 1. average losses
per test are all under 6.1% while the Group Ml are all over
11.9%. Conf?guration 3 -Test 1 clearly falls in with the
other unidimeﬁsional configﬁfations,vas would bg expected.
Group U Test 2 average losses are all under 1.1%, while the
Group M1 are all aover 2.2%. Configuration 3 Test 2 falls
1in with the multidimensional configurations as would Gbe
expected. Note that Configuration 3 is the only
configuration with a large gap between N* for Test 1 Ez -
bs = © and Test 2 bz - b: = 0. The multidimensional test
lost 356 more simulees than the unidimensional test.
Configuration 5 is again in a group by itself with Test
1 (6.34) average 1laoss being greater than all Group U
configurations and less than all Group M1 configurations,
and Test 2 falling within the Group U percerntages. The
average loss per all six conditions of Configuration S 1is
3.4%4, which again +falls within the Group U percentaqges.
Although not as dramatic, vyen’'s (1984b) results using N =
1000 also show the drop in correlatiaons between estimated
theta and both true thetas, and the increase in examinees

lost due to zero or pertect scores i1n the easiest test.
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Clearly, an all cases except Contiguration S, the
multidimensional tests lost more simulees to zero or
perfect scores than - the und;mensional tests. This could
have serious implications for item and ability parameter
estimation.
| How well both traits are estimated, then, appears to
depend on how strong the correlation bev&ean true ability
on the two traits is, on whether the two tests are
unidimensional or multidimensional according to the
"loading" criterion, and on how many examinees are lost due
te 2ero or perfect scores. Th?‘ibetter the correlatian
between true ability .on the itwo traits, the better the
estimation of both traits. (Of équrse, LOGIST is meant to
estimate only one trait.). If one or both - tests are
considered to be multidimensional according to the
“loading” criterion, then both traifs are estimated fairly
well; however, if both tests are unidimensional, then one
trait is weil' estimated and one is eétimated poorly. I+
over 1000 examinees are lost, the traits are paoorly
estimated, despite N (approximately 3000)'being larger than
the criterion set by previuous researchers. These results
support several stddies where the same &6nc1uéions were
reached (Christoffersson, 1975; Drasgow .&-;Parsons. 19833
McKinley, 1983; Reckase, 1977, 197#; Yen, 1984d).

Reckase (1977, 1979) +found that when there is a
dominant first factor present in multidimensional data,
then the three-parameter model estimates that sinqQle
factor. The Group U data sets here clearly have a dominant
first factor. Trait i is well estimated and frait 2 is not
well estimated. This is also true for Configuration 3 Test
l. "hese data set results support the Reckase findings.
Just as clearly, the ather configurations have nearly equal
estimation of both traits and these estimates get better

for bath traits as the correlation between ©: and ©Y=
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1NcCreases. 1his does not support the Keckase +indinags.
However, Reckase's (1977, 1979, 1981b) conclusion was tnat'
although unstable 1tem paramete- estimates may result, good
ability estimates can be obtained despite the data being
multidimensional. This conclusion 1s supported here. The
descrepancies found here between the Reckase findings and
those 1indicated by the data presented in this paper may
very well be due to the different sample sizes (Reckase N =
1000), the different generating models (Reckase used a
linear factor analysis model), and sampling error.

Drasgow and Parsons (1983) found that when cne .&trait is
sufficiently prepotent (dominant), then a unidimensional
model provides a good description of multidimensional data
sets. The results shown here fqr the Group U
configurations .support this -conclusion. However, the
conclusions from this data go beyond that, indicating that-
even with two-dimensional data, the trait estimates areée
goad enough to conclude that a unidimensional model can
describe multidimensional (two-dimensional) data well at“f
least when the correlation between ©i: and ©2 is above .S.

Yen's (1984b) mathematical predictions support the hyp-
othesis that multidimensional data analyzed by the unidim-
ensional three—parameter model result in a unidimensional
trait that is a cumbinatioh o¥ the underlying tra1ts.‘”'1f
the test involves traits that influencs all or most of the
items the prediction is that the underlying K true traits
have approximately equal influence 1 determining estimated
8. Her simulated results confirm w..at prediction, as da
the correlations of true and estimated thetas for Group M1
and M2 configurations here. I+ the test 1nvolves indepen-
dent traits, one of which influences only a few 1tems, that
trait is 1gnored 1n the definition o+ the unidimensional
three—parameter trait. Group U correlations support this

secaond prediction as do the Reckase (197%9) results.
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sSummary and__conclusions. It 1is accepted knowledge
that many existing standardized tests, such as most

achievement tests and many aptitude tests, do not satis+ty
the undimensionality assumption of the three—-parameter
logistic model (Bejar, 1983; Bock; 1979:; Hambleton % Cook,
19773 Hutten, 19803 Kingston % Dorans, 19823 Reckase, 1977,
1979 . Therefore, éhe question to be answered is not
whether the assumption is satisfied but whether a specific
use of the model is robust'to violations of the assumption
(Hambleton & Cook, 19773 Hambleton, Swaminathan, Cook,
Eignor, % Gifford, 1978; Reckasa, 1981). Hambleton et al.
(1978) and Yen (1984a, 1984b) presented evidence that the
models are robust to some departures. The results of this
research present more.

Factor analyses were used in order to verify whether
the data were truly multidimensional or not. The factor
analyses supported a division aof the simulated
multidimensional data sets into groups according to how the
tests "load"” (discriminate) on the two dimensions. The
tests efther both "load" heavily on both dimensions {(both
tests are multidimensional), one test "loads'" heavily on
one dimension and the other test “loads" heavilv on the
same dimension (both tests are unidimensiocnal), one test is
unidimensional and one multidimensional., or one test
“loads"” heavily on one dimension and the other test 1loads
heavily on the other dimension.

Although the strength of the correlation between the
two generating traits seemed to have little effect on the
quality of the parameter estimation, there is evidence that
the unidimensionality or multidimensicnality of the tests,
as determined by both factor anal yses and the
discrimination loadings on the two dimensions, does tave an

efraect on item parameter estimation.
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When both teasts are unidimensional, both 1loading most
heavily on the same dimension, then a, and b, are well
estimated, and aa and b= are poorly estimated. [f both
tests to be equated are multidimensional, then bi 1s
estimated fairly well, ba is poorly estimated, and a,; and
a= are mostly poorly estimated. [+ both tests are
multidimensional with Test 1 loading heavily on one
dimension and Test 2 1loading heavily on the other
dimension, then ba and b=z, a: and az are all poorly
estimated. If Test 1 is unidimensional and Test 2 is
mul tidimensinnal, then for TYest 1 a, and bDi1i are well
estimated and a= and b= are pooriy estimated, white +or
Test 2 b, is fairly well estimated, and b=, ai, and a= are
poorly estimated. The estimation of the c parameter was
mediocre to poar for all conditions ot all configurations.

The results aof this research indicate that the poorest
1tem parameter estimates occur for the situation in which
one test is unidimensional and one 1is multidimensional,
such as a situation in which Trait 2 is measured by only a
few items on one test and by most or all of ¢he 1tems on
the other test. This situation appears to be warse than 1+
both tests are unidimensional or both are multidimensiaonal.

Iin conclusion, these results indicate that use o+ the
three-parameter logistic model 1s &as good, in most
instances, for parameter estimation of multidimensicnail
data. as it 1s for unidimensional data for the types of
conditions studied in this research. Caution should be
exercised, however, when one test is unidimensional and one
1s multidimensional, such as occurs when a higher level has
a few 1tems measuring a trait that a logwer level does not

measure.
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