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Precis

The present investigation developed power curves for two parametric

and two nonparametric procedures for testing the equality of population

variances. Both normal and non-normal distributions were considered

for the two group design with equal and unequal sample frequencies. The

results indicated that when population distributions differed only in

scale, the Klotz procedure consistently provided the most sensitive test

of variance equality. With symmetric distributions which differ in both

mean and scale the Klotz procedure with mean aligned data was the most

powerful procedure. When sampled distributions were skewed and differed

in mean as well as scale the O'Brien or Brown-Forsythe procedures were

preferred.



Power Analysis of Selected Parametric and Nonparametrlc Tests

forlietsrogeneous Variances in Non-Normal Distributions

Until recently tests of scale (variance) have been viewed by many

social scientists as being of minor interest. This disinterest may be

partially attributed to introductory and intermediate statistics textbooks

which discuss these procedures briefly and only in the context of deter-

mining whether the homogeneity of variance assumption of the independent

samples t-test and ANOVA F-test is met. The importance of this preliminary

test of scale is often further minimized by citing analytic or empirical

investigations that have indicated that when sample sizes are equal,

parametric tests of means are robust to heteroscedasticity (Glass, Peckham

and Sanders, 1972). The robustness of parametric tests of location however

is not without controversy. Based on the exact Type I error rates, Ramsey

(1980) challenged the robustness claim and provided guidelines to conditions

under which the t-test is robust to heteroscedasticity. When sample sizes

differ, considerable evidence supports the conclusion that parametric tests

of location can be either liberal or conservative depending on the relation-

ship between sample sizes and variances. Under these conditions tests of

scale are generally viewed to be particularly important. New interest in

tests of variance equality has also recently developed as a result of new

theories in the social sciences. Games, Winkler and Probert (1972) cited

several.areas of study in which the comparative analysis of distribution

dispersion are of primary interest. A program intervention may, for

example, have the effect of reducing group variability_ while having little

or no effect on the population mean. A new development in this area has been

the introduction of statistical procedures designed to investigate the

simultaneous influence of multiple independent variables on variance equality

in factorial designs (Games, 1978).
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In statistics texts, the most frequently cited analysis procedures

for testing the equality of group variances are chose suggested by Bartlett

(1937), Cochran (1941) and Hartley (1950). ,These strategies however have

been shown analytically and empirically to be'extremely sensitive to the

shape of the population distribution (Box, 1953; Games et al., 1972;

Layard, 1973; Overall and Woodward, 1974). In particular it is the kurtosis

of the distribution which affects the standard error of the variance and

the distribution of the Bartlett, Cochran, and Hartley test statistics.

When the population is leptokurtic a liberal test of the variance will

occur whereas with a platykurtic distribution the test will be conservative.

One solution to the problems caused by non-normality is to adjust the test

statistic to take into account the effects of non-normality. Box and

Andersen (1955) using permutation theory developed a procedure which adjusts

Bartlett's M using a sample estimate of the population kurtosis. Studies

of this approach have had mixed results. Games et al. (1972) using empirical

methods found Box and Andersen's statistic to provide liberal hypothesis

tests (iv .08) when the distribution was normal or skewed and to provide

conservative hypothesis tests when the distribution uniform.

With a leptokurtic distribution however the actual Type I error rate was

similar to the nominal Type I error rate. Miller (1968) on the other hand

found the Box-Andersen statistic to be robust to normal, light tailed and

heavy tailed distributions. The differences in results may be attributed

to sample sizes; Games et al. considered samples of 18 per group while

Miller studied samples of 25 per group. The relatively large sample size

needed and the computational difficulty have been viewed as limitations

for the Box - Andersen. approach. In addition the procedure cannot be used

for complex factorial designs.

5
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An alternative to adjusting the test statistic is to construct a

dependent variable that measures variability and to conduct an ANOVA on the

constructed dependent variable. For example, Box (1953) building on the

work of Bartlett and Kendall (1946) suggested dividing the sample into

subsamples and computing separate estimates of variance for each subsample.

To test the equality of group variances the subsample variances are trans-

formed using a log transformation and log S 2
is used as the dependent

measure in computing the ANOVA F-ratio. This approach has the advantage

of being applicable to complex factorial designs. Provided that the parent

distribution for the cells of the design have the same kurtosis, that the

number of observations is equal for all cells, and that the same number of

observations comprise each subsample, then the homoscedasticity assumption

will be approximately met. While the distribution of log S
2

can be non-normal,

(Under the sample size restrictions listed a!love ANOVA is reasonably insensitive

to non-normality. Several investigations have considered the procedure in

situations involving various population distributions. The results of

these studies have shown that the log transformation is robust to the

normality assumption (Box, 1953; Games et al., 1972; Layard, 1973; Overall

and Woodward, 1974; Levy, 1975; Martin and Games, 1977; Keselman

and Clinch, 1979). These same investigations have also shown that Box's

procedure is less powerful than other appropriate procedures when the distrl-

bution is normal, uniform, skewed or leptokurtic. In addition to lacking

statistical power the log transformation has two additional limitations.

First, the procedure does not specify the number of subgroups which should

be formed. Martin and Games (1975) however have found that the whole number

closest to the equare root of the group sample size to prvide optimal

power. A second more serious limitation is that results of the analysis can
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vary depending on '"Ie formation of the subgroups. Two researchers using

the same data could arrive at opposite conclusions. This lack of uniqueness

of results has led several researchers to abandon the approach (Brown and

Forsythe, 1974; O'Brien, 1978).

Levene (1960) suggested several transformations of the original data

in order to test the equality of group variance. One approach was to

calculate the square of the difference between each observation and its

group mean [p
ij

(x
ij

x. )
2

1. Substituting the p
ij

is for the original

data an ANOVA F-ratio is computed. Empirical studies of this approach have

been mixed and inconsistent (Miller, 1968; Games et al., 1972). Miller's

results suggest that with relatively large sample sizes (n=25) the approach

is robust to normal, light tailed and heavy tailed distributions. Games

et al. results suggest that with small sample sizes (n=6) the test is

liberal with normal, skewed and uniform distributions. These results are con-

sistent with a theoretical analysis reported by O'Brien (1978). The approach

was also shown to have slightly lower power than the Box-Andersen statistic

but greater power than the log transform approach (Miller, 1968).

A second transformation suggested by Levene (1960) was to calculate

the absolute value of the difference between each observation and its group

mean (2
ij

= lx
ij

X.
j

I ). The absolute differences replace the original

data and the ANOVA F-ratio is computed. Miller (1968) discarded this

approach arguing that the test statistic is not asymptotically distribution-

free. Others have considered this approach however and found mixed results.

Games et al. (1972) found the approach to provide a liberal hypothesis test

for normal, skewed, uniform and leptokurtic distributions. Brown and

Forsythe (1974) using larger sample sizes provided evidence suggesting that

the approach was appropriate for normal and leptokurtic distributions but
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liberal for distributions which were both leptokurtic and skewed. Their

results also indicated that Levene's absolute difference transformation had

statistical power similar to the F- -ratio when the distributions were normal.

With leptokurtic distributions some power was lost but the procedure was

more powerful than other, robust competing strategies.

A simple test of variance equality,' suggested by Overall and Woodward

(1974), involves transforming the group variance to a Z statistic. The Z

variance test can be used in complex factorial designs but stulies have

indicated that it, is not robust to non-normality (Levy, 1975). With normal

distribution however the procedure provides appropriate Type I error rates

and has slightly greater power than Box's log transform approach (Overall

and Woodward, 1974; Levy, 1975; Martin, 1976).

Miller (1968) suggested an application of the jackknife technique

to testing the equality of variances in two groups. A generalization

of this approach to multiple groups was later presented by Layard (1973).

In one application of this approach, the group variance (S
2
) as well as46.....,

the variance of each of the n subgroups (S
2

j
) created by deleting one

observation at a time from the group are computed. For each subgroup

a new variable is created by subtracting (n-1) times, the log of the

subgroup variance from n times the log of the group variance

[p
ij

= n log S2 - (n-1) log S
2

j
The p

ij
variable is then used as

the dependent measure in calculating the ANOVA F-ratio. Unlike Box's

log transformation, this jackknife provides a unique solution for a given

data set. However, if large samples are studied more than one observation

may be deleted in creating the subgroup and the unique solution is no

longer available. The approach has been studied in both simple and

multiple factor designs with the deletion of one observation and the
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deletion of several observations. The results have indicated that with

heavy tailed distributions the test is liberal and with light tailed

distributions the test is conservative (Miller, 1968; Layard, 19/3; Brown

and Forsythe, 1974; Martin and Games, 1977; O'Brien, 1978; Games et al.,

1979). Although power analyses have been conducted their usefulness is

doubtful given the lack of robustness of the procedure.

Brown and Forsythe (1974) in an approach similar to Levene's absolute

difference from group means suggested transforming the original data by

using the absolute difference of each observation from its group median:

I

I

Xij e Xij - Mj 1 ). The transformed variable is then used in the calcu-

lation of the ANOVA F-ratio. The procedure suggested by Brown and Forsythe

is attractive because of its computational simplicity and its versatility.

The absolute differences from the group median can easily be used in

complex factorial designs. In studying the Type I error rate of this pro-

cedure researchers have found that it provides a conservative test of

variance with normal and light tailed distributions (O'Brien, 1978; Games

et al., 1979). With larger sample sizes appropriate Type I error rates

were observed by Brown and Forsythe (1974). With heavy tailed distributions

appropriate Type I error rates were obtained for both small and large sample

sizes(Brown and Forsythe, 1974; O'Brien, 1978; Games et al., 1979). With

regard to statistical power the Brown-Forsythe test was less powerful

than other competing strategies such as the F-- ratio, both of Levene's

tests, and the jackknife technique when the distribution was normal. It

was however more powerful than the log transformation. With heavy tailed

distributions the Brown-Forsythe statistic was more powerful than the log

transform but less powerful than Levene's absolute difference from the

group mean.
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Recently, O'Brien (1978) suggested a new strategy for testing the

equality of group variances. His solution involves transforming the

original scores by taking into consideration both the squared deviation

of the score from the group mean and the group variance. Specitically

the transformation is:

-
rij [ (w + nj - 2) nj (yij - y. j)2 - wsj (nj-1)] / [(nj-1)(nj-2)]

where nj is the number of observations in the j
th

group, y
ij

is the i
th

-
observation in the j

th
group, y. is the average score of the j

th
group,

and w.is a weighting factor. When w is set equal to 0 the transformed

variable is a modification of Levene's squared difference from the group

nmean transformation r(0) =
.

(y y.
2 and when w=1, O'Brien's

ij nj J

statistic is similar to Miller's jackknife statistic [r
ij

(1)=n s
2
-(n -1)s

2
]

(O'Brien, 1979). O'Brien (1981) recommends however for most situations

-
that wp=.5 resulting in rii(.5).[(ni-1.5)ni(yii-yi)

2
-.5Si (ni-1)]/(ni-.1)(nj-2)].

The r
ij

variable is then used as the outcome measure in calculating the ANOVA

F-ratio. The procedure has the advantage of being easily calculated and

can be applied to complex factorial designs.

In an empirical investigation of the properties of this approach to

testing variances, O'Brien generated data for a 4 x 3 factorial design.

The results indicated that the r
ij

(.5) provided a conservative hypothesis

for normal and light tailed distributions. With a heavy tailed exponential

distribution Type I error rates similar to the nominal level were observed.

In comparing this approach with several alternatives including Levenes

squared difference transformation, Brown and Forsythe's absolute differences

from the group median and Box's log transformation, O'Brien concluded that

the r transformed variable and the Brown-Forsythe statistic provide the best

10
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alternatives of those studied with Brown and Forsythe's approach being

preferred with heavy tailed distributions and the r-transform preferred

with normal and light tailed distributions.

The sensittvity to non-normality shown by many of the variance tests

discussed above has led some researchers to develop nonparametric tests of

scale. Two nonparametric tests of scale frequently cited in nonparametric

textbooks (Lehmann, 1975; Marascuilo and McSweeney, 1977) were developed by

Siege( and Tukey (1960) and Klotz (1962). The Siegel-Tukey rank test

required ranking the pooled data from two samples by assigning a rank of 1

to the lowest observation, a rank of 2 and 3 to the highest and second highest

observations, respectively. The ranking continues by alternating the assign-

ment of ranks from the two ends of the distribution. The ranks are then

analyzed using the Wilcoxon rank test. Exact tables are available for small

sample problems and for large samples a Z test is recommended including a

correction for ties. Alternatively the Kruskal-Wallis statistic can be

applied to these ranks to generalize the procedure to situations involving

more than two groups (Puri, 1964).1 Klotz's (1962) test is a normal scores

approach for comparing distributions in which the data from two samples are

pooled and ranked from lowest to highest. The assigned ranks are then

replaced by their inverse normal score
(41

-1
(i.j.)1'

The test statistic is

calculated using the squares of the inverse normal scores. A large sample

form of the test, that can be used with two or more groups, involves calcu-

lating (N-1) SSB/SST (Puri, 1964).
2

Here SSB and SST denote sums of squares

between and total, respectively. Klotz showed that his test is more efficient

than the Siegel-Tukey test for normal and light tailed distributions while

the Siegel-Tukey statistic is preferred for heavy tailed distributions.

Critics of the rank tests of scale have argued that this approach is

of limited value since it may be sensitive to between group differences

11
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in the median as well as to between group differences in variance (Moses,1963).

Miller (1968) for example rejects the, approach on this basis. It has been

suggested however that sample estimates of location could be used to align

the data using the group mean or median before the ranking process begins

(Lehmann, 1975; Marascuilo and McSweeny, 1977). Criticism of the ranking

procedure has been based on asymptotic theory and small sample properties

of these statistics have not been reported in the literature. The results

of the effects, of alignment using the sample mean or median have also not

been reported in the literature.

The purpose of the present investigation was to develop and compare

statistical power curves for several parametric and nonparametric tests

of scale for normal, light tailed and heavy 'tailed population distributions.

Previously, power studies of parametric tests of variance equality have

not considered the nonparametric alternatives. In addition discussions

of nonparametric tests of scale have been based on asymptotic behavior of

these statistics and little has been published regarding the small sample

properties of these procedures. In particular the effect of adjusting for

differences in the location parameters between populations has not been

considered. The procedures suggested by Brown and Forsythe (1974) and

O'Brien (1978) have been selected to represent the parametric tests of

variance equality. These procedures were chosen since previous studies

have shown that they
So

non-normality, 2) as

are: 1) relatively insensitive to distributional

powerful or more powerful than competing approaches,

3) can be used in factorial designs and 4) easy to compute and therefore

attractive to applied social science researchers. The rank tests of scale

considere, were those developed by Siegel and Tukey (1960) and

Klotz (1. These procedures were considered since they are 1) familiar
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to many data analyst', 2) rPlatively more efficient than other competing

nonparametric tests of scale, 3) applicable to a single factor design with

multiple groups (Puri, 1960), and 4) easy to compute.

In considering these four tests of scale the following questions were

of particular interest:

1) When populations have a common location parameter but differ in

scale, which of the four procedures will provide the most sensitive test

for that'difference?

2) When populations differ with regard to their means, what effect

do these differences have on the Type I error rates of the nonparametric

tests of scale for small samples?

3) When population mean differences exist how do the nonparametric

tests based on the aligned data compare to the parametric tests using the

unaligned data?

Method

Although the procedures consiaered in the present paper are applicable

to multiple group designs, it was decided to make the power comparisons

based on the analysis of twv groups. This restriction was made to conserve

resources in order to consider multiple levels of other factors thought to

have a greater effect on the power curves. In generating the power curves

four parameters were manipulated: 1) sample size, 2) form of the parent

distribution, 3) means of the parent distribution and 4) variance of the

parent distribution.

Sample Size. Samples of (10,15); (15,10); (20,20); (17,23); and (23,17)

were included in the investigation. The sample sizes were considered to be

moderate and representative of those frequently found in research studies in

the social sciences. The small departures from equal n were chosen specifi-

cally to reflect a small loss of subjects often found in social research.
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Distribution FCTIM6 A normal and five non-normal parent distributions

were considered. The non-normal distributions included a symmetric platy-

kurtic (light tailed) distribution, a symmetric leptokurtic (heavy tailed)

distribution, a slightly and a moderately skewed distribution, and a

distribution which was both skewed and leptokurtic. The population

characteristics of these distributions are discussed in the data generation

section below.

Population Means. The simulations considered populations having a

common mean as well as populations with means that differed by .2, .5 or

.8 standard deviation units when variances were equal. When variances were

unequal, differences in population means were equal to .2, .5 or .8 pooled

standard deviation units. These effect sizes conform to what Cohen (1977)

has suggested as guidelines defining small, medium or large effects.

Population Variances. To study the Type I error rates of the procedures

under consideration data from populations with equal variances were generated.

To study the sensitivity of the procedures to unequal variances data were

generated from populations having the following variance pairs: (1,1.5);

(1,2.0); (1,2.5); (1,3.0); (1,3.5); (1,4.0). The choice of these variance

differences was based on two considerations. First it was believed that

the tonditiens considered reflected actual situations encountered by applied

researchers. And second it was believed that with unequal sample sizes

differences in the variance of the magnitude considered here would affect

the Type I error rate of the independent sample's t-test. To support this

belief a brief simulation study was conducted in which data were generated

from five distribution forms, five sample size combinations and seven levels

of variance difference. Table 1 reports the observed Type I error rate for

an independent sample t-test when the nominal significance level was .05.

14
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Insert Table 1 about here

The results indicate that as expected when the sample sizes and variances

are Inversely related and the sample size is small a liberal test occurs

with variance ratios as small as 1:1.5. With a direct relationship a

conservative test occurs with ratios as small as 1:3.0. With larger sample

sizes the problem is not as great. However when sample size and variance

are inversely related an inflated Type I error rate was observed with

variance ratios of 1:2.5 or smaller. With equal sample sizes, differences

in group variances have no serious effect for the sample size considered.

Data Generation. Data for the study were generated using the SAS

computing package. Scores on the dependent measure were created based on

the linear model function Y. = p..+0L + a , where Y is the i
th

ij

observation, iz. the j
th

group. The grand mean p.. was set equal to 10.

The effect size parameter for the j
th

group, a. , was 0, .2, .5 or .8

pooled standard deviation units to study the effect population mean

difference. To generate the random error component the SAS NORMAL function

was used to generate observations on a standard normal random variable, Xij.

To study normal distributions eij was set equal to Xij. To study the effect

of non-normality X
ij

was transformed using the power function suggested by

Fleishman (1978): eij = (dXij + c) Xij+ b]Xij+ a. The constants a, b,

c and d are chosen to transform the normally distributed variable to a

variable with known skewness and kurtosis and mean zero and variance one.

Five non-normal distributions were considered in the present study. The

frequency distribution at half standard deviation invervals and descriptive

statistics are reported in Table 2. Values repotted in Table 2 are based
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on 20,000 observations generated for each distribution. The coefficient al

Insert Table 2 about here

was set equal to one for all observations in group one. Thus the variance

in group one was equal to one for all conditions. The cclfficient o2 was

cl.,osen so that the variance if the second group was increased from 1 to 4

in increments of .5 units.

Computed Test Statistics. For each sample generated the statistics

developed by O'Brien (1978), Brown and Fo,.sythe (1974), Klotz '1962) and

Siegel and Tukey (1960) were computed.

O'Bri .7ansformation with to =.5 was used. Each observation within

each group was transformed using the following equatiOn:

(nj-1.5)n4 (yii-y.i)
2

- .c,52 (n;-1)

r
ii 61, -2)

With the transiormed variable r.s he dependent measure the usual ANOVA F-ratio

was completed:

F
OB

=

s

En. G. r..)
2

/ (3 -1)

-
E

rij
rE ( - )

2
/ (N-J)

The critical test statistic has J-1 and N-J degrees of freedom.

Brown and Forsythe's statistic was calculated after determliqng the

absolute difference between tich observation and the mdian observation of

its group X.. = Yid - M
.1

. The computed test statistic was an ANOV4 F- -ratio
13

Zb
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with X
ij

as the dependent mf sure:

En (A - X..)
2

/ (J -1)
F
BF

j

E - X )2 / (N-J)
j

The critical test statistic has J-I and N-J degrees of freedom.

Siegel and Tukey's statistic was calculated after ranking ::he combined

observations so that the lowest observation received a rank 1, the highest

and second highest received a rank of 2 and 3 respectively and so forth

until all observations were ranked. The test statistic using Kruskal and

1..7.411is'sformulaforcomparingmeanranks(L3 )was used:

12 R
2

H .
N(N+1) n.

3 (N+1).

i .3

The H test statistic is asymptotically distributed as chi-square with J-1

degrees of freedom.

Klotz's procedure requires the ranking of the total sample across

L-4

groups from 1. N. The rank data are then replaced with normal scores

1

Zip

-1
(Tcy). The test statistic is then calculated as:

En CT -17 )2

K = (N-1)
E Yid 3 ( EY )2

i
ij N ij

where Y
ij

=
i

2

j
. K has an asymptotically distributed chi-square with

J-1 degrees of freedom.

For each condition studied, 1000 replications of the four statistics

were computed and the frequency at which each procedure rejected the null

hypothesis of equal variance at the .05 and .10 level were recorded.

Results

The results of the simulation are reported in two sections. The first

section presents the results for the case in which the mean of the parent

17
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distribution die not vary across simulated treatment groups. This section

is divided into two parts. Part one presents the Type I error rate of each

prrcedure. The second part presents the power results. The second section

presents the results for the case in which the simulated treatment groups

had an expected mean difference of .2, .5 or .8 pooled standard deviation

units. The first part of this sef:tion reports the. Type I error rates and

the second part compares the power curves for the tour strategies. This

section also includes an analysis of the effect of adjusting for sample

differences, in means and medians. To conserve space only the results at a

nominal .05 level of significance are reported. Similar results were

obtained at the nominal .10 significance level. In evaluating the robustness

of each procedure, it was decided that observed proportions of Type I errors

two standard errors above or below the nominal significance level would be

judged as unacceptable. Based on 1000 replications the standard error for

a nominal .05 significance level is .0069, so observations outside the

interval (.036, .064)were considered either less than or greater than the

nominal significance level.

Common Means

Type 1 error rates observed for the four procedures under consideration

are reported in Table 3. With the exception of O'Brien's procedure, when

used with a leptokurtic distribution, al] of the procedures appeared to be

insensitive to the form cf the parent distribution. With the leptokurtic

distribution, O'Brien's statistic consistently resulted in Type 1 error

rates that were less than the nominal significance level. These results

are consistent with those reported by O'Brien (1978).

18
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Insert Table 3 about here

Power. The power curves obtained for the tests of variance equality

with sample sizes of 20/20, 17/23. and 23/17 are reported in Table 4. The

Insert Table 4 about here

results for samples of 10/15 and 15/10 are not reported here since the

relationships between the competing analysis strategies are similar to

those presented for the sample sizes 17/23 and 23/17. With smaller samples

however the proportion of hypotheses rejected are considerably lower. For

example with sample sizes of (15,10) and a normal population O'Brien's

statistic rejected 49.3 percent of the hypotheses when the variances differed

by a ratio of 1 to 4.

The results reported in Table 4 indicate that power curves based on

samples of 20/20 and 23/17 to be very similar, whereas the power estimates

based on samples of 17/23 were somewhat lower than for the other two sample

size combinations. The ordering of the tests, in terms of power, however

was very similar for all three sample size combinations. Table 5 exhibits

summary partial orders, in terms of the power of the four procedures. These

.111 API ......
I

Insert Table 5 about here

are somewhat idealized since the ordering is not precisely the same for

every combination of ratio of variance and sample size. Nevertheless the

partial orders are generally accurate as summaries of the results. The

19
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partial order for the normal distribution; for example, indicates that the

O'Brien, Brown-Forsythe and Klotz tests are typically equivalent in terms

of power and are superior to the Siegel-Tukey te5c. It appears that when

populations differ only in their scale but am identical in their form

and location parameter, then Klotz's approach consistently provides the

most sensitive test of variance equality. Under specific distributions

however one or more of the other strategies may provide comparable power.

Unequal Means

Type I errors. The rank tests of scale have been challenged as being

inappropriate when. populations differ with respect to their location

parameter (Moses, 1963). Several authors have suggested solving this

problem by aligning the data using an estimated group location parameter.

Table 6 presents the actual Type I error rates for the mean and

Insert Table 6 about here

median aligned data when the populations differed by a small (.2), medium

(.5) and large (.8) shift parameter. All results are for a nominal alpha

level of .05. Only the results for samples of 20/20 and 23/17 are reported.

Liberal tests are identified by a * and conservative tests by a t. For the

most part similar results were obtained from the 17/23 sample size combina-

tion. The main exception occurred with the moderately skewed distribution.

The unaligned Klotz test was quite liberal with this distribution.

The effect of differences in population means on the actual Type I

error rate was fairly similar for equal and unequal sample sizes. The

results indicate that for symmetric distributions (normal, platykurtic and

leptokurtic) the best control over Type I error rates is achieved using the

20
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mean aligned Siegel-Tukey or Klotz test. The median aligned Siegel-Tukey

test has a tendency to be liberal with unequal sample sizes. The other

tests have a tendency to be conservative, especially for larger effect

sizes. For the slightly skewed slistribetion (skewness= .50, kurtosis= 0.0)

the unaligned Siegel-Tukey and.K1..z tests tend to have the best control

over Type I error rates. Fwever the mean aligned Klotz test also exhibited

reasonable control of Type I errors for both equal and unequal cell frequencies,

and the median r .Agned Siegel-Tukey test worked well with equal cell frequen-

cies. C .e moderately skewed (skewness = .75, kurtosis = 0.0) and for

the ,..Ewed and leptokurtic distribution (skewness = 1.75, kurtosis = 3.75)

rJee of the nonparametric procedures have adequate control over the Type I

error rates.

Power. The estimated power curves for the original four tests of

scale plus the four Siegel-Tukey and Klotz tests based on aligned data

are reported in Table 7, 8, and 9 for samples of 20/20, 23/17 and 17/23

respectively. With symmetric distributions the unaligned Siegel-Tukey

and Klotz procedures always became more conservative as the shift parameter

increased. As a result the power to detect scale differences tended to

decrease as the shift parameter increased and so the power curves for these

procedures are reported only for those conditions where there was a small

difference in population means. Aligning the data using the sample mean or

median often provided an acceptable solution to the problem of population

mean differences. As a result the power curves for the aligned Klotz and

Insert Tables 7, 8 and 9 about here

and Siegel-Tukey procedures were very similar across the three levels of the

shift parameter considered. In addition the shift had no effect on the power
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curves for the Brown-Forsythe and O'Brien statistics. The power curves

reported for those procedures which were unaffected by the shift are based

on the average proportion of the hypotheses rejected across the small,

medium and large shift parameter at each level of the variance ratio.

Finally power results number are not reported for situations in which a

Siegel-Tukey and/or Klotz test was liberal.

With symmetric distributions the mean adjusted Klotz test tends to

be the most powerful procedure based on ranks. For these distributions,

Table 10 exhibits partial orders of the mean adjusted Klotz test, the

O'Brien test and the Brown-Forsythe test. With symmetric distributions

the procedure of choice is the Klotz test; in all cases it is either more

powerful than the Brown-Forsythe and O'Brien tests or has power equivalent

to the O'Brien test.

Insert Table 10 about here

For slightly skewed distributions the procedures suggested by O'Brit

Brown and Forsythe, and the median aligned Klotz test provided similar

power curves. The aligtted Klotz procedure also provided comparable power

estimates when the difference between population means was small. These

results were consistent across equal and unequal sample size combinations.

For distributions which were both skewed and leptokurtic the unaligned

and aligned rank tests of scale were quite liberal and therefore power

results are not reported. A comparison of the power curves for O'Brien and

Brown-Forsythe statistics indicated that when sample sizes were equal the

Brown-Forsythe had a slight power advantage. When sample sizes were unequal

there appeared almost no difference in the sensitivity of the tests.
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The preceeding results apply to only a subset of the possible relation-

ships among cell frequency, size of, variance, and size of mean. For the

unequal n case, there are four possible relationships to investigate:

1) Larger frequency, variance and mean in the same cell; 2) Smaller

frequency, larger variance and mean in the same cell; 3) Larger frequency,

variance and smaller mean in the same cell; and 4) Smaller frequency, larger

variance and smaller mean in the same cell. The preceeding results for the

17/23 conditions are for relationship 1, whereas the results for the 23/17

are for relationship 2. To investigate whether the latter two relationships

impact the power results, the simulations were repeated, but only for the

symmetric distributions. The power order for situation 3 was quite similar

to that for situation 1, whereas the ordering for situation 4 was quite

similar to situation 2. Apparently the relationship between cell frequency

and cell variance has a small impact on the power order of the Brown-Forsythe,

mean aligned Klotz and O'Brien tests. However neither the relationship

between cell variance and cell mean had an effect on the ordering. For

the equal n case there are two possible solutions: 1) Larger variance

and mean in the same cell; and 2) Larger variance and smaller mean in the

same cell. The preceeding results suggested that the relationship between

cell variance and mean did not impact the power order and that the impact

of the cell frequency - cell variance relations was quite minor. Therefore

additional simulations were not undertaken to investigate the impact of

situation 2.
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Summary and Conclusions

Based on the preceeding results, the following conclusions can be set

forth:

1. When sampling from two populations that have identical shapes and

means, the Brown-Forsythe, Klotz, O'Brien and Siegel-Tukey tests have actual

Type I error rates near the nominal alpha level. For all the distributions

investigated, the Klotz test had power equal to or greater than the power of

the other tests. For the normal and platykurtic distributions, these results

are consistent with asymptotic results indicating that the Klotz is more

efficient than the Siegel-Tukey. However for the leptokurtic distribution

the small sample results are not consistent with the large sample theory.

2. The results support O'Brien's conclusion that, with normal and

light tailed distributions, his test is more powerful than the Broirn-Forsythe

test; with heavy tailed distributions it is less powerful. Because neither

test is affected by differences in means these results obtain in the condi-

tions with equal means and the conditions with unequal means.

3. As the differences between means increases, the unaligned Klotz and

Siegel-Tukey tests become quite conservative and there is a concomitant

reduction in power. Fligner (1979) investigated the Siegel-Tukey test and

reported a similar trend. However, because Fligner studied smaller mean

differences he did not demonstrate the excessivelyconservative tendency of

the Siegel-Tukey.

4. When sampling from two populations with different means, but identical

symmetric shapes the mean aligned Klotz and Siegel-Tukey tests are reasonably

robust with both equal and unequal cell frequencies. The mean aligned Klotz

test is more powerful than the corresponding Siegel-Tukey test. In addition

it has power equal to or greater than the powers of the Brown-Forsythe and
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O'Brien tests. The power of the mean aligned Klotz test does not seem to

be affected by the magnitude of the mean difference, and with small effect

sizes can have a substantial power advantage relative to the unaligned

Klotz test. This suggests that with symmetric distributions, the mean

aligned Klotz test can be used regardless of whether there are between

group mean differences. Additional research is required to substantiate this

conjecture. Fligner.(1979) presented a class of distribution -free tests for

scale which includes the Siegel-Tukey test. He investigated the effect of

small, between group, median differences on the behavior of several tests

in the class. The results showed that Type I error rates for various

members of the class depended on tailweight of the parent distribution.

Consequently, Fligner proposed an adaptive test based on a measure of tail-

weight. In the adaptive test, the Siegel-Tukey test is used with heavy

tailed distributions. Our power results point to the use of the mean

aligned Klotz test rather than the Siegel-Tukey test. Moreover, because

the mean aligned Klotz test is effective with normal and light tailed

distributions, it may be worthwhile to compare it to the tests favored by

Fligner for medium and light tailed distributions.

5. When the parent distributions are slightly skewed (skewness = .50)

the median aligned Klotz test is reasonably robust for equal and unequal

cell frequencies. For either equal, unequal cell frequencies, or bath,

the other rank tests of scale are not robust. In addition the median aligned

Klotz test is as powerful or more powerful than the Brown-Forsythe and O'Brien

tests. When the distributions are moderately skewed (skewness = .75) or

skewed and leptokurtic (skewness = 1.75, kurtosis = 3.75) none of the rank

tests of scale are robust. The Bro$5iOT's;the test has power equal to

or greater than the O'Brien test. These results suggest the need for
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research on the efficacy of choosing a procedure based on a measure of

skewness.

6. Results for a frequency configuration of 23/17 (inverse relationship

between cell frequencies and variances) indicate that the t-test can be

liberal with a variance ratio as small as 1:2.5. The power of the scale

tests to detect this ratio is quite limited for many of the conditions inves-

tigated. For a cell frequency configuration of 15/10 the test is more

liberal and the scale tests are less powerful. This suggests that the

scale tests are not particularly useful as tests for violations of homo-

scedasticity. Moreover the Welch-James (1951) procedure does not assume

variance equality and has power equivalent to the F-test when the homogeneity

assumption is met. The Type i error rate of the Welch-James test is

unaffected by variance heterogeneity. When there is an inverse relationship

between cell variances and cell frequencies, ANOVA tends to be liberal.

Therefore the Welch-James procedure is more appropriate. When there is a

direct relationship, ANOVA tends to be conservative and therefore should not

be rejected automatically. However the Welch-James test is more powerful

and therefore is the procedure of choice. This suggests that the Welch-

James test for mean differences should be uniformly adopted when cell fre-

quencies are unequal.

7. The relatively limited power observed with many of the variance

ratios suggests the need for total samples larger than 40 when the purpose

of the experiment is to test for inequality of variances.

The generality of the conclusions 1 to 6 is limited by our choice of

number of treatment groups, total sample sizes, differences in cell

frequencies, and identical shapes across treatment groups. The effect of

variation in these factors should be investigated.
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Notes

1. Purits generalization to k samples does not include the weighting
N-n

k
factor (---) suggested by Kruskal and Wallis to improve the approxi-

mation to the chi-square dtptribution.

2. The test statistic used here [(N-1) SSB/SST] is a modification of

Puri's statistic to include Kruskal d Wallis' adjustment factor.



Table 1

Estimated Type I Error Rates for Independent Samples and Test

Distributions

n1 /n2
.a

1
.a

2

2 Normal
Moderately Skewed/

Platykurtic Skewed Leptokurtic Leptokurtic

10/15 1:1.0 .046 .058 .043 .051 .045

1:1.5 .049 .040 .039 .027 .040

1:2.0 .041 .028 .045 .042 .048

1:2.5 .040 .024
..

.049 .028 .049

1:3.0 .034 .040 .035 .028 .043

1:3.5 .028 .027 .035 .025 .039

1:4.0 .030 .035 .027 .022 .049

15/10 1:1.5 .069 .063 .059 .068 .070

1:2.0 .069 .061 .078 .053 .062

1:2.5 .067 .079 .079 .070 .077

1:3.0 .089 .076 .089 .073 .0 ?,5

1:3.5 .085 .077 .075 .088 .096

1:4.0 .084 .087 .088 .080 .100

23/17 1:1.0 .064 .051 .052 .056 .040

1:1.5 .051 .056 .057 .057 .055

1:2.0 .045 .056 .058 .067 .061

1:2.5 .068 .073 .065 .065 .073

1:3.0 .030 .066 .065 .072 .079

1:3.5 .078 .081 .085 .086 .095

1:4.0 .068 .078 .071 .082 .089

17/23 1:1.5 .038 .041 .045 .047 .047

1:2.0 .044 .040 .043 .035 .052

1:2.5 .036 .039 .047 .047 .036

1:3.0 .037 .038 .036 .040 .035

1:3.5 .034 .041 .047 .029 .038

1:4.0 .034 .033 .040 .039 .047

20/20 1:1.0 .044 .056 .047 .043 .048

1:1.5 .045 .044 .053 .052 .059

1:2.0 .057 .048 .041 .045 .047

1:2.5 .049 .055 .047 .053 .069

1:3.0 .052 .059 .049 .051 .060

1:3.5 .046 .051 .050 .047 .061

1:4.0 .071 .053 .056 .039 .002

Note: Nominal alpha level = .05; each figure calculated from 1000
replications.



Table 2

Frequency Distributions and Descriptive Statistics for Six Distributions

Distributions

Inter464_,,slormal Platykurtic Leptokurtic
Sight
Skw

Moderate
Skew

Skewed/
Leptokurtic

- co ,-3.0 17 151
-3.0,-2.5 85 119
-2.5,-2.0 332 301
-2.0,-1.5 889 1552 601. 882
-1.5,-1.0 1885 2297 1257 2469 3605
-1.0,-0.5 2470 2917 2816 3516 3976 8555
-0.5, 0.0 3826 3235 4745 3851 3591 4219
0.0, 0.5 3817 3177 4753 3474 2053 2577
0.5, 1.0 3038 2805 2748 2590 2345 1777
1.0, 1.5 1849 2411 1343 1626 1552 1142
1.5, 2.0 855 1606 586 888 1039 671
2.0, 2.5 332 263 456 520 440
2.5, 3.0 86 178 171 230 268
3.0, co 19 139 77 89 351

Mean -.0015 .0049 .0004 -.0053 .0009 - .0063
Variance .9836 1.0109 1.0292 .9887 1.0631 .9774
Skewness .0004 - .0005 - .1297 .5044 .7266 1.6820
Kurtosis -.0938 -1.0131 3.5547 -.0216 - .0846 3.1517

Note: Results based on 20,000 observations.



Table 3

Estimated Actual Type I Error Rates for Tests on Variance

Distributions

ni/n2 T9sta Normal Platykurtic
Moderate

Skew Leptokurtic
Skewed

Leptokurtic

10/15 OB .046 .046 .051 .032t .064
BF .045 .038 .0331 .033t .049
ST .066* .045 .051 .041 .046
K .053 .046 .044 .037 .047

0/20 OB .051 .051 .050 .033t .064
BF .045 .031t .046 .041 .058
ST .052 .053 .053 .053 .050
K .056 .049 .042 .050 .043

17/23 OB .054 .059 .059 .0351 .050
BF .047 .043 .040 .040 .049
ST .053 .057 .050 .048 .054
K .050 .044 .042 .045 .054

t - indicates a conservative test
* - indicates a liberal test
a - OB=O'Brien, BF=Brown-Forsythe, ST=Siegel-Tukey, K=Kletz



Table 4

Estimated Power for the Tests on Variance

Distribution 0
1

01:x2
2

Normal 1:1.5
1:2.0
1:2.5
1:3.0
1:3.5
1:4.0

Platykurtic 1:1.5
1:2.0
1:2.5
1:3.0
1:3.5

1:4.0

Moderate 1:1.5
Skew 1:2.0

1:2.5
1:3.0

1:3.5
1:'4.0

Leptokurtic 1:1.5
1:2.0
1:2.5
1:3.0
1:3.5
1:4.0

Skewed- 1:1.5
Leptokurtic 1:2.0

1:2.5
1:3.0
1:3.5
1:4.0

20/20 17/23 23/17

OB
a

BF ST K OB BF ST K OB BF ST

.119 .104 .104 .125 .087 .094 .083 .102 .138 .099 .105 .136

.258 .244 .201 .250 .200 .213 .200 .220 .262 .199 .198 .262

.391 .366 .321 .393 .310 .352 .276 .352 .452 .361 .317 .437

.526 .490 .407 .533 .460 .496 .419 .481 .573 .504 .426 .548

.611 .610 .501 .625 .567 .588 .494 .596 .703 .627 .536 .677

.704 .696 .583 .700 .673 .711 .600 .710 .758 .695 .585 .753

.180 .121 .136 .214 .137 .101 .112 .159 .184 .088 .119 .225

.409 .289 .266 .442 .344 .254 .236 .358 .488 .288.. .298 .494

.666 .482 .435 .657 .577 .454 .399 .575 .645 .451 .428 .621

.775 .618 .515 .742 .738 .589 .511 .727 .801 .604 .530 .770

.861 .726 .601 .828 .846 .761 .649 .815 .872 .724 .612 .838

.9 .841 .705 .893 .880 .796 .685 .857 .408 .787 .685 .889

.140 .113 .152 .221 .113 .101 .136 .204 .127 .080 .148 .230

.276 .236 .326 .467 .236 .228 .308 .405 .303 .226 .317 .472

.399 .369 .441 .639 .332 .335 .419 .549 .453 .344 .452 .646

.553 .517 .571 .748 .474 .474 .555 .702 .593 .497 .580 .761

.617 .582 .638 .806 .561 .574 .614 .746 .695 .616 .667 .846

.738 .705 .726 .861 .629 .669 .716 .823 .760 .679 .718 .867

.058 .090 .088 .087 .046 .067 .073 ,075 .104 .102 .105 .102

.134 .167 .156 .169 .087 .146 .146 .146 .141 .157 .160 .180

.197 .261 .231 .262 .131 .240 .204 .208 .281 .305 .220 .311

.266 .367 .327 .370 .192 .329 .331 .335 .328 .390 .339 .400

.346 .452 .396 .459 .251 .423 .374 .427 .432 .494 .460 .510

.423 .525 .447 .525 .502 .514 .478 .499 .492 .564 .495 .560

.067 .077 .256 .367 .065 .079 .234 .326 .099 .083 .272 .403

.139 .147 .500 .598 .102 .134 .460 .498 .169 .147 .520 .630

.180 .203 .621 .668 .152 .194 .645 .674 .243 .222 .642 .718

.239 .282 .739 .780 .194 .254 .746 .756 .295 .308 .740 .816

.301 .360 .817 .846 .223 .307 .781 .770 .350 .363 .803 .867

.359 .416 .844 .869 .249 .345 .833 .800 .430 .456 .853 .892

a - OB=O'Brien, BP.Brown-Forsythe, K-Klotz, ST-Siegel-Tukey
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Table 5

Power Partial Orders When There Are No Between

Group Mean Differences

Distribution Partial Order a

Normal

Platykurtic

Skewed

Leptokurtic

Skewed/Leptokurtic

OB -BF -K

ST

K -OB

BF

ST

K

ST

oB

BF

ST

OB

K-ST

BF

OB

a - OB=O'Brien, BF=Brown-Forsythe, K=Klotz, ST=Siegel-
Tukey.
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Table 6

Estimated Actual Type I Error Rates for Tests on Variance When There Are Between Group Mean Differences

20/20 23/17
Effect

Distribution Size STa K STM KM STMD KMD ST K STM KM STMD KMD

*Normal S .042 .043 .050 .052 .038 .038 .054 .051 .064 .063 .087*
M .052 .036 .079 .064 .057 .041 .041 .031 .054 .061 .081* .047
L .0311 .018t .047 .060 .036 .044 .0341 .0181 .054 .056 .078 .042

Platykurtic S .050 .049 .051 .052 .039 .0291 .052 .042 .064 .051 .092* .031t
M ..041 .0201 .052 .054 .034 .032t .053 .0191 .071* .055 .092* .036
L .0281 .0071 .058 .058 .0331 .040 .0261 .0051 .054 .052 .086

*
.039

Leptokurtic S .052 .056 .064 .061 .044 .051 .060 .053 .066* .060 .080* .046
M .042 .0341 .054 .051 .050 .048 .037 .039 .060 .055 .077

*
.039

L .038 .0191 .070* .070* .061 .063 .040 .0331 .051 .037 .081* .035 1

Slight Skew S .052 .046 .064* .079* .054 .054 .047 .044 .057 .069* .078
*

.040
M .055 .054 .071

*
.071

*
.048 .067

*
.047 .030t .074* .077* .098* .048

L .047 .0311 .079* .081* .052 .049 .0331 .0291 .063 .082* .084* .065*

Moderate Skew S .068* .073* .118* .140* .077* .095* .061 .060 .096* .132* .115* .084*
M .076* .067* .108* .133* .072* .088

*
.086

*
.069* .105* .140* .136: .091

*

L .103* .063 .086* .119* .058 .075* .090
*

.047 .114
*

.134
*

.139 .084
*

*Skewed- S .210* .216* .35U .419
*

.233
*

.274
*

.198* .201
*

.374
*

.413
*

.343
*

.255
*

Leptokurtic M .422* .270* .329* .410* .219* .246* .379* .206
* .346

*
.411

*
.328

*
.248*

L .496* .205* .347* .396* .243* .272* .369* .134* .366* .439* .321* .264*

aST=Siegel-Tukey, K=Klotz, STM=Siegel-Tukey with adjustment for sample mean, KM=Klotz with adjustment for
sample mean, KMD=Klotz with adjustment for sample median, STMD=Siegel-Tukey with adjustment for sample
median.

indicates a conservative estimated Type I error rate.
* - indicates a liberal estimated Type I error rate.

37

38



Table 7

Estimated Powers for Tests on Variancea'b

Distribution
2 2

471:#32

Test Statisticd

OB BF STC KC
STM KM snip KND

Normal 1:1.5 .106 .099 .089 .095 .107 .137 .086 .106
1:2.0 .249 .231 .172 .236 .211 .295 .176 .241
1:2.5 .404 .374 .294 .386 .326 .449 .274 .382
1:3.0 .529 .510 .399 .509 .438 .606 .376 .539
1:3.5 .653 .635 .506 .649 .556 .723 .483 .649
1:4.0 .739 .728 .587 .699 .639 .805 .565 .745

Platykurtic 1:1.5 .170 .106 .118 .174 .126 .207 .095 .141
1:2.0 .423 .278 .251 .400 .272 .468 .199 .356
1:2.5 .650 .489 .369 .584 .433 .667 .327 .554

1:3.0 .7'75 .617 .552 .732 .543 .783 .462 .690
1:3.5 .864 .747 .619 .831 .633 .866 .535 .780

1:4.0 .921 .828 .672 .875 .716 .923 .625 .851

Leptokurtic 1:1.5 .062 .073 .071 .072 .089 .105 .068 .083

1:2.0 .128 .169 .161 .175 .238 .209 .142 .170
1:2.5 .208 .266 .250 .265 .264 .308 .220 .275

1:3.0 .271 .376 .304 .341 .359 .424 .308 .376
1:3.5 .340 .469 .385 .435 .444 .509 .384 .458

1:4.0 .413 .540 .486 .535 .519 .594 .453 .538

Slight Skew 1:1.5 .121 .105 .095 .107 .098 .129

1:2.0 .256 .236 .192 .265 .195 .280

1:2.5 .414 .375 .306 .428 .288 .426

1:3.0 .554 .521 .413 .571 .408 .464

1:3.5 .647 .623 .520 .681 .488 .659

1:4.0 .739 .729 .601. .751 .579 .758

Moderate Skew 1:1.5 .117 .090
1:2.0 .254 .225

1:2.5 .423 .386
1:3.0 .542 .488
1:3.5 .642 .615
1:4.0 .703 .683

Skewed- 1:1.5 .080 .083
Leptokurtic 1:2.0 .143 .138

1:2.5 .189 .209
1:3.0 .243 .278
1:3.5 .291 .340
1:4.0 .343 .396

a - Results refer to the 20/20 cell frequencies.
b - Power figures are not reported for tests that wore liberal.
c - Results refer to conditions with small mean effect sizes.
d - 08 ..01Brien, BF...Brown-Forsythe, ST..Siegel-Tukey,Kot Klotz, STMwSiegel-Tukey

with adjustment for sample mean, KM..Klotz with adjustment for sample mean,
STND =Siegel-Tuk. wl.th adjustment for sampl; Tedian, KMD=T:
Adjustment for 4.amp.e median.
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Table 8

Estimated Powers For Tests on Variancea,b

Distribution
1

2
:a

2

2

Test Statistic

OB BF ST S K c STM KM STMD KND

Normal 1:1.5 .128 .095 .097 .122 .107 .142 .106

1:2.0 .288 .226 .222 .281 .217 .307 .245

1:2.5 .450 .361 .313 .409 .334 .461 .385

1:3.0 .581 .502 .423 .570 .427 .591 .516

1:3.5 .695 .610 .516 .657 .422 .700 .630

1:4.0 .760 .684 .580 .715 .588 .769 .702

Platykurtic 1:1.5 .196 .101 .124 .203 .130 .212 .145

1:2.0 .445 .269 .280 .448 .266 .459 .342

1:2.5 .666 .448 .397 .642 .410 .657 .539

1:3.0 .802 .611 .538 .761 .538 .790 .679

1:3.5 .883 .726 .603 .819 .639 .872 .770

1:4.0 .933 .817 .704 .901 .704 .919 .850

Leptokurtic 1:1.5 .081 .083 .091 .098 .105 .119 .094

1:2.0 .161 .166 .167 .180 .185 .223 .183

1:2.5 .264 .291 .256 .302 .286 .351 .291

1:3.0 .345 .361 .323 .358 .371 .423 .365

1:3.5 .429 .479 .417 .494 .435 .524 .458

1:4.0 .476 .542 .470 .541 .498 .591 .527

Slight Skew 1:1.5 .132 .100 .084 .017 .127

1:2.0 .280 .225 .193 .226 .272

1:2.5 .411 .353 .263 .352 .407

1:3.0 .556 .505 .422 .523 .545

1:3.5 .656 .615 .490 .617 .658

1:4.0 .728 .696 .568 .713 .727

Moderate Skew 131.5 .155 .101 .095 .148

1:2.0 .292 .208 .213 .368

1:2.5 .447 .362 .391 .608

1:3.0 .572 .474 .473 .701

1:3.5 .684 .602 .595 .808

1:4.0 .743 .685 .650 .848

Skewed- 1:1.5 .u99 .081

Leptokurtic 1:2.0 .182 .154

1:2.5 .227 .214

1:3.0 .311 .300
1:3.5 .354 .350
1:4.0 .408 .427

a - Results refer to the 23/17 cell frequencies.
b - Power figures are not reported for tests that were liberal.

c Results refer to conditions with nail mean effect sizes.

d 0B = O'Brien, BP.Brown-Forsythe, ST..Siegel-Tukey, K"Klotz,

STM,. Siegel-Tukey with adjustment for sample mean, KMaKlotz with

adjustment for sample mean, STMD-Siegel-Tukey with adjustment for

sample median, KMDsKlod with adjustment for sample median.
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Table 9

Estimated Power for Tests on Variancea,b

Test Statistic

Distribution
2

a
1

2
:a

2
OB BF STc Kc STM KM STMD KMD

Normal 1:1.5 .098 .095 .091 .093 .108 .125 .102
1:2.0 .216 .217 .189 .213 .210 .269 .219
1:2.5 .349 .361 .285 .365 .335 .436 .368
1:3.0 .455 .410 .374 .440 .454 .554 .469
1:3.5 .559 .590 .487 .563 .536 .657 .590
1:4.0 .640 .690 .545 .640 .617 .749 .675

Platykurtic 1:1.5 .159 .112 .122 .170 .131 .185 .128
1:2.0 .384 .288 .246 .353 .282 .428 .326
1:2.5 .586 .443 .377 .550 .423 .610 .501
1:3.0 .734 .602 .485 .678 .540 .764 .660
1:3.5 .835 .723 .600 .781 .646 .848 .754
1:4.0 .894 .806 .676 .853 .728 .902 .829

Leptokurtic 1:1.5 .055 .077 .078 .069 .092 .106 .087
1:2.0 .091 .160 .165 .165 .182 .206 .174
1:2.5 .135 .237 .221 .238 .264 .287 .252
1:3.0 .207 .343 .206 .318 .344 .403 .341
1:3.5 .256 .433 .377 .407 .441 .470 .424
1:4.0 .296 .488 .421 .451 ..497 .566 .506

Slight Skew 1:1.5 .096 .091 .085 .088 .105
1:2.0 .221 .218 .185 .238 .241
1:2.5 .361 .352 .313 .398 .396
1:3.0 .481 .496 .425 .540 .532
1:3.5 .580 .600 .511 .648 .631
1:4.0 .660 .692 .591 .729 .728

Moderate Skew 1:1.5 .098 .085
1:2.0 .216 .215
1:2.5 .350 .336
1:3.0 .473 .452
1:3.5 .574 .536
1:4.0 .674 .654

Skewed- 1:1.5 .073 .077
Leptokurtic 1:2.0 .119 .133

1:2.5 .156 .169
1:3.0 .190 .237
4:3.5 .234 .307
1:4.0 .264 .380

a - Results refer to the 17/23 cell frequencies.
b- Power figures not reported for tests that were liberal.
c- Results refer to the conditions with the small effect sizes.
d- OB ..O'Brien, BF=Brovn-Forsythe, ST=Siegel-Tukey, K=Klotz, ST>:=

with adjustment for sample mean, KM Klotz with ad;u:;Gment for sa;(:,le
mean, KMDaKlotz with adjustment for sample median, 3TXD=Sit2ge1-Tuke!!
with adjustment for sample median.
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Table 10

Power Partial Orders When There Are Between

Group Mean Differences

Cell Frequencies

Distribution 20/20 23/17 17/23

Normal

Platykurtic

Leptokurtic

KM8 KM--OB KM

I 1

OB BF BF

OB

KM-FOB KMTOB KM

I

BF BF

BF

SF

OB OB OB

a - OB=O'Brien, BF=Brown-Forsythe, KM -Klotz with mean
aligned data.
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