
DOCUMENT RESUME

ED 258 989 TM C50 357

AUTHOR Livingston, Samuel A.
TITLE Estimating the Reliability of Classifications Based

on Composite Scores.
PUB DATE 19 Nov 84
NOTE 15p.; Paper presented at the Annual. Meeting of the

American Educational Research Association (69th,
Chicago, IL, March 31-April 4, 1985).

PUB TYPE Reports - Research/Technical (143)
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Equated Scores; Essay Tests; *Estimation

(Mathematics); Mathematical Models; Scoring;
Statistical Analysis; Test Length; Test Reliability;
*True Scores; Weighted Scores

IDENTIFIERS *Composite Scores; *Composite Tests

ABSTRACT
Much previously published material for estimating the

reliability of classification has been based on the assumption that a
test consists of a known number of equally weighted items. The test
score is the number of those items answered correctly. These methods
cannot be used with classifications based on weighted composite
scores, especially if the composite includes essay scores. This paper
presents a modification which will make it possible to apply these
methods to composite scores. The proposed method is based on a normal
model (with variance stabilizing transformation) for the conditional
observed score distribution. The effective test length of the
composite is determined from its true-score variance, estimated by
Kristof's method or by Gilmer and Feldt's method. (Author/DWH)

* ********k*************************************************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

* **********************************************************************



Estimating the Reliability of Classifications
Based on Composite Scores

Samuel A. Livingston
Educational Testing Service

2

November 19, 1984

US. DEPARTMENT
Of EDUCATION

NATIONAL INSTITUTE
OF EDUChTION

EDUCATIONAL RESOURCES INFORMATION

CENTER IERICI

IIY/his document has been reproduced 1111

received from the person or organisation

originating It

Ili Minor changes
have been made to Improve

reproduction quality.

Points of view oropinions stated in this docu-

ment do not necessarliv represent
official NIE

position or policy_

"PERMISSION TO REPRODUCE THIS

MATERIAL HAS BEEN GRANTED BY

lif.;n`1`JiG)/),

TO THE EDUCATIONAL RESOURCES

!NFORMATION CENTER (ERIC).-



Abstract

Previously published methods for estimating the reliability of classifi-

cation cannot deal with classifications based on weighted composite scores,

particularly if the composite includes essay scores. This paper presents a

method based on a normal model (with variance-stabilizing transformation)

for the'conditional observed-score distribution. The effective test length

of the composite is deters led from its true-score variance, estimated by

Kristof's method or by Gilmer and Feldt's method.



Estimating the Reliability of Classifications
Based on Composite Scores

Samuel A. Livingston

The problem

July 30, 1984

Several papers and articles have dealt with the problems of estimating

the reliability of classifications based on test scores (e.g., Huynh, 1976;

Subkoviak, 1976; Wilcox, 1981; Livingston and Wingersky, 1982). All of

these articles are based on the assumption that the test consists of a known

number of equally weighted items, scored simply as correct or incorrect, and

that the test score is the number of those items answered correctly. This

situation is certainly a :ommon one. However, in some testing programs,

students are classified on the basis of a composite score -- a weighted sum

of scores on two or more tests. The components may notbe equally weighted.

The component tests may include not only objective tests, but also essay

questions. The student's score on each of the essay questions may be a

scorer's judgment, expressed on a scale with several possible values. In

this case, determining the length of the test for the purpose of estimating

reliability is more than a simple matter of counting test items. Can the

methods that have been developed for estimating the reliability of classifi-

cations be applied when the classification is based on such a composite?

The purpose of this paper is to suggest a modification that will make it

possible to apply these methods to composite scores.

Notation

Let X
c

represent the raw composite score )rmed from objective component

X0 and essay components XI, X2, etc. with weights w0, wl, w2, etc. Let Tc,

T0, T1, T2, etc. represent the corresponding true scores.
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Then

2

X
c

w
0
X
0

+ w1X1 + w2X2 + . . .

T
c
w0 T

0
+w1T1+w2 T

2
+

Let "X
c
max" represent the composite score of a student who answers all the

objective items correctly and receives the highest possible score on each

essay question.

The general method

Many different statistics have been suggested for describing the

reliability of classifications based on test scores. These include joint

probabilities, conditional probabilities, conditional. score distributions,

and summary statistics or indices. These statistics are all ways of

summarizing the information contained in a joint distribution, and they can

be applied to either of two joint distributions: (1) the joint

distribution of true scores and observed scores (the "joint T,X

distribution"), and (2) the joint distribution of observed scores on

alternate forms of the test (the "joint X,X distribution").

If we can estimate the joint T,X distribution (true vs. observed

scores), we can use it to estimate the joint X,X distribution (observed

scores on alternate forms). The joint T,X distribution gives us both the

conditional distribution of X, given T, 1 the marginal distribution of T

in the test-taker population. We assume that observed scores on alternate

forms are independent, for students with a given true score. This

assumption enables us to estimate the joint X,X distribution, conditional on

T. We then sum over the marginal distribution of T, to get the joint X,X

distribution in the test-taker population.



How, then, do we estimate the joint T,X distribution? We need a model

for the true-score distribution (of T) and a model for the conditional

observed-score distribution (of X, given T). For our true-score model we

can fit a beta distribution (Lord, 1965; Huynh, 1976; Wilcox, 1981) or use

the observed-score distribution itself (Subkoviak, 1976), with a

transformation to shrink the variance. But what model can we use for the

conditional distribution of observed scores? The binomial distribution is a

suitable model for a score that is the sum of equally weighted,

dichotomously scored items. What kind of model can we use for a composite

of the type described above?

A model for the conditional observed-score distribution

One way out of this dilemma is to assume that the conditional

observed-score distribution of the composite is similar to that of an

411-objective test having the same reliability as the composite. The

conditional distribution of observed scores on such a test would be

binomial, with parameters n and p, where n is the number of items on the

and p = T/n. This distribution could be approximated closely by a normal

distribution, if the scores were first transformed from X to

X' = 2 arcsin vrYTT. To apply this model to the composite, first xpress

the composite score Xc as a percentage of its maximum value. Then, apply a

variance-stabilizing transformation, to produce the transformed score

X' = 2 arcsinVITTax
c c

Assume that the conditional distribution of this transformed score, for

students with true composite score 're, is normal, with mean

T'
c

= 2 arcsinVT
c
/X

c
max



and variance l/n
c

, where n
c

is the effective test length of the composite

score X
c

. That is, n
c

is the length of an objective test having tne same

reliability as the composite Xo. To complete the model, we need an estimate

of n
c
,

Estimating effective test length.

To estimate the effective test length of the composite, we must be

willing to make an assumption that may actually be only approximately true.

We must assume that the true scores T0, T1, T2, . . . are perfectly

intercorrelated. Mat is, we must assume that if we had perfectly reliable

measures of the skills measured by the objective portion and by each essay,

these measures would correlate 1.00 with each other.

It follows from this assumption that true scores on the composite will

be perfectly correlated with true scores on the objective portion. In

general, the standard deviation of true scores on a test is directly

proportional to the length of the test. Therefore, we can reasonably define

the effective test length of the composite score as the length of the

objective portion no (which we know), scaled up by the ratio of the

true-score standard deviations:

no n0[s(To)/s(T0)]

We can estimate S(T
0
) by applying a conventional reliability formula (alpha,

split-halves, etc.), to produce the estimate

S(T S(X
0

)
0 0

where r
0

is the reliability coefficient of the objective portion. If the

objective scores include a correction for guessing, S(To) will be

artificially inflated. To correct for this effect, multiply S(To) by

k/(k-1), where k is the number of answer options per item. In this case,

S(X
o
) must be computed without changing negative scores to ze,es.



At this point, the missing link in the model is an estimate of S(Tc),

the standard deviation of true scores on the composite.

Estimating the true-score standard deviation of the composite.

The problem of estimating s(Tc) is the same as that of estimating the

reliability of Xc, since s(Xc) can be observed and s(T) = s(X)V-17. Kristof

(1974) and Gilmer and Feldt (1983) have proposed methods for solving this

problem. Kristof's method is simpler but requires that the composite be

defined as the sum of exactly three components. If the composite includes

more than three components, it is possible to combine components to meet

this requirement. If the composite includes only two components, it is

necessary to divide one of them, presumably the objective portion, into two

parts, creating a composite of three components.

Kristof's formula, applied to a test consisting of an objective

component and two essay questions, leads to the estimate

s(Tc) =
C01CO2 C01C12 CO2C12

VCO1CO2C12

where C01, C
02

, and C
03

are the covariances of the weighted components,

i.e.

c01
= weal Cov (X0,

c02
w0w2 Cov ('o,

= 141%42 Cov (X1,
c12

X1);

X2);

X2).

When the composite consists of exactly three components, Gilmer and

Feldt's estimate is Identical to Kristof's. When the composite includes

four or mL,re components, Gilmer and Feldt's method is considerably more

complex than Kristof's, but also more accurate. Gilmer and Feldt (1983)
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actually developed two methods. Their method "F2" is simpler to apply than

their more complicated method "Fl". Only method "F2" will be presented

here.

Two modifications of Gilmer and Feldt's formulas are necessary. First,

their development does not provide for weighting of the components. Second,

their formulas provide a solution for the reliability coefficient, rather

than the true-score standard deviation of the composite. With the necessary

modifications, their method can be expressed as follows.

Compute the covariance matrix of the weighted components [cif], with

cell entries

cij Coy (wiXi, wiXj).

Let the subscript m indicate the row of this matrix for which the sum of the

off-diagonal entries is largest:

C > C
ij

for all i m. Define

jOm 111' jai

c ) - c

D
ij im

I ( c ) - c

mi im

Note that D
m

1. The Gilmer-Feldt "F2" estimate of the variance of T
c

is

s
2
(X

c)
- E

`ii
s
2
(Tc ) a

1 - E 1)2.j( I Dj)21

The square root of this quantity provides an estimate of s(Tc).

This estimate of the true-score variance of the composite is the piece

that completes the model. It leads to an estimate of the effective test



length of the composite. The estimate of effective test length gives us an

estimate of the variance in the transformed-normal model for the conditional

distributionkof observed scores, given true score. We can put this model

for the conditional observed-sccre distribution together with a model for

the true-score distribution, to get a model for the joint distribution of

true scores and observed scores. With this model and the data from a

reasonably large sample of test-takers, we can estimate the joint T,X

distribution and summarize it Any way we like.

If we want to estimate the joi.it distribution of observed scores on

alternate forms, we can begin by divid;ng the true-score range into fairly

small intervals. (If we have used a Subkoviak-type true-score model, we

have already made this partition.) We can then assume conditional

independence of the two observed score variables within each true-score

interval, and compute the joint X,X distribution for each true score

interval. We can then weight each of these joint observed-score

distributions by the estimated number of test-takers in the true-score

interval and sum over the true-score intervals. The result will be an

estimate of the joint distribution of observed scores on alternate forms,

which we can summarize any way we lik..
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Appendix

Adaptation of Gilmer and Feldt's deviation of coefficient "F2" (Gilmer and

Feldt, 1983) .

Let X
c

w
i
X
i'

with all w
i

0.

Then T
i

Ti,

Assune that each component true score Ti is correlated +1.00 with the

composite true score Tc. Them for each Ti there is a constant al.> 0 and a

constant b
i

such that

Then

And

T
i

aiT
c

+ b .

Tc = 2: wi(aiTc + bi)

Tc wiai ,+ wibi .

Var(Tc) wiai) 2 Var(Tc)

i
because the w

i'
a
i'

and b
i

are constants. And since all the w
i
and a

i
are

positive,

(1)

Define

Then

wiai 1.
c.

c
ij

Cov(w
i
X
i'

wjXj ).

c
ij

wiw
j

Cov(Xi, X
j
)

12
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win Cov(Ti, Tj)

(because of the independence of errors of measurement)

win Cov(aiTc+bi, aiTc+bj)

(2) wiwj aiaj Var(T
c
).

Therefore,

var(xd cii

Solving for Var(Tc),

(3)

cii +EZwi w
j
a
i"kj

var (T c)

i iii

var(xc) -2: cii
var(Tc) -

7: win aiaj

To translate this expression into a usable estimate of Var(T
c
), we need

to express the denominator in terms of observable quantities. Going back to

equation (1) and squaring both sides,

(4)

(Z wiai)
2

1

2 2
w a + w.w.aiai 1

2 2
Z wiwjaiaj 1 - Z wiai .

Substituting (4) into (3),

(5) Var(Tc)
var(xc) cii

2 2
1 - wiai

13
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Consider the sum of the off-diagonal elements in the ith row of the uzighted

covariance matrix [c
ij

], minus the kth element:

[
2:

cij]
cik

By equation(2),.this quantity equals

(j5i wiwiaiai Var(Tc)] - wiwk aiak Var(Tc)

= wiai[ ( wia4) - wkak] Var(Tc)
loi

(6) = wiai[l - wiai - wkak] Var(Tc)

(because, by equation (1), 2: wiai = 1).
i

Let row nb, the row of the weighted covariance matrix [c
ij

] having the

largest sum of weighted covariances. Define the index

( c4 4) - c4

(7) Di = jOi `J

(2: c ) c
mi im

for the ith row of the matrix. Notice that D
i

is defined entirely in terms

of observable quantities and that Dm = 1. From equation (6),

(8)

Therefore,

wiai [1 - wiai - w
m
a
m
] Var(Tc)

D
i

=

w
m
a
m
[1 - w

m
a
m

- wi e41 Var(Tc)

= wiai /w
m
a
m

Di = t wiai = 1 2 wiai = 1

i i w a w a w
m m m m m

a
m

14



12

Therefore,

(9) w
m
a
m

= 1 .

Also, from equation (8),

2

2

1
E D on Z 4. a' E

i
wi2a

12
i i w

ma
(w
m
a
m
)2 i

Therefore,

(10) E wi a
i

(wmam)2. Z Dig .

i i

Substituting (9) into (10),

/: wi
2a

i
2 1

. E D2
i ( E D

i
)
2

i
i

i

Substituting (10) into (5),

Var(Tc) .5.

Var(Xc) E cit
i

LE D2

(2 D
i
)

2

i

.

where c
ij

= Coy (w
i
X
i'

wjXj ) and D
i
is as defined in equation (7).


