
DOCUMENT RESUME

ED 257 415 IR 011 600

AUTHOR Sleeman, D.; Gong, Brian
TITLE From Clinical Interviews to Policy Recommendations: A

Case Study in High School Computer Programming. Study
of Stanford and the Schools Technology Panel.

INSTI1 ON Stanford Univ., Calif. School of Education.
PUB DA1g. Mar 85
NOTE 7p.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computers; *Computer Science Education; *Computer

Software; Error Patterns; Interviews; *Programing;
*Programing Languages; Secondary Education; Syntax

IDENTIFIERS *Debugging (Computers); Misconceptions; *PASCAL
Programing Language

ABSTRACT
In order to determine the knowledge and skills needed

by novice programmers to successfully learn computer programming,
four studies were conducted using a clinical interview technique. The
first study determined that many systematic errors in programming
were due to programmers' high-level misconceptions of tht nature of
the computer and of the syntax and semantics of the programming
language. The second study found that many misconceptions could be
remediated effectively through a combination of (1) explicit training
about the syntax and semantics of specific constructions in the
programming language, (2) requiring learners to predict outcomes of
short programs, and (3) providing students with interactive computer
feedback. The third study examined methods used by high school
teachers in computer programming instruction, and the fourth
considered students' use of their existing knowledge. Findings
indicate that, when Pascal programming functions are embedded with
other functions, the embedded functions are evaluated incorrectly by
novice programmers more often than when they are evaluated in their
unembedded form. Results suggest a lack of a standard curriculum at
the high school level and weaknesses in high school courses and
textbooks in their treatment of debugging. Four references are
listed. (LMM)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

_ ***

Study of Stanford and the Schools
Technclogy Panel

From Clinical Interviews to Policy Recommendations:
A Case Study in High School Computer Programming

U.S- DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDuCATioNAL RESOURCES INFORMATION
CENTER (ERIC

46. The; document has been reproduced as
necerved from the person or organization
originating rt
Minor changes Nave been made to improve
repioductron quality

Poeits of view or OW nKint stated in ern r10c u
Min I do nor neceSSardy represent official NIE
posdron or pcgtcy

D. Sleeman and
Brian Gong

Stanford Universit "PERMISSION TO REPRODUCE THISy Scbool of Education
MATERIAL HAS BEEN GRANTED BY

DMarch 1985 D. Sleeman

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)--

One important question facing educational researchers today
is "How can educational researchers, especially those in major
research universities, develop more fruitful ties with high
school policy makers and practitioners?" For the past two years,
as part of a large, funded study called "The Study of Stamford
and the Schools," we have been involved in conducting studies
which have provided us several interesting research results and
practical experiences which may be of value in formulating
answers to the question posed above.

One division of the Study of Stanford and the Schools, the
Technology Panel, has sought to investigate the impact that
technology, primarily in the form of computers, is having on
public education. While other members of the Technology Panel
have studied the social impact of computers in the schools, our
research has focused on understanding and improving the process
of teaching and learning computer programming from a cognitive
science perspective. We will first summarize some of our
research in term-. of questions, procedures, and findings. In
doing so, we will note how the research evolved in conjunction
with the cooperating teachers. We will then address, somewhat
speculatively, some implications this research might have for
improving instruction of computer programming in terms of
classroom practices and school curriculum.

First, we will summarize our research.
I. Research

A. Research Questions
The Technology Panel's initial surveys of computer

programming teachers confirmed that one of the teachers' primary
concerns was how to better help their students learn. This
concern helped shape our research questions. The fundamental
question which has motivated our research is, "What knowledge and
skills does a novice programmer need to develop to successfully
learn to program a computer?"

Subsidiary questions include: "What misunderstandings do
students commonly have in this subject domain?"

"Is it possible to remediate these misunderstandings ?"
"How do these findings suggest students' classroom

instruction be modified?"
Cognitive scientists have carried out studies comparing the

organization and use of knowledge by "novices" and "experts" in
several areas, including Mathematics, Physics, Language Arts, and
Medicine. From these several studies we are forming an
interesting overall impression, namely that "older" knowledge is
less susceptible to change than recently acquired knowledge, in
part because the student resists assimilating new knowledge if it
conflicts with, or is counter-intuitive to, his earlier
"commonsense knowledge" of the same domain. For example,
di Sessa (in Gentner & Stevens, 1983) has shown that even
engineering undergraduates may have an Aristotelian view of
motion, which interfers with their understanding of Newtonian
mechanics.

To follow up these questions, we have conducted a series of
four studies. We have concentrated our investigation on the
knowledge state of the learner because we are convinced that a
detailed understanding of the learner can be very valuable in
guiding instruction. However, while knowing what a student
understands is desirable, acquiring this information can be
difficult. We have patterned our research methodology after the
clinical interview technique pioneered by Piaget, using a
combination of highly specific diagnostic test items, protocol
analysis, and interviews.

B. Research Results
Our first study established that many systematic errors in

programming were due to programmers' high-level misconceptions of
the nature of the computer and of the syntax and semantics of the
programming language. An example of a misconception, the
"semantic READ bug," is given below. When presented with the
following BASIC program fragment,

10 READ LARGEST
20 DATA 2 9
30 PRINT LARGEST

a student with a semantic READ bug would say that the program
would output "9" rather than the actual value "2." In a
protocol-interview, the student might explain the action of this
program fragment as, "In Line 10 the program asks for the largest
number, so the computer will go through the numbers and pick out
the biggest one. The largest number' in the DATA on Line 20 is
"9.' So in Line 30, where it says to "PRINT LARGEST,' it will
print "9'." This misconception reflects an erroneous conception
of the computer as a machine that processes data semantically,
instead of sequentially.

In our first study we worked with two schools to pilot the
procedures. We then ran the final studies with three classes
learning BASIC and two classes learning Pascal. In all, five
high schools were involved. Over 75 students were individually
interviewed.

2

From this study (Putnam et al. , submitted), we identified
over 30 distinct bugs in our sample of BASIC programmers. We
clustered these misconceptions into eight classes or types,
according to the BASIC syntactic concept with which the
misconception was associated (Assignment statements, PRINT
statements, READ statements, Variables, Loop construction, IF
statements, Other flow of control difficulties, and Tracing and
Debugging.) Similar results were found for high school Pascal
Programmers (Sleeman et al., submitted).

In each case we provided the class teachers with detailed
analyses of their students' performances. We have been told by
several of the teachers that these detailed analyses of their
students' misconceptions helped guide revisions of their class
materials.

The students' misunderstandings having been diagnosed by
means of the approach described above, the teachers with whom we
worked independently and spontaneously moved to correct the
students' errors. We adopted the teachers' concern as a research
question, and have recently been exploring how it is possible to
remediate the students' misunderstandings--if it is possible at
all. (This is a real question., as researchers have reported that
misunderstandings in other subject areas are frequently resistant
to remedial treatment.)

Our secznd study indicates that it is possible to remediate
many misconceptions very effectively by using a combination of
explicit training about the syntax and semantics of specific
constructions in the programming language, requiring the learner
to make predictions about the outcome of short programs, and
providing the student with interactive feedback from the
computer.

In the second study we compared the pre- and post-remedia-
tion scores for students who received this type of remedial
tutoring with a comparable control group of students learning
BASIC. The remediated group improved significantly more than the
control group, althoujh some misconceptions appear to be more
difficult to remediate than others. In general the students who
received remedial tutoring for a particular topic did not make
errors with the same topic in the post-test. In addition,
several students appeared to spontaneously correct some of their
misconceptions when Presented with tasks and feedback which
focused their attention on their misconceptions, i.e. they did
not need explicit instruction.?

Our work on remediation thus far has been limited to one
teacher at a sixth high school. This teacher was given detailed
analyses of the errors made by his students and our
recommendations to explicitly teach debugging skills. The
teacher has indicated that he will incorporate our suggestions
into his course. Additionally, we are discussing with him the
more radical departure of teaching programming by giving students
many more progiams to read for the first half of the course.

A third study associated with our efforts has been to
collect detailed information about how high school teachers
actually teach selected topics in computer programming. This

3

research is providing a valuable context in which to interpret
the misunderstandings identified in the first study. In
addition, it will allow us to make more specific recommendations
to teachers regarding their curricula and classroom practices.2

A fourth study, currently in progress, considers how the
student uses the knowledge which he has. We are investigating
human information processing in the context of computer
programming by examining the relation of errors to cognitive
processing demands in terms of the complexity of programming
constructions. A principal finding of this study is that when
Pascal programming functions are embedded within other functions,
the embedded functions are more frequently evaluated incorrectly
by novice programmers than when evaluated in their unembedded
form. This result may be explained as novice programmers'
processing errors made because of loss of information due to
limitations of short-term memory, or "cognitive overload."3

In summary, four significant research contributions
resulting from our recent work include: a) the extention of a
suitable methodology for investigating knowledge representations
and cognitive processes, b) the identification of common
programming misconceptions, and construction of instruments and
procedures to facilitate the diagnosis of such misconceptions, c)
initial development of effective remedial training based on our
catalogue of known "bugs," and d) investigation of the
relationship of "cognitive overload" to errors in computer
programming.

Our future work in this area will principally involve a more
detailed remediation study to see which of the several components
is more effective, and whether the remediation could be
effectively given in a group setting as opposed to an individual
student. Secondly, we wish to make a de ailed study of how
students debug programs--when t do--to determine what
information they have about the....1 techniques and to understand
how debugging knowledge interacts with their knowledge of the
programs' shortcomings.

II. Implications of Research
There are several implications suggested by our research. We

will briefly touch on several points regarding both curriculum
and classroom practice.

A. Curriculum
1. There is no standard curriculum at the high school

level. Several of the misconceptions we observed may have been
compounded because of sequencing or selection of topics. For
instance, we have observed curricula that focused on applications
programming (e.g., formatting business letters and spreadsheet
output), mathematical programming (e.g., computing approximations
to pi using various methods), and computer science topics (e.g.,
sorting techniques). Not only is there a lack of consensus of
what should be included in a curriculum, there is disagreement
about sequence and emphasis of topics.

This observation, of course, merely notes the existence of

4

an ongoing controversy of what constitutes an appropriate high
school curriculum in "computer education."

2. In particular, we note that high school courses, and
most textbooks, are particularly weak in their treatment of
debugging. While debugging is a critical, common activity in
computer programming, it is notable in its near absence from the
high school curriculum. Our work in remediation of errors
highlights the importance of strategies and skills to detect and
correct errors. (More will be said about this in terms of
classroom practice.)

13. Classroom Practice
1. Perhaps the most surprising observation of classroom

practice coming from our research is the fact that a sizeable
number of students in a class--as many as 251--may have
fundamental misconceptions of basic concepts, such as the
"semantic READ," and the presence and nature of those
misconceptions may go undetected (by teacher and students) for a
whole semester.

2. This indicates that the instructional practice is not
serving the students as well as it could. The simplest cure
might be to make the teacher aware of common misconceptions, and
cI.ovide materials to emphasize correct understanding of concepts
most susceptible to misunderstanding. Indeed, we found that
teachers readily adapted to handle misconceptions they were aware
of. A second, easily implemented but less than comprehensive
measure is to make available diagnostic paper-and-pencil tests or
software that could quickly pinpoint common misconceptions. At
the urging of the teachers with whom we worked, we are developing
a prototype of such diagnostic software. This will be especially
valuable to teachers, who lack the time and perhaps the training
to conduct individual protocol analyses of their several
students. A third measure is to provide more structure and
practice in debugging for students, -since many students
spontaneously correct their misconcaptions, given appropriate
tasks and feedback. A more radical solution would be to
emphasize more strongly the understanding of the "conceptual
machine" and the programming language, by first having the
students gain a firm skill in reading programs, and only then
going on to producing, or writing, programs. Several workers
have argued the virtue of having students study examples of
programs which contain commonly used coding "chunks" (e.g.,
Sheil, 1981).

We anticipate a continued fruitful relationship with the
schools as we share in the pursuit of better understanding and
teaching of computer programming.

5

Footnotes
1

Contact D. Sleeman or Brian Gong, Stanford School of
Education, for further information regarding this study.

2

Contact Jill Baxter, Stanford School of Education, for
further information regarding this study.

3

Contact Laiani Kuspa or D. Sleeman, Stanford School of
Education, for more information regarding this study.

References

Gentner, D. & Stevens, A.L. (Eds.). Mental Models. Hillsdale,
NJ: Lawrence Erlbaum Associates, 193.

Putnam, R., Sleeman, D., Baxter, J., & Kuspa, L. A Study o5
Misconceptions of High School BASIC Programmers. (submitted)

Sheil, B.A. Coping with Complexity. CIS-15. Palo Alto,
CA: Xeroxyalo Alto Research Center, 1981.

Sleeman, D., Baxter, J. Putnam, R., & Kuspa, L. Misconceptions
in High School Pascal Programmers. (submitted)

6

