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Precis

The present investigation developed power curves for two parametric
and two nonparametric procedures for testing the equaliﬁy of population
variances. Both normal and non-normal distributions were considered
for the two group design with equal and unequal sample frequencies. The
results indicated that whenlpopulation distributions differed oniy in
scale, the Klotz procedure consistently provided the most sensitive test
cf variance equality. With symmerric distributions which diffef in both
mean and scale the Klotz procedure with mean aligned data was the most
powerful procedure. ﬁgfn sampled distributions were skewed and differed
in mean as well as scale the 0'Brien or Brown-Forsythe procedures ware

preferred.



JPower Analysis of Selected Parametric and Nonparametric Tests

for -Heterogeneous Variances in Non-Normal Distributions

Until recently tests of scale (Qariance) have beén viewed by many
social scientists as being of minor interest. This disinterest may be
partially attributed to introductory and intermediate statistics textbooks
which discuss these procedures briefly and only in the context of deter; '
mining whether the homogeneity of variance assumption §f the independent
samples t-test and ANOVA F-test is met. The importance of this preliminary
test of scale is ofteﬁ further minimized by citing analytic or empirical
investigations that have indicated that when sample sizes are equal,
parametric tests of means are robust to heteroscedasticity (Glass, Peckham
and Sanders, 1972). The robustness of parametric tests of location however
is not without controversy. Based on the exact Type I error rates, Ramsey
(1980) challenged the robustness claim and provided guidelines to conditions

. under which the t-test is robust to heteroscedasticity. When sample sizes
differ, considerable evidence supports the conclusion that parametric tests
of location can be either liberal or conservative depending on the relation-
ship between sapple sizes and variances. Under these conditions tests of
scale are generally viewed to be particularly important. New interest in
tests of variance equality has also recently developed as a result of new
theories in the social sciences. Games, Winkler and Probert (1972) cited
several areas of study in which the comparative analysis of distribution
dispersion are of primary interest. A program intervention mey, for
example, have the effect of reducing group variability while having little
or no effect on the population mean. A& new development in this area has been
the introduction of statistical procedures designed to investigate the
simultaneous influeu&e of multiple independent variables on variance equality

in factorial designs (Games, 1978).
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In statistics texts, the most frequently cited analysis précedures

for testing the equality of group varianges are those suggested by Bartlett
. (1937), Cochran (1%41) and Hartley (19505: w?hese strategies however have

been shown analytically and empirically to be}extremely sensitive to the

shape of the population distribution (Box, 1933; Games et al., 1972;

Layard, 1973; Overall and Woodward, 1974). In particular it is the kurtosis

of the distribution which affects the standard errﬁr of the variance and

the distribution of the Bartlett, Cochran, and Hartley test statistics.

When the population is leptokurtic a liberal test of the variance will

occur whereas with a platykurtic distribution the iest will be conservative.

One solution to the problems caused by non-normality is to adjust the test

statistic to take into accéunt the effects of non-normality. Box and

Andersen (1955) using permutation theory developgqﬂa procedure which adjusts

Bartlett's M using a sample estimate of the population kurtosis. Studies

of this approach have had mixed results, Games et al. (1972) using empirical

methods found Box and Andersen's statistic to provide liberal hypothesis

tests (v .08) when the distribution was normal or skewed and to provide

conservative hypothesis tests when the distribution w.., uniform.

With a leptokurtic distribution however the actual Type I error rate was

similar to the nominal Type I error rate. Miller (1968) on the other-.hand

found the Box-Andersen statistic to be robust to normal, light tailed and

heavy tailed distributions. The differences in results may be attributed

to saﬁple sizes; Games et al. considered samples of 18 per group while

Miller studied samples of 25 per group. The relatively large sample size

needed and the computational difficulty have been viewed as limitations

for the Box-Andersen approach. In addition the procedure cannot be used

for complex factoriai designs.
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An alternative to adjusting the test statistic is to construct a
dependent variable that measures variability and to conduct an ANOVA on the
constructed dependent variable. For example, Box (1953) building on the
work of Bartlett and Kendall (1946) suggested dividing the sample into
subs§mples and computing separate estimates of variance for each subsample.
To test the equality of group variances the subsample variances are trans-
formed using a log transformation and log S2 is used as the dependent
measure in computing the ANOVA F-ratio. This approach has the advantage
of being applicable to complex factorial designs. Provided that the parent
distribution for the cells of the design have the same kurtosis, that the
number of observations is equal for all cells, and that the same number of
observations comprise each subsample, then the homoscedasticity assumption
‘yill be approximately met. While the distribution of log S2 can be non-normal,
;gnder the sample size restrictions listed a“»ove ANOVA is reasonably insensitive
gco non-normality. Several investigations have considered the procedure in
situations involving various population distributions. The results of
these studies have shown that the log transformation is robust to the
normality assumption (Box, 1953; Games et al., 1972; Layard, 1973; Overall
and Woodward, 1974; Levy, 1975; Martin and Games, 1977; Ga.=s, Keselman
and Clinch, 1979). These same investigations have also shown that Box's
procedure is less powerful than other appropriate procedures when the distri-
bution is normal, uniform, skewed or leptokurtic. In addition to lacking
statistical power the log transformation has two additional limitations.
First, the procedure does not specify the number of subgroups which should
be formed. Martin and Games (1973) however have found that the whole number
closest to the equare root of the group sample size to prQvide optimal

power. A second more serious limitation is that results of the apalysis can

‘ 6
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vary depending on ""e formation of the subgroups. Two researchers using
the same data could arrive at opposite conclusions. This lack of uniqueness
of results bhas led several researchers to abandon the approach (Brown and
Forsythe, 1974; O'Brien, 1978).

Levene (1960) suggested sevéral transformations of the original data
in order to test the equality of group variance. One approach was to
calculate the square of the difference between each observation and its
group mean {pij = (xij - §.j)2 ]. Substituting the pij's for the original
data an ANOVA F-ratio is computed. Empirical studies of this approach have
been mixed and inconsistent (Miller, 1968; Games et al., 1972). Miller's
results suggest that with relatively large sample sizes (n=25) the approach
is robust to normal, light tailed and heavy ta.led distributions. Games
et al. results suggest that with small sample sizes (n=6) the test is
liberal with normal, skgwed and uniform distributions. These results are con-
sistent with a theoretical analysis reported by O'Brien (1978). The approach
was also shown to have slightly lower power than the Box-Andersen statistic
but greater power than the log transform approach (Miller, 1968).

A second transformation suggested by Levene (1960) was to calculate
the absolute value of the difference between each observation and its group

mean (Zi - E.j‘). The absolute differences replace the original

3 = Ixg
data and the ANOVA F~-ratio is computed. Miller (1968) discarded this
approach arguing that the test statistic is not asymptotically distribution-
free. Others have considered this approach however and found mixed results,
Games et al. (1972) found the approach to provide a liberal hypothesis test

for normal, skewed, uniform and leptokurtic distributions. Brown and

Forsythe (1974) using larger sample sizes provided evidence suggesting that

the approach was appropriate for normal and leptokurtic distributions but
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liberal for distributions which were both leptokurtic and skewed. Their
results also indicated that Le&éne's absolute difference transformation had
statistical power similar to the F-ratio when the distributions were normal.
With leptokurtic distributions some power was lost but the procedure was

more powerful than other robust competing strategies.

A simple test of variance equality, suggested by Overall and Woodward
(1974), involves transforming the group variance to a Z statistic. The Z’
variance test can be used in complex factorial designs but stuZies have
indicated that it is not robusc‘to non-normality (Levy, 1975). With normal
distribution however the procedure provides appropriate Type I error rates
and has slightly greater power than Box's log transform approach (Overall
and Woodward, 1974; Levy, 1975; Martin, 1976).

Miller (1968) suggested an application of the jackknife technique
to testing the equality of variances in two groups. A generalization

of this approach to multiple groups was later presented by Layard (1973).

In one application of this approach, the group variance (Si) as well ask,

the variance of each of the n subgroups (Sij) created by deleting one
observation at a time from the group are computed. For each subgroup

a new variable is created by subtracting (n-l) times, the log of the
subgroup variance from n times the log of the group variance

[pij =n log S§ ~ (n-1) log Sij }]. The pij variable is then used as

the dependent measure in calculating the ANOVA F-ratio. Unlike Box's

log transformation, this jackknife provides a unique solution for a given
data set. However, if large samples are studied more than one observation
may be deleted in creating the subgroup and the unique solution is no

longer available. The approach has been studied in both simple and

multiple factor designs with the deletion of one observation and the
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deletion of several observations. The results have indicated that with
heavy tailed distributions the test is liberal and with light tailed
distributions the test is conservative (Miller, 1968; Layard, 1973; Brown
and Forsythe, 1974;&Martin and Games, 1977; O‘Brién, 1978; Games et al.,
1979). Although power analyses have been conducted their usefulness is
doubtful giQen the lack of robustness of the procedure.

Brown and Forsythe (1974) in an approach similar to Levene's absolute
difference from group means suggested transforming the original data by
using the absolute éifference of each observation from its group median:
Mg = R
lation of the ANOVA F-ratio. The procedure suggested by Brown and Forsythe

)
X, .- Mj l ). The transformed variable is then used in ‘ﬁhe calcu~

is attractive because of its computational simplicity and its versatility.
The absolute differences from the group median can easily be used in
complex factorial designs. In studying the Type I error rate of this pro-
cedure researchers have found that it provides a conservative test of
variance with normal and light tailed distfibutions (0O'Brien, 1978; Games

et al., 1979). With larger sample sizes appropriate Type I error rates

were observed by Brown and Forsythe (1974). With heavy tailed distributions
appropriate Type I error rates were obtained for both small and large sample
sizes(Brown and Fbrsyche, 1974; O'Brien, 1978; Games et al., 1979). With
regard to statistical power the Brown-Forsythe test was less power ful

than other competing strategies such as the F-ratio, both of Levene's

tests, and the jackknife technique when the distribution was normal, It

was however more powerful than the log transformation. With heavy tailed
distributions the Brown-Forsythe statistic was more powerful than the log
transform but less powerful than Levene's absolute difference from the

group mean.
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Recently, O'Brien (1978) suggested a new strategy for testing the
equality of group variances. His solution involves transforming the
original scores by taking into consideraéion botg the squared deviation“
of the score from the group mean and the group variance, Specifically

the transformation is:

- 2 2
ryy ™ [ (w+ nj - 2) n, (yij - y.j) - ws} (nj-l)] / [(nj—l)(nj-Z)]

where nj is the number of observations in the jth group, yij is the ith

observation in the jth group, ;. is the average score of the jth group,

3

and w_is a weighting factor. When w is set equal to 0 the transformed

variable is a modification of Levene's squared difference from the group

n, ' '
mean transformation r. (0) = | i (y,. - y. )2 ] and when w=1, O'Brien’'s
ij nj-l ij 3
statistic is similar to Miller's jackknife statistic [rij(l)=njs§~(nj—l)s§j]

(0'Brien, 1979). O'Brien (1981) recommends however for most situations
that w=.5 resulting in r,(.5)[(n,;-1.5)n, (yij~§.j)2—.55§(nj-l)]/(nj-l)(nj-2)].

The rij variable is then used as the outcome measure in calculating the ANOVA
F-ratio. The procedure has the advantage of being easily calculated and
can be applied to complex factorial designs.

In an empirical investigation of the properties of this approach to
testing variances, O'Brien generated data for a 4 x 3 factorial design.
The results indicated that the rij (.5) provided a conservative hypothesis
for normal and light tailed distributiouns. With a heavy tailed exponential
distribution Type 1 error rates similar to the nominal level were observed.
In comparing this approach with several alternatives including Levene's
squared difference transformation, Brown and Forsythe's absolute differences

from the group median and Box's log transformation, 0'Brien concluded that

the r transformed variable and the Brown-Forsythe statistic provide the best

10
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alternatives of those studied with Brown and Forsythe's approach being
preferred with heavy tailed distributions and the r-transform preferred
with normal and light tailed distributions,

The sensitivity to non-normality shown by many of the variance tests
discussed above has led some researchers to develop nonparametric tasts of
scale. Two nonparametric tests of scale frequently cited in nonparametric
textbooks (Lehmann, 1975; Marascuilo and McSweeney, 1977) were developed by
Siegel and Tukey (1960) and Klotz (1962). The Siegel-Tukey rank test
required ranking the pooled data from two samples by assigning a rank of 1
to the lowest observation, a rank of 2 and 3 to the highest and second highest
observations, respectively. The ranking continues by alternating the aséign-
ment of ranks from the two ends of the distribution. The ranks are then
analyzed using the Wilcoxon rank test. Exact tables are available for small
sarple problems and for large samples a Z test is recommended inpluding a
correction for ties. Alternatively the Kruskal-Wallié statistic can be
applied to these ranks to generalize the procedure to situations involving
more than two groups (Puri, 1964).l Klotz's (1962) test is a normal scores
approach fof comparing distributions in which the data from two samples are
pooled and ranked from lowest to highest. The assigned ranks are then
replaced by their inverse normal score [¢-l(—i~)}. The test statistic is

N+1

calculated using the.squares of the inverse normal scores. A large sample
form of the test, that can be used with two or more g;oups, involves calcu-
lating (N-1) SSB/SST (Puri, 1964).2 Here SSB and SST denote sums of squares
between and total, respectively. Klotz showed that his test is more efficient
than the Siegel-Tukey test for normal and light tailed distributions while

the Siegel-Tukey statistic is preferred for heavy tailed distributions.

Critics of the rank tests of scale have argued that this approach is

of limited value since it may be sensitive to between group differences

11
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~ in the median as well.as to between group differences in variahce (Moses,1963).
‘ Miller'(l968) for example rejects the.approachlén this basis. It has been .
suggested however that sample estimates of location could be used to align
the data using the group mean or median befbré the ranking process begins |
(Lehmann, 1975; Marascuilo and'McSween;, 1977). Criticism of the ranking
procedure has been based on asymptotic theory and small sample properties Y )
of these statistiés have not been reported in the literature. The results
of the effects/of alignment using the sample mean or wedian have also not
~ been reported in the literature.

' The purpose of the present investigation was to develop and compare
statistical power curves for several parametnié and nonparametric’tests
of scale for normal, light tailed and heavy tailed population distributions.
Previously, power studies gf parametric teg:é of variance equality have
not consideredrthe nonparametric alternatives, In addifion discussions
of nonparametric tests of scale have been based on asymptotic behaviér of
these statistics and little has been published regarding the small sample
properties of thése procedures. In particular the effect of adjusting for
differences in the location parameters between populations hés not’been
considered. The procedures suggested by Brown and Forsythe (1974) agﬁ |
0'Brien (1978) have been selected to represent the parametric tests ;f
variance equality. These procedures were chosen since previoué*studies
have shown that they are: 1) relatively insensitive to distributional
non—norm::ity, 2) as powerful or more powerful than competing approaches,
3) can be used in factorial designs and 4) easy to compute and therefore-
attractive to applied social science researchers. The rank tests of scale

considere were those developed by Siegel and Tukey (1960) and

Klotz (1. These procedures were considered since they are 1) familiar

12
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to many data analvst:r, 2} relatively more efficient than other competing
nonparametric tests of scale, 3) applicable to a single factor design with
multiple groups (Puri, 1960), and 4) easy to compute.

In considering these four tests of scale the following gquestions were
of particular interesgz

1) When populations have a common location parameter but differ in
scale, which of the four précedures will provide the most sensitive test
for that difference?

2) When populations differ with regard to their means, what effect
do these differehces have on the Type 1 error rates of the nonparametric
tests of scale for small samples?

3) When population mean differences exist how do the nonparametric
tests based on the aligned data compare to the parametric tests using the
unalignad data?

Method

Although the procedures consiaered in the present paper are applicable

to multiple group designs, it was decided to make the power comparisons

. based on the analysis of two groupgé This restriction was made to conserve
resources in order to consider multiple levels of other factors thought to
have a greater effect on the power curves. In generating the power curves
four parameters were manipulated: 1) sample size, 2) form of the parent
distribution, 3) means of the parent distribution and 4) variance of the
parent distribution.

Sample Size. Samples of (10,15); (15,10); (20,20); (17,23); and (23,17)

were included in the investigation. The sample sizes were considered to be
mederate and representative of those frequently found in research studies in
the social sciences. The small departures from equal n were chosen specifi-

cally to reflect a small loss of subjects often found in social research.

13



5

Page 11

Distribution Ferm., A normal and five non-normal parent distributions

were considered. The non-normal distributions included a symmetric platy~
kurtic (light tailed) distribution,\a symmetric leptokurtic (heavy tailed)
distribution, a slightly and a moderately skewed distribution, and a
distribution which was both skewed and leptokurtic. The population
characteristics of these distributions are discussed in the data generation
section below.

Population Means, The simulations considered populations having a

common mean as well as populations with means that differed by .2, .5 or

.8 standard deviation units when variances were equal. When variances were
unequal, differences in population means were équal to .2, .5 or .8 pooled

standard deviation units. These effect sizes conform to what Cohen (1977)

has suggested as guidelines defining small, medium or large effects.

Population Variances. To study the Type I error rates of the prccedures
under consideration data from populations with equal variances were generated.
To study the sensitivity of the procedures to unequal variances data were
generated from populations having the following variance pairs: (1,1.5);
(1,2.0); (1,2.5); (1,3.0); €1,3.5); (1,4.0). The choice of these variance
differences was based on two considerations. First it was believed that
the conditicns considered reflected actual situations encountered by applied
researchers. And second it was believed that with unequal sample sizes
differences in the variance of the magnitude considered here would affect
the Type I error rate of the independent sémple's t-test. To support this
belief a brief simulation study was conducted in which data were generated
from fiv; distribution forms, five sample size combinations and seven levels
of variance difference. Table 1 reports the observed Type I error rate for

an independent sample t-test when the nominal significance level was .05.

14
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Insert Table 1 about here
The results indicate that as expected when the sample sizes and variances
are inversely related and the sample size is small a liberal test occurs
with variance ratios as small as 1:1.5. With a direct relationship a
conservative test occurs with ratios as small as 1:3.0. With larger sample
slzes the problem is not as great. However when sample size and variance
are inversely related an inflated Type I error rate was observed with
variance ratios of 1:2.5 or smaller. With equal sample sizes, differences
in group variances have no serious effect for the sample size considered.

Data Generation. Data for the study were generated using the SAS

computing package. Scores on the dependent measure were created based on

the linear model function Y,., = y..+Q,  + 0.¢ » where Y is the ith

1] 3 jii 1]

observation ii. the jth group. The grand mean U .. was set equal to 10.

The effect size parameter for the jth group, Q. , was 0, .2, .5 or .8

3

pooled standard deviation units to study the effect population mean

difference. To generate the random error component the SAS NORMAL function
was used to generate observations on a standard normal random variable, Xij'

To study normal distributions g,, was set equal to X To study the effect

ij ij°
of non~normality xij was transformed using the power function suggested by
Fleishman (1978): Eij = [(dxij +,C)Xij.+ b}Xij'+ a. The constants a, b,

¢ and d are chosen to transform the noxmally distributed variable to a
variable with known skewness and kurtosis and mean zero and variance one.
Five non-normal distributions were considered in the present study. The
frequency distribution at half standard deviation invervals and descriptiwve

statistics are reported in Table 2. Values reported in Table 2 are based
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on 20,000 observations generated for each distribution. The coefficient 9
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Insert Table i about here
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was set equal to one for all observations in group one. Thus the wvariance
in group cne was equal to one for all conditions. The co2fficient 02 was
crosen so that the variance of the secund group was increased from 1 to 4

in increments of .5 units.

Computed Test Statistics. For each sample generated the statistics

develcped by O'Brien (1978), Brown and Forsythe (1974), Klotz "1962) and
Siegel and Tukey (1960) were computed.
0'Bri- .ransformation with w=,5 was used. Each observation within

each group was transformed using the following equation:

- 2
(=1.5)n, (v, -5,
r = -
i] (2,-1) 1n,-2)
J J

2
- .58, (n,~1
; ( ;s )

With the transiormed variable 4s he deperdent measure thre usual ANOVA F-ratio

was completed:

L G, - F.0% 7 (3-1)
OB
. - .2
£ . - -
L (riJ r,j) / (8~-3)

The critical test statistic has J-1 and N-J degrees of freedom. '

!
‘

Brown and Forsythe's statistic was calculated after determining thé
absolute difference between . i1ch observation and the madian observation of

Ty m My

its group Aij =

. The computed test statistic was an ANOVA F-ratio

16
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with Ai as the dependent w sure:

3

Tn, O, - A/ (3-1)

] J
FBF ~ 3 .
c - N 2 -
§ § \“ij A,j) / (N=J)

Tne critical tes:’statistic has J-1 and N-J degrees of freedom.

Siegel and Tukey's statistic was calculatéd after ranking :‘he combined
observations so that the lowest observation received a rank 1, the highest
ani second highest received a rank of 2 and 3 respectively and so forth
until all observations were ranked. The test statistic using Kruskal and
Wallig's formula for comparing mean ranks (Rj) was used:

12 R2

H ~ 3 (N+1),

= —— I
N(N+1 P
()5nJ
The H test statistic is asymptotically distributed as chi-square with J-1
degrees of freedom.
Klotz's procedure requires the ranking of the total sample across

T
groups from 1 to N, The rank data are then replaced with pormal scores

zij = ¢-1 (E%I). The test statistic is then calculated as:
= T 2
z - Y
PylYy =Y
K.‘:(N"l) y
reyi oLy )?
13 U 1y H
2

where Yij = Zij . K has an asymptotically distributed chi-square with
J-1 degrees of freedom.

For each condition studied, 1000 replications of the four statistics
were computed and the frequency at which each procedure rejected the null
hypothesis of equal variance at the .05 and .10 level were recorded.

Results
The results of the simulation are reported in two sections. The first

section presents the results for the case in which the mean of the parent

17
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distribution did not vary across simulated treatment grodps. This section
is divided into two parts. Part one presents the Type I error rate of each
procedure. The second part presents the power results. The second section
presents the results for the case in which the simulated treatment groups
had an expected mean difference oif .2, .5 or .8 pooled standard deviation
units. The first part of this sei:tion repor:s thezyype I error rates and
the second part compares the power curves for the é%ur strétegies. This
section also includes an analysis of the effect of adjusting for sample
differences in means and medians. To conserve space only the results at a
nominal .05 levellof significance are reported. Similar results were
obtained at the nominal .10 signific;nce level. 1In evaluating the robustness
of each progkﬁure, it was decided that observed proportions of Type I errors
two standard errors above or below the nominal significance level would be
judged as unacceptable. Based on 1000 replications the standard error for
a nominal .05 significance level is .0069, so observations outside the
interval (.036, .064)were considered either less than or greater than the
nominal significance level.

Common Means

Type I error rates observed for the four procedures under consideration
are reported in Table 3. With the exception of 0'Brien's procedure, when
used with a leptokurtic distribution, all of the procedures appeared to be
insensitive to the form cf the parent distribution. With the leptokurtic /
distribution, O'Brien's statistic consistently resulted in Type I error
gétes that were less than the nominal significance level. These results

are consistent with those reported by 0'3rien (1978).

18



Page 16

- Am MM e e @ e SR N e A ER v G G e mm e e mm @R e e

5
Power. The power curves obtained for the tests of variance equality

with sample sizee of 20/20, 17/23 and 23/17 are reported in Table 4. The

results for samples of 10/15 and 15/10 are not reported here since the :i
relationships between the competing analysis strategies are similar to “\

- those presentéd for the sample sizes 17/23 and 23/17. With smaller samples
however the proportion of hypotheses rejected are considerably lower. For’
example with sample sizes of (15,10) and a normal population O'Brien's
statistic rejected 49.3 percent of the hypothe;es when the variances differed
by a ratio of 1 to 4.

The results reported in Table 4 indicate that power curves based on
samples of 20/20 and 23/17 to be very similar, whereas the power estimates
based on samples of 17/23 were somewhat lower than for the other two sample
size combinations., The ordering of the tests, in terms of power, however

was very similar for all three sample size combinations. Table 5 exhibits

summary partial orders, in terms of the power of the four procedures. These
. \

are somewhat idealized since the ordering is not precisely the same for

every combination of ratio of variance and sample size. Nevertheless the

partial orders are generally accurate as summaries of the results. The

ERlC 13
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partial order for the normal distribution, for example, indicates that the
0'Brien, Bfown-Forsythe and Klotz tests are typically equivalent in terms
of power and are superior to the Siegel-Tukey tesc. It appears that wheﬁ
populations differ only in their scale but are: identical in their form
and‘location parameter, then Klotz's approach consistently provides the
most sensitive test of variance equality. Under specific distributions

however one or moxre of the other strategies may provide comparable power.

Unequal Means

'Type I errors. The rank tests of scale have been challenged as being
inappropriate when populations differ with respect to their location
parameter (Moses, 1963). Several authors have suggested solving this
problem by aligning the data using an estimated group location parameter.

Table 6 presents the actual Type I error rates for the mean and

- e as Em s Em s ER em e WE e e Mw s Gm R eme A e e Am aw
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median aligned data when the populations differed by a small (.2), medium
(.5) and largé (.8) shift parameter. All results are for a nominal alpha
level of .05. Only the results for-samples of 20/20 and 23/17 are reported.
Liberal tests are identified by a * and conservative tests by a t. For the
most part similar results were obtained from the 17/23 sample size combina-
tion, The main exception occurred with the moderately skewed distribution.
The unaligned Klotz test was quite liberal with this distribution.

The effect of differences in population means on the actual Type I
error réte was fairly similar for equal and unequal sample sizes. The

results indicate that for symmetric distributions (normal, platykurtic and

leptokurtic) the best control over Type I error rates is achieved using the

20
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mean aligned Siegel-Tukey or Klotz test. The median aligned Siegel-Tukey

test has a tendency to be liberal with unequal sample sizes. The other

tests have a tendency to be cqnservative, especially for larger effect

sizes. For the slightly skewed distribvtion (skewness= .50, kurtosis= 0.0)
the unaligned Siegel-Tukey and K' .z tests tend éo have the best control

over Type I error rates. Fowever the mean aiigned Klotz test also exhibited
;easonable control of Type I errors for both equal and unequal cell frequencies,
and the median - igned Siegel-Tukey test worked well with equal cell frequen-
cies. " 'r .e moderately skewed (skewness = .75, kurtosis = 0.0) and for

the r.ewsed and leptokurtic distribution (skewness = 1.75, kurtosis = 3.75)
rone of the nonpsrametric procedures have adequate control over the Type I

erroxr rates.

Power. The estimated power curves for the original four tests of
scale plus the four Siegel~-Tukey and Klotz tests based on aligned data
are reported in Table 7, 8, and 9 for samples of 20/26, 23/17 and 17/23
respectively. With symmetric distributions the unaligned Siegel-Tukey
and Klotz procedures always became more conservative as the shift parameter
increased. As a result the power to detect scale differences tended to
decrease as the shift parameter increased and so the power curves for these
procedures are reported only for those conditions where there was a small
difference in population means. Aligning the data using the sample mean or
wedian often provided an acceptable solution to the problem of population

mean differences. As a result the power curves for the aligned Klotz and

- aw aw er et e aw A o e e e e @y mE mm aw ER AW ew R mm e am ean e e

and Siegel-Tukey procedures were very similar across the three levels of the

shift parameter considered. In addition the shift had no effect on the power

Rl
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{
curves for the Brown-Forsythe and 0'Brinn statistics. The power curves
reported for those procedures which were unaffected by ﬁﬁe shift are based
on the average proportion of the hypotheses rejected across the small,
medium and large shift parameter at each level of the variance ratio.
Finally power results number are not reported for situations in which a
Siegel-Tukey and/or Klotz test was liberal.

With symmetric distributions the mean adjusted Klotz test tends to
be the most powerful procedure based on‘ranks. For these distributions,
Table 10 exhibits partial orders of the mean adjusted Klotz test, the
O'Brien test and the Brown-Forsythe test. With symmetric distributions
the procedure of choice is the Klotz test; in all cases it is either more
powerful than the Brown-Forsythe and O'Brien tests or has power equivalent
to the O'Brien test.

A R e R A MR mE R e e AW SN ) M e W ME Me G am e W AW

Insert Table 10 about here

F;f slightly skewed distributions the procedures suggested by O’Brixt,
Brown and Forsythe, and the median aligned Klotz test provided similar
power curves. The aliguad Klotz procedure also provided comparable power
estimates when the difference betwéén population means was small. Thase
results were consistent across equal and unequal sample size combinations.

For distributions which were both skewed and leptékurtic the Qnaligned
and aligned rank tests of scale were quite liberal and therefore power
results are not reported. A comparison of the power curves for 0Q'Brien and
Brown-Forsythe statistics indicated that when sample sizes were equal the
Brown-Forsythe had a slight power advantage. When sample sizes were unequal

there appeared almost no difference in the sensitivity of the tests.

22
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The preceeding results apply to only a subset of ghe possible relation-
ships among cell frequency, size of variance, and size of mean. For the
unequal n case, there are four possible relationships to investigate:

1) Larger frequency, variance and mean in the same cell; 2) Smaller
frequency, larger variance and mean in the same cell; 3) Larger frequency,
variance and smaller mean in the same cell{ and &) Smaller fréquency, larger
variance and smaller mean in the same cell. The preceeding results for the
17/23 conditions are for relationship 1, whereas the results for the 23/17
are for relationship 2. To investigate whether the latter two relationships
impact the power results, the simulations were repeated, but only for the
symmetric distributions: The power order for situation 3 was quite similar
to that for situation 1, whereas ‘the ordering for situation 4 was quite
similar to situation 2. Apparently the relationship between cell frequency
and cell variance has a small impact on the power order of the Brown-Forsythe,
mean aligned Klotz and O'Brien tests. However neither the relationship
between cell variance and cell mean had an effect on ché ordering. For

the equal n case there are two possible solutions: l)‘Larger variance

and mean in the same cell; and 2) Largér variance énd smaller mean in the
same cell. The preceeding results sugéested that the relationship between
cell variance and mean did not impact the power order and that the impact

of the cell frequency -~ cell variance relations was quite minor. Therefore

additional simulations were not undertaken to investigate the impact of

situation 2,
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Summary and Conclusions

Based on the preceeding results, the following conclusions can be set
forth: |

1, When sampling from two populations that have identical shapes and
means, the Brown-Forsythe, Klotz, O'Brien and Siegel-Tukey tests have actual
Type 1 error rates near the nominal alpha level. For all the distributions
investigated, the Klotz test had power equal to or greater than the power of
the other tests. For the normal and platykurtic distributions, these results
are consistent with asymptotic results indicating that the Klotz is more
efficient than the Siegel-Tukey. However for the leptokurtic distribution
the small sample results are not consistent with the large sample theory.

2, The results support O'Brien's conclusion that, with normal and
light tailed distributions, his test is more powerful than the Brown-Forsythe
test; with heavy tailed distributions it is less powerful. Because neither
test is affected by differences in means these result; obtain in the condi-
tions with equal means and the conditions with unequal means.

3. As the differences between means increases, the unaligned Klotz and
Siegel-Tukey tests become quite conservative and there is a concomitant
reduction in power. Fligner (1979) investigated the Siegel-Tukey test and
reported a similar trend. However, because Fligner studied smaller mean
differences he did not demonstrate the excessively conservative tendency of
the Siegel-Tukey.

4. When sampling from two populations with different means, but identical
symmetric shapes the méan aligned Klotz and Siegel~Tukey tests are reasonably
robust with both equal and unequal cell frequencies. The mean aligned Klotz
teét is more powerful than the corresponding Siegel-Tukey test. In addition

it has power equal to or greater than the powers of the Brown-Forsythe and

| 24
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0'Brien tests. The power of the mean aligned Klotz test does not seem to
be affected by the magnitude of the mean difference, and with small effect
sizes can have a substantial power advantage relative to the unaligned
Klotz test. This suggests that with symmetric distributions, the mean
aligned Klotz test can be used regardless of whether there are between
group mean differences. Additional research is required to substantiate this
conjecture. Fligner.(1979) presented a class of distribution-free tests for
scale which includes the Siegel-Tukey éest. He investigated the effect of
small, between group, median differences on the behavior of several tests
in the class. The results showed that Type I error rates for various
members of the class depended on tailweight of the parent distribution.
Consequently, Fiigner proposed an adaptive test based on a measure of tail-
weight. In the adaptive test, the Siegel-Tukey test is used with heavy
tailed distributions. OQur power results point to the use of the mean
aligned Klotz test rather than the Siegel~Tukey test.' Moreover, because
the mean aligned Klotz test is effective with normal and light tailed
distributions, it may be worthwhile to compare it to the tests favored by
Fligner for medium and light tailed distributions.

5. When the parent distributions are slightly skewed (skewness = .50)
the median aligned Klotz test is reasonably robust for equal and unequal
cell frequencies. For either equal, unequal cell frequencies, or both,
the other rank tests of scale are not robust. In addition the median aligned
Klotz test is as powerful or more powerful than the Brown-Forsythe and 0'Brien
tests. When the distributions are moderately skewed (skewness = .75) or
skewed and leptokurtic (skewness = 1.75, kurtosis = 3.75) none of the rank
tests of scale are robust. .The Bro&E:E;;;;;he test has power equal to

or greater than the 0'Brien test. These results suggest the need for
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resaearch onithe efficacy of choosing a procedure based on a measure of
skewness.

6. Rés;lts for a frequency configuration of 23/17 (inverse relationship
between cell frequencies and Yariances)-indicate that the t-test cam be
liberal with a variance ratio as small as 1:2.5. The power of the scale -
tests to detect this ratio is quite limited for many of the conditions inves-
tigated. For a cell frequency configuration of 15/10 the test is more
1ibera%mand the scale tests are léss powerful. This suggests that the

scale tests are not particularly useful as tests for violations of homo-

scedasticity., Moreover the Welch-James (1951) procedure does not assume
variance equality and has power equivalent to the F-test when the homogeneity
assumption is met. The Type I error rate of the Welch-James test is
unaffected by variance heterogeneity. When there is an inverse relationship
between cell variances and cell frequencies, ANOVA tends to be liberal.
Therefore the Welch~James procedure is more apprOpriafe. When there is a
direct relationship, ANOVA tends to be conservative and therefore should not
be rejected aufomatically. However the Welch-James test is more powerful
and therefore is the procedure of choice. This suggests that the Welch-
James test for mean differences should be uniformly adopted when cell fre-
#uencies are unequal.

7. The relatively limited power observed with many of the variance
ratios suggests the need for tc:ial samples larger than 40 when the purpose
Qf the experiment is to test for inequality of variances,

The generality of the conclusions 1 to 6 {s limited by our choice of
number of treatment groups, total sample sizes, differences in cell
frgquencies, and identical shapes scross treatment groups. The effect of

variation in these factors should be investigated.
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Notes

Puri's generalization to k samples does not include the weighting
N—-t:

N

factor ( ) suggested by Kruskal and Wallis to improve the approxi-

mation te the chi-square distribution.

The test staristic used here [{N~1) SSB/SST] is a modification of

Puri's statistic to include Kruskal d Wallis' adjustment factor.

;T
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Table 1

Estimated Type I Error Rates for Independent Samples and Test

Distributions
’ B Moderately Skewed/
nl/n2 Oi:OZ Normal Platykurtic Skewed Leptokurtic  Leptokurtic
10/15 1:1.0 .046 .058 043 .051 . 045
1:1.5 .049 .040 - .039 .027 .040
1:2.0 .04l .028 .045 042 .048
1:2.5 .040 .024 S .049 .028 .049
1:3.0 .034 .040 .035 .028 .043
1:3.5; .028 .027 .035 025 .039
1:4.0 .030 .035 .027 .022 .049
15/10  1:1.5 062 .063 .059 .068 .070
1:2.0 . 069 .061 .078 .053 .062
1:2.5 .067 .079 .079 .070 .077
i:3.9 .089 .076 .089 .073 .0%5
1:3.5 .085 .077 .075 .088 - .09
1:4.0 .084 .087 .088 .080 .100
23/17  1:1.0 .064 .051 .052 .056 .040
1:1.5 .051 .056 .057 .057 .055
1:2.0 .045 .056 .058 067 .061
1:2.5 .068 .073 .065 .065 .073
1:3.0 .080 .066 .065 072 . .079
1:3.5 .078 .081 .085 .086 .095
1:4.0 .068 .078 071 .082 .089
17/23 1:1.5 .038 .041 .045 047 .047
1:2.0  .044 .040 .043 .035 .052
1:2.3 .036 .039 047 047 .036
1:3.0 .037 .038 .036 .040 .035
1:3.5  .034 041 .047 .029 .038
1:4.0 .034 .033 .040 039 . 047
20/20  1:1.0 .044 .056 .047 .043 048
1:1.5  .045 .044 .053 .052 .059
1:2.0 ,057 .048 .041 .045 .047
1:2.5 .049 .055 .047 .053 .069
1:3.0 .052 .059 .049 .051 .060
1:3.5 .046 .051 .050 047 .061
1:4.0 .071 .053 .056 .039 002

Note: Nominal alpha level = ,05; each figure calculated from 1000

replications.
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Table 2

Frequency Distributions and Descriptive Statistics for Six Distributions

Distributions
Slight Moderate Skewed/
Interval _ .. Normal Platykurtic  Leptokurtic Skaw Skew Leptokurtic
- « =3,0 17 151
-3.0,-2.5 85 119
~-2.5,-2.0 332 301 )
~2.0,-1.5 889 1552 601 882 )
-1.5,~1.0 1885 2297 1257 2469 3605
~1.0,-0.5 2470 2917 2816 3516 3976 8555
-0.5, 0.0 3826 3235 4745 3851 3591 4219
0.0, 0.5 3817 3177 4753 3474 2053 2577
0.5, 1.0 3038 2805 2748 2590 2345 1777
1.0, 1.5 1849 2411 1343 1626 1552 1142
1.5, 2.0 855 1606 586 888 1039 671
2.0, 2.5 332 263 456 520 440
2.5, 3.0 86 178 171 230 268
3.0, = 19 139 ' 77 89 351
Mean -.0015 .0049 . 0004 ~-.0053 .0009 - 0063
Variance .9836 1.0109 1.0292 . 9887 1.0631 L9774
Skewness .0004 - .0005 - .1297 . 5044 .7266 - 1.6820
Kurtosis -.0938 -1.0131 3.5547 ~.0216 -~ .0846 3.1517

Note: Results based on 20,000 observations.
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Table 3

Estimated Actual Type I Error Rates for Tests on Variance

Ll

Distributions
Moderate Skewed
nl/n2 quca Normal Platykurtic Skew Leptokurtic Leptokurtic

] S .
10/15 OB .046 .046 .051 .032¢ .064
BF L045 .038 .033% - .033% .049

ST .066% .045 .051 .041 .046

K .053 .046 044 .037 L047

0/20 0B .051 .051 .050 .033t .064
BF .045 .031t .046 .041 .058

ST .052 .053 .053 .053 .050

K ,056 .049 042 . 050 .043

17/23 OB .054 .059 .059 .035¢ .050
BF .047 .043 .040 .040 . .049

ST .053 .057 .050 . 048 .054

K .050 044 042 L045 054

t - indicates a conservative test
* - indicates a liberal test

a - O0B=0'Brien, BF=Brown-Forsythe, ST=Siegel-Tukey, K=Klotz
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Table 4

Estimated Power for the Tests on Variance
- ~———— e

.
20/20 | 17/23 23/17

Distribution of:og 0B " BF ST K OB BF ST K OB BF ST K
Normal 1:1.5 | .119  .104  .104  .125 .087 .094 .08 .102 L1388 .099 .105 .136
1:2.0 | .258 .244  .201 .250 L2000  .213  ,200 .220 .262 .199  .198 .262
1:2.5 | .391 .366 ,321 .393 .310  .352 ,276  .352 C.452 L3611 .317  L437
1:3.0 | .526  .490 .407 .533 460 496 419 L 481 573  .504  .426  .548
1:3.5 | .611  .610 .501  .625 567 .588  .494  .596 .703  .627 .536 .677
1:4,0 | .704 .696 .583 .700 | .673 ,711 .,600 .710 .758 .695 .585 .753
Platykurtic 1:1.5 | .180 .121 .136 .214 137 .101 .112  .159 .184 ,088 .119 .225
1:2,0 | .409 .289  .266  .442 344 254,236 .358 488  .288. ,298  .494
1:2.5 | .666  .482  ,435 .657 .577 454,399  ,575 645 451  .428  .621
1:3,0 | .775 .618 .515 .742 .738 .589 .511 .727 .801 .604 ' .530 .770
1:3.5 | .861 . .726 .601  .828 846 .761 .649  ,815 .872 .724 .e6l12 .838
1: 4.0 .9 .841 .705 .893 .880 .796 .685 .857 408 .787 .685 .889
Moderate 1:1.5 | .1407 .113 .152 .221 113 101 136 .204 .127  ,080 .148  .230
Skew 1:2.0 | .276  .236 .326 .467 236 .228  ,308  .405 303,226 .317  .472
1:2.5 | .399  .369 .441  .639 .332 ,335 419  .549 453 344 L4552 L646
1:3.0 | .553  .517 .571 .748 474 474 555,702 .593  .497  .580 .761
1:3.5 | .617 .582 .638 .806 561  .574  .61l4  .746 .695 .616 .667  .846
1:%.0 { .738 .705 .726 .861 629  .669 .716 .823 .760 .679 .718  .867
Leptokurtic 1:1.5 | .058 .090 .088 .087 046 .067 .073 .075 104,102 .105  .102
1:2.0 | .134 .167 .156 .169 087 146  .146  .146 141,157 .160  .180
1:2.5 | .197 .261 .231 .,262 131,240 .204 .208 .281 .305 .220 .311
1:3.0 | .266 .367 .327 .370 192,329  .331  ,335 .328  .390 .339  .400
1:3.5 | .346  .452  .396  .459 251 423 .374 427 432 494 460  .510
1:4.0 423 325 447 .525 .502 314 478 .499 492 .564 .495 360
Skewed~ 1:1.5 | .067 .077 .256  .367 065 .079  .234 .326 099 ,083 .272  .403
Leptokurtic 1:2.0 | .139 .147 .500 .598 102 .134 460,498 169 147  .520 .630
1:2.5 | .180 .203 .621 668 152 194 .645 .674 243,222 642 ,718
1:3.0 | .239 .282 .739 .780 JA94 254 746 .756 .295  .308 .740 .816
1:3.5 | .301 .360 .817 .846 223 .307 .781 .770 .350 .363 .803 .867
1:4.0 | .359 .416  .844  .B69 249  ,345 .833 .800 430 456 .853 .892

. a - O0B=0'Brien, BF=Brown~Forsythe, K-Klotz, ST-Siegel-Tukey
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Table 5

L

Power Partial Orders When There Are No Between

Group Mean Differences

Distribution Partial Order &

Normal | OB~BF-K
ST
Platykurtic K-0B
BF
ST
Skewed K
ST
OB
BF
Leptokurtic ‘ K-BF
ST
OB
Skewed/Leptokurtic K-ST
BF

OB

a - 0B=0'Brien, BF=Brown-Forsythe, K=Klotz, S$T=Siegel-
Tukey.,
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Table 6

Estimated Actual Type I Error Rates for Tests on Variance When There Are Between Group Mean Differences

20/20 23/17
Effect

Distribution  Size ST? K STM KM  STMD  KMD ST K STM KM STMD  KMD
Normal s .042 ,043 .050 .052 .038 .038 .054 .051 .064 .063 .087: .083
M .052 ,036 .079 .064 .057 .04l 041 .031 .054 .06l .08l, .047

L 031t 018 .047 .060 .036 .044 .034t 018t .054 .056 .078  .042
Platykurtic S .050 .049 .051 .052 .039 .029t% .052  .042  .064  .051 .092*% 031t
M ..041 .020% .052 .054 .034 .03zt .053 .o019t .071* .055 .092: .036

L .028t 007t .058 .058 .033t .040 .Qzet 005t ,054 .052 .086 .039

Leptokurtic S .052 .056 .064 .06l .044  .051 060  .053  .066 .060 .oso: .046
! M 042 034t .054* 051,050  .048 .037  .039  .060 .055 .077 ° .039

L .038 ,019t .070* .070% .061 .063 .040 .033Y .o051 .037 .081* .o3st

Slight Skew S .052  .046  .064% .079: 054 054, 047  .044  .057  .069% .078% .040
M .055  .054 .071: .071%  .048  .067 047  .030t 074 .077* .093: .048
L .047 031t .079" .081% .052 .049 .033% .029% .063 - .082* .084" .065*
Moderate Skew S .068% .073* .118% .140* .077* .095% 061 060 096" .132: .115: .034:
M 076" 067 .108* .133* .o072* .088: .086 .069* .105: 1407 L1367 .091

L .103% .063 .086* .119* .058 .075 L0907 .047 L1140 L1347 .139T  .084
Skewed- S .210%  L216% .350% .419: .233% .274: .198% 201 L374% 413t .343: .255:
Leptokurtic M .422% .270* .329: .410 .219: . 246 .379: .206: .3A6: .411: .328% . 2487

L L496%  ,205%  L347%  .396® .243*% 272 .369%  L134%  .366™  .439% L3217 .264

A45T=Siegel-Tukey, K=Klotz, STM=Siegel-Tukey with adjustment for sample mean, KM=Klotz with adjustment for
sample mean, KMD=Klotz with adjustment for sample median, STMD=Siegel-Tukey with adjustment for sample
median.

t - indicates a conservative estimated Type I error rate.
* ~ indicates a liberal estimated Type I error rate.
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Table 7

Estimated Powers for Tests on Variance®*®

Test Statisticd

Distribution o0, OB BF sT¢ & ST™ KM STMD KMD

Normal 1:1.5 L106 .099 .089 .095 .107 137 .086 .106
1:2.0 .249 .231 172 .236 .211 «295 176 .241
1:2.5 . 404 .374 .294 .386 .326 449 274 .382
1:3.0 .529 .510 .399 .509 .438 .606 .376 .539
1:3.5 .653 «835 .506 .549 556 .723 483 .649
1:4.0 .739 .728 .587 .699 .639 .805 565 745

Platykurtic 1:1.5 .170 .106 .118 174 .126 .207 .095 141
1:2.0 423 .278 .251 .400 .272 468 .199 .356
1:2.5 .650 489 .369 .584 433 .667 .327 .554
1:3.0 .775 .617 .552 .732  .543 .783  .462  .690
1:3.5 .864 747 .619 .831 .633 .866 .535 .780
1:4.0 .921 .828 .672 .875 .716 .923 .625 .851

Leptokurtic 1:1.5 .062 .073 071 072 .089 .105 .068 .083
1:2.0 .128 .169 .161 .175 .238 .209 142 .170
1:2.5 .208 .266 .250 .265 264 .308 .220 .275
1:3.0 .271 .376 .04 .341 .359 424 .308 376
1:3.5 . 340 469 . 385 .435 NY/YA .509 .384 458
1:4.0 413 540 486 .535 .519 594 453 .538

Slight Skew 1:1.5 - .121 .105 .095 .107 .098 .129
1:2.0 .256 .236 .192 .265 195 .280
1:2.5 LAl4 .375 . 306 .428 .288 426
1:3.0 .554 .521 413 571 .L08 &b
1:3.5 647 .623 .520 .681 488 .659
1:4.0 .739 .729 .801 . .751 .579 .758

Moderate Skew 1:1.5 117 .090
1:2.0 .254 .225
1:2.5 423 . 386
1:3.0 . 542 .488
1:3.5 642 .615
1:4.0 .703 .683

Skewed~ 1:1.5 . 080 .083

Leptokurtic 1:2.0 143 .138

1:2.5 .189 .209
1:3.0 . 243 .278
1:3.5 .291 . 340
1:4.0 . 343 . 396

a - Results refer to the 20/20 cell frequencies.

b - Power figures are not reported for tests that were liberal.

¢ - Results refer to conditions with small mean effect sizes.

d - OB=0'Brien, BF=Brown-Forsythe, ST=Siegel~Tukey,K=Klotz, STH=Siegel~Tukey

with adjustment for sample mean, KM=Klotz with adjustment for sample mean,

STMD =Siegel-Tuk:2v w;th aﬁ;ustmenc for samp] : Tadian, RKMD=t.. 7 wi:"
adjustment for samp




Table 8

Estimated Powers For Tests on Variancea’b

Test Statistic d

Distribution cf:og o8B BF ST® K€ sTM XM SIMD KM

Normal 1:1.5 .128 .09% .097 .122 .107 .l42° .106
1:2.0 .288 .226 .222 .281 .217 .307 . 245
1:2.5 450 .361 .313 .409 .334 .461 .385
1:3.0 .581 .502 .423 .570 .,427 .5%91 .516
1: 3.5 .695 .610 .516 .557 .422 .700 .630
1:4.0 .760 .684 .,580 .715 .588 .769 .702

Platykurtic 1:1.5 .196 .101 .124 .203 .130 .212 .145
1:2.0  .445 .269 280 .448 .266 .459 .342
1:2.5 .666 .448 .397 .642 .410 .657 .539
1:3.0 .802 .611 .538 .761 .538 .790 .679
1:3.5 .883 .726 .603 .819 .639 .872 .770
1:4.0 .933 .817 .704 .901 .704 .919 .850

Leptokurtic 1:1.5 .081 .083 .091 .098 .105 .119 .094
1:2.0 .161 .166 .167 .180 .185° .223 .183
12.5 .264 .291 .256 .302 .286 .351 .291
1:3.0 .345 .3AL .323 .358 .371 .423 .365
1:3.5 429 479 417 494 435 . 524 .458
1:46.0 .476 ,542 .470 .541 .498 .591 .527

Slight Skew 1:1.5 132 .100 .084 .017 .127
1:2.0 .280 .225 .193 .226 .272
1:2.5 411 .353  .263 .352 407
1:3.0 .556 .505 .422 .,523 545
1:3.5 .656 .615 .490 .617 .658
1:4.0 .728 .696 .568 .713 .727

Moderate Skew 131.5 L1555 .101 .095 .148
1'2,0  .292 .,208 .213 .368
1:2.5 447 .362 .391 .608
1°3.0  .572 .474 473 .701
1:3.5 .684 .602 ,585 .808
1:4.0 .743 .685 .650 .848

skewed~ 1:1.5 U499 081

Leptokurtic 1:2.0 182 .154

1:2.5 .227 .214
1:3.0 311 .300
1:3.5 .354 ,350
1:4.0  .408 .427

a - Results refer to the 23/17 cell frequencies.

b - Power figures are not reported for rasts that were liberal.

¢ - Results refer to conditions with snall mean effect sizes.

- d -~ GB= O'Brien, BF=Brown-Forsythe, ST=Siegel-Tukey, K=Klotz,

STM = Siegel-Tukey with adjustment for sample mean, KM=Klotz with
adjustment for sample mean, STMD-Siegel-Tukey with adjustment for
sample median, KMD=Klot% with adjustment for sample median.
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. Table 9

Estimated Power for Tests on Variancea’b

Test Statiscicd
Distribution ¢ i:o’i OB BF st  «© STM KM  STMD  KMD
Normal 1:1.5 .098 .095 .091 .093 .108 .125 .102
1:2.0 216 .217 .189 .213 .210 . 269 .219
1:2.5 . 349 .361 .285 . 365 .335 436 .368
' 1:3.0 455 .410 .374 L 440 454 .554 .469
1:3.5 .559 .590 487 .563 .536 657 -590
1:4.0 .640 .690 .545 .640 .617 . 749 675
Platykurtic 1:1.5 .159 .112 .122 .170 .131 .185 .128
‘ 1:2.0 .384  .288 . 246 .353 .282 428 .326
1:2.5 .586 443 .377 .550 .423 .610 .501
1:3.0 . 734 .602 .485 .678 .540 . 764 .660
1:3.5 .835 .723 .600 .781 . 646 .848 .754
1:4.0 894 .806 676 .853 .728 .902 .829
Leptokurtic 1:1.5 .055 077 .078 .069 .092 .106 .087
1:2.0 .091 .160 .165 .165 .182 .206 174
1:2.5 .135 .237 221 .238 . 264 .287 252
1:3.0 .207 . 343 .206 .318 . 344 .403 .341
1:3.5 .256 .433 377 .407 La4l 470 424
1:4.0 .296 488 421 L4501 L L497 566 .506
Slight Skew 1:1.5 .096 .091 .085 .088 . 105
1:2.0 »221 .218 .185 .238 L2411
1:2.5 .361 .352 .313 .398 . 396
1:3.0 481 .496 .425 .540 .532
1:3.5 .580 .600 511 . 648 L6372
1:4.0 .660 .692 .591 .729 .728
Moderate Skew 1:1.5 .098 ° .085
1:2.0 .216 .215
1:2.5 .350 . 336
1:3.0 473 452
1:3.5 .574 .536
1:4.0 674 654
Skewed- 1:1.5 073 077
Leptokurtic 1:2.0 .119  .133
1:2.5 .156 .169
1:3.0 .190 .237
1:3.5 .234 . 307
1:4.0 264 . 380

a - Results refer to the 17/23 cell frequencies.

b~ Power figures not reported for tests that were liberal.

¢- Results refer to the conditions with the small effect sizes.

d- OB =0'Brien, BF=Brown-Forsvthe, 5T=Siegel-Tukev, K=Klotz, STM= Sjiezel-T-lev
with adjustment for sample mean, KM=Klotz with ad fustment for sa . le
mean, KMD=Klotz with adjustment for sample median, sTMD=Sicgel~Tuxey
with adjustment for sample median.




Table 10

Power Partial Orders When There Are Between

Group Mean Differences

Cell Frequencies

Distribution 20/20 23/17 17/23
Normal KM@ KM—0B KM ;

OB—l-BF AF BL
os

Platykurtic KM—0B KM—OB KM
JF JF JB

;F.

t

Leptokurtic KM KM M
B:F B: F B:F

OB OB 0B

a - 0B=0'Brien, BF=Brown-Forsythe, KM=Klotz with mean
aligned data.
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