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Abstract

The paper includes a critical review of CAI, a overview of recent ITSs
(Intelligent Tutoring Systems) and a methodology for byilding ITSs. Examples are
given from the author's recent wérk on a student modelling system. Further tﬁe
paper sﬁggests a research agenda for the sub-field and relates this to current

activities in Al and cognitive science.

1. Introduction

‘The pioneers of CAl in the late 60's suggested that through this medium

highly individualized instruction would become common place. Two decades later we

see fairly widespread use of computer-based instructional materials,- but very

little of it could be said to be adaptive. Why this shortfall? I believe the key

problem with virtually all authorxng languages including those available today, is
that tae author of the teaching material has to provide in advance & list of
anticipated responses (and associated actions). .Thus such systems are only able
‘to deal with situa:ions which have been prefﬁecified, and are, unable to respond
appropristely to novel errors, or for that matfer to brilliant insights,. )
Buildinglteachingklystems which are trqu adaptive is a very demanding task,

A decade or so ago it was realized that this would not
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_Se achieved without the use of artificial intelligence techniques, Carbonell _  ££
[1970]. Subsequently Hartley and Sleeman [1973] suggested tﬁat {ntelligen:'
© tutoring systems would normally have four distinct databases:
. knowledge of the task domain |
. a model/history of the student's
behavior
. a list of possible'teaching operations
. mean-ends guidance rules which relate . ' h-fag
‘teaching decisions to&conditions in . -
the student model
The very earliest systems to encorporate some of these databases where
programs which generated tasks, For example Uhr and his collaborators
implemented programs whieh generated simple arithmetic and vocabulary recall
t%sks, Uhr [1969]. Subsequently, systems were implemented whicﬂatgempted to
create a task which was appropriate to the student's competence in the task
domain, Suppes [1969] and Woods and Hartley [1971], These adaptive systems
included the four data-bases given earlier but often in a very simplistic form,
The initial version of the Leeds Adaptive arithmetic system, for instance, used a
}imiced number of teaching operations and its student model consisted merely of an
integer to indicate the level of the studént's competence, On the other hand the
original scholar system, Carbomell [1970], used a recently introduced
representaiiou, namely a semantic net, for the systems' domain knowledge and the
studeng model. Nodes in the network had tags associated with them to indicate
whether the concept was, or was not, known to the student. However, SCHOLAR-I had
'a.poorly articuiated teaching strategy, which was not.représénted &3 a separate

data-base.
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2. Review of Recent ITSs

* '
In the interim & number of knowledgeable/intelligent teaching systems have

- been implemented. Figure 1 lists many of .these systems and indicates their

subject domains., Many of these systems have been used to provide supportive

L]

problem solving and not initial instruction as this is felt to be a more

| appropriate use, A further general point is that currently ITSs are an order of

magnitude “more expeﬁgive to implement than regular CAI (it is usually estimated

that an hour of CAI material requires 100 hours of an experienced author's time :04

prepare), and so it is importg?; that the iﬁplementorn of these systems choose
their topics well. I believe the, topics listed in figure 1 are important ones.

Indeed I believe' that many of them are educational "watersheds", that is they

Tepresent, topics which if not mastered will render further progress in the field

(virtually)}impossible. For example, it is highly significant if a child fails

to become competent at clerk's or vertical arithmetic,

[Figure 1 about here]

As nofed earlier building a truly responsive teaching systems implies
solving a Lange of very open-ended problems. Each of the systems implemented has
tended to emphasize some aséects and neglect c.hers.l In a recent overview Sleeman
and Brown [1982] suggested thacécu:rent perceived shortcomings include:

i. The. instructional material produced in-resPonse to & student's query or

mistake is often at the wrong level of detail, as the system assumes. too much or

-"_1<z‘lictle student knowledge.

2. The system assumes a particular conceptualizition of the domain, thereby
3 . +

coercing a student’s performance into its own conceptual framework. None of these
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systems can discov@r, and work within, the student's évn (idiosyncratic)
conceptualization to diagnose his "mind bugs" within that framework,

3. The tutoring and critiquing strategies used by these”ly:tems are
excessively ad hoc reflecting hnpfipcipled intuitions about how to control their
~ behaviour. Discovering consistent p;;nciple: would be facilitated by constructing

better theories of learning and mislearning -- a task requiring detailed
psychological theories of knowledge representation and belief revision, m
4. User intg};ction is still too restrictive, limiting the student's

expressiveness and thereby limi:iﬁg the ability of.the tutor's diagnostic
mechanisms,

The field has subsequently cohcentrated most of }ts efforts on two major
activ;:ies:

1. Understanding the'nature of learning, mis~learning and teaching

processes.

2. Extending and developing, AI techniques for use in ITSs.

2.1. Analysis of teaching/learning processes. If does not have.a good feel

for the types of misunderstandings which occur with g particular subject domain,
then it is impossible to write CAI material or implement ITSs which can deal with
the domain effectively. Collins and his group have done significant work on -
protocol analysis within the ITS community in the subject areas of geography and
meterology, Stevens, Collins, and Goldin [1982]. More recently Matz {1982] and
Sleeman [in press] have analyzed students' difficulties with'beginning*algebra.
However, workers in science education who have been studying the differences
between experts agﬁ novices and those who work in the field of mental models have
also contributed significantly to our knowledge of these issues, see for example .

A Y

Stevens &.Gentner (1983}, Davis, Jockusch & MéKnight {1978].



2.2 AI Techniques evolved by the ITSMCOmmunigy

As noted earlier theré are many central Al problems to be solved before’
powerful general purpose ITSs can be implemented. Before we review the techniques
which have been implemented, 1 would like to’ note the additional stringent
requirements which are met in this area (and are now being encountered in other
areas of applied AI like Expert Systems). Namely for thg systems to be acceptable
in the field they must be Egggggd(thnt is they must not crumble when they |
encounter a response which is out of their range), they must be able to cope with
responses which are both incomplete and inconsisten:,.;nd thirdly they must
respond fairly quickly. The téchniques to be highlighted here include:

+ Student modelling and concept
format@on.

. Friendly Natural Language Systems.

2.2.1 Student Modelling

A student model was one of the data-bases which Hartley and Sleeman [1973]

suggested should be part of each ITS. The issue which has oeen addressed more

recently is that of inferring such models from observing student's performance.

The principal issues addressed have been developing techniqueé to:
- avoid the combinatorial explosion when producing models from primitive
rules. |
. cope with noisy data ;
Suppose one is attempting to model the 1ncorrect behav1or'of students xn a
particular domaxn. The approach taken by the BUGGY [Brown & Burton, 1978] and LMS
[

projects [Sleeman, 1982] is to provide the modelling system with a set of correct

domain rules and associated incorrect rules which have been noted previously in

b
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procacols.. If fron tnsk-analysxs one knows thut N (priwx:xve) rules are necessary
to solve the task, then a simple nodel-generntxng algorithm will produce N! -
variants; this is a prohibitively llrge number even for modest sized rule bases.
(And of course including incorrect, or mal-rules will merely incréa:e the number
of models.) The BUGGY project overcame this problem by using a set of heuristics
to determine the combxnatxons of rule: which could occur in any onesmodel. The
LMS project focused on a particular rule for each set of tasks and exploited
properties of the rulel, such as rule independence and subsumptxon to radically
reduce the total number of models, Sleeman [1983].

| Students do make careless slips, and it is important that these should not
deflect the modeller unduly. The BUGGY project assumed that-if the student's
rqsponsé was within g certainﬁfolerance,,that the error was a
“numbér-facé-retrieﬁal problem and should be ignored, i.e., modelled as if the
correct number~fact-re:r%eval had been made., LMS uses a simple statistical

procedure to return the model which it believes explains the students behavior on

a set of tasks.

2.2.2 Friendly Natural Language Interface

"Classical’ Natural Language work, see Simmons [1970], provides parsers which
are able to analyze sentences in natural language if the input is grammatically
correct, whzch in turn implies it must be complete. On the other hand, humans
regularly communlcate‘wzth, and are understood when they use, incomplete and
inconsistent utterances. Thus it is not surprising that ITSs have encountered a
need to cope with these messier types of inputs, |

The parser which Burton [1976] implemented as part of the SOPHIE system was
described as being a fuzzy semantically-driven parser, and represented a pragmatic

step 1n the .building of ITSs and in turn made an important contribution to Natural



-7 -
‘Languagefproces;ing. The pcr#ir was so named as it looks for semantic classes
such as measurement in the‘student's input and not for a particular syntactic
- entity, as in conventional parsers. It was dezignated fuzzy as it had the
ability to ignore noise words --‘plr:icul;rly as it became more convinced that it
was able to parser a complete input. The ACE System, Sleeman and Hendley 11982];

has extended this technique to deal additionally with inconsistent and incomplete

- user explanations.

2.3 Another Pefspective on the ITS and AI.

Another perspective on the intercorrelation betwgen Al and Irés is provided
if one thinks of the sub-sys;ems which are needed in a complete ITS (Task
Selector, Problem Solver, Presenter, Response Amalyzer, Student Hodgller and
overall strategy critic) and then considers the important Al research areas which
each of these subsysfems raise. I have attempted one such listing: |
Problem Solver:

Representation, Search, Heuristics.
Presenter/Analyzer:

Natural Language (incpmglete and

inconsistent input),
Modeller:

Inference, Representation,

Consiskency of data-bases, Diglogue

Control. | ‘

Critic: - —

Inference, Representation.
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It appears that many of the research issues turrently of central concern to

(e

Al, alio appear here, and as we have noted earlier, in this context the solutions

need to be robust, user-tolerant and efficient.

e

3. An evolving methodology for building ITSs

' The implementors of an ITS_frequen:ly perform the following steps:
l. Analyze protocols for students from the target populstion lolvigg typical

tasks and codify their difficultiea/milunders:andings. (This may involve detailed

o
.

“clinical” in*zrviews with the students),

2; Create data-bases for the ITS which includes a coding of the mal-rules
observed in step 2.

3. Use the ITS with students and in particular note student ?rrors which are
hot spotted by the system,

4. Carry out detailed student interviews to determine the nature of these

- misunderstandings; encode these as additional mal~rules.

, Steps 3 and 4 are ré;eated until the system captures the majority of the bugs

which occur with the target population,

3.1 Notes on the ITS Methodology

l." The above emphasizes creating and debugging a data-base of ruyles which
represent ‘the student's misunderstanding of the domain. In fact, ITSs have a
variety of data-bases, as noted earlier, including domain knowledge, tutorisl
strategies (i.e,, when to interrupt a student, how to present the essential
diagnostic information etc.). Each of these data-bases needs to be articulated
and debugged as indicated above. 5]

2. Articulating the several data-bases involved in an ITS is an important

contribution of this field to the theory of education. Such activities will



transform training and instruction from an art fore to a science. In other

1

areas of human nctivity, expert systems hav; been the v;hicles for communicating
knowledge within disciplines as disparate as ﬁ;dicine and Engineering, Biology and

. Accounting. (Thus nnny“peoplé view ITSs as a sub-activity of t;e kxpert Syitems
field; additionally hnving build an expert system nnny 1nstxtutions are beginning

to ask whether the same data-base can then be used in instructxonnl settings,

CIancey 3 Letsznger {1981] in pnrtxcular, have looked at these illuet).
3. The methodology for bu11d1ng ITSs given earlier also bears striking

-similarxtxel to the knowledge extraction-refinement cycle used within the expert
by

system's paradigm, Hayes-Roth, Waterman & Lenat [1983]), , ;

.
Lal
n

3.2 A Detailed look at rule refinement in the domgin of introductory_:lgggxa,

In 1981; I ran an experiment with 24 16-year-ol¢'algebra students to
determine their competence at basic algebfa tasks, Easenéially this same
data-base had been used earlier with 15-year-old ; and LMS hgd spotted a high
percentage of :heir-difficulties, Sieeman [1982). The results of the experiment
with the l4-year-olds were very different; a high percentage oi the student's
errors were not diagnosed by LMS, Again to verify fhst the difficulties no;iced
were not an artifact of interacting with LMS, I also administered a few months
later a paper-and-pencil test. I subsequently interviewed a1l those students who ‘§“T’
had significant problems on the second test and those who had had problems on the-
first test which appeared to be cleared up before the second.

The results of the interviews can be summarized as:

1. Some students regulariy solve algebraic equations by searching for solutions.
Namely, substituting values for the varisable to determine if the'eéuation
balances. So given an equation 2 x X + 5 = 23, many students would .ubstiﬁute X

v

=1, X=2, X=3,,,.

10
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2. Some students solve equations ot}thc forn:' o | | ~
MxX+NxXmp | |

as if the 2Xs are independent. I worked u;th -2 student who . solyed 9 :as&r in a

row by a weird but conoiaten: algorithm, she solved tasks such as:

IxX+2xxm= 12

-

a8 3x24+2¢ 412
and wrote X = 2 and X = 4 ‘. S S .
(The first X was consistently.taken as the v;lue of the second coefficient of X,
she then copied down the second coefficient - writing 3 + 2'+ 2 this was then

evaluated and the second X was obtsined by tubtrquing this sum from the value -on

the RHS. For more discussion of this protocol see Sleeman [in press],

3. Some students had a range of alternative methods, and confided they were
gnclear when to apply which method. Some of these studeats occasionally u;ed the
correct method to solve an algebraic equti:n, and at other timeq appeared to use
a mal-rule, see fxgure 2 for examples of protocols which znclude mal-rules,
4. Consistent use of Mal- -Rules

Many of the students used mal-rules cohsis:ently. Just over haif of the 24
students we saw mishandled precedence in equations of the form:

2+3xX=9 ”
- A section for one such ltudept is given in figure 2.1. Figure 2,11 1s part of a
Protocol produced by a studéét who collects sll the numeric terms on the RRS of
the equation 1rrespectxve of whether they are "free" integers or coefficients.

The s:udent who created figure 2,111, was remcrkably consistent with his
mal-rules over a whole range of task types. Note in particular how he handlea
task ¢ which involves 3 X-terms. Having worked task h, he noticed that when.he

moved the 4 across to the RHS he changed the sign and so he suggested that when he

11

AT ey
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o | move the X (associgted with 2 x X) to the LHS, h‘ lhould also ¢ﬂ‘;i; its sign. He
8 then verdalized that . \ i
| X-Xis0 ‘ ";;
and 80 the IAS becase 0 and the rhs did Zot, and #o he realized that this RPN

'pr0posed'lolution vas not possible. However, for good measure he also worked task

i with the "raviged" algorithm, - \ ' I
[‘N&ute 2 about here) ' . o

5. "Saved Souls"

During the on-line session a student consistentiy solved problems of the . -
form: |
3xX-+4xX= 13 gas
X+ X=134+34+4
., v ' f
However, during the second (pen-and-paper test) and during the interview she o
- -worked them correctly, Moréover, when presented with falations alternative, of

the form given above, she was able to say clearly it was wrong and was able to

explain clearly why it was wroiy. This behavior was noted with several

students,

3.3 Summary of éhe experiment - ' , ~
The principal observations :tages were:

1. Some students have unstable "bugs', that is _they have a whol? range of

"methode’ '0lving the same task, and they are unclear when to apply woich

method, aleenan [in preparation] for s more detailed discussion of this. )

V2. Schema for Bencrating unl-rules. Several students gave us 8 ,valuable insight

into their "logic" when asked why the changed ' ' '

S ¥

. // ~—t )
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2xX+3xXm= 19 to

XeX=19-2-3 C A

&

they said they vere uerely collectxng all the Xs to ;ne nxde and the numbers to
the other.’ Thi- “lche-n" enable us ;o correctly. predxct how the same students
weuld process other tasks such as: o :

5 xX=2xX+ 18 |

3. 'Diffefigg,type: of student-errors

Figure‘3 shoﬁs'the same :u;k being solved differently, and both 1ncorrectly by
two separatg_sfudenfs. I have classxfxed the error of figure 3 1 a8 a

manipulativé error, as 1 believe the student essentially knows the rule but has

made an error in carrying it out. I have classified the error of ftgure 3.2 a8 a
Earsxné error as I belxeve this represents a significant m:sunders:andzng of
llgebra:c nota:xon. (Additlonal examples of manxpulatxve and parsing errors are
given in Figure 2), Thxs dlst:nctxon is born up experxmentally. pﬁring the
_course of lntervxews the student whose protocol is given in figure 3.1 was gble
explein the various 3tagesaxn the transformation, whereas the other student
asserted he went from Fhe firstv{ipévtp the second lihelin cne step (i.e. there
were no intermediary s:epé);

[Figure 3 about here]
4. The difficulties of teachéng algebra have been grea;ly underestimfted. The
nature of the misunderstandings noted here are being iﬁvestigated, to see if
tesching sequences cen be devised to avoid some of the mi sunderstandings noted
with these students.
5. Finally the rule set has been enh;ﬁced.so_that IMS would be able to handle
many of the error;’which it was previously unsble to detect. (Because the parser
erxors have a dxfferent form from the man1pu1:txve mal-rules, LMS has also been

somewhat enhanced).

%

&
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For a discussion of current activities of this work see Sleeman [in press]).

4. Concluding comments

-

The field of ITS'currencly has a major opéortuﬁity, It is now ﬁossiple to
run large‘ITSs on a personal computer wh?re before one needed a :?zeable fraction
of large DEC-10, and so it is feasible to run large scale teaching experiments,

Hovevef, many of the technical issues raised earlier remain., I predict that
the focus of work in the next decade will be on:

- analysis of the students'

misunderstandings.
. providing more psychological
explanations for the mal-rules
observed, Brown & Vanlehn [1980)] and
Sleeman [in preparation].
. providing more robust and more
versatile natural language interfaces.
. implementing more robust user/student
modelling syst;ms.
To date these have been very limited in their scope and only captured the user's
competence on a narrow task. To be really effective these models must include
extensive information about the user, and be able to activate a body of inference
rules which will enable the system to rapidly build a "crude" model from only
general characteristics of the user. Examples of a general inference rule might
~be "if young and male assume the user is aggressive”, an example of a more
specific inference rule might be "if a second-year engineering student'nssume the

user knows about thermodynamics'. The mc:e specific inference rules should have a

14
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higher ¢redidility than the more gencral rules. For s more detailed discussion of

" user modelling see Rich [1983) and Sleeman {1984].

To those in & sub-field, progress then appears to be f:ulttagingly IIOH-'
However, if one recalls that only two decadea.‘cAI itself was in its infancy, éhen
one gight vell be satisfied with the progress with ITSs. Moreover, there is good
‘reason to expect the rate of progress will accelerate now that we have yery much
better prqgramming environments in which to build systems and thetpontibility of

using them in classrooms..

15
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Figure 1

>

Some of the Intclligent‘ru:oqing Systems Implemented in the 1970's. . .

1. Synbolic integration; Kinblll {1973 & 1982}, | .

© 2 Solvxng quadratic (by & discovery method), 0'Shea [1982]

3. Axiomatxcllly-based mathematics, the EXCHECK system, 5w1th et. ll. [1975].

4 ‘Electronic trOublq-lhooting, the several SOPHIE systems, Brown, Burton & Bell

[1975] and Brown, Burton & de Kleer [1982].

5. Interprgf:tion of NMR spectra, the PSM-NMR system, Sleem;n-&“ﬂe#dley [1982]).
6. Socratic diaiogue in geography and metereology, the WHY system, Stevens, &
Collins [1977]. | |

7. “Medical diagnosis, the GUIDON\System, Clancey [1§82].

8. Informal gaming enQZtonment: the WEST system, Burton & Brown [1982], and.thé

- WUMPUS system, Goldstein [1982].

9. Program-plan debugging, the SPADE system, Miller [1982].
10. Basic programming, the BIP system, Barr, Beard. & Atkinson [1976].

11, A consultancy system for users of MACSCMA, an algebraic nanipulaéion system,

Genesereth [1982].
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S Figure 2
Three examples of very consistently used MAL-RULES.

t

1) Pupi) AB-11 on task set 7.
a) The task given was 4 + 2 ¢ X « 18

»

Pupil writes 1) 8X = 18
X o . 2) X = 2.6868
b) The task givan was : 2 ¢+ 4 ¢ X = 14

- .. Pupil writes
" c) The task given was :'3 + 5 * X = 11
Pupil writes 1) 8* X = 11
(and is told she can leave it in that form)
d) The task given.was : § - 3 ¢ X ~ 11
Pupil-writes 1) 2ex 11 .
(and 1s told she can leave it in that form)

I1) Pupil AB-17 on task set 5 .
8) The task -given was : 2 ¢ X + 4 ¢ X = 12

Pup1l writes 1) e X e X«12-2-4
, . ' 2) X ¢ 2 = 8§ -
2 3) X = ROOT 6 :
.. b) The task giveh was : 2 * X + 3 ¢ X = 10
Pupil writes 1) * X *x=10-2-3
2) X ** 2 . § 4 .
(and is told he can leave it'in that form) . .
‘ " ¢) Tha task given was : 2 * X = 3 * X = 10 .
Pupil writes 1y * X * X =10-2+2

T 2)Y X *r 2 .11 a
(and is told he can leave it in that form) - -

- TIT) Pupil AB-18 on task sets §, 6, 7 and 8. s ) S
. 8) The task given was : 2 * X + 3 * X ~ .10 ’
Fupil writes 2*X=~10~2-3
: 2 x=§ ' _
X =2.8 . !
D) The task given was : 3 * X + § ® X = 24 N :

Pupil writas

¢) The task given was

Pupil writes . 1) X + X + X =24-3-4-8 .. . -
2) 3 * X =12 . o
. 3} X4 . s
d¢) The task given was : 2 * X + 4 = 20 Y
ST Pugdy weites . 1) X =20 -2 - 4 , g " X 4
o 2) X =~ 14 - ’

BEST COPY AVAILABLE
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,
; | - Page 2
. .
+ ! bl .

. @) Tha task given was : 3 ¢ X« 5§ =7 -

: Pupil writas 1) X =7 -3 -5
) To2)X =g -
7)-The task given was : 4 + 3 ¢ X = 14 )
° Pupil writss - 1) X =14 -3 -4
' ) X = 7
g) The task given was : 5§ + 6 * X = 20
Pupil writes 1) X=20.-5 -8
AR - . 2y X =9 L / . J
h) The task given was': 4 ®* X = 2 & {4 ¢
Pupil writes 1)2*X=-4+2¢8 .
- ‘ 2y 2 * X =4
.3) X =2 . .
Pupil than wrote )X =-X=24¢+8-4
2) 0 = &
and QUITS. -
1) The task given was : 5 ¢ X = 3 x 4 ¢
Pupil writes ’ 1) 0 = 4
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‘Figure 3 -
Two -protocoh’ illustrating both manipulative and parsing mal-rules.
I 6 x X = 3 x X ¢ 12
9 x"X ~ 12 -
- X = 12/9
X = 4/3
11 6xx-3x”x-_12 - - | .
X- x X = 12 + 3 - 6 )
N 2 x X = 9
X = 9/2
NS .
- BESTCOPY-AVAILABLE
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