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TEXT I: PROJECTIVE FPLANES

A projective plane can be abstractly defined to be a certain system I

consisting of a set of objects called "points” and a set of objects called
"1ines", together with a relation called "incidence", which are all subject
to the foilowing axioms:

(0) If point P is incident with line L, then and only then is l4ne L

incident with point P.

(1) If P and Q are two distinct points of nJ then there is one and

only one line of I incident with both P and Q.

(2) I1f L and M are two distinct lines of I, then there is one and

only one point of I incident with both L and M.

(3) There exists at least one set {P],PE,P3.P4} of four distinct points

of 1, no three of which are incident with the same line.

Note that axiom (3) impi: s that there exists at least one set
{LysLysbqslyd of four distinct 1ines of 1, no three of which are incident
with the same point. Indeed, if {PI’PZ’PB’P4} is the set of points the
existence of which is postulated in axiom (3), then we can define the 1ines
Ll’ LZ’ L3, and L4 as follows: L, is the unique line incident with P] and
Fz; L2 is the unique line incident with P2 and Ps; L3 is the unique line
incident with P, and P,; and Ly is the unique 1ine incident with P, and
P4.

Nothing in the above set of axioms implies that the number of points or

# Note: Ior mames of the Greelr lettors, see Appendix, page 88,



the number of lines in an abstract projective plane is infinite. In fact,
it is interesting to speculate what a projective plane with only finitely-
many points and finitely-many lines would look like. Let n be a positive

25 integer, and assume that N is a projective plane in which there is a line
which is incident with precisely n+1 distinct points. Then:
(A) Every line of 1 1is incident with precisely n+tl distinct points.
(B) Every point of T is incident with precisely n+1 distinct lines.
(C) There are precisely n2+n+1 distinct lines in 1.

30 (D) There are precisely n2+n+1 distinct points in I.
If n =1, there would only be three distinct points in 1, and this contradicts
axiom (3). Therefore, we see that there must be at least three points of I
incident with each line. If there are precisely three points incident with each
line in the plane, then the plane must consist of seven points a;d se‘en lines.

35 What does such a plane look 1ike? One way of representing such a plane is by

the matrix
1010100
1001010
0110010
0101100
11700001 '
0011001
000017 1]
where the "points" of the plane are the rows of the matrix, the "lines" of

the plane are the columns of the matrix, and a line is incident with a point

if and only if the entry of the matrix in the intersection of the given row

4o and given column equals 1.
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Another way of representing the same plane is by the following diagram.

Check to make sure that all of the axioms of a finite projective plane are

indeed satisfied by this example.

EXERCISES ON TEXT I:

I. Match the words in the first column with the words in the second column
that have the same meaning.

l. row having

2. distinct is assumed

3. consisting of one and only one

4. representing a certain numder of

5. precisely exactly

6. unique not the same

7. at least disagrees with

8. contradicts no fower tlan

9. is postulated horizontal array of numbers
10. intersection vertical array of numbers
11. finitely-many meeting point of two lines
12. satisfied condition fulfilled
13. column showing

T




II. To what d> the following words in the text refer?
A. "which are all" (lipe 3)
B. "which" (line 16)
C. "this" (line 31)
D. "such a plane" (line 35)
III. Comprehension.
A. The following questions refer to the diagram on the preceding page.

Answer each and give the number of the axiovm to which it refers.

1. Is there a line incident with both the point P, and the point P.?

yes/ne axiom no.

2. Is there more than one line incident with both the point Pl and
the point P2?

yes/no axiom no.
3. If L is the line incident with both the point Pl and the point P3

and if M 1is the line incident with both the point P4 and the point

P which point(s) is (are) incident with both L and ¥M?

5!
point(s) axiom no.

B. According to lines 31-32, 1if n = 1 then axiom (3) is contradicted.
Explain :/hy.

C. What would happen if n = 2?

D. Are all points of a projective plane incident with the same number of
lines?




IV. NWhen a word ending in -ING is not a verb.

We know that a word ending in -ING may often be a verb, as in the following
example: "it is interesting to speculate” (line 23). The words "the
following example" also contain a word ending in -ING. Here, however,
"following" is not a verb; it is an adjective describinc what kind of
example, the example which follows. But by changing tho stentence, we can
make "follows" a verb. (ire bato:, line 4)

Qhange the following phrases, where the word ending in ~ING is not a verb,
in the same way. The first one has been done for you.

- line -ING word verb
2 consisting of which consists of
4 tha  following axioms Che xjope which follow
35 One way of
representing
41 the following
diagram

v, Modal verbs.

Mark the sentence that means the same as the sentence from the text.
A. (lire 1) "A projective plane can be abstractly defined el

- 1. It is possible to abstractly define & projective plane
2. One may possibly abstractly define a projective plane
3. A projective plane could be abstractly defined

3

B. (line 16) "... we can define the lines ...

l. It is possible to define the lines
2. One may possibly define the lines
3. The lines could be defined

C. (line 23) "It is interesting tc speculate what a projective plane ...
would look like, "

1. Such a plane might have been interesting to imagine
2. Such a plane was interesting to imagine
3. Such a plane will be interesting to imagine




D. (line 31) "... there would only be three points ..."
l. There were only three points
2. There will only be three points
3. There would only have been three points
E. (line 32) "... there must be at least three points ..."
1. There had to be at least three points
2. There have to be at least three points
3. There would have been at least three points
F. (line 34) *"... the plane must consist of seven points ..."
1. The plane has to consist of seven points

2. The plane might consist of seven points
3. The plane could consist of seven points

VI. Simple sentences.

A simple sentence contains one clause consisting of a verdb and a subject.
We find the subject of the sentence by asking "who" or "what" did the action.
Lock at the following example:

(line 27) Bvery line of I is incident with precisely n+l distinct points.

verb: 1is incident
subject: every line of 1

Find the verb and subject in each of the following sentences.

A. Every po.nt of NI is incident with precisely m+l distinct lines.
verb:

subject:

B. There are precisely n2+n+1 distinct lines in 1.
verb:

subject:

C. There are precisely n2+n+1 distinct points in R,
verb:

subject:

10




D. What does such a plane look liMe?
verb:

subject:

E. Another way of representing the same plane is by the following diagram.
vaerb:

subject:

VII. Writer's comments.

Sometimes the writer explains or comments on the mathematical ideas he
presents. One such sentence is the following (lines 21-22): "Nothing in
the above set of axioms implies that the number of points or the number of
lines in an abstract projective plane is infimite." The writer points out,
in case the reader hasn't noticed, that the axioms do pot imply that the
plane is infinite.

Explain what the writer is trying to say in each of the following sentences:
A. (lines 22-24): In fact, it is interesting to speculate what a

projective plane with only finitely-many points and finitely-many lines
would look like.

B. (line 35): What does such a plane look line?

11
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TEXT II: INFINITE MATRICES AND CONVERGENT SEQUENCES

Let N be the set of all natural numbers. An infinite real matrix

T is & function from the Cartesian product N x N to the set of real
numbers. We denote T by [tij]’ where tij = T({,j) for each pair
(i,j) of natural numbers. If {aj} is a sequence of real numbers having
the property that the infinite series ﬁ?;1 tijaj converges for each
natural number 1, then we can define a sequence of real numbers {hi}
by setting b,i = f?;1 tijaj for each natural number 1. Such a sequence
is called a transform of {aj} by the infinite matrix T.

An infinite real matrix T = [tij] is called a Toeplitz matrix if

and only if the following conditions are satisfied:
(1} For every convergent sequance {aj}. the transform {bi} by the
matrix T of {aj} is well-defined; and

(2) Timg by = limy  a;.

For example, the infinite real matrix T = [t13] defined by

1/1 if 1<j<i
ti={
J 0 otherwise

is a Toeplitz matrix.

A divergent sequence may be transformed by a Toeplitz matrix into a
convergent sequence. For example, if a = (—1)j+1 for each natural
number Jj, then the sequence {aj} diverges, but its transform by the

Toeplitz matrix T, defined in the above example, is the sequence {bi}

12
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with b, = [1+ (-1)i+1]/2i, which converges to 0.

More generally, if {aj} is any divergent sequence each of the terms
of which is equal to 1 or to -1, then there exists a Toeplitz matrix
T which transforms it into a convergent seguence. Such a matrix T = [t{j]
can be defined in the following manner: let {"i} be a strictly
increasing sequence of natural numbers having the property that a“i =
.aniﬂ for each natural number i. Define tij to equal 1/2 if
Jd =0y
[tij] is a Toeplitz matrix which transforms {aj} into the 0-sequence.

or if J = n1+1. Otherwise define tij to equal 0. Then T =

On the other hand, for any given Toeplitz matrix T there exists a
sequence {aj}, each of the terms of which is equal to 1 or to -1, which
is transformed by T into a divergent sequence. In other words, we see
that some Toeplitz matrices transform scme sequence§ the terms of which
are equal to 1 or to -1, into convergent sequences, but no Toeplitz
matrices transform all such sequences into convergent sequences. The
oroof of this statement is based on a characterization of Toeplitz matrices

first prover by Toeplitz in 1911:

THEOREM: An infinite real matrix T = [tij] is a Toer'itz matrix

if and only if the following conditions are satisfied:

(1) There exists a real number r such that fmnT ltijl <r for

all natural numbers 1;

(2) Timy R 1;

(3) 'Hm,i_m tij = 0 for every natural number Jj.

13



-10-

EXERCISES ON TEXT II:

I. Match the words in the first column with

having the opposite meaning.

1. following
2. infinite
3. converge
4. increasing
5. equal

II. To what do the following words in the text refer?

A. "Such a sequence (line 7) a.
B. "its" (line 19) a.
C. ‘“which" (lipe 21) a.
L. "which" (line 23) a.
E. "which" (line 24) a.
F. "it" (line 24) a.
G. "which" (line 31) a.
H. "which" (line 33) a.
I. "such sequences" (line 35) a.

III. Verbs: active and passive.

HTHTT

equivalent
meaning
decreasing
diverge *
previous
verge
indefinite
unequal
finite

a.}
e
natural number J
Toeplitz matrix T

terms

Toeplitz matrix T

Toeplitz matrix T

Toeplitz matrix T
Toeplitz matrices

convergent
seguences

bU
b.

the words in the second column

Choose a or b.

{bl.}
sequence {aj}
sequence {ﬁk}

any divergent
sequence {aj}

£aj}

any divergent
sequence {aj}

sequence xaj}
some sequences

some sequences

The following sentence contains the verb "denote" in the active voice:

(line 3) "We denote T by [t,

rewritten using the passive vaiéé as follows:

"
by [tij]’ where ...".

Rewrite the following using the passive voice.

], where ..." . This sentence can be
"The matrix T Iis denoted

A. (line 6) " ... we can define a sequence of real numbers ..."

14
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B. (line 33) "... scme Toeplitz matrices transform some sequences ..."
C. (lines 34-35) "... but no Toeplitz matrices transform all such
sequences into convergent sequences."”
Rewrite the following using the active voice.
D. (line 17) "A divergent sequence may be transformed by a Toeplitz matrix ..."

E. (lines 24-25) ®Such a matrix T = [ti’] can be dafined in the following
manner:" J

F. (lines 30-32) "... there exists a sequence {a }, .... which is
transformed by T into a divergent sequence."”

G. (lines 35-36) "The proof of this statement is based on a characterization
of Toeplitz matrices ..."

IV. Verb used as adjective/expanded forms

In the following sentence the word "defined" is the past participle of
the verb "to define": (lines 14-15) "For example, the infinite matrix
P = [tij] defined by ... is & Toeplitz matrix." Since the word *defined"

is not accompanied by the auxiliary verb "is" or "was", however, it is not
used as a verb in this sentence. Instead, it functions as an adjective

to describe the noun phrase "the infinite matrix T = [tij]”. The verk in
this sentence is "is" (line 16).

This sentence can be expanded by using the relative pronoun “which” in
the following way: "For example, the infinite matrix T = [tij]‘ which is
defined by ..., is a Toeplitz matrix.”

Expand the following phrases and clauses from the text. The first one is
done for you.

A. (lines 19-20) " ... but its transform by the Toeplitz matrix T,
defined in the above example, is ... "

expanded form: "... matrix T, wiich is/was defiped in ..."
B. (lines 25-26) "a strictly increasing sequence”

ﬂ

C. (line 26) "natural numbers having the property ...

15
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p. (line 30) "for any given Toeplitz matrix TV
E. (lines 36-37) "a characterization ... first proven by Toeplitz in 1911"

F. (line 39) "the following conditions”

Rewrite the following clauses without the relative pronoun "which".

G. (lines 23-24) "... then there exists a Torplitz matrix T which
transforms it into a convergent segquence.

H. (line 29) "... a Toeplitz matrix which transfcrms {aj} into the

0-sequence®

Fill in the followinz table by changing these sentences in the text. The
first one has been don= for you.

HnesT active passive adjective expauded

L

-5 — R - {aj} is a sequence {aj} is a sequence of
of real number:; real numbers which have

heving the property| the p.operty ...

- e 8

6 we can der.inc &
suquence .of 1 al
numbers by se. ting]
o

» = tl L3 »
b; £j=1 1373
14 the infinite real
matrix T = [t,.]
defined by ...lj

24-25 Such a matrix can
be defined in the
following manner:

V. Sentence function

A. Definitions: A definition gives the meaning of a word or phrase. For
exampie, the sentence in lines 1-3 is a definition: "An infinite real matrix
v is a function from the Cartesian product N X N to the set of real

16
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numhers." The skeleton of this sentence is:
An ... is a ... .
Definitions can also be recognized from the following key words and structures:
A ... is called a ...

e define +.. by ... where ...
We can define ... if ...
and so forth. In the table below, list the sentences in the text which

contain a definition, indicating the words which mark the skeleton of the
sentence. The first one has been done for you.

lines key words of definition
1-3 An infinite real matrix T is a function from ... to ...

B. General statements: Some statements assert that something is always
true. Such statements are marked by words such as "every”, "always”, "any",
and "all”. In the following table, list the sentences containing general
statements, and give the ey word(s) which show this. The first one has

already been done for you.

) lines key words of general statement
-z Let e e & m . ¢ all

17
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C. Conditional statements: Often a statement asserts that something is
true under certain conditions. Such statements are signaled by words

such as "some", "if and only if", "such", "otherwise", "where ... for ...",
and so forth. In the following table, list the sentences containing
conditional statements, and indicate the key word(s) which show this.

The first one has already been deone for you.

lines key words of conditional statement

3-4 We denote ... by ... where ... for each pair ...

Note that, in a mathematical context, "some" implies existence, whereas
"every" does not. Look at the following two sentences:

Every pink elephant has ten feet.

Some pink elephants have ten feet.
The first sentence can be true; it states that if there were such things as
pink elephants then they would all have ten feet. The second sentence,
however, states that there are existing pink elephants and that some of them
have ten feet while perhaps others have some other number of feet. The second
sentence is false.

Simple sentences.

In Exercise VI on Text I we characterized simple sentences. In the following
table, list the simple sentences appe@ring in Text II. For each, give the
subject and the verb. The first one has been decne for you.

line(s) subject verh
1 you (understood) Let

18



VII.

~}15=-

comprehension

A\

What is the relationship between {aj} and {bi}?
in lines 14-16, what will happen if we omit the condition "0 otherwise"?

Can any Toeplitz matrix transform all divergent sequences, each of whose
terms equals 1 or -1, Iinto convergent sequences? (Give line numbers
in the text to support your answer.)

Can every divergent sequence, each of whose terms equals 1 or -1, be
transformed by a Toeplitz matrix into a cuanvergent sequence? (Give line
numbers in the text to support your answer.)

19
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TEXT III: RELATIONS

If S and T are nonempty sets, then we define the Cartesian product

of S and T to be the set of all ordered pairs of the fors (s,t), where
s€S and t € T. We denote the Cartesian product of S and T by
S x T. Any nonempty subset of S x T 1is called a relation between S and
T. We will denote the relations between S and T by capital Greek

letters.

EXAMPLE: 1f S =T = the set of ali real numbers then

¢

and

(sot) | 62+ t2 =1}

¥
are relations between S and T.

A ralation on a nonempty set S is defined to be a relation between S
and itself, that is to say, a nonempty subset of S x S. The two relations
defined in the above example are relations on the set of real numbers. Among
the various types of relations one can define on a set S, we single

out for special emphasis a class of relations known as equivalence relations.

An equivalence relation on a set S is a relation ¢ satisfying the
following three conditions:

(1) (Reflexivity) If s €S then (s,s) € ¢.

(2) (Symmetry) If (s,s') € ¢ then (s',s) € .
(3) (Transitivity) If (s,s') € & and if (s',s") € ¢ then (s,s") € ¢.

20
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EXAM™ c: Let S = {1,2,3}. Then S xS has nine elements, and so there
are 311 possible relations defined on S. Of these, only five are equivalence
relations, namely

&= S x3$;

2 {(1,1),(2,2):(3,3),(1,3),(3,1) 5
05 = ((1,1),(2,2),(3,3),(1,2),(2,1) 13
¢ = {(1.1),(2,2),(3,3),(2,3),(3,2)};
¢y = {({1,1),(2,2),(3,3}}.

¢

If ¢ is a relation on a set S, it is sometimes convenient to write
s & s' instead of (s,s') € ¢. This is particularly true in the case of
equivalence relations. Such relations are often denoted by one of the
following symbols: ~, =, =, m. Thus we write s ~s' instead of (s,s') € ~.
Equivalence relations defined on a nonempty set S give rise to
partitions of the set, in the following sense: a collection {A1 | 1€ a}
of nonempty subsets of S is said to be a partition of S if and only if
the following :wo conditions are satisfied:
(1) S = Ujeq Ay
(2) Ai n Aj = @ whenever i # .
Any partition {Ai} of S defines an equivalence relation ~ on S5 as
follows: if s and s' are elements of S, then » ~s' if and only if
s and s' both belong to the same set Ak of the partition.
Conversely, suppose that ~ 1s an equivalence relation defined on a set

S. For each element s of S, let B(s) = {s' €3 | s ~s'}. This set

21



45 1s called the equivalence class of s with respect to the relation ~. Let

T be a subset of S consisting of precisely one representative from each
equivalence class of elements of S. Then {B(s) | s € T} 1is a partition
of the set S. To see why this is true, we note that for any two elements

s and s' of S, we have s ~s' 1if and only if B(s) = B(s').

50 EXAMPLE: Let Z be the set of integers. We define an equivalence
relation ~ on Z by saying that n~k 1if and only if n-k 1is an
even number. Then this relation defines two distinct equivalence classes
of integers: B(1), which is the set of all odd numbers; and B(2), which
is the set of all even numbers. Clearly {B{(1), B(2)} 1is a partition

55 of Z.

EXERCISES ON TEXT III:

I. HMatch the symbol in the first column with its name in the second column
by writing the correct number in the blank space.

l. € is an element of
2. x is equivalent to
3. ! double prime

4. ~ Iintersection

5. U Cartesian product
6. N prime

7. " union

g. 52 s squared

II. Match the mathematical expression in the first column with its translation
into words in the second column by writing the correct number in the

blank space.

22




III.

Iv.

(line 3)

s&€ S5 the set of A,, av 1 ranges over Y]
(line 4) §x 7T

s and s' are equivalent with
respect to ¢

s is an element of S

the set S having elements 1,2,3

S equals the union of the Ai‘ as 1
ranges over

the Cartesian product of § and T

(line 22) S = {i,2,3}
(line 31) (s,s') € ¢
(line 33) = ~g'

(1ine 35) {a; | i €q}

(line 38) s = UiEQ A s is related tc s' by ~

Aniin

To what words in the text do the following words refer?

(line 113) *itself"

(line 13) "the two relations"
(line 23) "Of these"”

(line 48) "This is true”

(line 52) "This relation”

Find the verb and the subject of each of the follewing sentences:

A.

De

(lines 4-5) "Any nonempty subset of § X T is called a relation between
s and T."

verb:

subject:

(lines 5-6) "We will denote the relations between S and T by
capital Greek letters."”

verb!

subject:

(lines 17-18) "An equivalence relation on & set 8§ is a relation satisfying
the following three conditions:"

verb:

subject:

(lines 13-14) nrhe two relations defined in the above example are relations
on the set of real numbers."

verb:

subject:

23
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(lines 31-32) "This is particularly true in the case of equivalence
relations."”

verb:
subject:

(lines 32-33) "“Such relations are often dencted by one of the following
symbols: ..."

varb:

subject:

(line 33) "Thus we write ..."
verb:

subject:

(lines 44-45) "This set is called the equivalence class of S with
respect to the relation ~."

verb:

subject:

(lines 47-48) "Then {B(s) | s € T} is a partition of the set S.”
verb:

subject:

(line 50) "Let Z be the set of integers.”

verb:

svhject:

V. Sentence function

A.

pefinitions: In Exercise V on Text II we discussed definitions and how

to recognize them. In the table below, list the sentences in the text which
contain a definition, indicating the words which mark the skeleton of the

sentence.

line(s) key words of definition
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B. Denotation: The writer often explains *the signs by which he wiil express
a4 quantity or & relationship by saying that he will "write" or "denr " it

ir a particular way. Denotation differs from definition in that th riter
is not defining what a concept is, but merely assigning it a symbol. In the
tatle below, list the sentences in the text which contain statements of this
kind. The first one has been done for you.

line(s) key words of denotation

3~-4 We denote ... by § x T

C. Classification: A classification is a statement that places a given item
within a certain class or group, One example of a classificatior is this
statement: "An apple is a kind of fruit.” In the table below, list the
sentences containing classification statements. The first one has been

done for you.

line(s) key words of classification

13-14 The two relations ... are relations on the set of real numbers

Verbs: active and passive

The active and passive wvoices were discussed in Exercise III on Text II
and expanded forms were discussed in Exercise IV.

A. In the table below, list the sentences containing verbs in the active
veice. GCive line numbers and the verb of ea~h sentence. The first

one has been done for jyou.

25



line(s) verb
1 define

B. In the table below, list the sentences containing verbs in the passive
voice. Give line numbsrs and the verb of each sentence. The first one
has been done for you.

line (s) verb
4 is called

C. It is possible to expand a sentence containing a past participle (-ED. -T)
or a present participle (-ING) of a verb by adding the word “"which". To
the ~ED form, add the auxiliary verb IS, ARE, WAS, or WERE to form the
passive form of the verb. The -ING form becomes active when it is expanded
by using "which”.

Expand the following phrases and clauses from the text.

l. (lines 13-15) "The two relations defined in the alove example e

2. (lines 17-18) "An equivalence relation on 8 set § is a relation ...
satisfying the following three conditions.”
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3. (lines 22-23) "Then S % S has nine elements, and so there are 511
possible relations defined on §."

4. (line 34) "Equivalence relations defined on a ncnempty set S ..."

5. (lines 45-47) "let T be a subset of S consisting of precisely
one representative ..."

Comprehension
A. Which special type of relation is discussed in the texi?

B. According to lines 17-29, which of the following conditions does
the relation @2 satis"y? ,

1., reflexivity

2. symmetry

3. transitivity

4. all of the above

C. Look at the follossing sentences:
1. (lines 40-41) "Any partition {Ai} of S defines an equivalence

relation ~ on § ..."
2. (lines 43-44) “"Conversely, suppose that ~ 1is an equivalence relaticn

defined on a set S."”
which one of the following sentences would you expect tc follow sentence?(x3ﬁﬁ

a. "Equivalence relations defined on a nonempty set § give rise to

partitions of the set.”
b. "A collection of nonempty subsets of S§ is said to be a partition of §S...

c. "This set is called an equivalence class of elements of S."

How does the verb “define"” help you to answer?

D. According to lines 50-52, what would happen if n-k wore an odd number?
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TEXT IV: METRIC SPACES

1 A distance function defined on a nonempty set S {s a function d from S xS

to S such that for each S1s Soo and 54 in S the following conditions are
satisfied:
(1) d(ST'Sz) =0 if and only if s,y = 553
5 (2) d(syssy) = d(sp8)s
(3) d(s1.s3)_5 d(s1,52) + d(sa.s3).
As a rule, several dis‘. nce functions can be defined on the same set. For
example, if E s the usual Euclidean plane, then we can define three distance
functions on E as follows: if Py = (x1.y1) and P2 = (xz,yz) are points
10 in §, set
4y (PyPy) = [lxy - k)2 + (- v 213
dZ(PT’Pz) = max{lx2 - KTI‘ !yz - y][};
d3(PyaPy) = Ixp = xy1 * 1yp = ¥yl
A nonempty set S, together with a fixed distance function d defined

15 on it, is called a metric space. If s 1s a point in a metric space (S,d)

and if r is a positive real number, then we define the ball of radius r around

the point s to be Bs(r) = {s' €S | d(s,s') < r}. To see that the metric spaces
(E,dT), (E,dz), and (E,d3) are not the same, we note that
(1) In (E,dl) the ball B(Q’O)(l) consists of the interior of the disc of

20 radius 1 around the origin (0,0).

(2) In (E.dz) the ball E(O 0)(1) consists of the interior of the square with
vertices (1,1), (1,-1), (-1,1), and (-1,-1).

| 28
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(3) In (E,d3) the ball B(O,O)(]) consists of the interior »f the square
with vertices (1,0), (0,1), (-1,0), and (0,-1).

If (S,d) is a metric space, we say that a sequence <S4> of points in §
converges to a given point s* in S if and only if, for any ¢ > 0, there exists
a natural number n such that d(sf,s*) <¢ for all 1> n. As far as convergence
is concerned, all three of the above distance functions are equivalent. That
is to say, a §equence of points in E converges to a given point in E
with respect to one of these distance functions if and only if it converges
to that point with respect to the ather two.

To see why this is so, we must consider the notion of a topology defined
onaset S. If S is a nonempty set, then a topology defined on S is a set U
of subsets of S, containing both @ and S, which is closed under taking
finite intersections and arbitrary unions of its members. A subset V of a
topology U on S is called a basis for U 1if and only if U s just the
set of all possible unions of sets of members of V.

If d is a distance function defined on a nonempty set S, let ({B.(r) |
s€5S: r>0} be the basis for a topology on S. We will say that two distance
functians defined on S are equivalent if and only if they give rise to the

same topology on S 1in the above manner. Another way of saying this is the
following: two distance functions d and d' defined on a set S are
equivalent if and only if for every point § in S, and for every positive
real number r, there exist positive real numbers r' and r" such that

(1) d(s,s') <r=d'(s,s') <r'; and
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(2) d'(s,s') <r=d(s,s') <r".
With this definition in mind, the equivalence of the distance functions dl’
d,» and d3 defined on E 1is immediate.

Needless to say, the above argument does not imply that we cannot define two
nonequivalent distance functions on the same set. For example, we can deffine
another distance function d, on E as follows:

d4(P],P2) _ { 1 if PP, .

0 if Py=P

This function is clearly not equivalent to any of the other threw.

A

EXERCISES ON TEXT IV:

I. Fill in the drawing by writing the number of the appropriate word at the end
of the broken line.

center

radius L'
disc - -— o ==

interior ——
vertex
. distance function

- GER fEEE MR s @

oo By B e

II. To what in the text do the following words refer?
l. (line 15) "it"
2. (line 30) "it"
3. (line 31) "that point"
4. (line 31) "the other two"
5. (line 32) "this"
6. (line 34) ‘"which”
7. (line 35) "its"
8. (line 40) "they"
9. (line 54) '"the other three"
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III. Comprehension

A. What is the connection between the metric spaces (E,dl) and (E,dz)?

B. In terms of convergence, is there any difference between (E,dl} and
(E,ad 3) ?

C. Draw three graphs of the bhall B(G,G) (1) in (E'dl)' (E@ciz), and (8,63).

[

JF

(£,d,) (E,d,) (E,d)

IV. Phrase. showing the writer's comments.

To explain the importance of a certain idea or sentence, a writer may

begir a phrase with a comment. Although such phrases are not essentiagl

to the meaning of the sentence, they add a framework which clarifies the

writer's meaning. The phrase "for example" shows that the writer is about
' to give an example. Here is another kind of marker:

(line 7) "As a rule, several distance functions car be defined on the same set,.”

. The sentence would not lose its meaning if the phrase "Az a rule" were left
out. However the phrase "as a rule", which means "ip general”, emphasizes
the fact that the idea expressed in this Sentence is usually true.

Explain the purpose or function of each of the following phrases:

A. (lines 17-18) "To see that the metric spaces ... are not the same,"
B. (lines 27-28) "As far as convergence 1is concerned,”

C. (lines 28-28) “That is to say,"
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D, (line 32) "To see why this is so,”

E. (line 41) "Another way of vaying this is the following:"

F. (line 47) "With this definition in mind,”

G. (line 48) "Needless to say,”

V. General vs. qualified statements

Some words signal statements that are always true. Other words signal statements
that are true only under certain conditions. Such words include "if®, "if

and only if", "such that", “which", "where", "when", etc. These words qualify
the general statement, making it more specific.

Indicate whether the following sentences are general or qualified, and underline
the key word(s). The first one has been done for you.

Line(s) sentence general qualified

1-7 A distance function ... is a ... such that x
for each ... the following conditions

are satisfied:

7-13 For example, if E is the usual ..., then
we define three distance functions ...

25-27 If (S,d) is a metric space, we say that
... if and only if, for any, ..., there
exists ... such that ... for all ...

35~-37 A subset V of a ... 1is called ... 1if
end only if ... the set of all possible
unions of ...

54 This function is clearly not equivalent to
any of the other three;
7 As a rule, ssveral dictance functions can be

defined on the rnre set.
VI. Definition, explanation/expansion, example

The following sequence of sentences is very common in mathematical
writing: definition, explanation/expansion, example.
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Look at the following table, which contains lines 1-13 of the text:

line(s) key words sentence function(s)
1-7 A distance function ... is a function ... definition (f“ﬂl‘ﬁwd)

such that for each ... the following
conditions are satisfied:

7 As a rule, several ... can be defined ... .| general statement,
expansion
8-13 For example, if E ..., then we define example, definition

three distance functions ... as follows:

-

Fill in the following table In the same way.

1ine (s} | key words [ sentence function(s)
25-27 qualified definition
27-28 ‘ expansion
28-31 explanation
33-235 If ..., then a topology defined on § Iis
..., containing ..., which is closed
. under ...
35-37 A subset V of a topology ... is called a
. basis for U if and eonly if ...
38-39 If d is a distance function defined on
..., then ... is the basis for a topology
cn S.
39-41 We will say that twe ... are equivalecnt if
and only if they ... in the above manner
41-4¢6 rephrasing of
definivion
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(continuation)
line(s) key words sentence function(s)
49-50 ..., the above argument does not imply

that we cannot define two nonequivalent ...
51-53 definition/example
54 This ... clearly not equivalent to any....

!
vII. Compound sentences.

Two simple sentences may be combined into a single, long compound sentence

by placing a semi-colon (;) or comma and connecting word (, and , but , or)
in place of the period. For example, lcok at the following two sentences:

1. We can define another distance function d4 on E.

2. This function is not equivalent to the others.

These sentences may be connected in a number of ways. For example:

A. We can define another distance function 64 on E; this function ... .
B. We can ... on E, and this function ... .

C. We can ... on E, but this function ... .

In example B, the second half of the sentence, beginning with *and", follows
from the first half. In example C, the second half of the sentence,
beginning with "but", contrasts with the first half. Example A 1is
ambiguous; it may suggest either @ logical sequence or a contrast.

For each of the following sentences, find the verb and the subject. Then
combine them into a compound sentence.

A. 1. Several distance functions can be defined on the same set.
verhb:
subject:

2. We can define three distance functions on E.
verb:
subject:

Compound sentence combining 1 and 2:

B. 1. A nonempty set § ... 1s called a metric space.

verb:

subject:
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2. The metric spaces (E,dl), (E,dz), and (2,63) are not the same.
verb:
subject:

Compound sentence combiniig 1 and 2:

c. 1. The egquivalence of the distance functions dl' &2, and 63 defined
on E is immediate.
verb:
subject:
2. The above argument does not imply the converse.
verb:
subject:

Compund sentence combining 1 and 2:
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TEXT V: PEANO'S POSTULATES FOR THE NATURAL NUMBERS

In 1889 the Italian mathematician G. Peano formulated a set of
five postulates which state in precise mathematical language those
properties of the natural numbers which we feel to be intuitively obvious.
These postulates are the following:
(1) 1 1is a natural number.
(I1) To every natural number n there is assigned a natural number
S(n), called the successor of n.
(II1) If n and m are different natural numbers, then S(n) # S(m).
(IV) There is no natural number n satisfying S(n) = 1.
(V) If U s a set of natural numbers containing 1 and having the
property that if n belongs to U then S(n) belongs to U, then
U equals the set of all natural numbers.
We normally denote the successor of a natural number n by n+l instead of
S(n).
Peano's fifth postulate is often called the Principle of Mathematical

Induction, and there are many equivalent ways of formulating it. One

way in which this prinicple is often stated is the following: if P s

a property of the natu . . " that
(1) 1 has property P;
(i1) If n has property P, then so does n+l;

then all natural numbers must have property P. A proof which makes

use of the Principle of Mathematical Induction must therefore have two
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parts: the basis, which shows that 1 has property P, and the step,
which shows that if n has property P, then so does n+l. To see how

this works, let us consider a simple proof by mathematical induction.

THEOREM: If n is a natural number, then nz-n is always an even number.

PROOF: If n=1 then 12 -1=0, and this is an even number. Thus
we have proven the basis of the induction. Now assume that n is a
natural number having the property that nz-n is even. Then (n+1)2 - (n¥1) =
(n2+2n+1)-(n+1) = nlen = (nz— n)+2n. But nz-n is an even number, and 2n
is also an even number. Since the sum of two even numbers is even, this

proves that (n+1)2-(n+1) is also an evern number. Thus we have proven

the step of the induction. !

We can replace postulates (II), (III), and (IV) by a single postulate:

(*) There exists a one-to-one function S from the set of natural
numbers to itself, the image of which does not contain 1.

Since there ran exist no one-to-one correspondence between a finite set
and one of its proper subsets, postulate (*) implies that the set of all
natural numbers is infinite. It is therefore sometimes called the Postulate of
Infinity. Is there a natural number other than 1 which does not belong
to the image of the function S? The answer to this question provides another

good example of the application of the Principle of Mathematical Induction.

THEOREM: The only natural number which is not the successor of a

natural number is 1.
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PROOF: Let W be the image of the function S; that is, W is the set of
all natural numbers of the form S(n), where n 1{is a natural number. Let
U= {1} UW. Then surely 1€ U, and if n belongs to U, then S(n)

certainly belongs to U (since it belongs to W by the definition of W).
Therefore, by the Principle of Mathematical Induction, U equals the set
of all natural numbers. This means that every natural number other than 1

is a member of W and so is the successor of some other natural number. 0

EXERCISES ON TEXT V:

I. Match the word in the first column with the word in the second column

having the same meaning.

l. containing following
2. obvious characteristic
3. surely clear
4. proper fulfilling
5. succeeding including
6. provide state
7. formulate substitute
8. property not equal te the whole
9. replace give
10. satisfy:ng certainly
1ll1. precise exact
II. To which words in the text do the following words refer? Choose a or b.
1. (line 3) "which" a. numbers b. properties
2. (line 24) "so does"” a. has property P b. have two parts
3. (line 36) "itself" a. function S b. set of natural numbers
4. (line 38) "its" a. postulate (*) b, a finite set
5. (line 39) "It a. postulate (%) b. a finite set
6. (line 48) "it" a. S(n) b. U
III. Since

The word "since" has two meanings, depending how it is used in the sentence.

One meaning is "from a certain time

38
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other meaning occurs when "since" is used as a connecting word; it is
then used to mean "because": Since it was raining, I decided to take an
umbrella.

In the following sentences, which of the two meanings does "since" have:
(a) "from a certain time", or (b} '"because"?

A. (lines 31-32) "Since the sum of two even numbers Is even, this proves
that (n+1)2-(n+1) is alsc an even number."

B. (lines 37-30) "Since there can exist no one-to-one correspondence ...,
postulate (*) implies that the set of all natural numbers is infinite.”

C. (lines 47-48) '"Then surely ... (since it belongs to W by the
definition of W}."

Phrases showing the writer's comments.

Phrases showing the writer's comments were discussed in Exercise IV on Text IV.
For each of the following sentences from the text, indicate whether it is

(1) in the formal language of mathematics, cr (2) the writer's comments

about mathematics. The first one has been dene for you.

A. (lines 27-28) "Thus we have proven the base of the induction.” 2

B. (lines 31~32) "Since the sum of two even numbers is even, this

proves that (n+1)2-(n+1) is also an even number.”

C. (lines 35-36) "There exists a one-to-one function S from the
set of natural numbers to itself, the image of which does not
contain 1."

p. (lines 2-') "... those properties of the nstural numbers which
we feel to be intuitively obvious.”

E. (line 5) "1 is a natural number.”

F. (lines 24-25) "To see how this works, let us consider & simple
proof by mathematical induction.”

(line 27) "If n =1 then 12 -1 =0, and this is an even
number."

[y
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V. Cclauses and phrases.

A clause contains a verb and a subject. For example, in

(lines 27-28): "Thus we have proven the base of the induction.”

the underlined part is a clause, the verb of which is "have proven” and
the subject of which (found by asking “who?" or *what?") is "we®. Note
that the past participle “proven" cannot be considered a verb without the
auxiliary "have”. In general, the present participle (-ING) and the
past participle ( -ED, -EN) of a verb cannot be considered as verbs without
an auxiliary. Examples of auxiliary verbs are "has," “have,”" "is," and "are,"

In the following sentences, indicate which verb forms function as verbs.

A. (lines 6~7) "To every natural number n there is assigned a
natural number S(n), called the successor of n."

l. 1is assigned
2. called

B. (line 9) "There is no natural number n satisfying S(n) = 1."

1. 1is
2, satisfying

C. To every natural number n there is assigned a natural number S(n)
which is called the successor of n.

l. 1s assigned
2. 1s called

D. There is no natural number n which satisfies S(n) = 1.

1. is
2. satisfies
aither a subject or
A group of words which does not have/a verb is called a phrase. The
following are phrases: (line 7) "called the successor of n", and

(line 9) '"satisfying S(n) = 1",

vI. Compound sentences.

Compcund sentences were discussed in Exercise VII on Text IV. When two
simple sentences are joined to make up a compound sentence, each becomes a
clause. Since each of these clauses has its own werb and subject, it is

called independent.
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For example, here are two simple sentences:
Let A be an even integer. ILet B be an odd integer.
They can be joined in either of the following ways:
l. Let A be an even integer; let B be an odd integer.
2. Let A be an even integer, and let B be an odd integer.
Each of these compound sentences has two independent clauses, as follows:

connector - Subject verb
first independent
clause you (understood) Let
- second independent : / ., and you (understood) let
clause

- Note that there is no connector at the beginning of the first clause, whereas
there is a connector to join the second cause to the first,

In the following compound sentences, give the verbs, subjects, and connector.

connector subzect verh

A. (lines 15-16) "Peanc's fifth
postulate is often called the
Principle of Mathematical
Induction, and there are many
equivalent ways of formulating it."

B. (lines 30-31) “But nz-n is an
even number, and 2n is alsc an
even number."

VII. Comprehension

Each of the following sta: .ments is either true or false. For each statement,
give the line number, and if it is false, explain why.

lines T/F - why

A. Peano's postulates state properties of the
natural numbers that are difficult to '
understand.

B. We usuvally denote the successor cf a natural
number n by n+l.

€. There is only one way of formulating
Peanc's fifth postulate.
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lines

T/F - why

A proof which makes use of the Principle of
Mathematical Induction need have enly cne part:
either the hase or the step.

The sum of tawo even numbers can never be an
odd number.

We can replace postulate (II) by postulate (*).
Between & finite set and one of its proper
subsets it is sometimes possible te construct

a one-to-one correspondence.

The question in lines 40-41 is answered in
lines 41-42.
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TEXT VI: MONOIDS

If S 1s a nonempty set then a function from S xS to S 1is called

a binary operation on S. A nonempty set together with at least one

binary operation satisfying certain given conditions is called an algebraic

structure. There are several types of algebraic structures of varying degrees

of complexity which have proven to be of use in mathematics and which have
been extensively studied.

Let us Took at a very simple type of algebraic structure. A set S
with & single binary operation * defined on it is called a semigroup if
and only if this operation is associative,; i.e., if and only if
a*(b*c) = (a*b)*c for any three elements 2 b, and ¢ in S. The
set Z of integers together with the operation of addition forms a semigroup.
The set Z of integers together with the operation of subtraction does not form
a semigroup. The set of positive integers together with the operation of taking
greatest common divisor forms a semigroup. So does the set of negative integers
together with the operation of taking maximum.

A semigroup (S,*) is called a monoid if and only if there exists an
element e of S satisfying the condition that s*e = s = e*s for all
elements s of S. Such an element is called an identity of the monoid.

Any monoid has at most one identity. Indeed, if f and e are both
identities of a monoid (S,*), then e = e*f = f. Therefore, any monoid

has precisely one identity.
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Since monoids wure more "complicated" algebraic structures--they satisfy
more conditions--we expect them to be more "1nterestingf to the mathematician
and at “he same time expect to find less of them. The set of positive
integers together with the operation of addition is a semigroup which is
not a monoid. The set of integers, together with the operation of taking
maximum, is another example ¢f a semigroup which is not a monoid.

A function o from a monoid (S,*) to itself is said to be an

endomorphism of the monoid if and only if the following two conditions are

satisfied:

(1) a(s)*a(s') = a(s*s') for all s, s' €S;

(2) ale) = e.

Let us denote the set of all endomorphisms of a menoid (S,f) by End(S).
This set is nonempty since it surely contains the function & defined by
§(s) = s for all s € S.

Composition of functions is a binary operation on End(S). That is to say,
if a, 8 € End(S) then the function a%8 defined by aQB(s) = a(p!s)) for all
s €S 1is an endomorphism of S. To see this, note that for all s, s’ €5 we
have o%B(s*s') = a(B(s*s')) = a(B(s)*a(s')) = a(B(s))*a(B(s')) = a’B(s)*"8(s").
Moreover, oBle) = a(p{e)) = afe) = e. In fact, End(S) together with the
operation of composition is a semigroup, since composition of functions is
easily seen to be associative. For any a € End(S), we have a’s = a = &%,
and so we see that & 1is the identity element of End(S). Therefore End\S)

is in fact a monoid.

Thus we have seen how to build a monoid End(S) from a given monoid S.
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We can, of course, repeat this process and define another monoid Endz(s) to
be End(End(S)). In general, we can define the monoid Endn(S) to be
End(Endn_T(S)) for every positive integer n greater than 2.

If a 1s an endomorphism of a meroid S, then the image of o is a

50 submonoid of S. That is to say, it is a subset of S which is a monoid

under the same operation used in S. We will denote this submonoid of S by
im{a). If we apply o to every element in 1im{a}, we obtain a submonoid of
im(a), which we denote by im(uz). More generally, we can define fm(un) to
be the submonoid of im(un'l) obtained by applying o to every element of

55 im(a"'l), where n 1is any positive integer greater than 2.

EXERCISES ON TEXT VI:

I. Match the words in the first column with the words in the second column having
the same meaning.

1. satisfying that is to say
2. conlitions fulfilling
. 3. several exactly
4 varying widely
5. extensively requirements
6. 1. e. many
7. precisely get
8. moreover different
g since becavse
10. therefore furthermore
ll. obtain thus

ITI. To what do the following words Iin the text refer?
A. "which" (line 6}

B. "it" (line 8)
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c. "do" (line 14)
D. "them" (line 23)

E. Uit" (linpe 50)

Parallel structures and enumeration.

A writer often presents and develops a group of ideas together as a unit.
The definition of one term may be necessary to understand and define another
term. On the other hand, ideals may be contrasted with their negatives or
with related ideas.

A writer may wish to show how ideas are related by using sentences of
parallel structure. ILook at lines 10-15 of the text:

lines key words

10-11 The set ... together with the operation of ... forms a semigroup.

12-13 The set ... together with the operation of ... does not form a
semigroup.

13-14 The set ... together with the operation of ... forms a semigroup.

14-15 So does the set ... together with the operation of ... .

By repeating key words, the writer shows the similarity among the four ideas.
In the last sentence, the words "So does" show that the data in this sentence
behaves like the data in the previous sentences. There 1s, however, one
sentence of contrast: the data in lines 12-13 does not behave in the same way.

parallel structures appear again in lines 24-27. Give line numbers and
key words.

lines key words

Here, in addition to parallel structures, the word "another" marks the fact
that this example is the second in a ceries.

Enumeration is the numbering of a series of items. Often writers of mathematics
mark a series very clearly. Look at lines 28-32 in the text:
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lines key words

28-30 A ... is said to be ... if and only if the following two
conditions are satisfied:

31 (1)

32 (2)

In the first sentence, the writer states that two conditions must be
satisfied. Then he enumerates the two conditions, using the markers (1)
and (2) before each one.

Changing the subject without markers.

Markers of enumeration such as "one", "another", "first", *second”, "third",
etc. can be very helpful in finding each of a series of important points
and examples. Sometimes, however, writers do not give clear markers; the
reader must infer them from the context. Let us look at lines 1-7 in the
text:

line key words

1-2 If ... then ... is called a binary operation ... .

2-4 A ... with at least one binary operation ... is called an
algebraic structure.

4-6 There are several types of algebraic structures of varying
degrees of complexity ... .

7 Let us look at a very simple type of algebraic structure.

First the writer defines a binary operation because he needs to use this term
in the definition of an algebraic structure. The third sentence contains a
general sta:ement about algebraic structures. In the fourth sentence the
writer expresses his intention of beginning his disucssion with a simple type
of algebraic structure.

rook at lines 22-24: "Since monoids are more 'complicated’ algebraic
structures ..." . Here again we have the markers of enumeration. Among

the algebraic structures there are two types: “simple® and "more complicatad”.
rhese markers are not as clear as words such as "first" and "second": they
have to be recognized by the reader from the context.

sometimes the writer may change the topic of discussion without a marker.
consider line 36: "Composition of functions is a binary operation on End(S)."
From here on, the writer discusses End(S) and not S. Finally, from line 49
the author changes the subject again to a discussion of the image of an
endomorphism.
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V.

Language of proof,

A mathematical proof consists of four elements: definitions of the

relevant terms, a statement of the hypotheses assumed and of the assertion

to be proven, the writer's argument or reasoning, and the conclusion in which
the writer repeats what has been proven. Often, however, som of these
elements may be missing If the author feels that they are obvious to the
reader. Let us look at lines 16-21 of the text:

lines koy words sentence function

16-18 A ... is called ... if and only if ... definition

18 Such a ... 1is called an ... definition

19 Any monoid has at most one identity statement to be proven

19-20 Indeed, if ..., then ... writer's argument

20-21 Therefore, any monoid has precisely another statement to be
one identity proven

No argument is given for the last statement, since the writer assumes that

the reader sees that it is an obvious conclusion drawn from the definitions
on line 16-18 (which state that any monoid has at least one identity) and

the statement on line 19 (which states that any monoid has at _most one

identity).

Another proof appears in lines 36-44. Fill in the following table by using
any of the following possible sentence function(s): introduction,
expansion, writer's argument, definition, satement to be proven, conclusion.

lines key words sentence function
36 Composition ... Is & ... |

36-38 That is to say, if ... then ...

38-39 To see this, note that for all ...

40 Moreover, ...

41-42 In fact, ..., since ...

42-43 For any ... we have ... uvl 50 we see that . . .

43-44 Therefore End(S) is in fact a monoid

BEST COPY AVAILABLE
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vI. Comprehension

A. Explain why the set Z together with the operation of subtraction
does not form a semigroup. (line 12)

B. Explain why the set of positive integers together with the operation
of addition is a semigroup which is not a monoid. (lines 24-26)
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TEXT VII: MATROIDS

It is often the case in mathematics that a concept can be defined in
several equivalent ways, each of which presents new insights into the concept
or suggests new applications of it. We illustrate this by considering the

notion of a matroid.

A matroid M = (E,S) consists of a nonempty finite set E, together with a
nonempty collection S of subsets of E (called independent sets), which

satisfies the following conditions:
(1.1) Any subset of an element of S belongs to S.
(1.2) If I and J are elements of S with J having more elements than I,
then there exists an element x of J not in I with tha property that
I u {x} 1is an element of S.
For example, let E be a set of vectors which span a finitely-generated vector
space over a field F, and let S be the set of all linearly-independent subsets
of E.

It is easy to show that any independent set in M {s contained in a maximal
independent set, called a base, and that any two bases have the same number of
elements. This suggests another definition of a matroid, which can be shown to be
equivalent to the first: a matroid M = (E,B) corzists of a nonempty finite set
E, together with a nonempty collection B of subsets of E (called bases), which
satisfies the following conditions:

(2.1) No element of B properly contains any other element of B.
(2.2) I1f 1 and J are elements of B and if x € I, then there exists an

element y of J such that (I~ {xi) U {y} belongs to B.
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Let us call the number of elements in a base the rank cf the matroid. (This
25 s well-defined since all bases have the same number of elements.) Using the notion
of rank, we can give yet another definition of a matroid: a matroid M = (E,p)
consists of a nonempty finite set E, together with an integer-valued function ¢

(called its rank function), which is defined on the set of all subsets of E and

which satisfies the following conditions:
30 (3.1) For any subset A of E, p(A) is a nonnegative intgger no greater than
g the number of elements in A.
(3.2) If AcBcE then o(A) <p(B).
(3.3) If A and B are subsets of E then p(AUB) +p(AnB) < p(A) + p(B).

If A is a subset of E then the closure of A in E consists of the
35  set of all those elements x of E satisfying the condition that p(A U {x}) =
o(A). Clearly A is contained in its closure. This suggests another definition
of matroids, which can be shown to be equivalent to all of the previous ones:
a matroid M = (E,c) consists of a non-empty finite set E, together with a
function c from the family of all subsets of E to itself, which satisfies
40 the following conditions:
(4.1) For any subset A of E, Acc(A) = c(c(A)).
(4.2) If AcBcE then c(A) c c(B).
(4.3) 1f A 1is a subset of E and if x, y are elements of E satisfying
x € c(AU {y}) but x¢& c(A), then y € c(AU {x}).

45 Let us conclude by considering some additional examples of matroids:

(A) If E 1is a set having at least k elements, then we can define a matroid

591
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(8)

(C)

-48-

structure on E by taking as independent subsets of E all those subsets

having precisely k elements.

If E is the set of edges of a finite graph I then we define a matroid
structure on E as follows: 1if A 1is a subset of E then define p(A)
to be the number of vertices in the subgraph of I determined by A minus
the number of connected components in that subgraph.

Let E be any finite set of real numbers. Then we can define a matroid
structure on E by taking as independent subsets of E all sets of

elements of €& which are roots of some polynomial with rational coefficients.

EXERCISES ON TEXT VII:

II

II.

Match the words in the first column with the words in the second column having
the same meaning.

l. concept use
2. insight understanding

3. illustrate maximal independent set
4. considering notion

5. span examining

6. previous member

7. precisely show

8. base exactly

9. element before

10. application use

g
b
s
o}
.
g
8
2.
n
H
5
4]
h
"

To which words in the text do the
A. "each of which" (line 2)
B. "it" (line 3)

C. "this" (line 3)

5
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D. "This" (line 24)

E. "ones" (line 37)

I1I1I. Comprehension

A. The text gives four equivalent definitions of the matroid structure on a
nonempty finite set E. Using these definitions, fill in the following table:

definition | notation defining structures on E special term for it
1 M = (E,S) nonempty collection § of independent sets

subsets of E

B. For each of the examples A, B, and C, which definition is suitable?

examgle definition

A
B

c

iv. Introductions and transition passages.

In dn introduction the writer explains the purpose or importance of the
information which will follow. The first paragraph of the text (lines 1-14)
contains two such sentences. The first (lines 1-3) presents a general statement,
and the second (lines 3-4) explains that the rest of the text is an illustration
of this general statement, The introduction gives the text a frame without
which it would not be meaningful.

A transition passage appears between ideas; it concludes one and/or introduces
the next. One transition passage appears in lines 15-17. The sentence shows
how cne definition of a matroid leads to the next definition, which is introduced

in the following sentence.
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Find two other examples of transition passages in the text and give key words.

lines p key words

g

V. Parallel constructions.

{In Exercise III on Text VI we talked about parallel constructions.) Look
at the last paragraph of the text. It contains thres examples, each of
which begins with a given assumption and follows with a definition. The
key words, however, vary in each example. Fill in the following table:

axample given/key words definition/key words

A If E is a set then wa can define & matroid structure
having ... on E by ...

B

c
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TEXT VIII: GRAPHS OF FUNCTIONS

If f is a real-valued function of a real variable, then it is often
useful to represent f pictorially by considering the subset {(x,y) | y = f(x)}
of the plane. This subset of the plane is called the graph of the real-
valued function f.

While the graph of any real-valued function of a real variable is well-
defined in theory, there are some functions whose graphs are impossible, or
essentially impossible, to draw in practice. For example, one cannot draw an
accurate representation of the graph of the function f defined by:

{ x2 when x 1is a rational number

f(x) =
sin(x) when x 1is an irrational number
Even if the function is differentiable, its graph may not be accurately
drawable. For example, r.nsider the function
{ x2 sin(1/x) ifx#0

ifx=20

g(x) =

which is everywhere differentiable but whose graph cannot be drawn accurately
in the vicinity of the origin.

Nonetheless, if the function is sufficiently "nice", its graph can be
drawn and provides valuable information about the behavior of the function.
Fur example, the graph of a constant function f(x) = c 1is a line parallel
to the X-axis. If f(x) is an increasing function (namely, if f(xj) > f(xz)
when xy > xz), then the graph of f(x)} reflects this by rising as one
goes to the right and falling as one goes to the left. The opposit~ is
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true for the graph of a decreasing function. The graph c¢f the function h(x)
defined by
h(x) =n if n 1is an integer and n-1 < x <n

looks like a series of steps, and so functions such as this are called step

functions.

Not every curve in the plane is the graph of a function. Indeed, from
the very definition of a graph, we see that for any real number x there
can be only one real number y such that (x,y) belongs to the graph.
Pictorially, this means that every line in the plane parallel to the Y-axis
intersects the graph at only one point. Thus, for example, a circle cannot
be the graph of a real-valued function of a real variable. This condition
is also sufficient. That is to say, if I 1is a curve in the plane having
the property that every line in the plane parallel to the Y-axis intersects T
once and only once, then T is the graph of some real-valued function of a
real variable.

It is perfectly possible that a line in the plane parallel to the X-axis
may intersect the graph of a reaj-valued function of a real variable several
times. Indeed, we have already noted that if f(x) 1is a constant function
then its graph is itself such a line. However, a necessary and sufficient
condition for a function f to be invertible is that this cannot happen; i. e.,
£ is invertible if and only if lines parallel to the X-axis intersect the
graph of f at most once. If f and g are real-valued functions of a

real variable, then these functions are inverses of each other if and only
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if the graph of f 1is the reflection of the graph of g across the diagonal
x = y. (This condition means that a point (a,b) of the plane is in the
graph of f if and only if tﬁe point (b,a) 1s in the graph of g.)

In short, one can tell, by merely looking at the graph of a function,
whether the function is increasing, decreasing, or neither. One can also
tell whether the function is even (i.e., f(x) = f(-x) for all x) or
ndd (i.e., f(x) = -f(-x) for a1l x). One can also see if the function
has local minima or maxima and whether the furiction rises or falls at a faster
or slower rate. Tihus the graphical representation of functions is a compact
way of presenting information about them in a form from which human observers

can easily extract relevant data.

EXERCISES ON TEXT VIII:

I. Match the words in the first column with the words In the second column
having the same meaning.

1. consider show

2. while basically
3. essentially give

4. representation increase
5. accurate enough

6. in the vicinity of near

7. sufficient drawing
8. provide think about
9. reflection image

0. nonetheless al+louch
11, rise exact
l12. fall however
13. reflect obtain
14. extract decrease
15. information data
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III.

A word may take on different forms, depending on its part of speech. Fill
in the table below, giving the adjective, verb, and noun forms of some
words. The first line has been done for you.

adjective verb noun
pictorial picture picture
variable
practice
essential = =====
representation
drawable
differentiable
Jnverse

Intensifiers and qualifiers.

Some words emphasize or strengthen (intensify) the meaning of a sentence.
These words include "itself™, “very". *indeed”, and others. Other words
weaken or qualify the meaning of a sentence; these may include “sometimes”,
*may", and "would", among others.

For each of the following phrases, put & plus (+) if the underlined word(s)
strengthen(s) the meaning and a minus (-) if the underlined word(s) qualify(-ies)
the meaning. The first two have been done for you.

A. (lines 1-2) it is often useful _ -

3. (line 15) everywhere differentiable +

C. (lines 6-7) essentially impossible

D. (line 29) the very definition

E. (line 30) only one

F. (line 38) it is perfectly possible
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G. (line 33) may intersect
H. (line 40) Indeed
I. (line 41) graph is itself

J. (line 43) if ard onlglif

K. (line 44) at most once

L. (line 49) merely looking

To what words in the text do the following words refer?
A. (line 11) "its"

B. (line 21) "this"

C. (line 31) "this"

D. (line 41) "itself”

E. (line 42) "this"

Statements of contrast.

Statements of contrast are marked by words such as "but", "although",
"while", "nevertheless". Consider the following sentence:

(lines 5-7) "While the graph of any real-valued function of a real variable
is well-defined in theory, there are some functions whose graphs are
impossible, or essentially impossible, to draw in practice.”

This sentence contrasts the possibility of drawing the graph of any
real-valued function of a real variable in theory, on one hand, with the

impossibility, in practice, of drawing certain gr&phs,on the other hand.
One word marking the contrast in this sentence is "wWhile”.

In the following sentences, underline the words marking contrast.

A. (lines 17-18) "Nonetheless, if the function is sufficiently "nice",
its graph can be drawn ... ."

B. (line 28) "Not every curve in the plane is the graph of a function.”
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C. (lines 41-44) "However, a necessary and sufficient condition for a
function £ to be invertible is that this cannot happen; l.e., f
is invertible if and only if lines parallel to the X-axis intersect
the graph of f at most once.”

VI. Logical arguments.

A logical argument is usually composed of three elements:

A. Beginning or introduction: definition, general statement:

B. Middle or development: expansion, example(s), comparison/contrast;

C. End: result, conclusion, summary.

A mathematical text, even one without formal proofs, is usually composed

as a series of logical arguments where one idea is stated, developed, and
followed by another idea. The new idea may either agree with (i.e., add to)
or disagree with (i.e., contrast with) the previous idea.

In Text VIII, lines 1-4 contain the introduction to the entire text. Lines
5-48 contailn four main ideas, each one of which is developed, and lines
49-56 contain the conclusion of the text:

Let us analyse lines 5-48 further.

A. The impossibility of drawing certai: graphs.

lines key words sentence function
5-7 While the graph of any real-valued function contrast

is well~defined in theory, there are some
functions whose graphs are impossible to
draw in practice.

7=-10 For example, one cannot draw ... . example #1
11-12 Even if ..., its graph may not be another case

accurately drawable.

12-14 ror example, consider ... . example #2

B. Functions whose graphs can be drawn.

The next idea, appearing in lines 17-27, contrasts with the previous idea but
agrees with the introduction. This paragraph contains four examples.

Fill in the table below:
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lines key words - ‘sentence function
17-18 Nonetheless, if ..., its graph can be contrast
drawn ...
19-20 For example, example #1
example #2
example #3

example #4, definition

C. Not all curves are graphs of functions.

The next idea, appearing in lines 28-37, is a qualification explaining that
some curves may be drawn that are not functiors.

1. How many examples are given? Name it (them).

2. What is it (are they) an example (s) of?

3. What are the key words that help you to find the answers?

D. The graphs of invertible functions.

rLines 38-48 return to the idea that it is possible to draw graphs of functions.
The sentence in lines 34-37, in the previous paragraph, discusses a line parallel
to the Y-axis. The first sentence in this paragrarh (lines 38-40), by

contrast, discusses a line parallel to the X-axis.

1. (line 40) "Indeed, we have already noted ..." In which lines has the
writer noted this idea previously in the text?




2. The idea about invertible functions is developed in lines 41-48. Fill
in the following table, giving key words and sentence functions.

lines key words ‘sentence function

41-44
44-47
47-48

3. The conclusion of the text (lines 49-56), begins with three statements of
parallel form. Given the sentence function of each of them.

lines ksy words sentence function
49-50 In short, one can tell ... whether the

function IS see, OF oo »

50-52 One can also tell whether the function is
e e e o: s e & [

52-5¢ One can also see if the function has ... or
... and where the function ...

H, The main theme of the text is stated four times, Find these statements
and give the line numbers.

VII. Comprehension

A. Why is it not possible to draw a graph of these functions:
1. The function f, defined in lines 9-107

2. The function ¢, defined in lines 13-142
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B.

Cc.

According to lines 17-18, under what conditions is it possible to
draw the graph of a function?

Why is it not possible for a circle to be the graph of a real-valued
function of a real variable?

Match these descriptions with the graphs that follow them,

al
b.

cl
dl

€.

£.

g-

f(x) = ¢ is a line parallel to the X-axis; £ is a constant function
f(x) 1is an increasing function; f£(x) increases as Xx increases and
decreases as Xx decreases
f(x) 1is a decreasing function; f(x) decreases as x Jlincreases
f(x) 1is a step function
the graph of £ is a curve such that every line in the plane
parallel to the Y-axis irtersects the graph of f only once
the graph of f is the reflection of the graph of g across the
diagonal x =y
f(x) 1s an even function
f(x) is an odd function

Y Y

@

3_(*)
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TEXT IX: BINOMIAL COEFFICIENTS

1 If n is a positive integer, we define the number n! (read as "n
factorial") to be the product of all of the positive integers from 1 through n.
By convention, we also set 0! equal to 1. If k <n are nonnegative
integers, we define the number (E) to equal FﬂT%éFTT . The first theorem

5 will show that this number is always a positive integer and, indeed, it will

provide a recursive method of computing it.
THEOREM 1. If n is a positive integer then
0y _ (Ny - (N -
(1) (=)= =1 | |
ny, _ (N- n-
(2) For 1<k <n, we have (k) = (k-l) + ( K ).

10 PROOF: Rart (1) of the theorem follows directly from the definition of
(M. To prove part (2), we note that
k |
ny _ _nl
(k) - kI{n-k}!
- n*‘- ! n ]
k-1)!1{n-1- k(n-k}
. {(n-1)! 1,1
- mﬁﬁﬂfﬂr{n-k td
15 - (n-1)! + (n-1)!
(k=17T{n-k}T ~ kl(n-1-k}!
_ 4n=1 n-1
- (k"l) + ( k )* 0

The following theorem is known as the Binomial Theorem. Because of it, the

integers (2) are known as the binomial coefficients.

THEOREM 2. If n 1s any positive integer then

20 (x + y)" = £2=0 (;:)xn"k k,
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PROOF: We will prove this theorem by induction on n. For n =1, we have
(x +y) = (é)x + (})y, as desired. Therefore assume that n > 1 and thit we

have already established the formula
n-1 _ .n=1 ,n-1y n-1-k k
(x + Y) xk“ﬂ ( k )x y .

We can then compute (x + y)" as follows:
(x +y)" = (x +y)(x+ y)"]
= x(x + y)" T 4 y(x +y)

= x[2k=0 (n 'l)xn -1-K k] + _y[): (n-'l)xn-'l-kyk]

n-1

EUASPURS (i >+(“‘)3x""" + (Uhy".
By Theorem 1 we have (" 0 ) = (0) = (2_1) = (n) =1 and (2:}) + (";1) = (E)
for ali 0 < k < n, which proves that

(x + )" = 5.9 (ﬂ)xn'kyk. 0

The binomial coefficients (2) have another, very important, interpretation

in combinatorics, as we see from the following theorem.

THEOREM 3. If 0 <k <n are nonnegative integers then (2) is precisely

the number of k-element subsets of a set &ontaining n elements.

PROOF: We proceed by induction on n, the case n =1 being obvious.
let A be a set of n elements, where n is assumed now to be greater than 1.
Select an element 3 from A, and let B = A~ {ae}. Any k-element subset of
A either contains ag or it does not. Subsets of the first type are precisely
those obtained by taking a (k-1)-element subset of B and adding 3 to it. By
the induction hypothesis, there are (2:{) of these. Subsets of the second type

are precisely those obtained by taking k-element subsets of B. By the fnduction
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hypothesis, there are (“;]) of these. Therefore the total number of k-element

45 subsets of A s (::}) + (“;1). By Theorem 1, this equals (2). 0

EXERCISES ON TEXT IX:

I. A word may take on different forms, dependinj on its part of speech. Fill in
the following table. The first line has been done for you.

. verb noun
1. define definition
2. product
3. equal
4. provide
5. compute
6. proof
7. induction

8. assume

g, formula

10. interpretation

11. select

12. add
13. hypcthesis
1l4. combinatorics
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II.

III.

Iv.

Te what words

A.

B.

c.

D.

E.

F.

G.

(line
(line
(line
(line
{line
(line
(line
(l1ine
(line
(line

(line

3)

5)

6)

17)
4q)
40)
41)
42)
42)
44)
45)

in the text do the following words refer?
*this number”
l!i tﬂ
ﬁitﬂ
H-itﬁ
Nitﬂ
*the first type"
Nit”
¥these"
"the second type”
*these"

"this"

Markers of emphasis

Some words are used to emphasize a point. For each word below, give
the idea the writer is emphasizging. The first one has been done for you.

A.

(line 5)§ “indeed" the first theurem will show how to compute n recursively

(i1ine
(line
{(line
(line

(line

22)
23)
33)
38)

40)

*as desired”
"already"

"very important"
"

" now

"precisely"

The langquage of theorem and proof.

The text contains three theorems and their prcofs. We will examine each
theorem and proof separately, looking for the following sentence functions:
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given data, definition, denrotation, computation, legical argument, conclusion,
writer's statement of intention, writer's comment.

A. Let us examine lines 1-16, which contain Theorem 1 and its proof, as well
as the remarks preceding it.

line(s) key words sentence function
1-2 If n is a positive integer we define ... deflnition, denotation
from 1 through n.

3 By convention, we also set 01 egu.l to 1. definition, denotation

4 If ... we define ... definition, denotation

d~6 The first theorem will Show ... wrziter's intent

7-9 If n 1is a positive integer then ... statemaent of given data
and desired conclusion

10-16 PROOF: ... [ logical argument and
computation

B. For lines 17-32, which contain Theorem 2 and its proof, as well as
the remarks preceding it, fill in the table below

line(s) kay words sentence function
17
17-18 «e. are known as ... -
19-20
21 We will prove ... by ...
21-22 For n = 1, we have ...
22-24 given data
25-29 writer's intent,
computation
30-32 By ... we EKave ... and ... for all ... computation, conclusion

which proves ... .



C. Fill in the following table for lines 33-45.

line(s) key words sentence function

33-34 The ... have another, very important,
interpretation ..., as we see ...

35-36 | statement of given data
and desired conclusion

37 writer's intent

38 given data

39

39-40 Any ... either ... or it does not logical argqument

40-41

41-42

42=43

43-44

44-45 conclusion

45

V. Compdex sentences.

A. A complex sentence has at least two clauses: one independent clause
and one dependent clause. An independent clause makes sense as a complete
thought; it can be a separate statement. The following is an independent
clause:

(lines 1-2) " ... we define the number n! ... co be the product of all
positive integers from 1 through i.

The verb in it is "define” and its subject is "we". The next statement is
also an independent clause:

(line 1) "... n 1is a positive integer”

"

Here the verb is "is" and the subject is "n".
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By adding the connecting word "If" before the clause, the above statement
becomes a dependent clause:

(line 1) "If n 1is a positive integer, ... "

This clause depends on another, independent, clause to follow it in order
to finish the statemsnt and complete the thought. Thus, we have:

(lines 1-2) "“If n is a positive integer, we define ... to be the
product ..."

clause connecting word subject verb
dependent If n is
independent ———— we define

The dependent clause is not complete without the independent clause. Together,
they form a complex sentence.

B. There are other connecting words which introduce dependent clauses

Some of these are: "that", "as", "where", "when", "since", and “although". In
tha following complex sentences, underline the connecting word at the
beginning of the dependent clause.

1. (lines 3~4) "If k < n are nonnegative integers, we define ... to
equal ..."

2. (lines 33-34) "The birumial coefficients (n) have another ...
interpretation, as we see from the fbllow£n§ theorem."

3. (line 33) "Let A be ..., where n is assumed not to be greater than 1.~

C. The complex sentence should not be confused with the compound sentence,
where each clause is independent. Connecting words which permit the clause
to remain independent are "and”, "or", "but®. In the following compound
sentences, underline the connecting word at the beginning of the independent
clause.

1. (line 39) "Select an element a, from A and let B = A \~{ao}."

2. (lines 39-40) "Any k-element subset of A either contains ao
or it does not."

D. Note that the following sentence is made up of three clauses:

(lines 4-6) "The first theorem will show that this number is always ...
and ... it will provide ... ."
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The first half of the sentence contains two clauses, an independent and a
dependent clause (beginning with the connecting word “that"). The third
clause begins with the word "and" which signals the beginning of an
independent clause. This sentence, containing a dependent and two
indepenlent clauses, is called a compound-complex sentence.

clause connecting word gubject verb
independent = ——-—--- The first theorem will show
dependent that this number is
independent and it ' will provide

vI. Comprehension

A. How does the answer in line 16 prove part (2) of Theorem 17

B. In line 37, the writer says that the case n = 1 1is obvious. Why?
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TEXT X: CROSS PRODUCTS OF VECTORS

In general, it is not possible to define an algebraically-interesting
product of vectors in a vector space of arbitrary dimension over the field R

! we have, of course, the ordinary product of real

of real numbers. On the line R
numbers; 1in the place RZ we have the product obtained from the usual identification
of RZ with the field of complex numbers. In the space R3 one can define a

product, called the cross product, which is far less interesting from the

algebraic point of view but which {is of use in advanced calculus.
Llet u = (a} ,32,33) and v = (b.[,bz,b3) be vectors in 1R3. We define

the cross product of u and v, denoted by u x v, to be the vector

(a2b3-a3b2, a3b}-a1b3, albz-azbﬂ. Thus, for example, we note that
(]’0’0) X (0’1:0) = (0:0’1)’
(0’1!0) x (0!0’1} (1!0’0)!
(0i0l1) X (190;0) = (091,0).

By straightforward computation, we can now prove the following elementary

properties of the cress product.

THEOREM 1: If a€ R and if u, v, w € R°

then
(1) uxv=-(vxu);

(2) (u+tw) xv={uxv)+(wxv);

(3) alu x v) = (au) x v =u x (av);

(4) (uxv) xw+ (vxw)xu+ (wxu)xvs=0.

Note that if v € IR3 then by (1) we have v x v = =(v x v;. Since the
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0-vector is the only vector equal to its own negative, we immediately obtain

the following corollary to Theorem 1.
COROLLARY: If v € R then v x v = (0,0,0).

THEOREM 2: If u, v € R’ are nonzero vectors then W x v = (0,0,0) if

and only if there exists a nonzerc scalar a € R satisfying u = av.

PROOF: If u = av, then u x v = (0,0,0) by Theorem 1(3) and by the
Corollary to Theorem 1. Conversely, assume that u x v = (0,0,0), where
u = (a1,az,a3) and v = (b],bz,b3). Then
Since v # (0,0,0) then one of the bs is nonzero. Say b] # 0. By (*)
we see that
(%*) ay = a,bllbl; a, = a]bszl; a, = a1b3/b1
SGC u = (a]fbl)v. A similar result is obtained if we assume bz £0 or

3 # 0. d

The cross product has a clear geometric interpretation. Indeed, u x v

3 which is perpendicular to both u and v and the length

is the vector in R
of which equals Ju]|v|sin e, where 6 1is the angle between the vectors u and
v in the plane generated by them. Note that the length of u x v 1{s precisely
equal to the area of the parallelogram with sides u and v. The direction of
the vector u x v is chosen accorcing to the "right-hand rule'.

Using this geometric interpretation we see that Theorem 2 can be rephrased

as follows:
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vectors in R; then u-v =0 1if and only if u aud v are perpendicular.

COROLLARY: If u and v are nonzero vectors in R? then u x v = {0,0,0)

if and only if u and v are parallel.

Compare this result with the theorem stating that if » and v are nonzero

EXERCISES ON TEXT X:

I.

II.

Match the words in the first column with the words in the second column having

the same meaning.

1. ordinary repeated in different words
2. straightforward basic

3. elementary usual

4. properties get

5. i.mediately right away

6. assume direct

7. precisely exactly

8. generated by defined by

9. rephrased fulfilling (the condition)
10. satisfying characteristics
1l1. obtain suppose

Results

In mathematics, a line of reasoning often ends in & result.

Spotting the

result can help us understand the writer's chain of thought. Look at
lines 8-20 in the text:

lines key words sentence function
8 Let ... and ... be ... . given data

8-10 We define ... . definition

11-13 Thus, for example, ... . example

14-15 By ..., we can now prove the following ... . intent of writer
16-20 Theorem 1 theorem
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Theorem 1 is a result of the dafinition and explanations in lines 8-15.
(They do not constitute a proof of Theorem 1 of course, but form the
chain of thought which leads the writer to propose Theorem 1.)

Sometimes a result and its reasoning appear in the same sentence. Consider
the following lines in the text:

(lines 21-23) "Since the O-vector is the only vector equal to its own
negative, we immediately obtain the following corollary to Theorem 1.”

Here the reason is "Since the O-vector is ..." and the result is
"we ... obtain ..." . Often the connection between them is very blatant:

3 then v x v = (0,0,0)."

(line 2¢) "If v E R
Here the reason is "if v € ﬂ?g“ and tbg result is "then ...".
In the following sentences, give the key words showing results:
lines key words

25-26

27

29-30

31-34

34-35

III. Sentence structure and information

When reading a very long, complicated sentence, it is sometimes useful to break
it down into smaller clauses in order to understand it more easily. To do this,
it is helpful to look for the verb(s), subject(s), and connectors in the
sentence.

Look at lines 1-3 of the text. This long sentence has only one (independent)
clause: one verb and one subject. This iIs a simple sentence (see kxercise VI
on Text I) with one bit of information: it is not possible to define.

Now loock at lines 3-5 in the text:
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lines clause connector subject verb
3-4 Independent = =  —==== we have
4-5 independent : we have

This is a compound sentence (see Exercise VII on Text IV); it has two
independent clauses connected by @ semi-colon. It g{yes us two equivale
bits of information: one about IR and one about

Finally, look at lines 5~7 in the text:

lines clause connector subject verb

5-6 independent = —-==- one can define
6-7 dependent which which is

7 dependent but which which is

This is a complex sentence (see Exercise V on Text IX) with three clauses:

one independent and two dependent. , The main bit of information is that one

can define the cross product in IR” . The two other bits of information are

lgfs impe:tgpt. that this product is less interesting than the products in
and IR , but that it Is useful nevertheless.

Analyse the following sentences in the same way as above, and give the main
idea of each sentence.

A. lines clause connector subject verb
21-23
("Since,..")

main idea:

B. lines clause connectar subject verb
36-39
("1 wlemd,, o
main idea:

77



-74-
C. lines clause connector subject verb

46-47

main idea:

IV. Comprehension

A. "Say bl # 0." (line 31) This sentence means the same as:

a. bl is always unequal to 0.
b. let us decide that the value of 1 for which bi $# 0 is 1.

B. "A similar result is obtained if we assume that h2 # 0 or b3 #£ 0."
Ilines 34~35) This sentence means the same as:

a. 2t doesn't matter whether bl # 0, b2 #£ 0, or b3 # 0, we always
end up with u = (aifbi)v for some 1.

b. the result will always be the result in line 33.
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TEXT X1: «uNERALIZED INVERSES OF LINKAR TRANSFORMATIONS

1 Let V and W be finite-dimensional vector spaces over the same field
F, and let a be a linear transformation from V to W :.which assigns to
each vector v in V the vector va in W. If V and W have the same
dimension, and if a 1s nonsingular (i.e. if va # 0 whenever v # 0), then

- > a has an inverse B, which is a linear transformation from W to V having
the property that of and Ba equal the identity transformations on V and
on W, respectively, In particular, B satisfies the equality
(1) afa = a.

If the dimension of V does not equal the dimension of W, or if these
10 dimensions are equal but o 1is singular, then « does not have an inverse;
nonetheless, there may still exist a linear transformation 8 from W

to V satisfying equality (1). Such a transformation is called a generalized

inverse of «. Generalized inverses tend to be very useful tools in linear

algebra. Their existence is guaranteed by the following theorem.

15 THEOREJ: let V and W be finite-dimensional vector spaces over the same

field F, and let o be a linear transformation from V to W with

kernel K and image Y. Let K' be a subspace of V satisfying V =

K®&K', and let Y' be a subspace of W satisfying W=Y ® Y'. Then

there exists a unique linear transformation @:W -V which is a generalized

20 inverse of o and which satisfies the following conditions:

(1) K' 1is the image of B8;

(2) Y' is the kernel of 8.
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PROOF: We first prove the existence of at least one such generalized
inverse B. To do this, we begin by noting that the restriction of a to K'
25 s one-to-one. Indecd, if x and x' are elements of K' satisfying xa =
x'a, then x-x' belongs both to K' and to K, the kernel of «. But
KnK = {0}, and so we must have x = x'. Moreover, if y 1is a vector in Y,
the image of a in W, then there exists a vector x 1in K' satisfying
xa = y. Indeed, if va =y for some vector v in V, then we can write
30 v=k+x, where k is in K and x is in K'. Then we note that y = va =
ka + xa = 0 + xa = xa.
We have thus shown that the restriction of o to K', which we will

denote by «, is an isomorphism between K' and Y, and so has an inverse

which we will denote by a .

If m:W - Y is the restriction transformation,

35 we now define the linear transformation B:W -V to be ma '. Note that the
kernel of B equals Y', the kernel of w, and that the image of B equals
K', the image of al. Moreover, if v is a vector in V, and if v = k + x
is the unique decomposition of v into the sum of aM element of K and an
element of K', then

40 vaBa = (k + x)aBa - kaBa + xaBa = QBa + xana o= 0+ xa = va.
(Here we used the fact that yn =y for any vector y in Y.) Therefore afa = a,
and so B 1is a auneralized inverse of o satisfying ~onditions (1) and (2).

We now provc that ‘here can be ro more than one generalized inverse of «

satisfying conditions (1) and (2). Indeed, assume that By and B, are two

45 such linear transformations. If w is a vector in W, then we can write w=y + z,

where y 1is a vector in Y and 2z 1is a vector in Y'. Since Y' -equals the
3 e ?):‘ 5
Lpap praNe YEQY Ton
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kernel of By and the kernel of By» this implies that WBy = ¥By and WB, =
yB,- As we have already seen, there is a unique element x of K' satisfying
xa =y, and so yB,d = ¥3,a = XaB,a = Xx = XaBja = yB& = yBia. But a is

50  one-to-one,and so this implies that WBy = ¥By = ¥B, = WB,. This is true for

every vector w in W, and so we have 31 = 52. a

EXERCISES ON TEXT XI:

I. Match the words in the first column with the symbols in the second column used
to denote them in the text.

1. finite~-dimensional vector space a
2. field WY
3. linear transformation R
4. vector in V v
5. linverse of o k
6. composition of B and o Ba
. function from W to Y 14
8. direct sum o
9. restriction of a to K' z
10. inverse of restriction of o to K' 5-1
- 11. kernel of T o
12. vector in Y Y'
13. vector in KX @

II. To what words in the text do the following words refer?
A. "these dimensions" (lines 9-10)
B. "such a transformation" (line 12)
C. "their existence” (line 14)
D. "one such generalized inverse” (lines 23-24)
E. '"do this" (line 24)

F. "two such linear transformations” (lines 44-45)
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G. "this implies” (line 47)
H. "this implies" (line 50)

I. "This is true" (line 50)

Following the argument.

A. Ideas in sequence. When explaining a point, the writer often uses key
words such as "In particular®, "Moreover", and "Indeed" to emphasize that
he is continuing a point made in the sentence before. In the table below,
list sentences in the text in which the writer continues a point he has
begun in the sentence before. The first one has been done for you.

lines first words in the sentence

7 In particular, [ satisfies the equality

B. cConditionals. Conditional statements state that if certain conditions
hold then something is true. In the table below, list the sentences in the
text containing conditionals. The first one has been done for you.

lines if and if / or if then which/where/satisfying

3-7 v and W havd o Iis non- o has an is a linear transfor-
the same singular inverse B mationon V and W
dimension respectively
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C. Resilt. Some sentences contain a statement and a result, which is often
marked by the words "and so.” Fill in the following talle with such
sentences. The first sentence has been done for you.

lines statement result

32-35 We- have thus shcwn that the and so has an inverse which we will
restriction ... is an
Iscmorphism between I
and Y}

de.ote by a-l.

D. Writer's comments. Sometimes the writer points out some useful information
outside of the formal disucssion or argumeat. Such comments ar-e often marked
by "Note that". Fill in the table below using sentences from the text. The

first one has been donc for you.

lines writer's comments
13-14 Ceneralized ipverses tend to be very useful tools in linear algebra.

F. Writer's intent: Sometimes the writer may explain the procedure by which
he intends to organize the material in the proof or parts of the text. Some key
v gas ore "We must first prove", "To do this we begin by", and "we will thus
. Fill in the tabie below using sentences from the text. The first one

.. been don- for you.
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lines writar's intent

23-24 We first prowve the ax’stence of at least one such generalized
inverse 8.

IV. Comprehension

A. Under which two conditions is It possible that o not have an inverse?

B. Which phrases in the proof cf the theorem show both the existence and the
uniqueness of 72

€. According to the last paragraph, how many generalized inverses of «
satisfy both conditions (1) and (2)72

D. According to the last paragraph, how many elements x of K' satisfy
xa = y?
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V. Sentence structure review.

Look at the following table.

Sentence clause jnined by
Simple 1 independent | —--- A 1is positive.
Simple 1l independent - B 1is negative.
Compound 2 independent | ; A Is positive; B Is
negative.
Compound 2 independent ; A 1is positive; nonetheless,
B is negative.
Compound 2 independent | connecting A 1s positive, and B 1is
word "and" negative.
A 1is positive, and so B is
negative.
Complex 1 dependent, connecting If A 1is positive, then P
1 independent | word "if" is negative.
Complex 1 dependent, connecting When A 1is positive, B 1is
L 1 independent | word "when" negative.

Answer the following questions. NOte that more than one choice may be
correct.

- A. In this text, conditionals have the form of a
l. simple sentence

2. compound sentence

3. complex sentence

B. In this text, result has the form of a
l. simple sentence
2. compound sentence
3. complex sentence
4. compound-complex sentence
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TEXT XII: THE RIEMANN INTEGRAL

1 Let us consider the set A of all ordered pairs (I,f), where I =
[a,b] is a closed interval on the real line, and where f 1is a continuous
function from I to the nonnegative real numbers. Then the Riemann integral
can be thought of as a function from A to the nonnegative real numbers

5 which assigns to each pair (I,f) the area of the region in the plane which
is bounded by the graph of f and by the 1ines X =0, Y=a, and Y =b.
We emphasize this outlook by writing R(I,f) instead of II f(t) dt to
denote the Riemann integral.

Two properties of the function R are evident:

10 (1) If I =T[a,b] is a closed interval on the real line, and if ¢
js an interior point of I, then c divides I 1into two closed subintervals,
I] = [a,c] and I, = [c,b], the intersection of which is a single point. If
f 4is a continuous function from I to the nonnegative real numbers, then f
is continuous on each of I, and iz, and we have

15 R(I,f) = R(IT,f) + R(Iz,f).
This property of R s called additivit,.

(2) If 1 =[a,b] is a closed interval on the real line, and if § fis
a continuous function from I to the nonnegative real numbers, then there exist
points ¢ and d in 1 such that f(c) = mintelf(t) and d{d) = maxtelf(t).
20 Moreover, we see that the region in the plane bounded by the graph of f and
the 1ines X =0, Y=a, and Y =b is clearly contained in the rectangle

bounded by the lines X =10, X = f(d), Y=a, and Y =0b; and it clearly
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contains the rectangle bounded by the lines X =0, X = f(c), Y=a, and
Y = b. Therefore we have
25 (b - a)f(c) < R(I,f) <.(b - a)f(d).

This property of R 1is called betweenness.

What is amazing is that these two properties--additivity and betweenness--

together fully characterize the Riemann integral.

THEOREM: Let F be a function which assigns a nonnegative real number

30 F(I,f) to each pair (I,f) in A and which satisfies the following

conditions:

(1) If (I,f) €A and if I =1, UI,, where I, and I, are
closed subintervals of I which intersect at a single point,
then F(I,f) = F(I,,f) + F(Ia,f).

35 (2) If (I,f) €A, where I= [a,b], and if ¢ and d are peints

in I satisfying f(c) = mintelf(t) and f(d) = maxtexf{t), then
(b - a)f(c) < F(I,f) < (b - a)f(d).
hen F(I,f) = II f(t) dt for any (i,f) € A.

——

PROOF: Suppose that (I,.f) € A, where I = [a,b]. Let us recull the
40 definition of the Riemann integral II f(t) dt. For any finite set of points

a=aO<a]<...<an=b
in 1, and for each 0 <i <, we select points ¢, and d; in [af,ai+1]
. - = $
satisfying f(ci) minte[ai,ai+1]f(t) and f(di) maxte[ai’ai+1]f(,).

The sum xg;é (a1+1-ai)f(ci) is called a lower sumof f on I, and the
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50

55

60

sum E?;é (a;,9-8;)F(d;) 1is called an upper sum of f on I. The lower
integral of f on I is defined to be the least upper bound of all possible

lower sums of f on I, and the upper integral of f on I 1is defined

to be the greatest lower bound of all upper sums of f on I. For (I,f) in

A, these values are equal to the same number, called the Riemann integral

of f on I, and denoted by [, f(t) dt.
Consequently, to prove the theorem, it suffices to show that F(I,f)
1s greater than or equal to any lower sum of f on I, and that it is less
than or equal to any upper sum of f on I. Indeed, let
a=ay<3 <...<a = b
be a finite set of points on I. For each 0 < i <n, choose points Cy and
d; fin [ai.ai+1] as defined at the beginning of the proof. Then (2) implies that
- ¢
(ai*l - af)f(ci) S.F([ai!ai+1]sf) S'(af+1 ai)f\di)
for each 0 <1 <n, and thus
n'] n'1 -~ n"T -
Eig (ag4y - a9)fley) < By Fllagaagq1f) < 7yag 2y - 35)F(d)).
But (1) implics that z?;é F([ai,ai+]],f) = F(I,f), thereby proving the

theorem.

EXERCISES ON TEXT XII:

I. Match the words in the first coiumn with the symbols used to denote them
in the text from the second column -

i
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1. lintegral >

2. set of ordered pairs (1,£f)
3. ordered pair f

4. continuous function c

5. interior point A

6. interval [e,5]
7. dis an element of |

8. greater than or equal to €

II. Match the words in the firs+ column with the words in the second column
having the same meaning.

. l. examine assumed
2. designate consider
3. subset of a plane suffices
4. characteristics selezt
5. clear assign
6. supposed properties
7. remember denoted by
8. choose recall
9. 1indicated by evident

l0. 1is enough region

III. In the text, find one example of each of the following:

A. Simple sentence
B. Compound sentence

C. Complex sentence

IV. To what words in the text do the following words refer?
A. "this outlook" (line 7)
B. "it" (line 22)
C. "these two properties" (line 27)

D. "(2)" (line 56}
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V. Below is a list of sentence functions. Match this list to each of the
sentences iIn the text. (Some sentence functions appear more than once,
whereas some may not appear at all.)

Sentence functions sentence line numbers

A. definition

B. given data

C. example .
D. writer's comment

E. clarification

F., introduction

G. eagplanation

H. condition

I. result

J. writer's intention

K. expansion (addition)

VI. In the scatement of the theorem, decide which sentences belong to the
introduction, which to the argument, and which to the cenclusion. Underline
the key words which helped you decide.

30




VII. In the proof of the theorem, decide which sentences belong to the introduction,
which to the argument, and which to the conclusion. Underline the key words
which helped you decide.

VIII. Comprehension

A. Why do the expressions R(I,f) and II f(t) dt denote the same thing?

How do they emphasize different things?

B. According to the property of additivity, which two values are added to
obtain the value of the Riemann inteyral on a given interval?

C. Aaccording to the property of betweenness, between which two values do we
find the value of the Riemann integra#¢

D. SHow are the peints ci chosea to obtain the lower sum?

E. How are the points di chosen to obtain the upper sum?

F. Find the key sentence that shows the writer's procedure in concluding
the proof.

31
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APPENDIJY: THE GREEK ALPHABET

lower upper

case case name

a A alpha

8 B beta

y r gamma

s A delta

g E epsilon
4 Z zeta

n H eta

8 0 theta

1 1 iota

K K kappa

A A lambda
u M mu

Vv N nu

£ el xi

o 0 omicron
m I pi

o P rho

o T sigma

T T tau

U T upsilon
¢ ¢ phi

X X chi

v ¥ psi

@ o) omega
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