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Children's Mental Arithmetic:

Toward a Model of Retrieval and Problem Solving

Figure 1 shows the basic empirical effect in mental arithmetic research

which all of us on this symposium are addressing. When children across the

developmental span are tested on their knowledge of simple addition

problems, we find that their performance slows down considerably as the

problem they are working on gets larger. The term for this empirical result is

the "problem size effect" as the problem gets larger, reaction time (RT)

increases. The history of this area of research is largely one of

inter pretations and reinterpretations of the problem size effect; for example,

does the increase in response latency indicate a problem solving strategy

based on counting or other rudimentary algorithms? Does the increase

reflect a memory retrieval process? Does the obvious age-related change in

the slope of this effect indicate a speed-up of a single predominating

mental process or strategy, or does this slope change reflect a change in

the nature of mental processes across development?

After several years of investigating these sorts of questions, using both

addition and multiplication tasks, testing both adults and children at various

stages in their schooling, I proposed a model to integrate the various

research findings in the literature. Figure 2 illustrates the overall

architecture of this model. The figure is a composite of two goals. First, a

typical four-stage process model i shown, with the intention of accounting

for RT effects in terms of encoding, search/compute, decision, and response

stage processes (see Sternberg, 1969). The second goy ! is addressed by the

three-dimensional components diagrammed above the process model. These

components are labeled "Network of Stored Facts -- Declarative" and
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"Knowledge About Arithmetic Procedural". The goal here was to specify

two general classes of information, both stored in memory, which participate

in our performance to arithmetic tasks. At a general level, this model was

intended as a framework within which significant questions in the area of

mathematical cognition could be asked. The most basic of these questions can

be posed in a variety of ways; for instance, how is the subject's inclusive

knowledge about arithmetic represented in the human memory system, and

how is that knowledge used or applied in various tasks? When we test

children on simple addition problems, and find results like those in the first

figure, how does the knowledge in these two components account for this

pattern of results, or at least help us understand those results at a deeper

level? In short, what is it that children learn when they learn arithmetic, and

how is that learning stored in memory for later use?

My remarks today will focus heavily on the component labeled "Network

of Stored Facts", the declarative knowledge component in the model. Let me

spend a few moments justifying this focus. When I began this program of

research, the empirical literature in the area struck me as decidedly

unbalanced. That is, there were a fair number of studies of very young

children's arithmetic performance, and of course extensive reports on other

number processes such as counting. The latest theoretical word at that time

(Groen do Parkman, 1972) suggested that, by and large, first graders approach

simple addition problems by means of a counting process. The imbalance in

the field, in my opinion, was that little serious consideration had been given

to the mental processes of addition beyond the early elementary school

years. In terms of the model in front of you, most of the serious research

indicated an involvement of procedural knowledge for first graders' addition
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performance. To put it bluntly, however, if children follow the advice of

their teachers, then they actually "learn their number facts". This memorized

information must be stored somewhere in memory, in some component like the

declarative store in the illustrated model. Yet hardly any research had

concerned itself with the nature of such storage, with the question of "how

is this acquired information stored in memory?". Equally neglected in the

literature was the development of these knowledge structures in older

children. My research over the past seven years has investigated exactly

these questions.

I will describe the highlights of this program of research in the context

of a computer simulation which I have developed. This simulation effort has

forced me to be quite specific about a variety of mechanisms and, processes,

specifically the notions of network storage, accessibility of information,

and automatic processes; such specificity is one of the widely acknowledged

virtues of modeling psychological process by computer simulation, of

course. Further, this excercise has clearly revealed pockets of ignorance

or inattention in the literature for instance, we need extensive

research children's acquisition of inultiplicatiort, and on the

"metacognitive" strategies they devise in the course of arithmetic

instruction. Finally, and most importantly, the simulation has generated

empirical predictions for a new phase of research, involving the notion of

automatic versus conscious memory retrieval across development. We are now

beginning this new phase of research, checking on the predictive accuracy

of the simulation model.

For today's presentation, will limit myself to four interrelated aspects

of the model. In order, 1 wilt discuss 1. the problem size effect, 2. the
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network nature of the memory representation, 3. the development of addition

knowledge, and 4. predictions of automatic and conscious retrieval. An

-verriding characteristic of the model is its assumption that declarative

knowledge about arithmetic is stored in much the same way as any long term

memory knowledge, as an interrelated network of facts and relationships. The

basic mental process by which these facts are accessed or retrieved is

assumed to be one of spreading activation (see Anderson, 1982; Collins &

Loftus, 1975).

1. The Problem Size Effect. As 1 indicated at the outset, the most

fundamental empirical result to be explained is the problem size effect, the

fact that larger problems are more time consuming in a RT task (see

Ashcrat, 1982, for a review), are more prone to error (Siegler & Shrager,

1984), and are judged as more difficult under a variety of rating situations

(Ashcraft, Fierman, & Bartolota, 1984; Stazyk, Ashcraft, & Hamann, 1982).

This effect was traditionally indexed by variables like the smaller of two

numbers being added, the sum of the two numbers, and so forth. Resnick and

Ford's (1981) careful scholarship pointe, out that problem difficulty was

an issue addressed even as early as the mid 1920'3 (e.g., Clapp, 1924). For

now, assume that the basic addition problems 0 4- 0 up through 9 9 are

inherently different in their level of difficulty, that the larger ones are

more difficult than the smaller ones, and that tie problems like 2 + 2 or 9

9 are, for some mysterious reason, exceptions to this general rule; this

"inherent and mysterious assumption" actually derives from oevelopmental

processes to be described below. in other words, it is not an assumption

built into the model arbitrarily, but rather is a consequence of

acquisition and development processes.
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The simulation model represents the basic addition problems as nodes

in a memory network, each node having its own particular level of

difficulty or accessibility. The basic phenomenon of memory retrieval is a

time consuming mental process of spreading activation, a process which

accesses the network of memory nodes. Time for access is a function of the

node's strength or accessibility, where these values are merely the

empirical ratings of difficulty collected from a sample of college adults.

The success of this scheme, representing the addition facts as nodes of

varying strengths, is revealed in the next figure (3); on the left you see

adults' RT data, plotted across the sum of the problem. The exponential

increase in RT across sum is represented here by the predictor variable

sum 2 and the curve in the left panel is the best fitting regression line

to the data. On e right you see the performance of the simulation model,

based on the accessibility values I described, with the same empirical

regression line drawn through the predicted points. The fit of the simulated

data to the empirical regression curve is quite goo,d the systematic

exceptions to this fit are the circled points, tie problems, and points flanked

with dashes, problems containing an addend of zero (e.g., 8+0). So, the

simulation successfully predicts the familiar problem size effect, with the

prediction based on node accessibility or strength.

Network effects. In the simulation, each of the digits 0 through 9 is

a memory node, representing as it were the column and row headings of a

printed addition table. These entry nodes are termed "parent nodes", since

they are the initially activated memor: locations during search. When two

addends are presented, say 4 + the simulation retrieves the answer to this

problem by means of a spreading activation search. That is, each of the two

7
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parent nodes begins passing activation to its arnily members ",

connected to the parent nodes by the network pathways. The amount of

activation accruing at the family members is a function of two factors, the

node's accessibility and its distance from the parent nodes which activate

(If the stimulus problem states an answer, e.g., 4 3 7, then each

such answer node also receives activation; this feature of the model is

largely irrelevant to the present explanation.) Each of the now activated

nodes in the network (family members as well as answer nodes; i.e., nodes

which coincidentally represent the same answer, but for a different

problem; e.g., 2 + 5 = 7), continues to spread activation through the

network, in what might be called the "second phase" of the search process

(this label is actually quite arbitrary, in that the entire activation

process is a seamless drocedure which makes no distinction between "first"

and 'second" generation search; the label is a convenient device for

explaining the search stage activity, however). At the end of this search,

the simulation selects that node with the highest level of activation to be

the answer to the stimulus problem.

While several important retrieval effects are simulated by this search

procedure, one in particular constitutes strong evidence for the assumption

of a network structure. In our adult data, subjects given a multiplication

problem like 7 X 5 28 were particularly slow in their judgments,

presumably since 28 is a multiple of 7 (figure 4). Multiples seem to be very

confusable with the correct answers. The spreading activation process just

described generates exactly this confusion effect in the simulation (f g e

5, see Ashcraft, 1983; Stazyk et al., 1982); the so-called "confusion answers"

our empirical report, the incorrect 28 for instance, out to be the
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family members which receive the greatest amount of activation during

search in the simulation model. To continue with the 7 X 5 28 example, the

spread of activation from 7 ands primes the adjacent 28 node to a great

degree, and as such this node competes aggressively with the correct answer

when a decision is finally made about the stimulus problem. In short, network

"relatedness" effects, quite analogous to those found in the semantic memory

literature, are both characteristic of the empirical results and characteristic

of the simulation model's performance.

3. The Development of Addition Knowledge. In the simulation, I assume

that each addition problem has some level of strength associated with

where the strength indicates the accessibility of that node of information.

sTie must address the issue of how these strengths accumulate, first

because this is the developmental heart of the matter, and second because

this is where much of the controversy in this area of research resides;

parenthetically, it is also important to discuss this since it is the

"inherent and mysterious" assumption that I promised to justify. Let me

give what will sound like a distressilgly oversimplified answer to the

question, then explain how that answer meshes with the empirical literature

and with the simulation. In answer to the question "how do the different

strengths accumulate?", I respond "practice". By the answer "practice", I

include any encounter with the arithmetic problem, whether informal or

formal. This answer specifically includes the "invented addition" knowledge

so compellingly described by Siegler and Shrager (1984), where incorrect

solutions may even temporarily elevate a wrong answer to the status of most

likely to be retrieved. "Practice" also specifically includes any and ail

classroom exposure to the problems, whether in the form of drill,
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instruction on the structure or other a eaningful aspects of arithmetic, or

individual problem solution.

A particularly important source of node strength, notice, is the child's

own reconstructed answer; in other words, feedback from performance

strengthens the memory nodes. Thus, in the sin4lation a problem is of

such low accessibility that it cannot be retrieved, then processing shifts

to the procedural component illustrated earlier. In this component, the

child's use of a counting strategy is simulated, with the result that the

problem is solved correctly but with considerably longer RT (Siegler &

Shrager, 1984). I assume that this correct solution adds an increment of

strength to the memory representation for that problem. Across time, then,

successful reconstru tions of addition problems should "feed" the declarative

network, much the way that successful mnemonic devices strengthen a piece

of information to the point that it is retrievable without assistance from the

mnemonic. While I believe this to be an important aspect of the model,

make no claim that the idea is novel in any way it is, after all, merely a

mechanism by which we learn from our experiences.

There is other evidence related to this "practice" answer which

suggests how the particular node strengths come about. Siegler and Shrager

(1984) have documented the differential strengths of simple addition facts

for a group of kindergartners, from performance on simple addition tasks, and

from estimated frequencies of presentation in parent-child interactions.

There was also important project by Hamann (1983), in which elementary

grade arithmetic books were examined. Based on Hamann's results (figure 6),

it seerr.3 clear that the smaller addition problems enjoy high.A- frequencies of

presentation in classroom materials. EquaJly interesting is the fact that the

I0
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larger problems seem never to catch up to the smaller problems, even across

several subsequent years of schooling. Smaller problems, thus, are more likely

to be invented by the pre-schooler, are more likely to be presented by the

parents, and then benefit from more frequent presentation in the classroom.

Beyond a rather global p overnent for all problems later in schooling, no

special developmental assumptions need be made to forsee the typical adult's

pattern of node accessibilities problems which were initially stronger

remain so, and those initially weaker, remain weak. (see also Lachman,

Shaffer, & lennrikus, 1974; Whaley, 1978) Figure 7 illustrates the

developmental problem size effects which are generated by the simulation.

Clearly, there is a very decent fit between these simulated data on the right

and the empirical results on the left.

4. Predictions of Automatic and Conscious Retreival. A serial and

exhaustive scan of the literature on automatic and conscious mental

processes reveals the following generalization: the circumstance under

which conscious processes become automatic is practice, massive,

repetitive, consistent practice (e.g., Posner & Snyder, 1975; Shiffrin &

Schneider, 1977). You will no doubt notice that the "psychoactive"

g edient for automaticity is precisely the same ingredient assumed by the

simulation to account for item accessibility an developmental effects.

Indeed, the simulation makes a strong prediction concerning automatic

retrieval of addition facts once a fact achieves some criterion level of

strength, such that it can be retrieved consistently without recourse to

counting procedures, then further strengthening of the node renders the

search and retrieval process more automatic., A remarkably straightforward

prediction from the simulation, then, is that the smaller addition

11
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problems, those of higher accessitaillty, will show the effects of automatic

retrieval earlier in development. No radical shit:. from conscious to

automatic predicted, notice; the progression is predicted to be a smooth

and continuous one. Automaticity, in the simulation, merely a by-product

of the gradual strengthening of memory nodes across development. Figure 8

shows the developmental progression of automatic retrieval, as predicted by

the simulation.

In conclusion, the model presented here successfully simulates the

pattern of results found in developmental stud of sample arithmetic. The

model itself derives from reasonable assumptions 4hout the nature of human

memory organization and processes. An especially noteworthy feature of the

model is that the same fundamental mechanism, learning, accounts for all

four aspects of the model I've discussed. With learning comes first a

representation of arithmetic knowledge in a network-node structure, and

then a strengthening of those nodes across development. Retrieval from the

network depends dir2ctiy on node strength, and become more automatic as

strength reaches asymptotic valucts. We are currently testing some of the

predictions made available through this simulation effort.

p
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