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ABSTRACT

The importance of experiments in educational research is widely recognized,

but methods used to analyze experimental data may not always be fully appropriate.

Advantages and, disadvantages of three analytic methods are discussed. A

hypothetical data set is employed to make the discussion concrete. It is

suggested that ccamonality analysis can be usefully employed in research studies

in education, particularly when aptitude-treatment interaction studies are,

involved.
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Researchers have long recognized the importance of experimental designs in

social science. As Wundt observed in 1904, "The experimental method is of

cardinal importance; it and it alone makes a scientific introspection possible"

(p. 4). However, as Winer (1962, p. 2) noted, the design of an experiment can

make or break a study:

Two experiments having identical objectives may be

designed in quite different ways; at the same cost L

terms of experimental effort, one design may lead to

unambiguous results no matter what the outcome, whereas

the second design could potentially lead to ambiguous

results no matter what the outcome.

It was this recognition that some 60 years ago\prompted McCall (1923) to publish

his text, How to Entriment in Education. Continuing concerns regarding the

importance of designs have stimulated more recent works as well (Campbell &

SOnley, 1966; Cook & Campbell, 1971).

Concerns, regarding the analysis of experimental data also have their own long

history. In 1925, in a work titled Statistical Methods for Research Workers, Sir

Ronald Fisher presented the analysis of variance WOW techniques that he had

developed. Today ANOVA methods and their analogs (ANDOVA, MANOVA, and

MANCCWA -- collectively here labelled OVA methods) are among the most commonly

applied methods in the social sciences (Edgimiton, 1974; Wick & Dirkes, 1973;

Willson, 1980).

4



Analysis of Experimental Data Page 2

Unfortunately, although design and analysis were initially conceptualized as

discrete issues, it has now become quite common to confuse design with analysis.

Specifically, OVA techniques have become somewhat equated with experimental

design, and vice versa. Hicks (1973) provides a classic example of this confusion

in his fine book, Fundamental Concepts in the 122Rjan of Experiments. The hook is

entirely about OVA analysis rather than about design. Thompson (1981) explores

the etiology of this confusion.

The purpose of this paper is to point out that data from experiments can be

profitably analyzed in a number of related but distinct ways. The advantages and

limits of both OVA and nori-OVA techniques are discussed. One hypothetical data

set is analyzed throughout the presentation in order to make the discussion more

concrete. Although the data set a;..3 the analyses are presented as a one dependent

variable, or hunivariate" rase, it can be shown that the discussion generalizes to

the multivariate case as well.

Method One: ANOVA

Table 1 presents data from a hypothetical experiment involving 24 subjects.

The data are presented in some detail and using variable names accepted by several

computer packages in case readers wish to verify or explore certain results using

their own computers. Twelve subjects each were assigned to either a control

condition (EXPEROIT) or an experimental condition (DDIRERGRP=2). The

hypothetical study also involves a measure of the subjects' aptitudes for

mastering the dependent variable task. In this case both the aptitude variable

and the dependent variable were cognitive tasks, i.e., respectively performance on

an IQ test and standardized (Z) scores on an achievement posttest (ZDV)

5
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I

administered at the completion of. the experiment.

INSERT TABLE 1 ABOUT HERE.

Page 3

This is an example of the classic aptitude-treatment interaction (ATI) design

that Cronbach (1957, p. 681) touted so convincingly in his 1957 presidential

address to the American Psydhological Association:

Ultimately we should design treatments, not to fit the

average person, but to fit groups of students with

particular aptitude patterns... (Such efforts] will carry

us into an educational psychology which measures readiness

for different types of teaching and which invents teaching

methods to fit different types of readiness.

Notwithstanding both the limits and the advantages of ATI designs (Cronbach,
--"

-19-75), as Kerlinger (1973, p. 257) notes, "in the opinion of some behavioral

researchers, especially in education, the study of interactions is becoming

increasingly important and should become a central concern of researchers."

All independent variables or "ways" must be converted to nominal scale in

order to perform uvA analyses. In this case the IQ data were converted into a

trichotomy (TQGRP) in the usual manner. Table 2 presents conventional ANOVA

results associated with the 3 X 2, six cell design.

INSERT TABLE 2 ABOUT HERE.

Method Two: wegression Coding

Cohen (1968) and others recognized quite some time ago that multiple

regression analysis can readily be employed to perform OVA analyses. However, the
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widespread use of regression approaches to OVA analyses has been a more recent

phenomenon (Willson, 1982). All that is required is that information about design

cells be converted into "codingq variables, as illustrated in Table 1. Although

discussion of the several methods for accomplishing this conversion is beyond the

scope of this report, the conversion is clearly presented in several widely

available texts {Edwards, 1979; Iterlinger & Pedhazur, 1973, pp. 116-153) and in

practice is a straightforward matter.

But it should be noted that the coding variables (IQ1 through EXPBYIQ2)

represent exactly the same information as presented for, the ways in the OVA

analysis (IQGRP and EXPERGRP), albeit in a different form. For example, note that

all subjects in the "low IQ" cells of the IQ way (IQGRP=1) receive coding scores

of -1-1 for the IQ coding variables, and that subjects in the other cells of the

way receive different scores (0+2 or +1-1) on the two IQ coding variables. Note

also that each of the six design cells receive a unique set of coding scores. For

example, only the high IQ, experimental group subjects receive the coding score

set: +1-1+1+1-1.

The analysis is conducted by entering the five coding column predictor

variables into a stepwise multiple regression analysis to predict the dependent

variable, ZDV. The sum of squares (SOS) regression on any given step, minus the

SOS regression on any previous step (if any), is the SOS for the hypothesis

associated with the coding variable entered on the given step. The remainder of

the keyout presented in Table 3 is derived by then manipulating these sum of

squares using a calculator.

INSERT TABLE 3 ABOUT HERE.
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The only difference in the results when compared with the ANOVA analysis is

that the coding results partition the total SOS of the dependent variable into

smaller parts using one degree of freedom hypotheses. But this difference can be

important whenever any way has more than two levels or cells. The coding analysis

provides More specific information about from where the effects of independent

variables on the,dependent variable arise.

In the hypOthetical example the coding column I01 tests the null hypothesis

that the mean ZDV score of the eight "low IQ" subjects equali the mean ZDV score

of the eight "high IQ" subjects. The IQ2 coding column tests the null hypothesis

that the mean ZDV score of the eight "medium IQ" subjects equals the mean ZDV

score of the remaining 16 subjects. Note in the example that the SOS for the IQ

way in the Table 2 OVA analysis was .010. The coding analysis breaks this effect

into two smaller components (IQ1 SOS = .00000 and 1Q2 SOS = .00968) and indicates

that almost all of the effect of IQ (although very minimal) arises from

differences between the "medium IQ" subjects when compared with the other

subjects.

Of course, more specicic information about where differences occur within an

OVA analysis can also be determined by conducting post hoc tests after the

analysis is completed. Examples of OVA post hoc methods include the Scheffe test

or a multiple range test. However, a priori hypothesis specification via coding

still may be preferred because, as Kerlinger and Pedhazur (1973, p. 131) note:

The tests of significance for a priori, or planned,

comparisons are more powerful than those for post hoc

comparisons. In other words, it is possible for a



Analysis of Experimental Data

specific comparison to be not significant when tested by

post hoc methods but significant when tested by a priori

methods.

Page 6

Method Three: Commonality. Analysis

Regression coding represents OVA analyses as a regression equation. The use

of regression coding to analyze data from experimental designs suggests the

intriguing possibility that multiple regression could be employed to analyze

experimental data without having to reduce ordinal or interval independent

variable data, 2 er scal9 aptitude data, to the nominal level of e. It is

recognized (e.g., Nie, Hull, Jen ins, Steinbrenner & Bent, 1 75, pp. 372-373),

although perhaps not widely, that nteraction can be presented in the

analysis by computing what erlinger and Pedhazur (1973,,p. 414) have termed

ltiplying any two"product variables." A product variable is created by

variables times -each other. Thus, the last three columns of Table 1 present all

the independent variables necessary to conduct an analysis of experimental data

without h ving to convert the IQ data into the nominal level of scale.

Cche (1968) has implied that OVA methods have been attractive to social

scientist because partitioning the dependent variable's variance into

uncorrelaed portions provides "computational simpliOty" -this may have been

particularly important in the era preceeding widespread availability of computers.

However, use of regression with data at the level of scale at which the data are

originally collected also has advantages. For example, as Darlington (1968,

p. 166) notes:

In analysis,of-variance designs, the complete independence
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of all the independent variables is assured py the

requirement of equal or proportional cell frequencies...

In multiple regression, however, there is no requirement

that predictor variables be uncorrelated. This property

gives regression analysis a substantial element of

flexibility lacking in analysis of variance.

It has also been observed (Cohen, 1968; Thompson, 1981) that the use of non -OVA

methods does not: , 1) reduce reliability of aptitude and non-experimental

variables; 2) inflate the Type II error probability; 3) discard substantively

important information; or 4) distort the distribution shapes of or relationships

among certain variables.

Although beta weights and stru0 ure coefficients (Thompson & Borrello, in

press) can be consulted to evaluate "main effects" and the "interaction effects"

represented by product variables, commonality analysis also called "element

analysis" (Newton & Spurrell, 1967 and-"conponents'analysis" (Mayeske,

Beaton, litinfield, Cohen, Okada, Proshek & Tabler, 1969), can also be conducted if

the researcher wants estimates of the uniqueness of each effect. For each

independent variable, commonality analysis indicates how much of the variance of

the dependent variable is "unique" to the predictor, and how much of the

predictor's explanatory ort predictive power is "common" to or also available from

one or more of/the other predictor variables. Mood (1969) presents an algebraic

rule tor computing these variance partitions for any number of independent

variables, and Cooley and Lohnes (1976, p. 222) ha've tabled the required

computational methods for studies involving as many as tour independent variables.

In addition to tabling the computational procedures for studies involving up to

1.0
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five independent variables (pt 358), Seibold and McPhee (1979) provide a brief and

understandable introduction to this method of analysis.,

In the present study the squared multiple correlation between ZDV and the

predictor variables, ZI0,'ZEXPGRP, and ZIQBYEXP, was .23708. Table 4 illustrates

the computations of the partitions of the unique and common predictive ability of

the three independent variables to explain 23.708 percent of the variance in ZDV.

Table 5 summarizes the commonality and regression results.

INSERT TABLES 4 AND 5 ABOUT HERE.

Two aspects of the commonality analysis merit further explanation. First,

the interaction effect represented by the product variable, ZIQBYEXP, should not

be confused with the commonality involving the two main effect variables, ZIQ and

ZEXPGRP (Seibold & McPhee, 1979, p. 365). Interaction is the unique effect of two

or more independent variables which in combination affect the dependent variable.

Commonality indicates the proportion of predictiveability of a single variable

that Ilso happens to reside in another single predictor variable too; no unique

effect of the predictors acting in combination is involved.

Second, negative commonalities (never negative uniqueness partitions) can

occur, as with the "a,b,c" commonality in the present analysis. This is

counterintiutive since the result could be taken to mean that each of the three

predictor variables have in common the ability to explain less than zero percent

of the, variance in UN., Instead, negative commonalities frequently indicate the

presence of a suppressor effect (DeVito, 1976, p. 12). As Craeger (1971, p. 675)

notes:

This [a negative commonality variance partition] is more

11



Analysis of Experimental. Data

likely to occur in 1igher Order partitions obtained by

. subtraction and As more likely where some regression

weights are negative (either by suppredsor effects or from

bipolar relations which cannot ,be ,removed, by, reflecting

veCtors), Negative partitions may also result 'from

sampling errors in the correlation matrix.

Page 9

Beaton (19734 p. 22) provides an illustration of how a negative commonality can

have important substantive implications:

Both weight and speed are important to _success as a

professional football player and each would be moderately

correlated with a measure of success in football. Weight

and speed are presumably negatively correlated and would

have a, negative commonality in rredicting success in

football. If both weight and speed are known, one would

expect to make a much better prediction of success using

both variables to select fast, heavy men rather than just

selecting the fastest regardless or weight or heaviest

regardless of speed. Thus the negative commonality

indicates that explanatory power of either is greater when

the other is used.

Seibold and McPhee (1979, pp. 364-365) report results of a cancer study that may

well have been grossly misinterpreted if a commonality analysis detecting

suppreSsor effects had not been conducted.

Discussion

12
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The three techniques for analyzing data from experiments each have both

advantages and disadvantages. For example, with respect to significanCe testing

for the variance partitions from commonality analysis, "for..the unique parts, and
400.

.

the unique parts only, one can make the usual F test of whether additional

re6ressicin terms have contributed's nificantly to the regression if he is willing

tb overlook the logical difficult es arising from the fact that the tests are not

independent" Oft* 1971, pp. 196-197). However, with respect to the

oommonalities themselves, as Newton and Spurrell (1967', p. 61) note that "it is
e.

difficult to see that statistical theory will be able to give sampling errors

which can be used in meaningful tests for secondary elements fcommonalities] since

they are obviously not independent statistical quantities."

Still, commonality analysis does inherently focus attention on effects size

estimates for experimental, aptitude, and other independent variables. This

emphasis is consistent with the recognition that statistical significance is

primarily a function of sample size (Carver, 1978), and that estimates such as

Hays' (1963, p. 382) omega squared are important adjuncts to OVA analyses. The

focus is also consistent with emphasis on effect sizes in meta-analysis (Glass,

McGaw & Smith, 1981).

As a practical matter, the advantages of commonality analysis accrue in most

research examples because so many experiments involve aptitude or other intervally

scaled independent variables. In fact, most variables other than experimental

manipulati,on are higher than nominally scaled. Probably the most notable

exception is sex of the subjects in a study. Although in exceptional areas of

inquiry such as math anxiety (Aiken, 1976, p. t3(2) the use of sex as an

independent variable may be warranted, as a general rule the use of even this

13
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variable may stem, more from ease of measurement than from theoretical

justification.
I

The compelling advantage of commonality analysis of experimental data is that

the analysis does not require that all independent variables be converted to the

nominal level of scale. It is this "squandering kg) much information" (Cohen,

1968, p.141) that causes the previously mentioned difficulties withrOVA methods.

For example, it is this feature that distorts relationships among the independent

variables, and as Seibold and McPhee (1979, p. 355) argue:

Advancement of theory and the useful application of

research findings depend not dnly on establishing that a

relationship exists among predictors and the criterion,

but also upon-) determining the extent to which those

independent variables, singly and in all possible

combinations, share variance with the dependent variable.

Only then can we fully know the relative importance of

independent variables with regard to the dependent

variable in question.

Commonality analysis of data from experiments is attractive because the method

honors the reality to which the researcher is purportedly trying to generalize.

As Mood (1969, p. 480) notes, "The independent variables in any social process,

and certainly in education, are highly correlated among themselves, and this kind

of partition of variance [commonality analysis] provides measures of the extent to

which 'they overlap each other in their association with the dependent variable."

Thus, perhaps commonality analysis of data from experiments should he considered

more frequently in practice in educational research.

A
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Table 1

Example Data Set for Three Related Analyses

OVA Data Coding Data

Page 15,

Commonality Data
Case IQ IQGRP EXPERG:RP ZDV Ica IQ2 EXP EXPBYIQ1 EXPBYIQ2 ZIQ ZEXPGRP ZIQBYEXP

1 68 1 1 -0.952 -1 -1
2 84 1 1 -0.270 -1 -1
3 88 1 1 -0.611 -1 -1
4 89 1 1 -0.952 -1 -1
5 50 1 2 +0.412 -1 -1
6 74 1 2 +1.434 -1 -1
7 76 \ 1 2 +1.434 -1 -1
8 85 1 2 -0.611 -1 -1
9 95 2 1 -1.292 0 +2
10 99 2 1 -0.270 0 +2
11 103 \ 2 1 -1.292 0 +2
12 108 \2 1 +1.094 0 +2
13 102 2 +0.071 0 +2
14 106 2 2 +1.094 0 +2
15 107 2 2 -0.611 0 +2
16 107 2 2 +1.434 0 +2
17 111 3 1 +1.434 +1 -1
18 115 3 1 +0.071 +1 -1
19 133 3 1 -1.633 +1 -1
20 140 3 1 +1.094 +1 -1
21 120 3 2 -0.270 +1 -1
22 132 3 2 +0.412 +1 -1
23 135 3 2 +0.071 +1 -1
24 143 3 2 -1.292 +1 -1

+1 +1 -1.464 -0.979 .c1.433
+1 +1 -0.793 -0.979 +0.776
+1 +1 -0.625 -0.979 +0.612
+1. +1 -0.583 -0.979 +0.571
-1 -1 -2.218 +0.979 -2.171
-1 -1 -1.212 +0.979 -1.186
-1 -1 -1.128 +0.979 -1.104
-1 -1 -0.751 +0.979 -0.735
0 -i -0.332 -0.979 +0.325
0 -2 -0.164 -0.979 +0.161
0 -2 +0.003 -0.979 -0.003
0 -2 +0.213 -0.979 -0.208
0 +2 -0.038 +0.979 -0.038
0 +2 +0.129 +0.979 +0.126
0 +2 +0.171 +0.979 i +0.168
0 +2 +0.171 +0.979 +0.168

-1 +1 +0.339 -0.979 -0.332
-1 +1 +0.506 -0.979 -0.496
-1 +1 +1.261 -0.979 -1.234
-1 +1 +1.554 -0.979 -1.512
+1 -1 +0.716 +0.979 +0.701
+1 -1 +0.412 +0.979 +1.193
* -1 +1.345 +0.979 +1.316
+]\ -1 X1.680 +0.979 +1.645

Note: "ZDV" is the dependent variable for all three analyses. "ZIQBYEXP" is the
product of "ZIQ" times "ZEXPGRP" (respectively, the Z score versions of "IQ" and
"EXPERGRP").
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Table 2

ANOVA Analysis

Sum of N, :an

Table 3

Regression Coding Analysis

Mean Effect

Square Fcalc Size

Sum of

Source Squares df

IQ Group

Low vs. High (IQ1) .00000* 1*

Medium vs. Other (IO2) .00968* 1*

EXP 2.13492* 1*

Interaction 3.86320 2

EXPBYIQ1 3.51464* 1*

EXPBYIQ2 .34856* 1*

Error 16.99221 18

Total 23.00001 23

*By

**BY

.00000** <1** .00000**

.00968** <1** .00042**

2 3492k* 2.26154** .09282**

1.9 160** 2.04616** .16796**

3.51 64**

gh (IQ1) .00000* 1*

Medium vs. Other (IO2) .00968* 1*

EXP 2.13492* 1*

Interaction 3.86320 2

EXPBYIQ1 3.51464* 1*

EXPBYIQ2 .34856* 1*

Error 16.99221 18

Total 23.00001 23

.00000** <1** .00000**

.00968** <1** .00042**

2 3492k* 2.26154** .09282**

1.9 160** 2.04616** .16796**

3.51 64**

.34856**

.94401

1.14000

subtraction of one step"s results from following step libted on the printout.
division using previously obtained tabled results.
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Unique to ZIQ (a)

Table 4

Commonality Computations of Variance Partitions

2 2

-R y.bc+R y.abc
-.23618 +.23708 = .00090

2 2
Unique to ZEXPGRP (b) -R y.ac +R y.abc

-.14440 +.23708 = .09268

2 2

Unique bo ZIONEXP (c) -R y.ab +R y.abc
-.09995 +.23708 = .13713

Common to a,b

Common to arc

Common to brc

Common to a,b,c

2 2 2 2

- R y.c +R y.ac +R y.bc -R y.abc

-.14335+.14440 +.23618 -.23708 = .00015

2 2 2 2

-R y.b +R y.ab +R y.bc -R y.abc
-.09282+.09995 +.23618 -.23708 = .00623

2 2 2 2

-R y.a +R y.ab +R y.ac -R y.abc
-.00677+.09995 +.14440 -.23708 = .00050

Page 17

2, 2 2 2 2 2 2

+R y.a +R y.b +R y.c -R y.ab -R y.ac -R y.bc +R y.abc
+.00677+.09282+.14335-.09995 -.14440 -.23618 +.23708 =-.00051

Note: The sum of the unique and common predictive abilities of the three independent
Tiaables, represented by the seven partitions, equals the squared multiple correlation
(.23708) obtained when the three independent variables are used to predict the
dependent variable, ZDV.
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Table 5

Commonality and Regression Results

Unique to ZIQ (a) .090%

Unique to ZEXPGRP (b) 9.268%

Unique to ZWEYEXP (c) 13.713%

Common to aft) .015% .015%

Common to arc .623% .623%

Common to b,c .050% .050%

Common to a,b,c -.051% -.051% -.051%

Sum of the Partitions .677% 9.282% 14.335%
2

r of predictor with ZDV .00677 .09282 .14335

Beta weight .03151 .30444 - .38804

Structure Coefficient -.16896 .62572 -.77760


