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TEXT 1: PROJECTIVE PLANES

A projective plane can be abstractly defined to be a certain system IT

consisting of a set of objects called "points" and a set of objects called

"lines", together with a relation called "incidence", which are all subject

to the following axioms:

5 (0) If point P is incident with line L, then and only then is line L

incident with point P.

(1) If P and Q are two distinct points of Hi then there is one and

only one line of H incident with both P and Q.

(2) If L and M are two distinct lines of n, then there is one and

10 only one point of It incident with both L and M.

(3) There exists at least one set {P1,P2,P3,P4} of four distinct points

of n no three of which are incident with the same line.

Note that axiom (3) s that there exists at least one set

{L1,L2,L3,L4} of four distinct lines of n, no three of which are incident

/5 with the same point. Indeed, if {P1,P2,P3,P4} is the set of points the

existence of which is postulated in axiom (3), then we can define the lines

L1, L2, L3, and L4 as follows: L1 is the unique lire incident with P1 and

p2; L2 is the unique line incident with P2 and P3, L3 is the unique line

incident with P3 and P4 and L4 is the unique line incident with P1 and

20 P4.

Nothing in the above set of axioms implies that the number of points or

* Note: For names of the G.:col: let tors, see Appendix, page 88,
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the number of lines in an abstract projective plane is infinite. In fact,

it is interesting to speculate what a projective plane with only finitely-

many points and finitely-many lines would look like. Let n be a positive

25 integer, and assume that II is a projective plane in which there is a line

which is incident with precisely n+1 distinct points. Then:

(A) Every line of n is incident with precisely n+1 distinct points.

(B) Every point of n is incident with precisely n+1 distinct lines.

(C) There are precisely n2+n+1 distinct lines in n.

30 (0) There are precisely n2+n+1 distinct points in U.

If n = 1, there would only be three distinct points in R, and this contradicts

axiom (3). Therefore, we see that there must be at least three points of n

incident with each line. If there are precisely three points incident with each

line in the plane, then the plane must consist of seven points and seen lines.

35 What does such a plane look like? One way of representing such a plane is by

the matrix

1 0 1 0 1 0 0

1 0 0 1 0 1 0

0 1 1 0 0 1 0

0 1 0 1 1 0 0

1100001
0 0 1 1 0 0 1

0 0 0 0 1 1 1

where the "points of the plane are the rows of the matrix, the "lines" of

the plane are the columns of the matrix, and a line is incident with a point

if and only if the entry of the matrix in the intersection of the given row

40 and given column equals 1.
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Another way of representing the same plane is by the following diagram.

Check to make sure that all of the axioms of a finite projective plane are

indeed satisfied by this example.

EXERCISES ON TEXT I:

I. Match the words in the first column with the words in the second column

that have the same meaning.

1. row
2. distinct
3. consisting of
4. representing
5. precisely
6. unique
7. at least
8. contradicts
9. is postulated

10. intersection
11. finitely-many
12. satisfied
13. column

having
is assumed
one and only one
a certain number of
exactly
not the same
disagrees with
no fewer than
horizontal array of numbers
vertical array of numbers
meeting point of two lines
condition fulfilled
showing



II. To what d) the following words in the text refer?

A. "which are all" (line 3)

B. "which" (line 16)

C. "this" (line 31)

D. "such a plane" (line 35)

III. Comprehension.
A. The following questions refer to the diagram on the preceding page.

Answer each and give the number of the axiom to which it refers.

I. Is there a line incident with both the point P3 and the point P57

yes/no axiom no.

2. Is there more than one line incident with both the point F1 and

the point P2?

yes /no axiom no.

3. If L is the line incident with both the point P1 and the point P3

and if M is the line incident with both the point P4 and the point

P5, which point (s) is (are) incident with both L and M?

point(s) axiom no. ==1111.1alim,M

According to lines 31 -32, if n = 1 then axiom (3) is contradicted.

Explain :Ihy.

C. What would happen if n = 2?

D. Are all points of a projective plane incident with the same number of

lines?



IV. When a word ending in -ING is not a verb.

We know that a word ending in -ING may often be a verb, as in the following
example: "it is interesting to speculate" (line 23). The words "the
following example" also contain a word ending in -ING. Here, however,

"following" is not a verb; it is an adjective describing what kind of
example, the example which follows. But by changing thq sentence, we can

make "follows" a verb. (' e luNtrv, ) irn 11)

Change the following phrases, where the word ending in -ING is not a verb,
in the same way. The first one has been done for you.

line -ING word

2 consisting of

4 following axioms

35 One way of
representing

41 the following
diagram

V. Modal verbs.

verb

which consists of

Chit v on e which follow

Mark the sentence that means the same as the sentence from the text.

A. (lire 1) "A projective plane can be abstractly defined ...

1. It is possible to abstractly define a projective plane

2. One may possibly abstractly define a projective plane

3. A projective plane could be abstractly defined

B. (line 16) "... we can define the lines ..."

1. It is possible to define the lines

2. One may possibly define the lines
3. The lines could be defined

ff

C. (line 23) "It is interesting to speculate what a projective plane ...

would look like, "

1. Such a plane might have been interesting to imagine

2. Such a plane was interesting to imagine

3. Such a place will be interesting to imagine



D. (line 31) "... there would only be three points ..."

1. There were only three points
2. There will only be three points
3. There would only have been three points

E. (line 32) "... there must be at least three points ..."

1. There had to be at least three points
2. There have to be at least three points

3. There mould have been at least three points

(line 34) "... the plane must consist of seven points ..

1. The plane has to consist of seven points

2. The plane might consist of seven points

3. The plane could consist of seven points

VI. Simple sentences.

A simple sentence contains one clause consisting of a verb and a subject.

We find the subject of the sentence by asking "who" or "what" did the action.

Look at the following example:

(Line 27) Every line of It is incident with precisely n+I distinct points.

verb: is incident
subject: every line of IT

Find the verb and subject in each of the following sentences.

A. Every po_nt of IT is incident with precisely n+1 distinct lines.

verb:

subject:

B. There are precisely n
2
+n+1 distinct lines in IT.

verb:

subject:

C. There are precisely n
2
+n+1 distinct points in It

verb:

subject:

10
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D. What does such a plane look like?

verb:

subject:

Another way of representing the same plane is

verb:

subject:

VII. Writer's comments.

the following diagram.

Sometimes the writer explains or comments on the mathematical ideas he

presents. One such sentence is the following (lines 21-22): "Nothing in
the above set of axioms implies that the number of points or the number of

lines in an abstract projective plane is infihite." The writer points out
in case the reader hasn't noticed, that the axioms do not imply that the

plane is infinite.

Explain what the writer is trying to say in each of the following sentences:

A. (lines 22-24): In fact, it is interesting to speculate what a
projective plane with only finitely-many points and finitely-many lines
would look like.

B. (line 35): What does such a plane look line?

11
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TEXT II: INFINITE MATRICES AND CONVERGENT SEQUENCES

Let 14 be the set of all natural numbers. An infinite real matrix

T is a function from the Cartesian product /4 x IN to the set of real

numbers. We denote T by [tu], where tij = T(i,j) for each pair

(i,j) of natural numbers. If {aj} is a sequence of real numbers having

5 the property that the infinite series e
=1

t a
J

converges for each

natural number i, then we can define a sequence of real numbers (bi)

by setting bi = i71 tijai for each natural number i. Such a sequence

is called a transform of {aj} by the infinite matrix T.

An infinite real matrix T = [tii] is called a Toeplitz matrix if

10 and only if the following conditions are satisfied:

(1) For every convergent sequence {aj }, the transform (bi) by the

matrix T of {aj} is well-defined; and

(2) limi bi = 1imj aj.

For example, the infinite real matrix T = [tij] defined by

l/i

15 tij
0

={
if 1 < j < i

otherwise

is a Toeplitz matrix.

A divergent sequence may be transformed by a Toeplitz matrix into a

convergent sequence. For example, if aj = (-1)i+1 for each natural

number j, then the sequence fail diverges, but its transform by the

20 Toeplitz matrix T, defined in the above example, is the sequence {bi)

12
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with bi = [1 + (-1)
i+1

]/21, which converges to O.

More generally, if {ai} is __Iy_ar divergent sequence each of the terms

of which is equal to 1 or to -1, then there exists a Toeplitz matrix

T which transforms it into a convergent sequence. Such a matrix T = [tij]

25 can be defined in the following manner: let {ni} be a strictly

increasing sequence of natural numbers having the property that an

-an
i

+1 for each natural number i. Define t
ij

to equal 1/2 if

j = ni or if j = ni+1. Otherwise define tij to equal O. Then T =

[tij] is a Toeplitz matrix which transforms {aj} into the 0-sequence.

30 On the other hand, for any given Toeplitz matrix T there exists a

sequence {aj} each of the terms of which is equal to 1 or to -1, which

is transformed by T into a divergent sequence. In other words, we see

that some Toeplitz matrices transform some sequenceS the terms of which

are equal to 1 or to -1, into convergent sequences, but no Toeplitz

35 matrices transform all such sequences into convergent sequences. The

proof of this statement is based on a characterization of Toeplitz matrices

first proven by Toeplitz in 1911:

THEOREM: An infinite real matrix T = [tij] is a Ton'itz matrix

if and only are satisfied:

40 (1) There exists a real number r such that i7,1 ItijI < r for

all natural numbers i

(2) lim1 tij = 1;

(3) limier tij = 0 for every natural number j.

13
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EXERCISES ON TEXT II:

I. Match the words in the first column with the words in the second column

having the opposite meaning.

1. following
2. infinite
3. converge
4. increasing
5. equal

==1.MIIM110..
t...= IN

equivalent
meaning
decreasing
diverge'
previous
verge
indefinite
unequal
finite

II. To what do the following words in the text refer? Choose a or b.

A. "Such a sequence (line 7) a. fa i b. {b.}

B. "its" (line 19) a. natural number j b. sequence { }

C. "which" (Iire 21) a. Toeplitz matrix T b. sequence fb
i

D. "which" (line 23) a. terms b. any divergent
sequence {a }

E. "which" (line 24) a. Toeplitz matrix T b. fa
j

F. "it" (line 24) a. Toeplitz matrix T b. any divergent
sequence {aj}

G. "which" (line 31) a. Toeplitz matrix T b. sequence %a

N. "which" (line 33) a. Toeplitz matrices b. some sequences

I. "such sequences" (line 35) a. convergent
sequences

b. some sequences

III. Verbs: active and passive.

The following sentence contains

line 3) "We denote T by [t

rewritten using the passive voi

by it
ij

I, where ...".

Rewrite the following using the passive voice.

the verb "denote" in the active voice:

I, where ..." . This sentence can be

as follows: "The matrix T is denoted

A. (line 6) " ... we can define a sequence of real numbers .

14



B. (line 33) ".

C. (lines 34-35)
sequences into

scme Toeplitz matrices transform some sequences ..."

"... but no Toeplitz matrices transform all such

convergent sequences."

Rewrite the following using the active voice.

D. (line 17) "A divergent sequence may be transformed by a Toeplitz matrix ..."

E. (lines 24-25) Such a matrix T = [ti] can be defined in the following

manner:"

F. (lines 30-32) "... there exists a sequence (ail, .... which is

transformed by T into a divergent sequence

G. (lines 35 -36) "The proof of this statement is based on a characterization

of Toeplitz matrices ..."

IV. Verb used as adjective/expanded forms

In the following sentence the word "defined" is the past partiriple of

the verb "to define": (lines 14-15) "For example, the infinite matrix

T = [ti.j] defined by ... is a Toeplitz matrix." Since the word "defined"

is not accompanied by the auxiliary verb "is" or "was", however, it is not

used as a verb in this sentence. Instead, it functions as an adjective

to describe the noun phrase "the infinite matrix T = [t
ij

1". The verb in

this sentence is "is" (line 16).

This sentence can be expanded by using the relative pronoun "which" in

the following way: "For example, the infinite matrix T =
ij

1, which is

defined by ..., is a Toeplitz matrix."

Expand the following phrases and clauses from the text. The first one is

done for you.

A. (lines 19-20) " ... but its transfOrm by the Toeplitz matrix

defined in the above example, is ... "

expanded form: "... matrix which is /was defined in ..."

B. (lines 25-26) "a strictly increasing sequence"

C. (line 26) "natural numbers having the property ... "
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D. (line 30) "for any given Toeplitz matrix T"

E. (lines 36-37) "a characterization ... first proven by Toeplitz in 1911"

F. (line 39) "the following condition5"

Rewrite the following clauses without the relative pronoun "which".

G. (lines 23-24) "... then there exists a ToPplitz matrix T which

transforms it into a convergent sequence.

(line 29) "... a Toeplitz matrix which transforms a.) into the

0-sequence"
11a

Fill in the followiw7 table by changing those sentences in the text. The

first one has been done for you.

lines active ossive

--,
adjective

....,

expanded

4-5 _-- --- {aj} is a sequence

of real numbers
hiving the property

{a
j
} is a sequence of

real numbers which have
the p_operty ...

6 can deride a
sequence .of 1 al

numbers by se. tin.

b . = f"
j=1

t a

...-_
------

14

------
the Lnfinite Leal
matrix T = [t.41

defined by ...1J

24-25 such a matrix can
be defined in the
following manner:

V. Sentence function

A. Definitions: A definition gives the meaning of a word or phrase. For

example, the sentence in lines 1-3 is a definition: "An infinite real matrix

T is a function from the Cartesian product JV x JV to the set of real

16
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numbers." The skeleton of this sentence is:
An ... is a .

Definitions can also be recognized from the following key words and structures:

A ... is called a ...
We define ... by ... where ...
We can define ... if ...

and so forth. In the table below, list the sentences in the text which
contain a definition, indicating the words which mark the skeleton of the

sentence. The first one has been done for you.

lines Agy words of definition

1-3 An infinite real matrix T is a function from ... to ...

B. General statements: Some statements assert that something is always

true. Such statements are marked by words such as "every", "always", "any",

and "all". In the following table, list the sentences containing general

statements, and give the '.ey word(s) which show this. The first one has

already been done for you.

lines key words of general statement

Let ... be ... all
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C. Conditional statements: Often a statement asserts that something is
true under certain conditions. Such statements are signaled by words
such as "some", "if and only if", "such", "otherwise", "where ... for .. ,

and so forth. In the following table, list the sentences containing
conditional statements, and indicate the key word(s) thich show this.
The first one has already been done for you.

lines key words of conditional statement

3-4, We denote ... by ... where ... for each pair ...

Note that, in a mathematical context, "some" implies existence, whereas
"every" does not. book at the following two sentences:

Every pink elephant has ten feet.
Some pink elephants have ten feet.

The first sentence can be true; it states that if there were such things as
pink elephants then they would all have ten feet. The second sentence,
however, states that there are existing pink elephants and that some of them
have ten feet while perhaps others have some other number of feet. The second
sentence is false.

VI. Simple sentences.

In Exercise VI on Text I we characterized simple sentences. In the following
table, list the simple sentences appearing in Text II. For each, give the

subject and the verb. The first one has been done for you.

line(s) subject verb

you (understood) Lot
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VII. Comprehension
ighatistherelationshipbetweeniaiand ibi

B. In lines 14-16, what will happen if we omit the condition "0 otherwise"?

C. Can any Toeplitz matrix transform all divergent sequences, each of whose
terms equals 1 or -1, into convergent sequences? (Give line numbers
in the text to support your answer.)

D. Can every divergent sequence, each of whose terms equals 1 or -1, be
transformed by a Toeplitz matrix into a cwivergent sequence? (Give line

numbers in the text to support your answer.)

19
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TEXT III: RELATIONS

If S and T are nonempty sets, then we define the Cartesian product

of S and T to be the set of all ordered pairs of the for; (s,t), where

s E S and t E T. We denote the Cartesian product of S and T by

S x T. Any nonempty subset of S x I is called a relation between S and

T. We will denote the relations between S and T by capital Greek

letters.

EXAMPLE: If S = T = the set of all real numbers then

0 ((s,t) s t 7)

and

10 T = {(s,t) s2 + t
2
= 1}

are relations between S and T.

A relation on a nonempty set S is defined to be a relation between S

and itself, that is to say, a nonempty subset of S x S. The two relations

defined in the above example are relations on the set of real numbers. Among

15 the various types of relations one can define on a set S, we single

out for special emphasis a class of relations known as equivalence relations.

An equivalence relation on a set S is a relation 0 satisfying the

following three conditions:

(1) (Reflexivity) If s E S then (s,$) E 0.

20 (2) (Symmetry) If (s,s') E then (s s) E 0.

(3) (Transitivity) If (s,s') E and if ( s") E 0 then (s,s") E 0.

20
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EXArl.c: Let S = {1,2,3'f. Then S x S has nine elements, and so there

25

are 511 possible relations defined on S. Of these, only five are equivalence

relations, namely

0
1
= S x S;

02 = {(?,1),(2,2),(3,3),(1 3),(3,1)1;

03 = {(10),(2/2),(393),(1,2),(20));

04 = {(1,1),(2,2),(3,3),(2,3),(3,2));

05 = ((1,1),(2,2),(3,3)).

30 If 0 is a relation on a set S, it is sometimes convenient to write

s s' instead of (s,s') E t. This is particularly true in the case of

equivalence relations. Such relations are often denoted by one of the

following symbols: m. Thus we write instead of (s,s') E

Equivalence relations defined on a nonempty set S give rise to

35 partitions of the set, in the following sense: a collection {Ai J i E

of nonempty subsets of S is said to be a partition of S if and only if

the following :.wo conditions are satisfied:

(1) S = Ai

(2) Ai n Ai = 0 whenever i # j.

40 Any partition {Ai} of S defines an equivalence relation on S as

follows: if s and s' are elements of S, then s s' if and only if

s and s both belong to the same set Ak of the partition.

Conversely, suppose that is an equivalence relation defined on a set

S. For each element s of S, let B(s) = {s' E S I s si}. This set

21
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45 is called the equivalence cltIss of s with respect to the relation Let

T be a subset of S consisting of precisely one representative from each

equivalence class of elements of S. Then {B(s) I s E T} is a partition

of the set S. To see why this is true, we note that for any two elements

s and s of S, we have s if and only if B(s) = B(st).

50 EXAMPLE: Let 2 be the set of integers. We define an equivalence

relation on 2 by saying that n k if and only if n-k is an

even number. Then this relation defines two distinct equivalence classes

of integers: B(1), which is the set of all odd numbers; and B(2), which

is the set of all even numbers. Clearly {B(1), 8(2)1 is a partition

55 of 2

EXERCISES ON TEXT III:

I. Match the symbol in the first column with its name in the second column
by writing the correct number in the blank space.

1. E is an element of
2. x is equivalent to
3. double prime
4. ,.., intersection
5. U Cartesian product
6. n prime
7. ff union

8. s
2

s squared

II. Match the mathematical expression in the first column with its translation
into words in the second column by writing the correct number in the
blank space.

22
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1. (line 3) s C S the set of A ae i ranges over 2

2. (line 4) S x T
11.111.1Ft!

1111-1Mawa

i'
s and s' are equivalent with

respect to ''

3. (line 22) S = {1,2,3} s is an element of S

4. (line 31) (s,s') E 0 the set S having elements 1,2,3

5. (line 33) s ^3 s'

Pl
S equals the union of the as as i

ranges over n

6. (line 35) {Ai J i E 2} the Cartesian product of S and T

7. (line 38) 3 = U A IMIIM s is related to s' by
i

III. To what words in the text do the following words refer?

A. (line 17) "itself"

B. (line 13) "the two relations"

C. (line 23) "Of these"

D. (line 48) "This is true"

E. (line 52) "This relation"

IV. Find the verb and the subject of each of the following sentences:

A. (lines 4-5) "Any nonempty subset of S x T is called a relation between

S and T."

verb:

subject:

B. (lines 5-6) e will denote the relations between S and T by

capital Greek letters."

verb:

subject:

C. (lines 17-18) '!An equivalence relation on a set S is a relation satisfying

the following three conditions:"

verb:

subject:

D. (lines 13-14) "The two relations defined in the above example are relations

on the set of real numbers."

verb:

subject:

23
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E. (lines 31-32) "This is particularly true in the case of equivalence
relations."

verb:

subject:

F. (lines 32-33) 'Such relations are often denoted by one of the following
symbols: ..."

verb:

subject:

G. (line 33) "Thus we write ..."

verb:

subject:

H. (lines 44-45) "This set is called the equivalence class of S with
respect to the relation --."

verb:

subject:

I. (lines 47-48) "Then {B(s) I s E T} is a partition of the set S.

verb:

subject:

J. (line 50) "Let ZZ be the set of integers."

verb:

subject:

v. Sentence function

A. Definitions: In Exercise V on Text II we discussed definitions and how

to recognize them. In the table below, list the sentences in the text which
contain a definition, indicating the words which mark the skeleton of the

sentence.

line(s) key words of definition

24
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B. Denotation: The writer often explains the signs by which he wii

a quantity br e relationship by saying that he will "write" or "deny

it a particular way. Denotation differs from definition in that a
is not defining what a concept is, but merely assigning it a symbol.
table below, list the sentences in the text which contain statements

kind. The first one has been cone for you.

line(s) key words of denotation

3-4 We denote ... by S x T

I express
" it
,iter

In the
of this

C. Classification: A classification is a statement that places a given item

within a certain class or group. One example of a classification is this

statement: "An apple is a kind of fruit." In the table below, list the

sentences containing classification statements. The first one has been

done for you.

line(s) key words of classification

13-14 The two relations ... are relation:, on the set of real numbers

VI. Verbs: active and passive

The active and passive voices were discussed in Exercise III on Text II

and expanded forms were discussed in Exercise IV.

A. In the table below, list the sentences containing verbs in the active

voice. Give line numbers and the verb of ea-h sentence. The first

one has been done for vou.
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line(s) verb

1 define

B. In the table below, list the sentences containing verbs in the passive

voice. Give line numbers and the verb of each sentence. The first one

has been done for you.

line (s) verb

4 is called

C. It is possible to expand a sentence containing a past participle ( -ED, -T)

or a present participle (-ING) of a verb by adding the word "which". To

the -ED form, add the auxiliary verb IS, ARE, WAS, or WERE to form the

Egssive form of the verb. The -ING form becomes active when it is expanded

by using "which".

Expand the following phrases and clauses from the text.

1. (lines 13-15) "The two relations defined in the above example ..."

2. (lines 17-18) "An equivalence relation on a set S is a relation ...

satisfying the following three conditions."

26
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(lines 22-23) "Then S X S has nine elements, and so there are 511
possible relations defined on S."

4. (line 34) "Equivalence relations defined on a nonempty set S ..."

5. (lines 45-47) "Let T be a subset of' S consisting of precisely
one representative ..."

VII Comprehension
A. Which special type of relation is discussed in the text?

B. According to lines 17-29, which of the following conditions does
the relation 0

2
satit7y?

1. reflexivity
2. symmetry
3. transitivity
4. all of the above

C. Look at the following sentences:
1. (lines 40-41) "Any partition {Ai} of S defines an equivalence

relation N on S ..."
2. (lines 43-44) "Conversely, suppose that N is an equivalence relation

defined on a set S."
Which one of the following sentences would you expect to follow sentence
a. "Equivalence relations defined on a nonempty set S give rise to

partitions of the set."
b. "A collection of nonempty subsets of S is said to be a partition of S...
c. "This set is called an equivalence class of elements of S."

How does the verb "define" help you to answer?

D. According to lines 50-52, what would happen if n-k were an odd number?

2 7
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TEXT IV: hETRIC SPACES

A distance function defined on a nonempty set S is a function d from S x S

to S such that for each s
1

s and s
3

in S the following conditions are

satisfied:

(1) d(si,s2) = 0 if and only if

.5 (2) d(s102) = d(s2,s1);

(3) d(s1,s3) d(si,s2) + d(s2,s3)

As a rule, several div_ice functions can be defined on the same set. For

example, if E is the usual Euclidean plane, then we can define three distance

functions on E as follows: if P1 = (xl,y1) and P2 = (x2,y2) are points

10 in S, set

d1(P1,P2) = [(x2 x1)
2
+ (y2 yl)

2
]
1/2.

d2(P1,P2) = max(1x2 - x11, !y2 3111)*

d3(P1sP2) = 1x2 x11 + 1y2 - y11.

A nonempty set S, together with a fixed distance function d defined

is on it, is called a metric space. If s is a point in a metric space (S,d)

and if r is a positive real number, then we define the ball of radius r around

the point to be B
s
(r) = {s' E S I d(s,s') < r). To see that the metric spaces

(E,d2), and (E,d3) are not the same, we note that

(1) In (E,d1) the ball 8(0,0)(1) consists of the interior of the disc of

20 radius 1 around the origin (0,0).

(2) In (E,d2) the ball B(0,0)(1) consists of the interior of the square with

vertices (1,1), (1,-1), (-1,1), and (-1,-1).

28
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(3) In (E,d3) the ball B(0,0)(1) consists of the interior if the square

with vertices (1,0), (0,1), (-1,0), and (0,-1).

25 If (S,d) is a metric space, we say that a sequence <se of points in S

converges to a given point s* in S if and only if, for any c > 0, there exists

a natural number n such that d(si,s*) < & for all i > n. As far as convergence

is concerned, all three of the above distance functions are equivalent. That

is to say, a sequence of points in E converges to a given point in E

30 with respect to one of these distance functions if and only if it converges

to that point with respect to the other two.

To see why this is so, we must consider the notion of a topology defined

on a set S. If S is a nonempty set, then a topalsla defined on S is a set U

of subsets of S, containing both 0 and S, which is closed under taking

35 finite intersections and arbitrary unions of its members. A subset V of a

topology U on S is called a basis for U if and only if U is just the

set of all possible unions of sets of members of V.

If d is a distance function defined on a nonempty set S, let (Bs(r)

s E S; r > 0} be the basis for a topology on S. We will say that two distance

40 functions defined on S are equivalent if and only if they give rise to the

same topology on S in the above manner. Another way of saying this is the

following: two distance functions d and d' defined on a set S are

equivalent if and only if for every point S in S, and for every positive

real number r, there exist positive real numbers

45 (1) d(s,s') < r d'(s,s') < and

29

and r" such that
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(2) d'(s,s') < r d(s,s') < r"

With this definition in mind, the equivalence of the distance functions

d2, and d
3

defined on E is immediate.

Needless to say, the above argument does not imply that we cannot define two

50 nonequivalent distance functions on the same set. For example, we can define

another distance function d
4

on E as follows:

I if P
I

P
2

1 0 if P
1
= P

2

This function is clearly not equivalent to any of the other thret.:.

d
4
(P

2
)

EXERCISES ON TEXT IV:

Fill in the drawing by writing the number of the appropriate word at the end

of the broken line.

1. center
2. radius
3. disc
4. interior
5. vertex
6. distance function

II. To what in the text do the following words refer?

1. (line 15) "it"

2. (line 30) "it"

3. (line 31) "that point"

4. (line 31) "the other two"

5. (line 32) "this"

6. (line 34) "which"

7. (line 35) "its"

8. (line 40) "they"

9. (line 54) "the other three"

30
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III. Comprehension

A. What is the connection between the metric spaces (E,d1) and (E,d2)

B. In terms of convergence, is there any difference between 6e,d and(E,d )7

C. Draw three graphs of the ball B
(0 0)

(1) in (E,d ) , 65,d
2 and (E,d3

(E, d (E,d
2

IV. Phrase.. showing the writer's comments.

(E,d
3

To explain the importance of a certain idea or sentence, a writer may
begin a phrase with a comment. Although such phrases are not essential
to the meaning of the sentence, they add a framework which clarifies the
writer's meaning. The phrase "for example" shows that the writer is shoutto give an example. Here is another kind of marker:
(line 7) "As a rule, several distance functions cal, lx. defined on the same set."
The sentence would not lose its meaning if the phrase "As a rule" were leftout. However the phrase "as a rule", which means "in genera_ ", emphasizesthe fact that the idea expressed in this sentence is usually true.

Explain the purpose or function of each of the following phrases:

A. (lines 17-18) "To see that the metric spaces ... are not the same,

(lines 27-28) "As far as convergence is concernud,"

C. (lines 28-29) "That is to say,"
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D. (line 32) "To see why his is so,"

E. (line 41) "Another way of raying this is the following:"

(line 47) "With this definition in mind,"

G. (line 49) "Needless to say,"

V. General vs. qualified statements

Some words signal statements that are always true. Other words signal statements

that are true only under certain conditions. Such words include "ire "If
and only if", "such that", "which", "where", "when", etc. These words qualify

the general statement, making it more specific.

Indicate whether the following sentences are general or qualified, and underline

the key word(s). The first one has been done for you.

Line (s) sentence

1-7 A distance function ... is a ... such that
for each ... the following conditions
are satisfied:

7-13 For example, if E is the usual ..., then
we define three distance functions ...

25-27 If (S,d) is a metric space, we say that
... if and only if, for any, ..., there
exists ... such that ... for all ...

35-37 A subset V of a ... is called ... if

end only if ... the set of all possible
unions of ...

general, qualified

54 This function is clearly not equivalent to
any of the other three;

7 As a ram, smvmral dictince functions can be

dmfinmd on Vim naTm set.
VI. Definition, explanation/expansion, example

The following sequence of sentences is very common in mathematical

writing: definition, explanation/expansion, example.
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Look at the following table, which contains lines 1-13 of the text:

line(s) key words sentence function (s)

1-7

7

8-13

A distance function ... is a function ... definition ('441,6'4441)

such that for each ... the following
conditions are satisfied:

As a rule, several ... can be defined ... general statement
expansion

For example, if E ..., then we define example, definition
three distance functions ... as follows:

Fill in the following table in the same way.

key words sentence function(s)

25-27

27-28

28-31

33-35

35-37

38-39

39-41

41-46

If ..., then a topology defined on S is
..., containing ..., which is closed
under ...

A subset V of a topology ... is called a
basis for U if and only if ...

If d is a distance function defined on
..., then ... is the basis for a topology
on S.

We will say that two ... are equivalent if
and only if they ... in the above manner

qualified definition

expansion

explanation

rephrasing of
defin.xLion



(continuation)
line(s) key words

49-50

51-53

54

30-

..., the above argument does not imply
that we cannot define two nonequivalent...

This ... clearly not equivalent to any,...

VII. Compound sentences.

sentence function (s

definition/example

Two simple sentences may be combined into a single, long compound sentence

by placing a semi -colon (;) or comma and connecting word (, and but , or)

in place of the period. For example, look at the following two sentences:

1. We can define another distance function d
4

on E.

2. This function is not equivalent to the others.
These sentences may be connected in a number of ways. For example:

A. We can define another distance function d
4

on E; this function ...

B. We can ... on E, and this function ... .

C. We can ... on E, but this function ... .

In example B, the second half of the sentence, beginning with "and", follows

from the first half. In example C, the second half of the sentence,
beginning with "but", contrasts with the first half. Example A is

ambiguous; it may suggest either a logical sequence or a contrast.

For each of the following sentences, find the verb and the subject. Then

combine them into a compound sentence.

A. 1. Several distance functions can be defined on the same set.

verb:

subject:

2. We can define three distance functions on E.

verb:

subject:

Compound sentence combining 1 and 2:

B. I. A nonempty set S is called a metric space.

verb:

subject:
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2. The metric spaces 6E,d1 6E rd
2

and (E,d3

verb:

subject:

Compound sentence combining 1 and 2:

C. 1. The equivalence of the distance functions

on E is immediate.

verb:

subject:

2. The above argument does not imply the converse.

verb:

subject:

Compund sentence combining 1 and 2:

35

are not the same.

and d
3

defined
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TEXT V: PEANO'S POSTULATES FOR THE NATURAL NUMBERS

2 In 1889 the Italian mathematician G. Peano formulated a set of

five postulates which state in precise mathematical language those

properties of the naturll numbers which we feel to be intuitively obvious.

These postulates are the following:

5 (I) 1 is a natural number.

(II) To every natural number n there is assigned a natural number

S(n), called the successor of n.

(III) If n and m are different natural numbers, then S(n) / S(m).

(IV) There is no natural number n satisfying S(n) = 1.

10 (V) If U is a set of natural numbers containing 1 and having the

property that if n belongs to U then S(n) belongs to U, then

U equals the set of all natural numbers.

We normally denote the successor of a natural number n by n+1 instead of

S(n).

15 Peano's fifth postulate is often called the Principle of Mathematical

Induction, and there are many equivalent ways of formulating it. One

way in which this prinicple is often stated is the following: if P is

a property of the Nat) 1 that

(1) 1 has property P;

20 (ii) If n has property P, then so does n+1;

then all natural numbers must have property P. A proof which makes

use of the Principle of Mathematical Induction must therefore have two
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parts: the basis, which shows that 1 has property P, and the step,

which shows that if n has property P, then so does n+1. To see how

25 this works, let us consider a simple proof by mathematical induction.

THEOREM: If n is a natural number, then n
2
-n is always an even number.

PROOF: If n = I then 1
2 1 = 09 and this is an even number. Thus

we have proven the basis of the induction. Now assume that n is a

natural number having the property that n
2
-n is even. Then (n+1)

2
- (n+1)

30 (n
2+2n+1)-(n+1) = n

2
+n = (n

2
- n)+2n. But n

2
-n is an even number, and 2n

is also an even number. Since the sum of two even numbers is even, this

proves that (n+1)
2
-(n+1) is also an even number. Thus we have proven

the step of the induction.

We can replace postulates (II), (III), and (IV) by a single postulate:

35 (*) There exists a one-to-one function S from the set of natural

numbers to itself, the image of which does not contain 1.

Since there ran exist no one-to-one correspondence between a finite set

and one of its proper subsets, postulate (*) implies that the set of all

natural numbers is infinite. It is therefore sometimes called the Postulate of

40 Infinity. Is there a natural number other than 1 which does not belong

to the image of the function S? The answer to this question provides another

good example of the application of the Principle of Mathematical Induction.

THEOREM: The onl natural number which is not the successor of

natural number is
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45 PROOF: Let W be the image of the function S; that is, W is the set of

all natural numbers of the form S(n), where n is a natural number. Let

U = {1) U W. Then surely 1 E U, and if n belongs to U, then S(n)

certainly belongs to U (since it belongs to W by the definition of W).

Therefore, by the Principle of Mathematical Induction, U equals the set

50 of all natural numbers. This means that every natural number other than 1

is a member of W and so is the successor of some other natural number.

EXERCISES ON TEXT V:

I. Match the word in the first column with the word in the second column

having the same meaning.

1. containing following

2. obvious characteristic

3. surely clear

4. proper fulfilling

5. succeeding including

6. provide state

7. formulate substitute

8. property not equal to the whole

9. replace give

10. satisfy:mg certainly

11. precise exact
WIIMMEIMMOMMI=IWIP

II. To which words in the text do the following words refer? Choose a or b.

1. (line 3) "which"
2. (line 24) "so does"

3. (line 36) "itself"

4. (line 38) "its"

5. (line 39) "It

6. (line 48) "it"

a. numbers
a. has property P
a. function S
a. postulate (*)
a. postulate (*)
a. S(n)

b. properties
b. have two parts
b. set of natural numbers
b. a finite set
b. a finite set
b. U

III. Since

The word "since" has two meanings, depending how it is used in the sentence.

one meaning is "from a certain time": He's been here since yesterday. The
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other meaning occurs when "since" is used as a connecting word; it is

then used to mean "because": Since it was raining, I decided to take an
umbrella.

In the following sentences, which of the two meanings does "since" have:

(a) "from a certain time ", or (b) "because"?

A. (lines 31-32) "Since the sum of two even numbers is even, this proves

that (n+1)
2
-(n+1) is also an even number."

B. (lines 37-30)
postulate (*)

(lines 47-48)
definition of

"Since there can exist no one-torone correspondence ...,
implies that the set of all natural numbers is infinite."

"Then surely ... (since it belongs to W by the
W) ."

IV. Phrases showing the writer's comments.

Phrases showing the writer's comments were discussed in Exercise IV on Text IV.
For each of the following sentences from the text, indicate whether it is
(1) in the formal language of mathematics, cr (2) the writer's comments

about mathematics. The first one has been done for you.

A. (lines 27-28) "Thus we have proven the base of the induction." 2

B. (lines 31-32) "Since the sum of two even numbers is even, this

proves that (n+1)
2
-(n+1) is also an even number.

C. (lines 35-36) "There exists a one-to-one function S from the
set of natural numbers to itself, the image of which does not

contain 1."

D. (lines 2-') "... those properties of the natural numbers which

we feel to be intuitively obvious."

E. (line 5) "1 is a natural number."

F. (lines 24-25) "To see how this works, let us consider a simple
proof by mathematical induction."

G. (line 27) "If n = 1 then 1
2

- 1 0, and this is an even

number."

4111..

,MMEMMIMMink

01111

M11111,.11.
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V. Clauses and phrases.

A clause contains a verb and a subject. For example, in

(lines 27-28): "Thus we have proven the base of the induction."

the underlined part is a clause, the verb of which is "have proven" and

the subject of which (found by asking "who?" or "what?") is "we". Note

that the past participle "proven" cannot be considered a verb without the

auxiliary "have". In general, the present participle (-INC) and the

past participle (-ED, -EN) of a verb cannot be considered as verbs without

an auxiliary. Examples of auxiliary verbs are "has," "have," "is," and "are."

In the following sentences, indicate which verb forms function as verbs.

A. (lines 6-7) "To every natural number n there is assigned a

natural number S(n), called the successor of n."

1. is assigned
2. called

B. (line 9) "There is no natural number n satisfying S(n) = 1.

1. is

2. satisfying

C. To every natural number n there is assigned a natural number S(n)

which is called the successor of n.

1. is assigned
2. is called

D. There is no natural number n which satisfies S(n) = 1.

1. is

2. satisfies

A group of words which
following are phrases:
(line 9) "satisfying

..!itlt.,r a subject or

does not have/a verb is called a erase. The

(line 7) "called the successor of n", and

S(n) = 1".

VI. Compound sentences.

Compound sentences were discussed in Exercise VII on Text IV. When two

simple sentences are joined to make up a compound sentence, each becomes a

clause. Since each of these clauses has its own4erb and subject, it is

called independent.
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For example, here are two simple sentences:

Let A be an even integer. Let B be an odd integer.

They can be joined in either of the following ways:

1. Let A be an even integer; let B be an odd integer.

2. Let A be an even integer, and let B be an odd integer.
Each of these compound sentences has two independent clauses, as follows:

connector subject verb

first independent
clause

second independent
clause

a
you (understood) Let

and you (understood) let

Note that there is no connector at the beginning of the first clause, whereas

there is a connector to join the second cause to the first.

In the following compound sentences, give the verbs, subjects, and connector.

connector

A. (lines 15-16) "Peano's fifth
postulate is often called the
Principle of Mathematical
Induction, and there are many
equivalent ways of formulating it."

B. (lines 30-31) "But n
2-n

is an

even number, and 2n is also an

even number."

subject verb

VII. Comprehension

Each of the following sta:sanents is either true or false. For each statement,

give the line number, and if it is false, explain why.

lines

A. Peano's postulates state properties of the
natural numbers that are difficult to

understand.

B. We usually denote the successor of a natural

number n by n+1.

C. There is only one way of formulating
Peano's fifth postulate.
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lines T/F - why

D. A proof which makes use of the Principle of
Mathematical Induction need have enly one part:
either the base or the step.

E. The sum of two even numbers can never be an
odd number.

We can replace postulate (II) by postulate (*).

G. Between a finite set and one of its proper
subsets it is sometimes possible to construct
a one-to-one correspondence.

H. The question in lines 40-41 is answered in
lines 41-42.
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TEXT VI: MONOIDS

If S is a nonempty set then a function from S x S to S is called

a binary operation on S. A nonempty set together with at least one

binary operation satisfying certain given conditions is called an algebraic

structure. There are several types of algebraic structures of varying degrees

of complexity which have proven to be of use in mathematics and which have

been extensively studied.

Let us look at a very simple type of algebraic structure. A set S

with a single binary operation * defined on it is called a semigroup if

and only if this operation is associative, i.e. if and only if

10 a*(b*c) (a*b)*c for any three elements 2 b, and c in S. The

set 2/ of integers together with the operation of addition forms a semigroup.

The sett of integers together with the operation of subtraction does not form

a semigroup. The set of positive integers together with the operation of taking

greatest common divisor forms a semigroup. So does the set of negative integers

15 together with the operation of taking maximum.

A semigroup (S,*) is called a monoid if and only if there exists an

element e of S satisfying the condition that s*e = s = e*s for all

elements s of S. Such an element is called an identity of the monoid.

Any monoid has at most one identity. Indeed, if f and e are both

20 identities of a monoid (S,*), then e = e*f = f. Therefore, any monoid

has precisely one identity.
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Since monoids ere more "complicated" algebraic structures--they satisfy

more conditions--we expect them to be more "interesting" to the mathematician

and at he same time expect to find less of them. The set of positive

25 integers together with the operation of addition is a semigroup which is

not a monoid. The set of integers, together with the operation of taking

maximum, is another example of a semigroup which is not a monoid.

A function a from a monoid (S,*) to itself is said to be an

endomorphism of the monoid if and only if the following two conditions are

30 satisfied:

(1) a(s)*a(s = a(s*s') for all s, E S;

(2) a(e) = e.

Let us denote the set of all endomorphisms of a monoid (S,*) by End(S).

This set is nonempty since it surely contains the function 6 defined by

35 6(s) = s for all s E S.

Composition of functions is a binary operation on End(S). That is to say,

if a, a3 E End(S) then the function a°13 defined by a°0(s) = a(0;s)) for all

s E S is an endomorphism of S. To see this, note that for all s, s' E S we

have a°5(s*s1) = a(a(s*s1)) = a(0(s)*13(s1) = a(0(s))*a(13(s1)) = 0°0(3)*a°0(s').

40 Moreover, a°0(e) . a(0(e)) = a(e) M e. In fact, End(S) together with the

operation of composition is a semigroup, since composition of functions is

easily seen to be associative. For any a E End(S), we have a°6 = a = 6°a

and so we see that 6 is the identity element of End(S). Therefore End(S)

is in fact a monoid.

45 Thus we have seen how to build a monoid End(S) from a given monoid S.
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We can, of course, repeat this process and define another monoid End2(S) to

be End(End(S)). In general, we can define the monoid Endn(S) to be

End(End
n-1

(S)) for every positive integer n greater than 2.

If a is an endomorphism of a mcnoid S, then the image of a is a

50 submonoid of S. That is to say, it is a subset of S which is a monoid

under the same operation used in S. We will denote this submonoid of S by

im(a). If we apply a to every element in im;a), we obtain a submonoid of

im(a), which we denote by im(a2). More generally, we can define im(an) to

be the submonoid of im(a
n-1

) obtained by applying a to every element of

55 m(an -1), where n is any positive integer greater than 2.

EXERCISES ON TEAT VI:

I. Match the words in the first column with the words in the second column having
the same meaning.

1. satisfying that is to say
2. conclitions fulfilling
3. several exactly
4. varying widely
5. extensively

1!
requirements

6. i. e. many
7. precisely get
8. moreover different
9. since becatlae

10. therefore furthermore
11. obtain

almolnimi01111m.
thus

II. To what do the following words in the text refer?

A. "which" (line 6)

(line 8)
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C. "do" (line 14)

D. "them" (line 23)

E. "it" (line 50)

III. Parallel structures and enumeration.

A writer often presents and develops a group of ideas together as a unit.

The definition of one term may be necessary to understand and define another

term. On the other hand, ideals may be contrasted with their negatives or

with related ideas.

A writer may wish to show how ideas are related by using sentences of

parallel structure. Look at lines 10-15 of the text:

lines key words

10-11 The set ... together with the operation of ... forms a semigroup.

12-13 The set ... together with the operation of ... does not form a

semigroup.

13-14 The set ... together with the operation of ... forms a semagroup.

14-15 So does the set ... together with the operation of .

By repeating key words, the writer shows the similarity

In the last sentence, the words "So does" show that the

behaves like the data in the previous sentences. There

sentence of contrast: the data in lines 12-13 does not

among the four ideas.
data in this sentence
is, however, one
behave in the same way.

Parallel structures appear again in lines 24-27. Give line numbers and

key words.

lines key words.

Here, in addition to parallel structures, the word "another" marks the fact

that this example is the second in a series.

Enumeration is the numbering of a series of items. Often writers of mathematics

mark a series very clearly. Look at lines 28-32 in the text:
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lines key words

28-30 A ... is said to be ... if and only if the following two

conditions are satisfied:

31 (1)

32 (2)

In the first sentence, the writer states that two conditions must be

satisfied. Then he enumerates the two conditions, using the markers (1)

and (2) before each one.

IV. Changing the subject without markers.

Markers of enumeration such as "one", "another", "first", "second", "third"

etc. can be very helpful in finding each of a series of important points

and examples. Sometimes, however, writers do not give clear markers; the

reader must infer them from the context. Let us look at lines 1-7 in the

text:

line key words

1-2 If ... then ... is called a binary operation .

2-4 A ... with at least one binary operation ... is called an

algebraic structure.

4-6 There are several types of a2gebraic structures of varying

degrees of complexity ... .

7 Let us look at a very simple type of algebraic structure.

First the writer defines a binary operation because he needs to use this term

in the definition of an algebraic structure. The third sentence contains a

general sta-,:ement about algebraic structures. In the fourth sentence the

writer expresses his intention of beginning his disucssion with a simple type

of algebraic structure.

Look at lines 22-24: "Since monoids are more 'complicated' algebraic

structures ..." . Here again we have the markers of enumeration. Among

the algebraic structures there are two types: "simple" and "more complicatad".

These markers are not as clear as words such as "first" and "second"; they

have to be recognized by the reader from the context.

Sometimes the writer may change the topic of discussion without a

Consider line 36: "Composition of functions is a binary operation

From here on, the writer discusses End(S) and not S. Finally,

the author changes the subject again to a discussion of the image

endomorphism.

47

marker.
on End(S)."
from line 49
of an



-44-

V. Language of proof,

A mathematical proof consists of four elements: definitions of the
relevant terms, a statement of the hypotheses assumed and of the assertion
to be proven, the writer's argument or reasoning, and the conclusion in which
the writer repeats what has been proven. Often, however, some of these
elements may be missing if the author feels that they are obvious to the

reader. Let us look at lines 16-21 of the text:

lines k.ey words sentence function

16-18 A ... is called ... if and only if ... definition

18 Such a ... is called an ... definition

19 Any monoid has at most one identity statement to be proven

19-20 Indeed, if ..., then ... writer's argument

20-21 Therefore, any monoid has precisely another statement to be

one identity proven

No argument is given for the last statement, since the writer assumes that
the reader sees that it is an obvious conclusion drawn from the definitions

on line 16-18 (which state that any monoid has at least one identity) and

the statement on line 19 (which states that any monoid has at most one

identity).

Another proof appears in lines 36-44. Fill in the following table by using

any of the following possible sentence function(s): introduction,
expansion, writer's argument, definition, satement to be proven, conclusion.

lines key words sentence function

36 Composition ... is a ...

36-38 That is to say, if ... then . .

38-39 To see this, note that for all ...

40 Moreover, ...

41-42 In fact, . ., since .. . .

42-43 For any ... we have ... no we see that . . .

43-44 Therefore End(S) is in fact a monoid

BEST COPY AVAILABLE
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VI. Comprehension

A. Explain why the set 2 together with the operation of subtraction

does not form a semigroup. (line 12)

B. Explain why the set of positive integers together with the operation

of addition is a semigroup which is not a monoid. (lines 24-26)
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TEXT VII; MATROIDS

It is often the case in mathematics that a concept can be defined in

several equivalent ways, each of which presents new insights into the concept

or suggests new applications of it. We illustrate this by considering the

notion of a matroid.

5 A matroid M = (E,S) consists of a nonempty finite set E, together with a

nonempty collection S of subsets of E (called independent sets), which

satisfies the following conditions:

(1.1) Any subset of an element of S belongs to S.

(1.2) If I and J are elements of S with J having more elements than I,

lo then there exists an element x of J not in I with the property that

I u (xl is an element of S.

For example, let E be a set of vectors which span a finitely-generated vector

space over a field F, and let S be the set of all linearly-independent subsets

of E.

15 It is easy to show that any independent set in M is contained in a maximal

independent set, called a base, and that any two bases have the same number of

elements. This suggests another definition of a matroid, which can be shown to be

equivalent to the first: a matroid M = (E,B) conAsts of a nonempty finite set

E, together with a nonempty collection B of subsets of E (called bases), which

20 satisfies the following conditions:

(2.1) No element of B properly contains any other element of B.

(2.2) If I and J are elements of B and if x E I, then there exists an

element y of J such that (x:) U {y} belongs to B.
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Let us call the number of elements in a base the rank of the matroid. (This

25 is well-defined since all bases have the same number of elements.) Using the notion

of rank, we can give yet another definition of a matroid: a matroid. M = (E,p)

consists of a nonempty finite set E, together with an integer-valued function p

(called its rank function), which is defined on the set of all subsets of E and

which satisfies the following conditions:

30 (3.1) For any subset A of E, p(A) is a nonnegative intgger no greater than

the number of elements in A.

(3.2) If A c B c E then p(A) < p(B).

(3.3) If A and B arc subsets of E then p(A U B) + p(A n B) < p(A) + p(B)

If A is a subset of E then the closure of A in E consists of the

35 set of all those elements x of E satisfying the condition that p(A U {x }) =

p(A). Clearly A is contained in its closure. This suggests another definition

of matroids, which can be shown to be equivalent to all of the previous ones:

a matroid M = (E,c) consists of a non-empty finite set E, together with a

function c from the family of all subsets of E to itself, which satisfies

40 the following conditions:

(4.1) For any subset A of E, A c c(A) = c(c(A)).

(4.2) If AcBcE then c(A)cc(B).

(4.3) If A is a subset of E and if x, y are elements of E satisfying

x E c(A u fy1) but x g c(A), then y E c(A U (x}).

45 Let us conclude by considering some additional examples of matroids:

(A) if E is a set having at least k elements, then we can define a matroid
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structure on E by taking as independent subsets of E all those subsets

having precisely k elements.

(B) If E is the set of edges of a finite graph r then we define a matroid

50 structure on E as follows: if A is a subset of E then define p(A)

to be the number of vertices in the subgraph of r determined by A minus

the number of connected components in that subgraph.

(C) Let E be any finite set of real numbers. Then we can define a matroid

structure on E by taking as independent subsets of E all sets of

55 elements of E which are roots of some polynomial with rational coefficients.

EXERCISES OM TEXT VII:

I. Match the words in the first column with the words in the second column having
the same meaning.

1. concept use

2. insight understanding
3. illustrate maximal independent set
4. considering notion
5. span examining
6. previous member
7. precisely show
8. base exactly
9. element before

10. application use

II. To which words in the text do the following words refer?

A. "each of which" (line 2)

B. "it" (line 3)

C. "this" (line 3)
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D. "This" (line 24)

E. "ones" (line 37)

III. Comprehension

A. The text gives four equivalent definitions of the matroid structure on a

nonempty finite set S. Using these definitions, fill in the following table:

definition notation defining structures on E special term for it

1 M = (EpS) nonempty collection S of
subsets of E

independent sets

2

3

4

B. For each of the examples A, B, and C, which definition is suitable?

example

A

B

C

definition

IV. Introductions and transition passages.

In dh introduction the writer explains the purpose or importance of the

information which will follow. The first paragraph of the text (lines 1-14)

contains two such sentences. The first (lines 1-3) presents a general statement,

and the second (lines 3-4) explains that the rest of the text is an illustration

of this general statement. The introduction gives the text a frame without

which it would not be meaningful.

A transition passage appears between ideas; it concludes one and/or introduces

the next. One transition passage appears in lines 15-17. The sentence shows

how one definition of a matroid leads to the next definition, which is introduced

in the following sentence.
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Find two other examples of transition passages in the text and give key words.

lines key words

V. Parallel constructions.

In Exercise III on Text VI we talked about parallel constructions.) Look

at the last paragraph of the text. It contains three examples, each of

which begins with a given assumption and follows with a definition. The

key words, however, vary in each example. Fill in the following table:

example gi ven/key words definitionikey words

A

B

C

If E is a set then we can define a matroid structure

having ... on E by ...
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TEXT VIII: GRAPHS OF FUNCTIONS

2 If f is a real-valued function of a real variable, then it is often

useful to represent f pictorially by considering the subset ((x,y) y = f(x)}

of the plane. This subset of the plane is called the graph of the real-

valued function f.

While the graph of any real-valued function of a real variable is well-

defined in theory, there are some functions whose graphs are impossible, or

essentially impossible, to draw in practice. For example, one cannot draw an

accurate representation of the graph of the function f defined by:

x
2

when x is a rational number

f(x)
sin(x) when x is an irrational number

Even if the function is differentiable, its graph may not be accurately

drawable. For example, '.insider the function

g(x) =
x2 sin(l /x) if x 0

0 if x = 0

15 which is everywhere differentiable but whose graph cannot be drawn accurately

in the vicinity of the origin.

Nonetheless, if the function is sufficientb "nice ", its graph can be

drawn and provides valuable information about the behavior of the function.

Fur example, the graph of a constant function f(x) = c is a line parallel

20 to the X-axis. If f(x) is an increasing function (namely, if f(xl) > f(x2)

when xl > x2), then the graph of f(x) reflects this by rising as one

goes to the right and falling as one goes to the left. The opposit- is
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true for the graph of a decreasing function. The graph of the function h(x)

defined by

25 h(x) = n if v is an integer and n-1 < x < n

looks like a series of steps, and so functions such as this are called step

functions.

Not every curve in the plane is the graph of a function. Indeed, from

the very definition of a graph, we see that for any real number x there

30 can be only one real number y such that (x,y) belongs to the graph.

Pictorially, this means that every line in the plane parallel to the Y-axis

intersects the graph at only one point. Thus, for example, a circle cannot

be the graph of a real-valued function of a real variable. This condition

is also sufficient. That is to say, if r is a curve in the plane having

35 the property that every line in the plane parallel to the Y-axis intersects F

once and only once, then r is the graph of some real-valued function of a

real variable.

It is perfectly possible that a line in the plane parallel to the X-axis

may intersect the graph of a real-valued function of a real variable several

40 times. Indeed, we have already noted that if f(x) is a constant function

then its graph is itself such a line. However, a necessary and sufficient

condition for a function f to be invertible is that this cannot happen; i. e.,

f is invertible if and only if lines parallel to the X-axis intersect the

graph of f at most once. If f and g are real-valued functions of a

45 real variable, then these functions are inverses of each other if and only
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if the graph of f is the reflection of the graph of g across the diagonal

x = y. (This condition means that a point (a,b) of the plane is in the

graph of f if and only if the point (b,a) is in the graph of g.)

In short, one can tell, by merely looking at the graph of a function,

50 whether the function is increasing, decreasing, or neither. One can also

tell whether the function is even (i.e., f(x) = f(-x) for all x) or

odd (i.e., f(x) = -f(-x) for all x), One can also see if the function

has local minima or maxima and whether the function rises or falls at a faster

or slower rate. Thus the graphical representation of functions is a compact

55 way of presenting information about them in a form from which human observers

can easily extract relevant data.

EXERCISES ON TEXT VIII:

I. Match the words in the first column with the wozds in the second column
having the same meaning.

1. consider show

2. while basically
3. essentially give
4. representation increase
5. accurate enough
6. in the vicinity of near
7. sufficient drawing
8. provide think about
9. reflection image
O. nonetheless al*_ 1-.ugh

11. rise exact

12. fall however
13. reflect obtain

14. extract decrease
15. informa tion data
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II. A word may take on different forms, depending on its part of speech. Fill

in the table below, giving the adjective, verb, and noun forms of some

words. The first line has been done for you.

adjective verb noun

pictorial picture picture

variable

practice

essential

representation

drawable

differentiable

inverse

III. Intensifiers and qualifiers.

Some words emphasize or strengthen (intensify) the meaning of a sentence.

These words include "itself", "very", "indeed ", and others. Other words

weaken or qualify the meaning of a sentence; these may include "sometimes",

"may", and "would", among others.

For each of the following phrases, put a plus (+) if the underlined word(s)

strengthen(s) the meaning and a minus (-) if the underlined word(s) qualify ( -ies)

the meaning. The first two have been done for you.

A. (lines 1-2) it is often useful

B. (line 15) everywhere differentiable

C. (lines 6-7) essentially impossible

D. (line 29) the very definition

E. (line 30) only one

F. (line 38) it is perfectly possible

58
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G. (line 39) En:intersect

H. (line 40) Indeed

I. (line 41) graph is itself

J. (line 43) if and only if

K. (line 44) at most once

L. (line 49) merely looking

IV. To what words in the text do the following words refer?

A. (line 11) "its"

(line 21) "this"

C. (line 31) "this"

D. (line 41) "itself"

E. (line 42) "this"

V. Statements of contrast.

Statements of contrast are marked by words such as "but", "although

"while", "nevertheless". Consider the following sentence:

(lines 5-7) "While the graph of any real-valued function of a real variable
is well-defined in theory, there are some functions whose graphs are
impossible, or essentially impossible, to draw in practice."

This sentence contrasts the possibility of drawing the graph of any
real-valued function of a real variable in theory, on one hand, with the

impossibility, in practice, of drawing certain graphsoon the other hand.
One word marking the contrast in this sentence

In the following sentences, underline the words marking contrast.

A. (lines 17-18) "Nonetheless, if the function is sufficiently "nice",

its graph can be drawn ... ."

B. (line 28) "Not every curve in the plane is the graph of a function."
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C. (lines 41-44) However, a necessary and sufficient condition for a
function f to be invertible is that this cannot happen; i.e., f
is invertible if and only if lines parallel to the X-axis intersect
the graph of f at most once."

VI. Logical arguments.

A logical argument is usually composed of three elements:
A. Beginning or introduction: definition, general statement;
B. Middle or development: expansion, example(s), comparison/contrast;
C. End: result, conclusion, summary.
A mathematical text, even one without formal proofs, is usually composed
as a series of logical arguments where one idea is stated, developed, and
followed by another idea. The new idea may either agree with (i.e., add to)
or disagree with (i.e., contrast with) the previous idea.

In Text VIII, lines 1-4 contain the introduction to the entire text. Lines
5-48 contain four main ideas, each one of which is developed, and lines
49-56 contain the conclusion of the text.

Let us analyze lines 5-48 further.

A. The im ssibility of drawing certain graphs.

lines key words sentence function

5-7 While the graph of Ea real-valued function contrast
is well-defined in theory, there are some
functions whose graphs are impossible to
draw in practice.

7-10 For example, one cannot draw ... . example #1

11-12 Even if ..., its graph may not be another case
accurately drawable.

12-14 ror example, consider .. example #2

B. Functions whose graphs can be drawn.

The next idea, appearing in lines 17-27, contrasts with the previous idea but
agrees with the introduction. This paragraph contains four examples.

Fill in the table below:
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lines key words sentence function

17-18 Nonetheless, if ..., its graph can be
drawn ...

contrast

19-20 For example, example #1

example #2

example #3

example #4, definition

C. Not all curves are graphs of functions.

The next idea, appearing in lines 28-37, is a qualification explaining that

some Ci.troti.5 may be drawn that are not functions.

1. Now many examples are given? Name it (them).

2. What is it (are they) an example (s) of?

3. What are the key words that help you to find the answers?

D. The graphs of invertible functions

Lines 38-48 return to the idea that it is possible to draw graphs of functions.

The sentence in lines 34-37, in the previous paragraph, discusses a line parallel

to the Y-axis. The first sentence in this paragraph (lines 38-40), by
contrast, discusses a line parallel to the X-axis.

1. (line 40) "Indeed, we have already noted ..." In which lines has the

writer noted this idea previously in the text?



-58-

2. The idea about invertible functions is developed in lines 41-48. Fill

in the following table, giving key words and sentence functions.

lines key words sentence function

41-44

44-47

47-48

3, The conclusion of the text (lines 49-56), begins with three statements of

parallel form. Given the sentence function of each of them.

liners )22 wvrds, sentence function

49-50 In short, one can tell ... whether the

function is ..., or ...

50-52 Ons can also tell whether the function is

!SO or 00* 4'

52-54 One can also see if the function has ... or

... and where the function ...

The main theme of the text is stated four times. Find these statements

and give the line numbers.

1.

2.

3.

4.

VII. Comprehension

A. Why is it not possible to draw a graph of these functions:

1. The function f, defined in lines 9-10?

2. The function defined in lines 13-14?
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B. According to lines 17-18, under what conditions is it possible to

draw the graph of a function?

C. Why is it not possible for a circle to be the graph of a real-valued

function of a real variable?

D. Match these descriptions with the graphs that follow them.

a. f(x) c is a line parallel to the X-axis; f is a constant function

b. f(x) is an increasing function; f(x) increases as x increases and

decreases as x decreases

c. f(x) is a decreasing function; f(x) decreases as x increases

d. f(x) is a step function
e. the graph of f is a curve such that every line in the plane

parallel to the Y-axis intersects the graph of f only once

f. the graph of f is the reflection of the graph of g across the

diagonal x y

g. f(x) is an even function
h. f(x) is an odd function
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TEXT IX: BINOMIAL COEFFICIENTS

1 If n is a positive integer, we define the number n! (read as "n

factorial") to be the product of all of the positive integers from 1 through n.

By convention, we also set 0! equal to 1. If k < n are nonnegative

integers, we define the number (k) to equal
kl(n-n!k)I

The first theorem

5 will show that this number is always a positive integer and, indeed, it will

provide a recursive method of computing it.

THEOREM 1. If n is a positive integer then

(1) (C01) = (no) = 1.

(2) For 1 < k < n, we have (!'41) = (Z:11) + (T).

10 PROOF: Part (1) of the theorem follows directly from the definition of

(k). To prove part (2), we note that

(k) kirg-k)!

(n-1)
(k- )1(n-! 1-Q1'r Z57k1J

- 01-1)! r 1 .4. 11

(k-T)I(n-1-k)!4n-k

15
01-1)!

(k-II!Cn-k)! kffn=1-10-1

(k:11) (n-1.(1
0

The following theorem is known as the Binomial Theorem. Because of it, the

integers (111() are known as the binomial coefficients.

THEOREM 2. If n is any positive integer then

n n.
20 (x + An = Ek=0 (ox

n-k
y
k
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PROOF: We will prove this theorem by induction on n. For n = I, we have

(x + y) = (0)x + (1)y, as desired. Therefore assume that n > 1 and that we

have already established the formula

n-1 n-1 n-1 n-l-k k

(x Y) 100 ( k )x

25 We can then compute (x + y)n as follows:

(x y)n = (x y)(x + An-1

= x(x + y)n-1 + y(x + y)n-1

x[4:10 (11,-(1)xn-1-kyk] y[4:10 (n-1(1)xn-l-kyk]

thj)xn x111;174:10
(n

i-(1))xn-kyk (rnjloyn.

30 By Theorem 1 we have (n01) - (rot) = (trt1:1) = (In)

for all 0 < k < n, which proves that

y)n (tildxn-kyk.

1 and (rk1:1) (n) = (117)

The binomial coefficients (
k

) have another, very important, interpretation

in combinatorics, as we see from the following theorem.

35 THEOREM 3. If 0 < k < n are nonnegative integers then (n) is precisely

the number of k-element subsets of a set Containing n elements.

PROOF: We proceed by induction on the case n s 1 being obvious.

Let A be a set of n elements, where n is assumed now to be greater than 1.

Select an element a
0

from A
)
and let B = A (a o). Any k-element subset of

40 A either contails a
0

or it does not. Subsets of the first type are precisely

those obtained by taking a (k-1)-element subset of B and adding a0 to it. By

the induction hypothesis, there are (in(1) of these. Subsets of the second type

are precisely those obtained by taking k-element subsets of B. By the induction
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hypothesis, there are (//;1) of these. Therefore the

in-11
+

0-k 1).
45 subsets of A is ,k_11 . By Theorem 1, this

EXERCISES ON TEXT IX:

total number of k-element

equals (Z). 0

I. A word may take on different forms, depenaiaj on its part of speech. Fill in

the following table. The first line has been done for you.

Oerb

1. define

2.

equal

4. provide

compute

7.

8. assume

10.

11. select

12. add

13.

14.

noun

definition

product

proof

induction

formula

interpretation

hypothesis

combinatorics
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II. To what words in the text do the following words refer?

A. (line 5) "this number"

(line 5) "it"

C. (line 6) "it"
D. (line 17) "it"

E. (line 40) "it"

F. (line 40) "the first type"

G. (line 41) "it"

H. (line 42) "these"

I. (line 42) "the second type"

J. (line 41) "these"

K. (line 45) "this"

III. Markers of emphasis

Some words are used to emphasize a point. For each word below, give

the idea the writer is emphasizing. The first one has been done for you.

A. (line 5)4 "indeed" the first theorem will show how to compute n recursively

B. (line 22) "as desired"

C. (line 23) "already"

D. (line 33) "very important"

E. (line 38) "now"

(line 40) "precisely"

IV. The language of theorem and proof.

The text contains three theorems and their proofs. We will examine each

theorem and proof separately, looking for the following sentence functions:
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given data, definition, denotation, computation, logical argument, conclusion,
writer's statement of intention, writer's comment.

A. Let us examine lines 1-16, which contain Theorem 1 and its proof, as well
as the remarks preceding it.

line(s) key words sentence function

1-2 If n is a positive integer we define ... definition, denotation

from 1 through n.

3 By convention, we also set 01 egu.1 to 1. definition, denotation

4 If ... we define .. . definition, denotation

4r6 The first theorem will show ... writer's intent

7-9 If n is a positive integer then .. . statement of given data
and desired conclusion

10-16 PROOF: 0 logical argument and
computation

B. For lines 17-32, which contain Theorem
the remarks preceding it, fill in the

linefs) key words

2 and its
table below

proof, as well as

sentence function

17

17-18 ... are known as ..

19-20

21 We will prove ... by ..

21-22 For n we have ...

22-24 given data

25-29 writer's intent,
computation

30-32 By ... We gave and ... for all ... computation, conclusion

which proves ... .
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C. Fill in the following table for lines 33-45.

line(s) key wards

33-34 The ... have another, very important
interpretation ..., as we see ...

SEM nce function

35-36 statement of given data
and desired conclusion

37 writer's intent

38

39

39-40 Any ... either ... or it does not logical argument

40-41

41-42

4243

43-44

44-45 conclusion

given data

45

V. Complex sentences.

A. A complex sentence has at least two clauses: one independent clause
and one dependent clause. An independent clause makes sense as a complete
thought; it can be a separate statement. The following is an independent
clause:

(lines 1-2) " ... we define the number ral ... co be the product of all

positive integers from 1 through n.

The verb in It is "define': and its subject is

also an independent clause:

(line 1) "... n is a positive integer"

Here the verb is and the subject is "n".

70
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By adding the connecting word "If" before the clause, the above statement

becomes a dependent clause:

(line 1) "If n is a positive integer, ... "

This clause depends on another, independent, clause to follow it in order
to finish the statement and complete the thought. Thus, we have:

(lines 1-2) "If n is a positive integer, we define ... to be the
product ..."

clause connecting word subject verb

dependent If n is

independent we define

The dependent clause is not complete without the independent clause. Together

they form a complex sentence.

B. There are other connecting words which introduce dependent clauses

Some of these are: "that", "as", "where", "when", "since", and "although". In

the fallowing complex sentences, underline the connecting word at the

beginning of the dependent clause.

(lines 3-4) "If k c n are nonnegative integers, we define ... to

equal ..."

2. (lines 33-34) "The birJmial coefficients (12) have another ...

interpretation, as we see from the followin theorem."

3. (line 3d) "Let A be ..., where n is assumed not to be greater than 1.

C. The complex sentence should not be confused with the compound sentence,

where each clause is independent. Connecting words which permit the clause

to remain independent are "and", "or", "but". In the following compound
sentences, underline the connecting word at the beginning of the independent

clause.

1. (line 39) "Select an element ao from A and let B = A [a )

2. (lines 39-40)
or it does no

k-element subset of A either contains a
0

D. Note that the following sentence is made up of three clauses:

(lines 4-6) "Tha first theorem will show that this number is always
and ... it will provide ... ."
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The first half of the sentence contains two clauses, an independent and a

dependent clause (beginning with the connecting word "that"). The third

clause begins with the word "and" which signals the beginning of an

independent clause. This sentence, containing a dependent and two
independent clauses, is called a compound-complex sentence.

clause connecting word subject verb

independent The first theorem
will show

dependent that this number is

independent and it will provide

Comprehension

A. How does the answer in line 16 prove part (2) of Theorem 1?

B. In line 37, the writer says that the case n ¢ 1 is obvious. Wh
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TEXT X: CROSS PRODUCTS OF VECTORS

In general, it is not possible to define an algebraically-interesting

product of vectors in a vector space of arbitrary dimension over the field R

of real numbers. On the line II
1

we have, of course, the ordinary product of real

numbers; in the place 1112 we have the product obtained from the usual identification

of R2
with the field of complex numbers. In the space

1R3
one can define a

product, called the cross product, which is far less interesting from the

algebraic point of view but which is of use in advanced calculus.

Let u = (al,a2,a3) and v = (b1,b2,b3) be vectors in DO. We define

the cross product of u and v, denoted by u x v, to be the vector

10 (a2b3 -a3b2, a3b1 -a1b3, a
1
b
2
-a

2
b

1
). Thus, for example, we note that

(1,0,0) x (0,1,0) = (0,0,1),

(0,1,0) x (0,0,1) = (1,0,0),

(0,0,1) x (1,0,0) . (0,1,0).

By straightforward computation, we can now prove the following elementary

15 properties of the cross product.

THEOREM 1. If a E DR and if u, v, w E IR then

(1) u x v = -(v x u);

(2) (u w) x v = (u x v) (w x v);

(3) a(u x v) (au) x v = u x (av);

20 (4) (u x v) x w + (v x w) x u + (w x u) x v O.

Note that if v E
1IR3 then by (1) we have v x v = -(v x v). Since the
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0-vector is the only vector equal to its own negative, we immediately obtain

the following corollary to Theorem 1.

COROLLARY: If v E IR
3

then v x v= (0,0,0).

25 THEOREM 2: If u, v E IR
3

are nonzero vectors then u x v = (0,0,0) if

and only if there exists a nonzero scalar a E R satisfying u ay.

PROOF: If u = av, then u x v = (0,0,0) by Theorem 1(3) and by the

Corollary to Theorem 1. Conversely, assume that u x v = (0,0,0), where

(a1ta2,a3) and v = (b1lb2,63). Then

30 (*) a2b3 - a3b2 = a3b1 - .111)3 = a1b2 a2b1 = 0.

Since v # (0,0,0) then one of the bi is nonzero. Say bl # O. By (*)

we see that

(**) al = al b a2 a1b2/b a3 = a1b3/b1

so u )v. A similar result is obtained if we assume b2 # 0 or

35 b
3

0. 9

The cross product has a clear geometric interpretation. Indeed, u x v

is the vector in IR
3

which is perpendicular to both u and v and the length

of which equals !Lib/kin e, where e is the angle between the vectors u and

v in the plane generated by them. Note that the length of u x v is precisely

40 equal to the area of the parallelogram with sides u and v. The direction of

the vector u x v is chosen according to the "right-hand rule".

Using this geometric interpretation we see that Theorem 2 can be rephrased

as follows:
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COROLLARY: If u and v are nonzero vectors in IR3 then u x v = ;0,0,0)

45 if and only if u and v are parallel.

Compare this result with the theorem stating that if . and v are nonzero

vectors in 111

3
then uv = 0 if and only if u arid v are perpendicular.

EXERCISES ON TEXT X:

I. Match the words in the first column with the words in the second column having
the same meaning.

1. ordinary repeated in different words
2. straightforward basic
3. elementary usual

4. properties get
5. i;amediately right away
6. assume direct
7. precisely exactly
8. generated by defined by
9. rephrased fulfilling (the condition)

11
10. satisfying characteristics
11. obtain suppose

II. Results

a line of reasoning often ends in a result. Spotting the
help us understand the writer's chain of thought. Look at
in the text:

In mathematics,
result can
lines 8-20

lines key words sentence function

8 Let ... and ... be ... given data

8-10 We define ... . definition

11-13 Thus, for example, ... example

14-15 By ..., we can now prove the following .. . intent of writer

16-20 Theorem 1 theorem
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Theorem 1 is a result of the definition and explanations in lines 8-15.
(They do not constitute a proof of Theorem 1 of course, but form the
chain of thought which leads the writer to propose Theorem 1.)

Sometimes a result and its reasoning appear in the same sentence. Consider

the following lines in the text:

(lines 21-23) "Since the 0-vector is the only vector equal to its own
negative, we immediately obtain the following corollary to Theorem 1."

Here the reason is "Since the 0-vector is ..." and the result is

"we ... obtain ..." . Often the connection between them is very blatant:

(line 24) "If v E 2R3 then v x v (0,0,0)."

Here the reason is "if v E 243" and the result is "then ...".

In the following sentences, give the key words showing results:

lines

25-26

27

29-30

31-34

34-35

key words

III. Sentence structure and information

When reading a very long, complicated sentence, it is sometimes useful to break
it down into smaller clauses in order to understand it more easily. To do this,

it is helpful to look for the verb (s) clubject(s), and connectors in the

sentence.

Look at lines 1-3 of the text. This long sentence has only one (independent)
clause: one verb and one subject. This is a simple sentence (see Exercise VI
on Text I) with one bit of information: it is not possible to define.

Now look at lines 3-5 in the text:
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connector subject verb

we have

we have

This is a compound sentence (see Exercise VIZ on Text IV); it has two
independent clauses connected by f semi-colon. It g es us two equivale
bits of information: one about IR and one about 2R .

Finally, look at lines 5-7 in the text:

lines clause connector subject verb

5-6 independent one can define

6-7 dependent which which is

7 dependent but which which is

This is a complex sentence (see Exercise V on Text IX) with three clauses:

one independent and two dependent. The main bit of information is that one

can define the cross product in 2e. The two other bits of information are

leis importlpt: that this product is less interesting than the products in

2R and 2 but that it is useful nevertheless.

Analyse the following sentences in the same way as above, and give the main

idea of each sentence.

A. lines clause connector subject verb

21-23

("Ance...

main idea:

B. lines

36-39

main idea:

clause connector

77
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C. lines clause connector subject verb

46-47

main idea:

IV. Comprehension

A. "Say bi 0 0. (line 31) This sentence means the same as:

a. b
I

is always unequal to 0.

b. let us decide that the value of i for which b 0 0 is 1.

B. "A similar result is obtained if we assume that b
2
0 0 or b

3
#

%lines 34-35) This sentence means the same as:

a. it doesn't matter whether b
1
0 0, b

2
0 0, or b

3
# 0, we always

end up with u (ailbi)v for some i.

b. the result will always be the result in line 33.
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TEXT XI: (;01ERAL1ZED INVERSES OF LIPMAR TRANSFORMATIONS

Let V and W be finite-dimensional vector spaces over the same field

F, and let a be a linear transformation from V to W which assigns to

each vector v in V the vector va in W. If V and W have the same

dimension, and if a is nonsingular (i.e. if va ¢ 0 whenever v ¢ 0), then

5 a has an inverse B which is a linear transformation from W to V having

the property that (10 and 00 equal the identity transformations on V and

on W, respectively, In particular, 0 satisfies the equality

(1) coo( = a.

If the dimension of V does not equal the dimension of W, or if these

10 dimensions are equal but a is singular, then a does not have an inverse;

nonetheless, there may still exist a linear transformation 0 from W

to V satisfying equality (1). Such a transformation is called a generalized

inverse of a. Generalized inverses tend to be very useful tools in linear

algebra. Their existence is guaranteed by the following theorem.

15 THEOREi: Let V and W be finite-dimensional vector spaces over the same

field F, and let a be a linear transformation from V to W with

kernel K and image Y. Let K' be a subspace of V satisfying V =

K 0 K', and let Y' be a subspace of W satisfying W = Y Y'. Then

there exists a unique linear transformation ri W--V which is a generalized

20 inverse of a and which satisfies the folio n conditions:

(1) K'

(2) Y

the image of 0;

the kernel

BEST COPY AVAILABLE
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PROOF: We first prove the existence of at least one such generalized

inverse 0. To do this, we begin by noting that the restriction of a to K'

25 is one-to-one. Indeed, if x and x' are elements of K' satisfying xa

x'a, then x-x' belongs both to K' and to K, the kernel of a. But

K n K' = i01, and so we must have x = x'. Moreover, if y is a vector in Y,

the image of a in W, then there exists a vector x in K' satisfying

xa = y. Indeed, if va = y for some vector v in V, then we can write

30 v = k + x, where k is in K and x is in K'. Then we note that y = va =

ka + xa = 0 + xa = xa.

We have thus shown that the restriction of a to K', which we will

denote by Elc, is an isomorphism between K' and Y, and so has an inverse

which we will denote by Er If n:W -. Y is the restriction transformation,

35 we now define the linear transformation a:W V to be na
-1.

that the

kernel of 0 equals Y', the kernel of n, and that the image of 0 equals

K', the image of a-l. Moreover, if v is a vector in V, and if v = k + x

is the unique decomposition of v into the sum of element of K and an

element of K' then

40 va0a = (k + x)aaa kaaa + xaaa = Oaa + xana
_1
a = 0 + xa = va.

(Here we used the fact that yn = y for any vector y in Y.) Therefore aaa =

and so R i is a q,.ffieralized inverse of a satisfying -onditions (1) and (2).

We now prove_ that 'here can be no more than one generalized inverse of a

satisfying conditions (1) and (2). Indeed, assume that al and a2 are two

45 such linear transformations. If w is a vector in W, then wL can write w = y + z

where y is a vector in Y and z is a vector in Y' Since Y' equals the

80
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kernel of pi and the kernel of 02 this implies that w01 = y01 and w02 =

y52. As we have already seen, there is a unique element x of K' satisfying

xa = y, and so y02(7( = 3q:,2a = xa02a = xa = xa01a = = yR1(71. But El is

50 one-to-oneiand so this implies that w01 = y01 = y02 = w02. This is true for

every vector w in W, and so we have 0 = 02.

EXERCISES ON TEXT XI:

I. Match the words in the first column with the symbols in the second column used

to denote them in the text.

1. finite-dimensional vector space a

2. field W Y

3. linear transformation 0

4. vector in V

5. inverse of a
6. composition of 8 and a 0.0

t. function from W to I V

8. direct sum a

9. restriction of a to K'

10. inverse of restriction of a to K'

11. kernel of 11- a

12. vector in Y

13. vector in K
111111111=1111111010

II. To what words in the text do the following words refer?

A. "these dimensions" (lines 9-10)

B. "such a transformation" (line 12)

C. "their existence" (line 14)

D. "one such generalized inverse" (lines 23-24)

E. "do this" (line 24)

F. "two such linear transformations" (lines 44-45)
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G. "this implies" (line 47)

this implies" (line 50)

I. "This is true" (line 50)

III. Following the argument.

A. Ideas in sequence. When explaining a point, the writer often uses key

words such as "In particular", "Abreover", and "Indeed" to emphasize that

he is continuing a point made in the sentence before. In the table below,

list sentences in the text in which the writer continues a point he has

begun in the sentence before. The first one has been done for you.

lines first words in the sentence

7 In particular, 0 satisfies the equality

B. Conditionals. Conditional statements state that if certain conditions

hold then something is true. In the table below, list the sentences in the

text containing conditionals. The first one has been done for you.

lines

3-7

if and if l or if

V and W ha

the same
dimension

a is non-
singular

82

then which/where/satisfying

has an
inverse

is a linear transfor-
mation on V and W
respectively
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C. Restlt. Some sentences contain a statement and a result, which is often

marked by the words "and so." Fill in the following table with such

sentences. The first sentence has been done for you.

linos statement result

32-35 We' have thus shcwn that the and so has an inverse which we wit.'

restriction ... is an
de_-ote by a

-1
.

iscmorphism between .r

and Y/

D. Writer's comments. Sometimes the writer points out some useful information__
outside of the formal disucssion or argumeht. Such comments a-e often marked

by "Note that". Fill in the table below using sentences from the text. The

first one has been dona for you.

lines writer's comments

13-14 Gene. d inverses tend to be very useful tools in linear algebra.

E. Writer's intent' Sometimes the writer may explain the procedure by which

intends to organize the material in the proof or parts of the text. Some key

saL are We must first prove", "To do this we begin by", and "We will thus

". Fill in the table below using sentences from the text. The first one

been don f_or you.
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lines writer's intent

23-24 We first prove the ax!stence of at least one such generalized
inverse 0.

IV. Comprehension

A. Under which two conditions is it possible that a not have an inverse?

B. Which phrases in the proof cf the theorem show both the existence and the

uniqueness of 0?

C. According to the last paragraph, how many generalized inverses of a

satisfy both conditions (1) and (2)2

D. According to the last paragraph, how many elements x of K' satisfy

xa = y?

©4
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V. Sentence structure review.

Look at the following table.

Sentence clause joined by

Simple
Simple

1 independent
1 independent

---
---

A is positive.
B is negative.

Compound 2 independent A is positive; B is
negative.

Compound 2 independent A is positive; nonetheless,
B is negative.

Compound 2 independent connecting
word "and"

A is positive, and B is
negative.
A is positive, and so B is
negative.

Complex 1 dependent,
1 independent

connecting
word "if"

.

If A is positive, then B
is negative.

Complex 1 dependent,
1 independent

connecting
word "when"

When A is positive, B is
negative.

Answer the following questions. NOte that more than one choice nay be

correct.

A. In this text, conditionals have the form of a

1. sirple sentence
2. compound sentence
3. complex sentence

B. In this text, result has the form of a

1. simple sentence
2. compound sentence
3. complex sentence
4. compound-complex sentence



-82-

TEXT XII: THE RIEMANN INTEGRAL

Let us consider the set A of all ordered pairs (I,f), where I =

[a,b] is a closed interval on the real line, and where f is a continuous

function from I to the nonnegative real numbers. Then the Riemann integral

can be thought of as a function from A to the nonnegative real numbers

5 which assigns to each pair (I,f) the area of the region in the plane which

is bounded by the graph of f and by the lines X = 0, Y = a, and Y = b.

We emphasize this outlook by writing R(I,f) instead of fI f(t) dt to

denote the Riemann integral.

Two properties of the function R are evident:

10 (1) If I = [a,b] is a closed interval on the real line, and if c

is an interior point of I, then c divides I into two closed subintervals,

= [a,c] and 12 = [c,b], the intersection of which is a single point. If

f is a continuous function from I to the nonnegative real numbers, then f

is continuous on each of I
1

and and we have

15 R(I,f) = R(Ii,f) + R(I2,f).

This property of R is called additivit1.

(2) If I = [a,b] is a closed interval on the real line, and if f is

a continuous function from I to the nonnegative real numbers, then there exist

points c and d in I such that f(c)
mintEIf(

t) and d(d) = maxtaf(t).

20 Moreover, we see that the region in the plane bounded by the graph of f and

the lines X = 0, Y = a, and Y = b is clearly contained in the rectangle

boTided by the lines X = 0, X = f(d), Y = a, and Y = b; and it clearly
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contains the rectangle bounded by the lines X = Os X = f(c), Y = a, and

= b. Therefore we have

25 (b a)f(c) < R(I,f) < .(b a)f(d).

This property of R is called betweenness.

What is amazing is that these two properties--additivity and betweenness --

together fully characterize the Riemann integral.

THEOREM: Let F be a function which assi ns a nonne t ve real ber

30 F(I,f) to each pair (I,f) in A and which satisfies the following

conditions:

(1) if (I,f) E A and if I = Il u 12, where /1 and 12 are

closed subintervals of I which intersect at a single point,

then F(I,f) = F(Ii,f) + F(I2,f).

35 (2) If (I,f) E A, where I = [a,b], and if c and d are points

in I satisfying f(c) = mintEIf( t) and f(d)
maxtEIf(t)'

then

(b a)f(c) < F(I,f) < (b a)f(d).

Then F(I,f) = fi f(t) dt for any (I,f) E A.

PROOF: Suppose that (I,f) E A, where I = [a,b]. Let us re---.:01 the

40 definition of the Riemann integral f f(t) dt. For any finite set of points

a = a0 < al < < a
n

= b

in I, and for each 0 < i < we select points ci and di In [

satisfying f(ci) = minte[ai of(t) and f(di)
maxtE[arai4.0f(t)*

The sum E
n-1

(a
.1+

)f(c.) is called a lower sum of f on I, and the
i=0

1 +1
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45 sum
Eni=0

ai)f(di) is called an upper sum of f on I. The lower

integral of f on I is defined to be the least upper bound of all possible

lower sums of f on I, and the upper integral of f on I is defined

to be the greatest lower bound of all upper sums of f on I. For (I,f) in

A, these values are equal to the same number, called the Riemann integral

50 of f on I, and denoted by fI f(t) dt.

Consequently, to prove the theorem, it suffices to show that F(I,f)

is greater than or equal to any lower sum of f on I, and that it is less

than or equal to any upper sum of f on I. Indeed, let

a = a0 < al < < a
n

= b

55 be a finite set of points on I. For each 0 < i < n, choose points ci and

di in [ai,ai+1] as defined at the beginning of the proof. Then (2) implies that

ai)f(ci) < F([a a1 +1],f) < (a - adf(cii)

for each 0 < n, and thus

-1

Ini=0 (ai+1 ai)f(
-

60 But (1) implics that 4:10 F([a

theorem.

EXERCISE.; ON TEXT XII:

ru
Fn-1 -tr

-=0
a i+1" !E.ri):10 (a

-
i+1 ai)f(di)*

0-1
]

'

f) = F(I,f), thereby proving the

Match the words in the first column with the symbols used to denote them
in the text from the second column.
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1. integral
2. set of ordered pairs
3. ordered pair
4. continuous function
5. interior point
6. interval
7. is an element of
8. greater than or equal to

-85-

=11MINIIT

II. Match the words in the firEt
having the same meaning.

1. examine
2. designate
3. subset of a plane
4. characteristics
5. clear
6. supposed
7. remember
8. choose
9. indicated by

10. is enough

column with the words in the second column

assumed
consider
suffices
seleot
assign
properties
denoted by
recall
evident
region

III. In the text, find one example of each of the following:

sentence line numbers

A. Simple sentence

B. Com2ound sentence

C. Complex sentence

IV. To what words in the text do the following words refer?

A. "this outlook" (line 7)

"it" (line 22)

C. "these two properties" (line 27)

D. "(2)" (line 56)
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V. Below is a list of sentence functions. Match this list to each of the

sentences in the text. (Some sentence functions appear more than once,

whereas some may not appear at all.)

Sentence functions sentence line numbers

A. definition

B. given data

C. example

writer's comment

R. clarification

F. introduction

G. explanation

H. condition

I. result

J. writer's intention

K. expansion (addition)

VI. In the sLatement of the theorem, decide which sentences belong to the

introduction, which to the argument, and which to the ccnclusion. Underline
the key words which helped you decide.
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VII. In the proof of the theorem, decide which sentences belong to the introduction,

which to the argument, and which to the conclusion. Underline the key words

which helped you decide.

VIII. Comprehension

A. Why do the expressions R(I,f) and fx f(t) dt denote the same thing?

How do they emphasize different things?

B. According to the property of additivity, which two values are added to
obtain the value of the Riemann integral on a given interval?

C. According to the property of betweenness, between which two values do we

find the value of the Riemann integral

D. How are the points c
i

chosen to obtain the lower sum?

How are the points di chosen to obtain the upper sum?

F. Find the key sentence that shows the writer procedure in concluding

the proof.
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APPENDIJ: THE GREEK ALPHABET

lower upper
case case name

a A alpha

6 B beta

y r gamma

6 A delta

e E epsilon

c Z zeta

n H eta

8 0 theta

1 I iota

K K kappa

A A lambda

u M mu

N nu

& E xi

o 0 omicron

n II Pi

P P rho

a E sigma

T T tau

u T upsilon

0 0 phi

X X chi

IP
Y psi

w 0, omega
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