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Abstract

The paper includes a critical review of CAI, a overview of recent ITSs

(Intelligent Tutoring Systems) and a methodology for byilding ITSs. Examples are

givep from the author's recent work on a student modelling system. Further the

paper suggests a research agenda the sub-field and relates this to current

activities in AI and cognitive science.

1. Introduction

The pioneers of CAI in the late 60's suggested that through this medium

highly individualized instruction would become common place. Two decades later we
see fairly widespread use of computer-based

instructional materials,-but very

little of it could be said to be adaptive. Why this shortfall? I believe the key

problem with_virtually all authoring languages including those available today, is

that tae author of the teaching material has to provide in advance a list of

anticipated responses (and associated actions). ,Thus such systems are only, able

to deal with situations which have been prespecified, and are, unable to respond

appropriately to novel errors, or for that matter to brilliant insights.

Building teaching systems which are truly adaptive is a very demanding task.

%No
A decade or so ago it was realized that this would not
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be achieved without the use of artificial intelligence techniques, Carbonell

[1970]. Subsequently Hartley and Sleeman (1973] suggested that intelligent

tutoring systems would normally have four distinct databases:

. knowledge of the task domain

a model/history of the student's

behavior

a list of possible teaching operations

mean-ends guidance rules which, relate

teaching,decisions to conditions in

the. student model

4J,

The very earliest systems to encorporate some of these databases where

programs which generated tasks. For example Uhr and his collaborators

implemented prOgrams which generated simple arithmetic and vocabulary recall

tasks, Uhr [1969]. Subsequently, systems were implemented which attempted to

create a task which was appropriate to the student's competence in the task

domain, Suppes 11969] and Woods and Hartley [1971]. These adaptive systems

included the four data-bases given earlier but often in a very simplistic form.

The initial version of the Leeds Adaptive arithmetic system, for instance, used a

limited number of teaching operations and its student model consisted merely of an

integer to indicate the level of the student's competence. On the other hand the

original scholar system, Carbonell [1970], used a recently introduced

representation, namely a semantic net, for the systems' domain knowledge and the

student model. Nodes in the network had tags associated with them to indicate

whether the concept was, or was not, known to .the student. However, SCHOLAR-1 had

a poorly articulated teaching strategy, which was not represented as a separate

data-base.
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2. Review of Recent ITSs

In the interim a number of knowledgeable/intelligent teaching systems have

been implemented. Figure 1 lists many of.these systems and indicates their

subject domains. Many of these systems have been used to provide supportive

problem solving and not initial instruction_ap this is felt to be a more

appropriate use. A further general point is that currently ITSs are an order of

magnitude more expensive to implement than regular CAI (it is usually estimated

that an hour of CAI material requires 100 hours of an experienced author's time to

prepare), and so it is important that the implementors of the systems choose

their topics well. I believe the, topics listed in figure 1 are important ones.

Indeed I believe' that many of them are educational "watersheds", that is they

represent,lopics which if not mastered will render further progress in the field

(virtually)
1

impossible. For example, it is highly significant if a child fails

to become competent at clerk's or vertical arithmetic.

(Figure 1 about here)

As noted earlier .building a truly responsive teaching systems implies

solving a range of very open-ended problems. Each of the systems implemented has

tended to emphasize some aspects and neglect c hers. In a recent overview Sleeman

and Brown (19821 suggested that current perceived shortcomings include:

1. The instructional material produced in response to a student's query or

mistake is often at the wrong level of detail, as the system assumectoo much or

o little student knowledge.

2. The system assumes a particular conceptualization of the domain, thereby

coercing a student's performance into its own conceptual framework. None of these
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systems can discover, and work within, the students own (idiosyncratic)

conceptualization to diagnose his "mind bugs" within that framework.

3. The tutoring and critiquing strategies used by these systems are

excessively ad hoc reflecting unprincipled intuitions about how to control their

behaviour. Discovering consistent principles would be facilitated by constructing

better theories of learning and mislearning -- a task requiring detailed

psychological theories of knowledge representation and belief revision.

4. User interaction is still too restrictive, limiting the student's

expressiveness and thereby limiting the ability of the tutor's diagnostic

mechanisms.

The field has subsequently concentrated most of its efforts on two major

activities:

1. Understanding the nature of learning, mis-learning and teaching

processes.

2. Extending and developing, AI techniques for use in ITSs.

2.1. Analysis of teaching/learning processes. If ) does not have.a good feel

for the types of misunderstandings which occur with a particular subject domain,

then it is impossible to write CAI material or implement ITSs which can deal with

the domain effectively. Collins and his group have done significant work on

protocol analysis within the ITS community in the subject areas of geography and

meterology Stevens, Collins, and Goldin (1982). More recently Matz f1982) and

Sleeman (in press) have analyzed students' difficulties with beginning algebra.

However, workers in science education who have been studying the differences

between experts and novices and those who work n the field of mental models have

also contributed significantly to our knowledge of these issues, see for example
,

Stevens & Centner i1983j, Davis, Jockusch 6 McKnight (1978).

5



2.2 AI Techniques evolved by the ITS Community

As noted earlier there are many central Al problems to be solved before'

powerful general purpose ITSs can be implemented. Before we review the techniques

which have been implemented, I would like to'note the additional stringent

requirements which are met in this area (and are now being encountered in other

areas of applied AI like Expert Systems). Namely for the systems to be acceptable

in the field they must be robust (that is they must not crumble when they

encounter a response which is out of their range), they must be able to cope with

responses which are both incomplete and inconsistent, and thirdly they must

respond fairly quickly. The techniques to be highlighted here include:

. Student modelling and concept

formation.

. Friendly Natural Language Systems.

2.2.1 Student Modelling

A student model was one of the data-bases which Hartley and Sleeman [1973]

suggested should be part of each ITS. The issue which has oeen addressed more

recently is that of inferring such models from observing student's performance.

The principal issues addressed have been developing techniques to:

avoid the combinatorial explosion when producing models from primitive

rules.

. cope with noisy data

Suppdse one is attempting to model the incorrect behavior of students in a

particular di'main. The approach taken by the BUGGY [Brown & Burton, 1978) and LMS

projects ISleeman, 1982) is to-provide the modelling system with a set of correct

domain rules and associated incorrect rules Which have been noted previously in



protocols. If from task-analysis one kfows that N (primitive) rules are necessary

to solve the task, then a simple model-generating algorithm will produce Ni

variants; this is a prohibitively large number even for modest sized rule bases.

(And of course including incorrect, or mal-rules will merely increase the number

of models.) The BUGGY project overcame this problem by using a set of heuristics

to determine the combinations of rules which could occur in any oneomodel. The

LNS:project focused on a particular rule for each set of tasks and exploited

properties of the rules, such as rule independence and subsumption to radically

reduce the total number of models,, Sleeman [1983].

Students do make careless slips,, and it is important that these should not

deflect the modeller unduly. The BUGGY project assumed that-if the student's
tvresponse was within a certain tolerance, that the error was a

number-fact-retrieval problem and should be ignored, i.e., modelled as if the

correct number-fact-retrieval had been made. LMS uses a simple statistical

procedure to return the model which it believes explains the students behavior on

a set of tasks.

2.2.2 Friendly Natural Language Interface

"Classical" Natural Language work, see Simmons (1970], provides parsers which

are able to analyze sentences in natural language if the input is grammatically

correct, which in turn implies it must be complete. On the other hand, humans

regularly communicate with, and are understood when they use, incomplete and

inconsistent utterances. Thus it is not surprising that ITSs have encountered a

need to cope with these messier types of inputs.

The parser which Burton (1976] implemented as part of the SOPHIE system was

described as being a fuzzy semantically-driven parser, and represented a pragmatic

step in the building of ITSs and in turn made an important contribution to Natural
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Language processing. The parser was so named as it looks for semantic classes

such as measurement in the student's input and not for a particular syntactic

entity, as in conventional parsers. It was designated _fuzzy as it had the

ability to ignore noise words -- particularly as it became more convinced that it

was able to parser a complete input. The ACE system, Sleeman and Hendley 119821,

has extended this technique to deal additionally with inconsistent and incomplete

user explanations.

2.3 Another Perspective on the ITS and AI.

Another perspective on the intercorrelation between AI and ITSs is provided

if one thinks of the sub-systems which are needed in a complete ITS (Task

Selector, Problem Solver, Presenter, Response Analyzer, Student Modeller and

overall strategy critic) and then considers the important AI research areas which

each of these subsystems raise. I have attempted one such listing:

Problem Solver:

Representation, Search, Heuristics.

Presenter/Analyzer:

Natural Language (incomplete and

inconsistent input).

Modeller:

Inference, Representation,

Consistency of data-bases, Dialogue

Critic:

Inference, Representation.

Control.
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It appears that many of the research issues
Currently' of central concern to

AI, also appear here, and as we have noted earlier, in this context the solutions
0

need to:be robutt, user-tolerant and effiCient.

3. An evolving methodology for building ITSs

The implementors of an ITS frequently perform the following steps:

1. Analyze protocols for students from the target population solving typical

tasks and codify their
difficulties/misunderstandings. (This may involve detailed

"clinical" interviews with the students).

2. Create data -bases for the ITS which includes a coding of the mal-rules

observed in step 2.

3. Use the ITS with students and in particular note student errors which are

not spotted by the system.

4. Carry out detailed student interviews to determine the nature of these

,misunderstandings; encode these as additional mal-rules.

, Steps 3 and 4. are repeated until the system captures the majority of the bugs

which occur with the target population.

3.1 Notes on the ITS Methodology

1.' The above emphasizes creating and debugging a data-base of rules which

represent the student's misunderstanding of the domain. In fact, ITSs have a

variety of data-bases, as noted earlier, including domain knowledge, tutorial

strategies (i.e., when to interrupt a student, how to present the essential

diagnostic information etc.). Each of these data-bases needs to be articulated

and debugged as indicated above.

2. Articulating the several data-bases involved in an ITS is an important

contribution of this field to the theory of education. Such activities will
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transform training and instruction from an ert form to a science. In other

areas of human activity, expert systems have been the vehicles for communicating

knowledge within disciplines as disparate as Medicine and Engineering, Biology and

Accounting. (Thus many people view ITSs as a sub-activity of the, Expert Systems

field; additionally having build an expert system many institutions are beginning

to ask whether the same data-base can then be used in instructional settings.

Clancey & Letsinger 11981), in particular, have looked at these issues).

3. The methodology for building ITSs given earlier also bears striking

similarities to the knowledge extraction-refinement cycle used within the expert

system's paradigi, Hayes-Roth, Waterman & tenet 11983).

3.2 A Detailed look at rule refinement in the domain of introductory algebra,

In 1961, I ran an experiment with 24 14-year-old algebra students to

determine their competence at basic algebra tasks. Essentially this same

data-base had been used earlier with 15-year-old and LMS had spotted a high

percentage of their difficulties, Sieeman [1 ). The results of the experiment

with the 14-year-olds were very different; a high percentage the student's

tierrors were not diagnosed by LMS. Again to verify that the difficulties noticed

were not an artifact of interacting with LMS, I also administered a few months

later a paper-and-pencil test. I subsequently interviewed all those students who

had significant problems on the second test and those who had had problems on the

first test which appeared to be cleared up before the .second.
....V

The results of the interviews can be summarized as:

1. Some students regularly solve algebraic equations by searching for solutions.

Namely, substituting values for the variable to determine if the equation

balances. So given an equation 2 x X 4. 5 mi 23, many students would substitute

a 1, X a 2, X - 3,

10
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2. Some students solve equations of the form:

MxX+RxXisll
as if the 2Xs are independent. I worked with.a student who.solved 9 tasks in a

row by a weird but consistent_ algorithm, she solved tasks such as:

3xX+ 2xX0 12

as 3 x 2 + 2 .0 4 12

and wrote Xls 2 and X 4

(The first X was consistently taken as the value of the second coefficient of X,
she then copied down the second coefficient - writing 3 + 2 + 2 this was then

evaluated and the second X was obtained by subtracting this sum from the value-on
the RHS. For more discussion of this protocol see Sleeman [in press].

3. Some students had a range of alternative methods, and confided they were

unclear when to apply which method. Some of these students occasionally used the

correct method to solve an algebraic equati,n, and at other times appeared to use

a mal-rule, see figure 2 for examples of protocols which include mal-rules.

4. Consistent use of Mal-Rules

Many of the students used mal-rules consistently. Just over half of the 24

students we saw mishandled precedence in equations of the form:

2 + 3 x X 9

A section for one such student is given in figure 2.1. Figure 2.11 is part of a

protocol produced by a student who collects all the numeric terms on the RHS of

the equation irrespective of whether they are "free" integers or coefficients.

The student, who created figure 2.111, was remarkably consistent with his

mal-rules over a whole range of task types. Note in particular how he handled

task c which involves 3 X-terms. Having worked task h, he noticed that when he

moved the 4 across to the RHS he changed the sign and so he suggested that when he

11



C?

" 11 "I

Armove the X (associated with 2 x X) to the LHS, he should also cnnts its sign. He
theh verbalised that

X - X is 0

and so the-igS became 0 and the rhs did not, and so he realised that this

proposed solution was not possible. However, for good measure he also worked task
i With the "revised" algorithm.

ingure 2 about here)
ft

5. "Saved Souls"

form:

During the on-line session a student consistently solved problems of the__

3 x X-+ 4 x X m 13 as

X + X 13 + 3 + 4
Nus,

However, during the second (pen-and-paper test) and during the interview she

worked them correctly. Moreover, when presented with falations alternative, of
the form given above, she was able to say clearly it was wrong and was able to

explain clearly why it was wrot.3. This behavior was noted with several

students.

3.3 hny.oftjpSumnieexerimettt

The principal observations stages were:

1. Some students have unstable "bugs", that is they have a whole range of

"methods' iolving the same task, and they are unclear when to apply which

method, Sleeman in preparation] for a more detailed discussion of this.)
,2. Schema for generating sal - rules. Several students gave us of valuable insight

into their "logic" when asked why the changed

12

0.
Q



2xX+33gxsti9 to

X + X 19 - 2 - 3

they said they were merely collecting all the Xs to one side. and the numbers 6

the other. Thi °schema" enable us to correctly. predict how the-same students

would process other tasks such as:

5 x X x X + 18

3. DifferiiILLyzesofst-errors

0

Figure 3 shows the same task being solved differently and both incorrectly by

two separate students. I have classified the error of figure 3.1 es a

manipulative error, as I believe the student essentially knows the rule but has

made an error in carrying it out. I have classified the error of.figure 3.2 as a

parsing error as I believe this represents a significant misunderstanding of

algebraic notation. (Additional examples of manipulative and parsing ,errors are

given in Figure 2). This distinction is born up experimentally. During the

course of interviews the student whose protocol is given in figure 3.1 was able

explain the various stages in the transformation, whereas the other student

asserted he went from the first line to the second line in one step (i.e. there

were no intermediary steps).

[Figure 3 about here]

4. The difficulties of teaching algebra have been greatly underestimated. The

nature of the misunderstandings noted here are being investigated, to see if

teaching sequences cpn be devised to avoid some of the misunderstandings noted

with these students.

5. Finally the rule set has been enhanced so that LMS would be able to handle

many of the errors which it was previously unable to detect. (Because the parser

errors have a different form from the manipulative mal-rules, LMS has also been

somewhat enhanced).
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For a discussion of current activities of this work see Sleemani (in press].

4. Concluding comments

The field of ITS currently has a major opportunity. It is nbw possible to

run large ITSs on a personal computer where before one needed a sizeable fraction

of large DEC-10, and so it is feasible to run large scale teaching experiments.

However, many of the technical issues raised earlier remain. I predict that

the focus of work in the next decade will be on:

analysis of the students'

misunderstandings.

. providing more psychological

explanations for the mal-rules

observed, Brown & VanLehn (1980] and

Sleeman [in preparation].

. providing more robust and more

versatile natural
.
language interfaces.

implementing more robust user/student

modelling systems.

To date these have been very limited in their scope and only captured the user's

competence on a narrow task. To be really effective these models must include

extensive information about the user, and be able to activate a body of inference

rules which will enable the systim to rapidly build a "crude" model from only

general characteristics of the user. Examples of a general inference rule might

be "if young and male assume the user is aggressive", an example of a more

specific inference rule might be "if, a second-year engineering student assume the

user knows about thermodynamics". The mare specific inference rules should have a
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higher credibility than the more general rules. For a more detailed discussion of

user modelling see Rich (1983) and Steelman (1984).

To those in a pub-field, progress often appears to be frustratingly slow.

However, if one recalls that only two decades CAI itself was in its infancy, then

one might well be satisfied with the progress with Ills: Moreover, there is good

reason to expect the rate of progress will accelerte now that we have gm much

better programming environments in which to build systems and the possibility of

using them in classrooms.

15
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Figure 1

Some of the Intelligent Tutoring Systems Implemented in the 1970's.
T

1. Symbolic integration, Kimball (1973 & 1982].

2. Solving quadratic (by i discovery method), O'Shea 11982).

3. Axiomatically-based mathematics, the EXCHECK system, Smith et. al. 11975].

4. 'Electronic trouble-shooting, the several SOPHIE systems, Brown, Burton,& Bell

(1975] and Brown, Burton 6 de Kleer (1982).

5. Interpretation of NMR spectra, the PSM-NMR system, Sleeman & Hendley (1982).

6. Socratic dialogue in geography and metereology, the WHY system, Stevens, &

Collins [1977).

7. -Medical diagnosis, the GUIDON System, Clancey (1982].

8. Informal gaming environment: the WEST system, Burton & Brown (1982], andthi

WUMP!JS system, Goldstein (19821.

9. Program7plan debugging, the SPADE system, Miller (1982].

10. Basic programming, the BIP system, Barr, Beard. & Atkinson (1976].

11. A consultancy system for users of MACSCMA, an algebraic manipulation system,'

Genesereth (1982].



Figure 2.

Three examples of very consistently used MAL-RULES.

I) Pupil A8-11 on task set 7.
A) The task given was r.4 + 2 X 16

Pupil writes 1) 6X 16
2) X 2.e66e

b) The task liven was : 2 + 4 X 14

Pupil writes 1) 6 X 14
2) X 2.333

c) The task given was :-3 + 5 X 11

Pupil writes 1) 8 X 11
(and is told she can leave it in that form)

d) The task given.was : 5 - 3 X 11

Pupilloritos 1) 2 r X .A1
(and is told she can leave it in that form)

II) Pupil A8-17 on task set 5
a) The task given was : 2 ! X + 4 X 12

Pupil writes 1) X X 12 - 2 - 4
2) X 2 8

-

3) X ROOT 6
b) The task giveh was :2X+ 3 X 10

Pupil writes 1) X X ,10 - 2 - 3
2) X 2

(and is told he can leave itin that form)
c) The task given was : 2 X - 3 X 10

Pupil writes 1) X X 10 - 2 + 3
2) X es 2 11

(and is told he can leave it in that form)

III) Pupil A6-18 on task sets 8, 8, 7 and 8.
a) The task given was : 2 X + 3 X ,10

Pupil writes 1) 2 X - 10 - 2 - 3
2) 2 X 5

3) X - 2.5
b) The task given was 3 X + 5 X 24

Pupil writes 1) X + X 2* - 3 - 6
2) 2 X 16
3) X * 6

c) The task given was : 3 -X + 4 X + 5 X 24

Pupil writes 1) X + X + X 24,- 3 - 4-- 5,
2) 34' X 12*
3) X 4

d) The task given was : 2 X + 4 20.

401 writes 1) X 20 - 2 - 4
2) X 14
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e) The task given was : 3 X

Pupil writ** 1) X m 7 - 3 - 5

tYX -I
f)-The task given was : 4 + 3 X 14

Pupil writes - 1) X 14 - 3 - 4
2) X 7

g) The task givon Was : 5 + 5 X 20

Pupil writes 1) X 20.- 5 - 6
2) X 9

h) The task given was': 4 X 2 X + 8

Pupil writes I) 2 X -4 + 2 + 6
,2) 2'0 X m 4
3) A 2

Pupil then wrote 1) X - X 2 0 -
2) 0 21 4

and QUITS.
i) The task given was : 5 X 3 X 6

Pupil writes

4.

1) 0 4
and QUITS.

BEST COPY AVAILABLE
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Figure 3

Two protocols illustrating both isanipulative ands parsing issl-rules.

CZ%

6 x 3 x X + 12

9". x-` X at 12

X as 12/9

X in 4/3

11 6 x X 3 x X at 12

x X s 12 3 - 6

2 x 9

X a. 9/2
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