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Executive Summary

Graduate education in the United States is characterized by an

enormous diversity of disciplines and the predominance of relatively

small enrollments in individual departments. In this setting, a

validity study based on a single department's data and employing

classical statistical methods can be of only limited utility and

applicability. At present, to participate in the Graduate Record

Examinations Validity Study Service, a department must have at least

25 students in its entering class. Only validities for single

predictors are provided; estimates of the validity of two or more

predictors, used jointly, are considered too unreliable because the

corresponding prediction equations often possess implausible char-

acteristics, such as negative coefficients. These constraints were

introduced by the Validity Study Service to reduce the chance that

the results in the report to a department would be overly influenced

by statistical artifacts in the data and hence serve more to mislead

than to inform. Two unfortunate consequences, however, are that

fewer departments than before can benefit from the service and those

that do cannot obtain information on a number of issues of interest.

For example, questions of the incremental contribution to validity

of one predictor when two or more predictors are al ady included in

a prediction formula cannot be answered. Moreover, ev the single

predictor validities display considerable year- to-eye fluctuation,

which may bewilder departments that regularly receive Validity Study

Service reports.
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Until recently, little could be done to ameliorate this unsatis-

factory state of affairs. Although a number of strategies for pooling

data across departments have been proposed, they all suffer from at

least one drawback: Either the pooling is so indiscriminate that

the results appear to have questionable relevance to an individual

department or it is so delicate that it would appear to be difficult

to implement in an operational setting.

The goal of the present study was to investigate two statistical

methods, empirical Bayes and cluster analysis, to determine whether

their application to the problems faced by the Validity Study Service

could result in useful imptovements. Because of the successful appli-

cation of empirical Bayes methods to validity problems in another

context, particular emphasis was placed on this approach. In fact,

considerable effort was expended in developing and studying a new

and more general class of empirical Bayes models that can accommodate

the complex structure of the Validity Study Service data base.

To borrow a term from sociology, empirical Bayes facilitates a

very general form of "contextual rtalysis" of the validity problem.

Essentially, the relation between the criterion and a constellation

of predictors within a given department is examined in the setting

of a large collection o, departments. Of particular interest is any

evidence that the nature of this relation varies in association with

some measured characteristic(s) of the departments. An example

might be the finding that the inclination of Cie regression plane

increases as the department size increases. To the extent that such

pandepartmental findings are valid, the precision of the estimation



carried out in any one department can be improved by drawing upon

the information provided by the other departments.

Two technical points must be satisfactorily addressed before

such a procedure can be implemented. The first is to determine how

much the estimates based on a single department's data should be

modified by data from other departments. The empirical Bayes

methodology provides a good solution that depends on both the

precision of the within-department estimate and the apparent strength

of the pandepartmental relation. Details are given in the text.

The second point concerns which departments are to be considered

together. Various possibilities exist, including the formation of

clusters of departments on the basis of either substantive or

statistical criteria. The empirical Bayes methodology would then be

applied separately to each cluster. An extreme approach is not to

form clusters at all but to treat all graduate departments partici-.

.porting in the Validity Study Service as a single "family," trusting

that certain measured departmental attributes are sufficient to

characterize the departments in the validity setting.

Our analysis demonstrates that empirical Bayes does provide a

usetut way of combining information across departments. Interestingly,

it appears to work best, in this case, when departments are character-

ized by various measures of student quality but are not divided into

clusters determined by discipline, location on a verbal-quantitative

axis, or various other statistical criteria. The practical result

is that, even for departments with as few as 10 students, separate



prediction equations have been obtained from which stable estimates

of the joint validity of two or more predictors can be derived.

An important ccmponent of the study was the comparison of various

suggested approaches along a number of dimensions, especially those

related to the quality of their predictions. The quantitative

nature of these comparisons may seem somewhat at odds with the way

in which most graduate departments probably utilize the results of a

validity study. Rather than using the prediction equations provided

to make exact predictions of first-year averages to be earned by

prospective candidates, they look for guidance on the relative

weights to be assigned to various predictors in making a qualitative

assessment of the candidates. However, in our view, there can be

little justification in proposing that empirical Bayes methods

supplant classical least squares unless it can be shown that, among

other things, the change would result in prediction equations that

yield better predictions and are more stable through time.

Among the approaches compared were ordinary least squares,

least squares in conjunction with pooling of data, and a variety of

empirical Bayes methods in conjunction with different levels of

clustering of departments. To simulate the admissions setting,

most of the comparisons were carried out through cross-validation:

Each department was randomly divided in half; models were estimated

with on:.- half-sample, the calibration sample, and tested on the

other half, the validation sample. The comparisons demonstrated

that a fairly simple empirical Bayes model not only yielded better

predictions of first-year averages but also facilitated the accurate
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assessment, a priori, of the quality of these predictions. Moreover,

the prediction equations were quite stable and rarely displayed

implausible features such as negative weights.

How do our results compare with those reported by Livingston

and Turner (19L1)? Although most of their report centers on zero-order

correlations, they do report joint validities for verbal and quanti-

tative scores and undergraduate grade point average, estimated either

by pooling data across disciplines or by forcing the predictors to

he equally weighted. These validities fall in the range of 0.25 to

0.45 and are somewhat lower than the validities that can be realized

using prediction equations obtained through empirical Bayes. These

range from 0.30 to 0.55.

In another phase of the research program, a new statistical

method for hierarchical clustering was developed and applied to

applicants' characteristics. These characteristics include

performance on the GRE General Test and the Subject Test taken.

Both the resulting clusters and the original candidate information

were employed in a number of ways estimating validity, but the

results did pot offer an improvement over the empirical Bayes model.

N,netheless, the new clustering of disciplines may be of some

interest in its own right.

The empirical Bayes method has also been adapted to the problem

of providing separate estimates of validity for various subgroups of

a giVri population of students. Two trials were carried out: one

in which students were categorized by. race and another in which they

were categorized by both age and sex. In both cases, the differences
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in validity were neither of practical importance nor statistically

significant. However, the relatively small amount of data on

minorities suggests that real differences, if they existed, would be

difficult to uncover.

The principal methodological conclusions of this study are

that, through the use of a new class of empirical Hayes methods, it

is possible to obtain, at the departmental level, useful and reliable

estimates of the joint validity of several predictors of academic

performance and that these methods may be further refined to address

the question of differential predictive validity, again at the

departmental level. These results have important practical implica-

tions for the GRE Validity Study Servi5e.
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1. Introduction

The research described in this report was undertaken both to

develop solutions to some basic problems that have plagued validity

studies of Graduate Record Examinations (GRE) scores and to broaden

the range of questions the GRE Validity Study Service might usefully

address.

To examine the validity of a single measure as a predictor

of first-year average (FYA) in a graduate department, the standard

approach has been to carry out a simple regression the criterion,

FYA, on the measure, based on data culled from a recent cohort of

students successfully completing their first year. Similarly, a

multipletsweg-ession must be performed to assess the joint validity

of two or more predictors. In either case, the appropriate validity

(or correlation) coefficients may be easily derived from the fitted

regressions.

Unfortunately, these validity estimates are affected by the

very nature of the process by which students are admitted to graduate

school. In particular, if the predictors whose validity is to be

assessed are employed in the selection process, the attending students

will display a distribution of test score values that differs from

that of the applicants. For example, the proportion of attending

students with low test scores will usually be smaller than that of

applicants. The corresponding validity estimates will tend to be

lower than they would otherwise be in an unselected population.

To this difficulty, encountered in virtually all validity

studies, must be added the small size of most graduate departments.

11
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Small sample sizes result in unstable estimates of validity--that

is, estimates that may fluctuate wildly from yeas to year. In

addition, the selection process will also depend on a number of

unmeasured or unrecorded factors (letters of recommendation,

extracurricular activities, and the like) that are not perfectly

correlated with those available for study. Fluctuations in the

quality of applicants on these unavailable factors across years

will also contribute to the apparent instability of the fitted

regressions.

Consequently, estimates of validity derived under these circum-

stances may be of limited utility. The present Validity Study

Service has taken a number of steps to mitigate the effects of these

difficulties. AL one time, departments vith as few as 10 students

could participate in the service. Now they must have at least 25

students. Secondly,only the zero-order correlations are reported.

These are the validities of each factor taken alone. The drawback

to the first step is that many fewer departments may avail them-

selves of the service. The drawback to the second is that the joint

validity of a set of predictors cannot usually be accurately inferred

from their individual validity coefficients. Moreover, the zero-order

correlations may be quite misleading ii two or more of the factors

were important elements in the selection process.

Nonetheless, the course actl Sy the Validity Study Service

is a wise one inasmuch as Boldc ) has reported that attempts to

fit multiple regressions to GRE data result in numerous negative

coefficients for the predictors, implying that the better the



performance on the prOictor, the poorer the performance in graduate

school! Such results are undoubtedly artifacts of the selection

process and small sample sizes described above. A number of

researchers have wrestled with these problems. Generally, their

strategy has been to devise sensible ways of combining.information

across departments.

One of the first applications of Bayesian techniques to these

problems was reported by Novick, Jackson, Thayer, and Cole (1972).

Building on a series of papers by Lindley (1969, 1970), they carried

out a cross-validation study on a set of American College Testing

Program data. The results suggested that the Bayesian approach

outperformed ordinary least squares on a within department basis.

An excellent account of related statistical work up to 1975 is

provided by Boldt (1975).

Boldt compared a central prediction approach, which applies

a least squares technique to College Board Validity Study Service

data appropriately pooled from different sources, to the Bayes

---
approach of Novick et al. He reported that least squares performed

about as well as Bayes in a cross-validation analysis of prediction

performance. Wilson (1979) used a central prediction system of

common weights for departments and suggested methods for testing

whether an individual department had a different prediction system.

Data were not available for cross-validation of this method. Using

CAE validity data, Wilson found by analysis of variance that only a

small fraction of departments appeared to have c';fferent prediction

systems.

I3
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Using Law School Admission Test validity data, Rubin (1980) has

reported that in a cross-validation of multiple R2, empirical

Bayes techniques outperformed the ordinary least squares (within-

school) techniques. One of the significant results was that,

although each individual law school data set was large, the least

squares prediction systems were shown to be unstable from year to

year when compared to the empirical Bayes prediction systems. The

policy of some departments in allowing high scores on one test to

compensate for low scores on another, studied by Dawes (1975), has

been shown to severely hamper estimation of the underlying predictibn

system when using a single department's data and is one cause'of the

instability mentioned above.

Braun and Jones (1981) have studied prediction bias in the

context of the Graduate Managem7 Admission Test for Blacks in a

data set in which only 6 percent of the students were Black. Using

empirical Bayes techniques based on Dempster, Rubin, and Tsutakawa

(1981), they obtained prediction systems together with appropriate

confidence statements for Blacks even in schools having less than

five Black students. Similar techdiques should be applicable to the

data of the GRE Validity Study Service.

A requirement of the methods described above has been the identi-

fication of homogeneous groups of departments. Because of the diversity

of graduate department types, attempts /21clustering have resulted

either in a large number of small groups or a small number of rather

heterogeneous groups. In either case, the decision is often made in

a subjective fashion. Our present approach his been to extend the

14
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empirical Bayes methodology to accommodate the structure of the GRE

Validity Study Service data base with a view to possibly dispensing

with the need for such prior cluster formation. We have also

considered empirical Bayes prediction systems that do utilize

departmental clusters in ansimportant way. Nonetheless, we believe

that the analysis described below conclusively demonstrates that a

general empirical Bayes framework is sufficient to produce a superior

prediction system iiithot recourse to any subjective grouping of

departments.

A brief description of the data base we have worked with is

provided in the next section. In Section 3, our empirical !ayes

models are explained and compared with current procedures. The

application of empirical Bayes methods to the problem of determining

the predictive validity of GRE scores for various subgroups of

students is addressed in Section 4. Section 5 considers alternative

approaches to the clustering of departments, and the final section

contains some discussion of the validity of the GRE score battery,

based on inferences from the preferred model, as well as suggestions

for future work.

15



2. Data

The information collected from participating departments by

the GRE Validity Study Service from its inception through the spring

of 1981 provided the essential data for this stud). The information

arrived in two ways. A "Prerecorded Data Collection Form" is sent

by the service to each graduate depar'sent, containing the names of

students who had test scores sant to the department, which then

supplies for eacgi student the year of enrollment, un&-.:graduate

grade point average (UGPA), and graduate first-year average (FYA).

Using an "Add-On Data Collectic .," the department may supply

information on additional students that en-.-oll:d but were not on the

first list. The Validity Study Service then matches the two lists

against the original score sender files, producing a r ogle file

containing score information as wet: as sea, ethnic tit itus, native

ra-hguage, and hanoicsp status for each student.

The original file of 8,224 students was reduced to 6,946

student., from some 190 departments because of the requirement of

full information on the predictlr scores and criterion. In sub-

sequent sections, when we execute cross-validation procedures or

carry out analyses of differential predictive validity studies for

various subgroups, small sample sizes or missing reformation on

individual characteristics will result in further reductions in the

data base employed. These reductions will be described in the

appropriate sections.

In our work on clustering, we employed the "Graduate Institu-

tion Summary Statistics Reports" issued by the GRE program to all

16
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institutions who received GIB scores for a giver. testing year.

These reports summarize for each departmental type the distributions

of GRE verbal and quantitative scores, the GRE Subject Tests taken,

and the Subject Test scores of all applicants to department! of that

type. The summary data are based on all scores reported between

October 1.78 and October 1979.

The data'were scaled prior to carrying out any computations.

The GRE scores we:e divided by 200 to make them roughly comparable

to undergraduate grade paint average, Pnd the first-year averages

were scaled separately for each department by suiracting out the

mean and dividing by the standard deviation. Because the standard

deviation can be quite variable, especially in small samples, this

scaling introduces an extra measure of noise. On the other hand,

the assumption of exchangeability of the regression coefficients is

more pl.Jsible when the criterion scores have been standardized in

this manner, and the empirical Bayes estimation procedure mitigates

most of the effects of the added .-Ise.
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3. Empirical Bayes Models for Prediction

3.1 Introduction
so'

The nature of graduate education in the United States, most

notably the diversity of departments and the relatively small

enrollments, has forced researchers to adopt a number of compromises

in their analysis of the validity of the GRE score battery and

college grades. For example, departments with fewer than 10 (or,

more recently, 25) students have been excluded from studies carried

out by the GRE Validity Study Service. Moreover, only zero-order

correlations have been presented since it appears that the estimates

of coefficients in a multiple regression are too unstable.

Another approach has been to pool data across a group of depart-

ments and to estimate a single prediction equation for the ensemble.

These groups could be formed on a quasi-subjective basis (for

example, all psychology departments) or on a statistical basis by

testing for the equality of regressions (Wilson, 1979). Whatever

the method, a number of problems have persisted, including a large

proportion of negative coefficients and serious instability of

estimated coefficients.

Our own efforts have been centered on applying empirical

Bayes methods to the questiun. In a sense, empirical Bayes provides

an attractive compromise between the extremes of locally determined

regressions for each participating department and a common regression

for a group of departments. In fact, empirical Bayes does require

that a group of departments of like nature be identified. Then,

under certain assumptions (specified below), separate estimates for

18
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each department are developed. These estimates, however, are

combinations of the least squares estimates based on that depart-

'ment's data alone and a pooled estimate based on the data from all

schools in the group. The exact nature of the combination is

determined by the estimated precision of the least squares estimate

and the j poled estimate. Stability of the final individual estimates

is enhanced by the contributions of the pooled estimates, while

departmental idiosyncrasies are given some weight through the least

squares estimates.

3.2 Developing Empirical Bayes Models

While the analysis to be described in succeeding sections is

fairly complex, the essential notions of the empirical Bayes method-

ology can be illustrated by a simple example.

Suppose we wish to study by linear regression methods the

relation between a criterion Y and a single predictor X in a collec-

tion of institutions, m in number. Thus, we postulate a simple

model (with no intercept) of the form

(1) Y. = B.X. . + e.,
1) 1)

where

i = 1, m
j = 1, ..., Ni

Y.. criterion score of student j in institution i
Li

X.. = predictor score of student j in institution i
tj

eij associated residual error

B. slope of regression in institution i.

In classical statistics, the parameters Bi are estimated on the basis

of the data in institution i only. The particular statistics employed
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in the estimation depend on the assumptions made concerning the distri-

button of the residual errors e...
ij

In the empirical Bayes approach, another assumption is made:

namely, that the true slopes Bi nay be thought of as being randomly

generated from some prior distribution. Although the form is

specified beforehand, the parameters (called hyperparameters) of

this distribution are left free to be estimated from the data.

These hyperparameters, in turn, are used to provide estimates of Bi

that differ from those of a classical analysis. For example, we

might assume

d
(2) NB.tiii (u*, E*)

1

where p* and E* are the free scalar hyperparameters that must be

estimated from the data.

The key implication of the empirical Bayes assumption is that

the data in one set of institutions contain information about the

value of the slope in each individual institution. Thus, a mechanism

is provided whereby the information in the entire data set can be

employed in the estimation of the individual slope parameter. The

practical consequence, in the present context, is that the empirical

Bayes estimate is derived by pulling the individual estimate towards

the estimate derived by pooling the data over institutions. The

greater the estimated imprecision in the individual estimate, the

more it is modified.

In mathematical terminology, the proper application of empirical

Bayes methods depends on the assumption that the units of the analysis

(in this case, the departmental regression coefficients) constitute

20
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an exchangeable group of units. Assumption (2) is one very special

way of formulating this assumption. Essentially it means that there

is no reason to believe, a priori, that the value of the regression

coefficients for one department are ler,- r or smaller than those for

another department.

Most researchers, we be,tP-d, would be quite comfortable with

the assumption of exchangeability for a group of like departments,

such as a group of anthropology departments, known to be equally

competitive and pith similar grading standards. However, if we

wished to treat simultaneously a more heterogeneous group of depart-

ments, such as all physical science departments, exchangeability or,

in particular, assumption (2) would no longer appear very plausible.

Nevertheless, by generalising (2), it is possible to remain in the

empirical Bayes framework.

For example, imagine that a set of the regression coefficients

is not exchangeable because their values vary systematically with

some other departmental factor, Z. That is, suppose that in place

of (2), we have

(3) B. Z.G D.
1

where G is an unknown coefficient, and D is a random error for which

it is assumed that

(4) Di k,id N(0,E*).

Just as in ordinary multiple regression, the coefficient G determines

how the departmental covariate must be weighted to yield the regres-

sioncoefficientB..'rhus the only novelty is the nature of the

criterion.

21
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AconvenientchoiceforZ.t is X. the mean score on the predic-

tor X ern students in the department. Note that we are assuming

exchangeablAtty for the errors Di about the regression. In effect, we

have retained exchangeability in the model by explicitly modeling

the systematic (nonexchangeable) part of the distribution of the

regression coefficients. In principle, this model can be tested by

embedding it in a still more complex system.

When the model (1), (3), and (4) is employed, the higher order

parameters G and E* must be estimated. The least squares estimate

B.ispulledtowardthepointZ.Gon the line ZG to yield the
ti

empirical Bayes estimate Bi.

Figure 1 displays the difference between the consequences of

assuming (1) and (2) or (1), (3) and (4). Under (1) and (2), the

B. values are pulled toward a common point while under (1), (3) and

(4) they are pulled toward the line.

Of course, (3) can be modified to include more covariate infor-

mation (that is a vector of departmental factors), as well as a

vector of Bs rather than a single coefficient. As the heterogeneity

of the departments within a proposed cluster increases, presumably

more relevant covariate information must be captured in order to

preserve the applicability of the empirical Bayes methodology.

From the point of view of validity assessment, the necessity

of constructing clusters of departments and carrying out separate

analyses for each is something of a nuisance. One of the goals

of the present study is to determine the extent to which one can

dispense with clusters by incorporating sufficient covariate

22
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Figure 1: Effects of Empirical Bayes Estimation

(Illustrative)

Departmental

Covariate

X s Least Squares Estimate

Empirical Sayes Estimate,
Shrinking to a Feint

: Empirical Says, Estimate.
Shrinking to a Lime
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information into the model through assumption (3). A clear limita-

tion is the amount of such information available. In this setting,

we are constrained essentially to covariates derived from the

predictor scores of students in the department. In other applica-

tions, covariates in (3) need not bear any relation to the predictors

appearing in (1).

3.3 Descriptions of Models

We will be concerned with the estimation of prediction equations

for individual graduate departments. For department i, these equa-

tions take the form

(5) Y..
tj t

= B. + B. V.. + Big Q. + B. U. + et.o

LI tj 2 lj 13 xj j

where j indexes students within departments. The three predictors

are GRE verbal and quantitative scoresand UGPA. In what follows,

the verbal and quantitative scores have been resealed by dividing by

200 so that their regression coefficients should be of comparable

magnitude to that of UGPA, which is on a 0-4 scale. As usual, the

random errors are assumed to be independently normally distributed,

and interest centers on the estimation of the vector of parameters:

Bi (Bio, Bil, Bi2, Bo)'.

The method in current use, least squares based on data from

a single department, will be the standard against which the new

procedures will be judged. The various empirical Bayes procedures

we propose will differ along two basic dimensions: (1) whether the

hull family of departments or only clusters of departments are

treated simultaneously, and (2) the geometrical structure of the

shrinking, that is, to a point, plane, or quadratic surface. In

24



A

-24-

discussing the first point, we shall generally employ the same set

of five clusters of departments: humanities, social sciences

(excluding psychology), psychology, biological sciences, and physical

sciences. Table 1 presents the total number of departments belonging

to each cluster and participating in the Validity Study Service, as

well as the total number of students in each cluster.

To enhance readability, we will employ the mnemonic 111xx

to dhignate the various empirical Bayes models. The third symbol

will be F or C depending on whether the full family or clusters of

departments are used. The fourth symbol will be p,f,q, or ce,

depending on whether the least squares estimates are pulled toward a

point, a plane (flat surface), or one of two quadratic surfaces.

Thus, for example, EBFf denotes the approach involving the full

family of departments and shrinking toward a plane.

While the clustering feature of these models is easy to

describe, the geometrical nature of the shrinking is more difficult.

The general structure takes the fors

(6) B.' sr Z.10 + D.,

where

(7) D. 1, N(0, E*).

It remains to specify the covariates included in Z., which in turn

determine the dimension of G, the matrix of unknown coefficients

to be estimated. Note that trn the level of clustering, equations

(5), (6), and (7) determine the model.
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TABLE 1

Numbers of DTpartments and Numbers of Students by Cluster: Total and Half-Samples

# Depts.
Total

# Students
Half-Sample 1

# Depts. # Students
Half-Sample 2

# Depts. # Students

190 6,946 142 3,172 142 3;166

Biological 25 916 23 445 23 440
Sciences

Humanities 27 753 19 330 19 335

Physical 46 1,379 25 548 25 550
Sciences

Psychology 23 868 21 434 21 429

Social Sciences 69 3.010 54 1,415 54 1,414

.9
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We now present the different choices for Zi.

EBCp, EBFp: Zi is a constant. Thus G is identically one and the

model reduces to the form

B. 'I, N(p*,E*).

Recall that for EBCp,E* is estimated separately for

each cluster.

EBCf, EBFf: Z. is a four component vector of departmental covariates:

EBFq:

EBFq`:

a constant (Z. ), mean verbal score aid, mean
10

quantitative score ( .

Z12 1
)1, and mean UGPA (Z:

3
). (Means

are taken over all students in the department.) Corre-

spondingly, G is a 4x4 matrix of unknown parameters

andE* is a 4x4 covariance matrix that is also unknown.

For EBCf, G is estimated separately for each clust r

but, for reasons of parsimony, a common estimate ofE*

across clusters is employed.

Zi is a seven component vector including Zios Zil, Zit,

Z.
13' t

Z.
l

2

' 1
Z.

2

2

' 1
Z.

3

2 Such a model allows us to explore

the possibility of a nonlinear relation between the

regression coefficients of interest and the departmental

covariates. The corresponding EBCq model is not con-

sidered because of the number of coefficients to be

estimated.

Z.
1

in EBFq is augmented by three interaction terms

Z11
Z. Z. Z.

1
Z.
1

.

1 2, 13' 2 3

It should be noted that EBCp is really a special case of EBCf

with a single covariate, the constant. In its full generality,
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assumption (6) implies that the vectors of coefficients in the

prediction equation (5) are not normally distributed about a point

in 4-space, bt.t rath_r are normally distributed about a plane in

8-space with the typical (average) set of coefficients being linearly

related to the level of achievement of the average student in the

department, as measured by GRE verbal and quantitative scores, and

UGPA. The nature of this linear relationship is determined by the

value of G.

How closely the apparent values of Bi fall to the plane VG is

roughly indicated by the size of the diagonal elements of E1P-4 All

other things being equal, a smaller estimated Elk results in the

least squares estimates Bi being pulled more strongly toward the plane.

We did not expect EBCp to work well, given the heterogeneity

of departmental types within four of.the clusters. Rather, it was

introduced as a benchmark against which the performance of the other

empirical Bayes procedures could be measured. On the other hand,

EBCf seemed to possess sufficient flexibility to offer some promise

of reasonable performance.

Models EBFq and EBFq' postulate that the vectors of coefficients

B. are generated from a quadratic surface rather than a plane. That

is, these models permit a nonlinear relation between the coefficients

and the covariates. Our plan has been to study the performance

characteristics of EBFq' and, ifthey proved favorable, to investigate

the possibility of progressively simplifying it, that is, employ EBFq,

EBFf, or even EBFp. From the point of parsimony, we would prefer to

use a model from the =7 family provided its pelormance essentially
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matches that °I the E3C family. In Section 3.5, we will discuss

various measures of performance.

Before turning to that section, we will describe some features

of the parameter estimates. It should be noted that we employ

maximum likelihood estimation, using the Ell algorithm (Dempster,

Laird, is Rubin, 1977) as a computational technique for obtaining

estimates of the hyperparameters G and E *. As s by-product, the

posteriordistributionsofB.,given the data and the maximum '

likelihood estimates, G andE* are produced. The means of these

posterior distributions serve as the empirical Bayes estimates of

B.. 'The essential details have already been published (Braun,

Jones, Rubin, 8 Thayer, 1983), while the Appendix contains additional

material relevant to the present application.

3.4 Model Description

On.e of the drawbacks of the more complex empirical Bayes

models we have introduced is that they are difficult to visualize

and understand. Even the relatively simple EBFf requires a fair

amount of effort before we can draw some insight from its numerical

characteristics. To illustrate, in this section we will carry out

an analysis of EBFf and compare it to least squares.

Recall that for EBilf we assume that the vectors of regression

coefficients for the departments are themselves generated from a

linear regression on the mean test scores of the students in the

department. This multivariate linear regression is characterized by

a matrix of coefficients, denoted G, and a normal error structure

characterized by a covariance matrix, denoted E*. Table 2 presents

29
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TAIL! 2

Numerical Characteristics of a Fitted Empirical Bayles Model (EB2b)

C : Estimate of Matrix of Regression Coefficients at Ryperparameter Level

1.60 1.20 - .03 - .29

- .66 .24 .08 - .15

- .70 - .25 .34 - .01

- .53 - .26 - .25 .41

Z *: Estimate of Covariance Matrix at Ryperparameter Level

Dt- 10-2 x 9.74 1.01 .07 -3.85

.60 .04 - .83

.17 - .20

2.03

I* (correlation form)

1 .42 .05 - .86

1 .13 - .75

1 - .34

1
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A A

the estimates G and E* of these parameters for the GRE Validity

Study Service data described in Section 2.

One interpretation of G is that, on the average, a department

with specific mean test score.s v, q, and ;should have, according to

the fitted model, the following regression coefficients for the

constant, GRE-V, GRE-Q, and UGPA:

*

Bio- 1.60 - .66 v - .70 q - .53 u,

8i1 1.20 + .24 v - .25 q - .26 u,

*

Bi2 -.03 + .08 v + .34 q - .25 u,

* 1
Bi3 .1 -.29 - .15 v - .01 q + .41 u.

Of course, actual departments with these mean test scores will

have true regression coefficients that differ from those above

because of t variation between departments, expressed by the error

component D in equation (3). Empirical Bayes tries to estimate the

true coefficients by combining the information in the leas. squares

* * * *
estimates and the "typical estimates" Bio, Bil, Bi2, Bi3.

Interestingly, the diagonal elements of the estimate of Ett

are rather small, compared to the estimated variance of the least

squares estimates. Accordingly, the empirical Bayes eatimatelii

falls nearer to the typical estimate Bi then to the 'last squares

estimate of B.. In other words, the apparent variability in the

least squares estimate is so large that the empirical Bayes com-

promise leads to shrinking the least squares estimate almost all

the way to the plane. This is illustrated schematically in one
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dimension in Figure 1. Each department's estimated prediction

equation under empirical Hayes remains unique because each de-

partment possesses a unique set of m...1 test scores. However,

two departments with the same skean test scores would obtain

estimated prediction equations from empirical Hayes that would

be nearly the same. That is, the differences between the least

squares prediction equations for the two departments are largely

attributed to random variation and are eliminated by the empirical

Bayes process. It should be emphasized that these findings are

particular to this study; in other applications, the precision of

the individual unit's least squares estimate may be comparably

greater and, as a consequence, have a greater direct influence on

the corresponding empirical Bayes estimate.
A

Inspection of G reveals that, in general we should expect that

the coefficient in the departmental prediction equation associated

with a particular test score will increase as that department's mean

test score increases, that is, the diagonal elements of G are all

positive. Furthermore, that same coefficient will decrease as the

other mean test scores increase, though this effect tends to be

smaller. Since the intercept decreases with increasing mean test

score, we may say roughly that, as the mean test scores increase

across a series of departments, the corresponding prediction planes

become somewhat steeper and, as there appears to be no association

between the size of the slope and the estimate of residual variance,

the quality of the fit becomes somewhat better.
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The diagonal elements of E clearly show that across departments,

B. displays the most dispersion, followed by B.
3, 1

B.
1

,

Bit
and in that

to 1.

order. The correlation matrix derived from E* also provides useful

information. We note that the correlations among the intercept, the

verbal and quantitative coefficients are all positive and modest in

size compared to the rather large negative correlations they exhibit

with the UGPA coefficient. Although we have not developed a formal

model to explain this pattern, it is very likely an outgrowth of the

selection processes operating at the departmental level. For example,

such a pattern would likely develop if admissions were based more

heavily on the CBE or UGPA, but not both, in most departments.

To develop an appreciation for the effect of the empirical Bayes

approach, we display in Figure 2 a scatterplot of the least squares

against the empirical Bayes (EBFf) estimates of the intercepts of the

within-department prediction planes. Although the two sets of estimates

are strongly associated, the dispersion of the former is considerably

greater than that of the latter, the ratio of the standard deviations

of the marginal distributions being about five to one. These aspects

of the empirical Bayes models are poor substitutes for more informative

ways of looking at eight-dimensional space. Unfortunately, such views

are difficult to capture on two-dimensional surfaces.

3.5 Model Selection

The selection of one among many complex models in this setting

involves a number of criteria related to both goodness-of-fit and

stability, as well as nonstatistical considerations. Our approach

has been to screen the available empirical Bayes models with a
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view to winnowing out all but two or three, and then to compare the

performance of those remaining with that of least squares on the

basis of cross-validation studies. We shalt present our analysis

in approximate historical sequence.

Because empirical Bayes estimates for a given department are not

just based on data from that department alone, they do not appear to

fit the data as well as least squares estimates based solely on the

department's data. For example, least squares estimates have the

property that the mean residual over all students in the department

must be zero. That is, the average predicted FYA and the average

observed FYA are equal. In general, empirical Bayes estimates do not

share this property. Thus, one dimension along which we can compare

different empirical Bdyes models is how close they come to the ideal

of producing zero-mean residuals.

Three models were chosen: EBCp, BFp, and EBFq'. Although only

EBCp makes use of the cluster structure,,for each method the mean

residuals by department are grouped by cluster for purposes of com-

parison. The mean residual for a department is the difference between

the average observed FYA and the average predicted FYA derived from

the method under study. Figure 3 displays box-and-whisker plots (Tukey,

1977) of these sets of mean residuals for three of the clusters. As

one would hope, the distribution of mean residuals in each cluster-

method combination is approximately centered about zero. However,

there are large differences in variability among the distributions.

Since less variability is to be preferred, ElliCp must clearly be

rejected as a viable alternative. Apparently, the heterogeneity
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Figure 3: Bem-and-Vbisker Plots of Naas lasiduals for Three Wdls
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Residuals
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among departments within a cluster is sufficient to preclude a

simple shrinking-to-a-point model from performing adequately.

EBFf performs somewhat more poorly than EBFq' but requires fewer

parameters. Since the ultimate goal of the analysis is to produce

models that can predict FYA well, we prefer to consider other aspects

of the models before deciding to discard one or the other. One such

feature is the scatter of the empirical Bayes estimates of the vector

of regression coefficients about the surface from which the true

vectors were apparently generated. Excessive variability or systematic

patterns in the scatter may indicate deficiencies in the formulation of

the higher level of the model--equation (6).

We have chosen to consider two statistics. Let

g. = 11B. 'C 'I

be the Euclidean distance (in parameter space) between the point repre-

senting the empirical Bayes estimate of the true vector of regression

coefficients for the department and the corresponding point on the .

estimate of the surface from which these vectors were generated.

Since gi gives equal weight to each component, we also constructed

the statistic

h. = (B. - Z.' GP Z.,t

which measures the difference in predicted FYA for a student with aver-
/ea

age test scores, obtained by using Bi or Zi'G. Here the componentwise

difference, are weighted by the mean scores in the department. Although

gi and hi may be studied in isolation, we decided to plot them against

the quantity

d.281 ;w. C 11
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where w. u (Z.
t

Z.
2' 1

Z.
3
r is the vector of mean scores in the

tl'

department on GRE -V, GRE-Q, and UGPA, and C is obtained by taking the

median, componentwise, of these means across departments in the

cluster. Thus, the first component of C is the median of the average

verbal scores for the departments in the cluster. Large values of di

indicate that department i is atypical, in some sense, of the depart-

ments in the cluster.

Plots of gi or h, against d
i
may indicate whether there are

systematic patterns in the quality of fit of the model. For this

reason, we construct these plots separately for each cluster, even

though the empirical Bayes model we emplOy may not utilize the cluster

structure at all. We could more easily construct a simple plot aggre-

gating over all clusters. But the present approach will allow us to

detect difficulties at the cluster level.

Plots of g.
1
against d

i

were generated for three models: EBCf,

EBFf, and EBFq'. Interestingly, there were no systematic patterns

evident except for a tendency for large values of di (atypical depart-

ments) to be associated with the small value of gi. Figure 4 provides

a representative illustration. On thz' other hand, the values of gi for

EBFf were considerably larger than for the other two models. EBFq'

performed somewhat more poorly than EBCf, but the latter requires many

more parameters. Similar comparisons were carried out on the basis of

plotsofh.againstd1 Differences among methods were somewhat reduced,

and again there were no evident systematic patterns. Consequently, no

decision to reduce the number of models being considered was made at

this point.
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Figure 4: ME for Humanities Cluster. hi vs. di
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Since EBFq' does involve the estimation of a large number of

parameters, we explored the possibility of eliminating some of the

covariates appearing in (6). In particular, using slight generaliza-

tions of the sensitivity analyses advocated in Belsey, Kuh, and Welsch

(1980), we were able to demonstrate the redundancy of the cross-product

terms Zil
Zit,

Zil Zi3, Zit Zi3. Consequently, we began the series

of cross-validation tests with four models: least squares, EBCf,

EBFf, EBFq. Among the empirical Bayes models considered, EBFf is the

most parsimonious in terms of the number of parameters to be estimated.

3.6 Cross-Validation

Cross-validation as a model selection technique has a long and

honorable history (Stone, 1978). Essentially, the idea is to use a

model fitted on set of data to predict the results for an indepen-

dent set of data. In practice, replicate data sets are rare, and the

usual remedy Pas been to split the existing data set in half, fitting

the model on one half and using it to make predictions for the other

half. Of course, the drawback is that the estimated coefficients will

be more variable than if they were fitted using the entire data. None-

theless, the method gives a good indication of which models are too

sensitive to artifacts in the data at hand.

Our approach has been to split each department in half at random

and, thus, to construct two half-samples of the full validity data base

at the departmental level. Onehalf-sample is selected to be the

calibration sample; least squares and three empirical Bayes methods

are applied to it. The resulting fitted models, together with the

predictor information for students in the other half-sample, the
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cross-validation sample, are used to predict FYAs that are compared

to the actual FYAs obtained by those students. Then the roles of

the two half-samples are reversed and thp, process repeated.

In carrying out the construction of the half-samples, we eliminated

departments with fewer than 10 students so that each half-sample would n
have at least five students. As a result, only 142 of the original 190

departments (6,340) students were included in the cross-validation.

Table 1 displays the breakdown by cluster. 4

There are a number of ways to assess success in prediction. In

the area of measurement, it is common to correlate the predicted FYAs

with tb%- observed FYAs. The higher the correlation, the more useful

the predictions are held to be. While this may be reasonable in some

settings, it is also true that lose systems that produce very large

errors of prediction may nevertheless yield high correlations with the
...,

observed scores. It should also be noted that in the cross-validation

setting, the familiar relation between the square of the correlation

and the proportion of variance explaine41 no longer holds. Thus, we

prefer quantities related to the mean sq. n-ed error of prediction as

our criteria for determining the usefulness of a model.

We have employed two related meeeurcs of agreement. The first,

root mean square deviation (RMSD), is commonly used by statisticians.

Suppose there are m students in a half-sample of the department. Let y

denote a generic obtained FYA and y a generic estimated FYA based on

coefficients from the other half-sample as well as the predictor scores

of the student. Then,

-1
in 2 1/2

RMSD Era E (y. y.) ) .
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Like the familiar standard deviation, it assesses the prediction error

on the same scale the data are measured on.

A second measure is the difference between predicted and actual

R
2

, which we will denote by DR
2

In regression analysis, R
2

is the proportion of variance in the criterion that is explained by

the regression. Given a fitted model, one can calculate what the R
2

would be for a new data set following the same model but with a dif-

ferent set of predictor scores. We call this the predicted R
2

. More

precisely, we obtain the predicted R
2

for a regression derived

through some procedure (least squares, empirical Bayes, and the like)

applied Lo the calibration sample by assuming that the least squares

fit to the cross-validation sample will yield exactly the same

characteristics (slopes and residual variance). Combining those

characteristics with the distribution' of predictor scores in the cross-
4mIN

validation sample yields a value of R
2

for the putative least squares

fit. We are acting as if the fitted regression to the calibration data

will provide a good estimate of the least squares fit to the cross-

validation data. This places, perhaps, an extra burden on the empirical

Bayes fits. With the new data in hand, the variation in the residuals,

.

y-y, can be compared to the variation in y. The actual R
2

is

RMSD
2

I
variance (y)

This is something of a misnomer since the actual R
2
compares the size

of the mean squared error of prediction to the variance of the criterion.

It will be negative when the predictions y are inferior to the mean.

The DR2 is defined as

DR
2
m, predicted R

2
- actual R

2
.
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.

A positive value of DR
2

indicates that the actual performance of the

fitted model is not as good as would have been expected from the

original data. One would expect such' behavLor of estimates based on

least squares because of the potentially great effect that idiosyn-

crasies of the particular sample may have on the least squares

estimates. On the other hand, superior procedures should exhibit

DR
2
values approximately symmetrically distributed about zero with

only modest dispersion. That is, the predicted performance is a

reliable estimate of the actual performance. In a sense, RMSD mea-

sures how accurate the predictions are, while DR` measures how

well we can guess, a.priori, at the quality of those predictions.

Because of the volume of information generated in this segment of

the analysis, only a small representative sample of the findings can

be presented. As before, we display the results grouped by cluster so

that particular patterns can be discerned. In all five clusters, least

squares estimates perform more poorly on both measures of accuracy of

prediction than all three empirical Bayes estimates. On RMSD, least

squares is typically about 10 percent larger than the empirical Bayes

methods, which are nearly equivalent. Figure 5 contains box-and-whisker

plots that schematically lisplay key features of the distributions of

RMSD values for the four methods for two clusters, humatities and phys-

ical sciences. Note that in each cluster, the maximum RMSD for least

squares is exceedingly large and certainly dominates the maximum

exhibited by the empirical Bayes methods.
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Because the RKSD is measured in units of FYA, its magnitude can

be assessed for practical significance. The typical value of RMSD

seems to be about ere standard deviation, corresponding to a fair

amount of difference between predicted and observed. The largest

values, about two standard deviations, are indicative of essentially

useless predictions.

As we have noted above, EBCf, EBFf, and EBFq are nearly equiva-

lent, with EBCf perhaps being somewhat worse. Since EBFf is the most

parsimonious in terms of the number of parameters to be estimated, it

is preferred.

Consideration of DR
2 leads even more unambiguously to the

samr conclusion. Figure 6 presents box-and-whisker plots for the

humanities and physical sciences clusters of the distributions of DR
2

for the four methods. The inferiority of least squares is apparent.

The predicted R
2

tends to grossly overestimate the actual R
2

, result-

ing in large positive values of DR
2

. In fact, more than three-quarters

of the values are positive. By contrast, the distribution of DR
2

for

the empirical Bayes methods is more nearly symmetric about zero

although EBCf does have a tendency to produce some modestly large

values. The superiority of EBFf is evident. Given our definition

of predicted R
2

, this result is slightly surprising. Nevertheless,

its clear implication is that empirical Bayes fits were more repro-

ducible than least squares fits. Simply put, the predicted FYAs from

empirical Bayes were closer to the mark than those of least squares,

and the quality of the fit could itself be more accurately predicted

for empirical Bayes.
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3.7. Supplementary Analyses

Of course, we have by no means exhausted the family of prediction

systems with which empirical Bayes can be compared. For example, it

has been suggested (Wilson, 1982) that the data from all departments

in a given discipline be pooled and a single least squares regression

plane be fitted. We have carried out some exploratory analyses in

this direction by considering four disciplines: psychology, econom-

ics, chemistry, and physics. Using the same cross-validation scheme

described above, we compared the predictions of EBFf with those of the

pooled least squares plane for each of the four disciplines. In each

case EBFf proved superior. Another drawback to this kind of pooling

is that many disciplines are represented by only a few departments

in the Validity Study Service data so that further pooling across

disciplines is required.

Another approach consists of grouping departments by the charac-

teristics of their students. One suggestion (Burton, 1982) is to use

the difference between mean GRE verbal and mean GRE quantitative scores.

A simple scheme involves the formation of two clusters, according to

whether this difference is negative or positive. The data within each

cluster is pooled and a single least squares regression plane

fitted for each cluster. Again, empirical Bayes performed better

overall in cross-validation.

Finally, we investigated the possibility of including among the

departmental covariates other features of the distribution of predictor

scores of the students such as variances and covariances. An important

motivation for this step was the concern that apparent differences
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between departments in the magnitude of the coefficients in the pre-

diction equations may be due to variation in the amount of restriction

of range experienced. However, the inclusion of predictor score

variances did not result in any improvements. Thus, it does not

appear that our conclusions have been driven by differential restric-

tion of range.
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4. Subgroup Analyses

4.1 Introduction

One question of considerable interest concerns the possible dif-

ferential efficacy of the OE battery or UGPA as predictors of FYA

across various subgroups if the population. These subgroups may be

defined by sex, race, age, mother tongue, or some combination of

these factors. Classification of students by these factors, however,

further exacerbates the problem of small sample sixes. In fact, it

is usually impossible to obtain separate prediction equations for

0 .*
each group in each department by ordinary least squares methods.

Bayesian methods, and empirical Bayes methods in particular,

provide a reasonable solution to this problem. In the context of

the Graduate Management Admission Test, Braun and Jones (1981)

demonstrated that separate prediction equations for White students

and Black students could be estimated in each institution, even

though Blacks were less than 6 percent of the cohort. Technically,

the extension of the model of Section 3 to encompass this application

is very simple.

Suppose, for example, that students are categorized according

to two factors, each at two levels. For definiteness, suppose these
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factors are sex (male or female) and age (less than 25, more than 25).

We then assume that

(8) Yii 0 No Bil Vij Bi2 Qij + Bo Uij

where

and

+ I. B. + B. V. g. Q. + B. U..
tj i4 15 tj 16 ij 17 2.3

+ I.. B. + B. V.. + B. Q. + B. U. + e.
1.9 '3 t10 ij ill tj tj

tj 18

2

11

1, if student is female

o, if student is male

1, if student is more than 25

, o, if student is less than 25

As before, i indexes departments and j indexes students within depart-

ments. The higher level of the odel remains the same. The expanded

vectoracoefficients131 .10(8.lo
B. ...B.

)'
is assumed to follow a

ill

regression of the form Bi Zi1G + T. Equation (8) allows us to fit a

different prediction plane for each trgx-age combination, the only

restriction being that any one of the planes can be linearly determined

from the other three. (It would require three indicator functionso

fit four independent planes. Given the large number of coefficients

to be estimated, this extension was not followed through.)

The indicator functions I
1

and I
2 determine which set of coeffi-

cients comes into play. For example, for males over 25, I
1

o and

I
2

mg 1 so the plane is determined by B.
to
,.,.80 and by Bi9,...

Bill.
For females over 25, I

1 1 and I
2
m 1 so the plane is

determined by all twelve coefficients.
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Another way to think of the process is to imagine that the first

four coefficients determine the basic prediction plane for males under

25. The other two sets of four coefficients represent the modifications

that must be made to the basic plane to account for differences for

females or older students, or both.

A more conservative approach is to fit a model in which the separate

planes are constrained to be parallel. Such a model would take the form

(9)
Vij Bio Bil Vij Bi2 Qij

8i3
Uij

+
1

B.
4 t

+ I.2 . B. + et.j .tj tj t5

The inclination of the plane remains the same for all groups, and only

its height may vary. A more complete treatment of fitting empirical

Bayes models to sparse data may be found in Braun et al. (1983).

Model EBFq was employed as the basis of our studies in this sec-

tion. Thus the higher level of the model may be represented by a

quadratic surface determined by linear and pure quadratic terms. When

the departmental regression takes the form (9), we denote the model

by EBFqe; when it takes the form (8), we denote the model by EBFqe.
I

4.2 Results

To examine the viability of differential prediction systems, we

chose to group individuals by age and sex as described above. At

first, to eliminate confounding effects we selected only individuals

who were White and for whom English was the primary language of com-

munication. Unfortunately, this reduced the total sample by about 60

percent. We, therefore, abandoned this selection and employed all

students with complete information on FYA, GRE verbal and quantitative



-52-

scores UGPA, age, and sex. The total number of students was 5,491,

somewhat lover than the origirmL 6,946. Table 3 displays the breakdown

by sex and age for each half-sample. Again, departments with fewer

than 10 students were excluded from the final cross-validations.

Half-samples were generated as before, with the eligible stu-

dents in each department being divided into two equal groups. The

models to be compared, least squares, EBFq, LBFqe, and EBFge', were

each fitted to one half of the data base and then applied to the

other half. Only the RMSD measure was calculated. In general, the

performance of the empirical Bayeh models was superior to that of

least squares, but EBFq, which does not t:.ke account of age or sex,

did better than EBFge EBFge', which do. Thus, on the basis of

the cross-validation, there is no reason to employ separate prediction

planes for the different age-sex groups.

On the other hand, there appears to be a consistent pattern in

the fitted coefficicnts that may merit further investigation. Under

model EBFqe, for a given set of predictor scores, the predicted FYA

for females tended to be higher than that for males, while the

predicted FYA for those over 25 tended to be higher than that for

younger students. The former effect was much more pronounced than

the latter. As noted above, neither was borne out in the cross-

validation, so we must conclude that a sex effect, if it exists,

must be estimated by using more delicate methods.

The analysis was continued by considering differential predic-

tion equations by race. Unfortunately, race was known for only about

55 percent of the original sample. We employed three categories:
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TABLE 3

Counts of Students with Complete Information on GRE-V, GRE-Q, UGPA, FYA, Age, and Sex

Total

Half-Sample 1
# Depts. # Students

121 2,747

Biological 19 347

Sciences

Humanities 16 280

Physical Sciences 22 505

Psychology 20 390

Social Sciences 40 1,225

Males Females

Age < 25 1,253 994

Age , 25 # 18 313

Total 1,440 1 1,307

Half-Sample 2
# Depts. # Students

121 2,744

19 341

16 283

22 506

20 387

40 1,227

Total Male's Females Total

T1

2,2,47 1,199 1 1,054
1

1 2,253

1

1

500 201 1

1

290
1

1

491

2,747 1,400 1 1,344 I
2 744,

1 1 1
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Whites, Asians and Oriental Americans, and other minorities

(principally Blacks). These constituted approximately 88 percent,

2 percent, and 10 percent, respectively, of the reduced sample.

The half-samples were constructed as before and the cross-

validation analyses showed again that empirical Bayes outperformed

least squares, with EBFq proving superior to EBFqe and EBFqe'.

Thus, there appears to be no justification for employing different

prediction planes. Consideration of the coefficients in EBFqe

indicar a tendency for the predicted FliAs of Asian-American stu-

dents to be somewhat higher than those of the other ctudents with

the same predictor scores.

Our analysis has been carried out in the context of the empirical

Bayes formulation. It is quite conceivable that another prediction

system, involving more pooling of data, might yield other conclusions,

particularly with regard to the question of different prediction equa-

tions by rare. In this setting, the small sample sizes for minority

groups perhaps require that further constraints be placed on the

fitted models. More work in this direction should be carried out.
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5. Clustering

5.1 Introduction

As we 'toted in Section 1, the formation of clusters of departments

has always played an important role in the study of the validizy of

various predictors of graduate school performance, Such clusters are

otten created by grouping departments by discipline or by sets of

related disciplines. Another approach has been to group departments

by their location a'ong a verbal-quantitative axis (Wilson, 1979). As

we have seen in Section 3, use of five broad clusters of departments

did not improve the performance of the empirical Hayes methods. It

could be argued that, despite the use of extended models that can

a,:.ommodate heterogeneity, the five clusters are too divertz and that

perhaps 1U or even 15 clusters would be more appropriate. Thu , one

would be fitting EBCf, which would require a separate plane--

kil in Section 3.l--to be estimated for each cluster. However, with

n clusters, the number of regression parameters to be fitted in

equation (3) is n times the number required by ERFi. Since n = 5

Ald Thit prove sufficient, it is difficult to believe, on grounds of

,r..11litv, that higher values of n would be beneficial.

Consequently, we approached the problem f urn a different per-

NpectiVe. We had information available us (see Section 2) on the

vharakteristics of the applicants to all departments in the United

States for a given year, summarized by department type (discipline).

liar aim. was to group disciplines by the similarity of the characteris-

, )t their aw,,licants. (Unfortunately, corresponding data for

.ilmitted students or enrolled students were not available.) We employed
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two different sets of data. The fir:t involves the distribution of

types of GRE Subject Teats taken by the applicants and the scores

they achieved. Thus, with each discipline is associated a two-..actor

contingency table containing counts of applicants sorted by test and

test score. An example is given in Table 4.

Although there are published methods for carrying out hierarchical

clustering of nominal data (Hartigan, 1975; BMD-P-77), we weci-z not

satisfied with their properties and devised our own method (Braun &

Jones, 1982). The essential difference in our method is that, as we

form clusters, we do not pool the data over the disciplines in the

cluster but retain all the information for each member. A likelihood

ratio statistic is employed to determine which disciplines form. the

most homogeneous grol.ps with respect to the distribution of the counts

in the associated contingency table.

The second set of data we used, which comes from the same source,

provides the scores on GRE verbal and quantitative for all applicants

to the departments in a discipline. Unfortunately, only the marginal

distributions and not the joint distributions were available. Ttult

is, for example, we knew how many had verbal scores between 500 and

600 and how many had quantitative scores between 600 and 700, but

not how many fell into both categories simultaneously. However, we

were able to estimate this joint distribution by assuming that the

correlation between verbal and quantitative scores in each discipline

equalled the correlation in the entire applicant pool, a known quan-

tity. With each discipline we were able to associate a new two-factor

contingency table containing approximate counts of applicants sorted



TABLE 4

Distribution of Students by Advanced Test Taken and Test Score. Genetics

Test Name

i Distribution of Scores

1 1 1
Total No.

I 200-290 I 300-390 I 400-490 500-590 600-690 700-790 800-890 900-990 of Scores

ADVANCED TESTS

BIOLOGY 6 32 114 239 243 69 3 706

CHEMISTRY 4 6 1 11

EDUCATION 1 1 1 4

ENGINEERING 2 2

FRENCH 1 1 1 3

GEOLOGY 1

LITERATURE 1 1

MATHEMATICS 1 1 2

MUSIC 1 2

PHYSICS 2 2

PSYCHOLOGY 2 1 2 5

SOCIOLOGY 1 1

1 7 42 123 250 245 69 3 740
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by their verbal and quantitative scores. The hierarchical cluster-

ing procedure alluded to above was also applied to this data.

5.2 Results

Inasmuch as the results of the clusterings using the two data

sets were quite similar, we will illustrate our findings with the

GRE Subject Test data. For this example, only information on the type

of Subject Test taken (and not the score on the test) was employed.

In hierarchical clustering, clusters, once formed, are never split

but rather are combined with other clusters. In Figure 7, we

display the last 13 steps of the algorithm, showing how the 14

groups formed by that stage are combined. For example, at step 13,

chemistry is combined with the medical sciences group. This new

cluster is then linked to a biological sciences group at step 8.

The different disciplines contained within each of the 14 groups are

listed in Table 5. The labels assigned to these groups are only

meant to be suggestive, as there are a number of anomalies present.

For example, mining appears in the paramedical group, well-separated

from geology, while sociology is allied with French, Spanish and

music.

It appears that these anomalies arise because of small sample

sizes in some disciplines. On the whole, however, the clusters are

quite sensible and provide some useful insight into the similarities

of applicants to the various disciplines. Note that chemistry and

physics are quite widely separated although they are both academic

scientific disciplines while economics is somewhat removed from the

quantitative sciences. It remains to be seen whether these clusters
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Figure 7

Clustere, of Graduate Fields. Numbers indicate
number of steps before end of algorithm at which
clusters are joined. Dashed lines denote five

clusters employed in validity trials.
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TABLE 5

Grouping of Disciplines for 14 Clusters in Figure 7

Education

Educational Administration
Education
Physical Education

Paramedical & Miscellaneous

Other
Speech
Hospital Administration
Nursing
Audiology
Occupational Therapy
Home Economics
Other
Architecture
Mining
Business and Commerce
Geography
Law
Urban Development

Psychology

Educational Psychology
Guidance and Counseling
Social Psychology
Anthropology
Other Social Sciences
Industrial Relations
Social Work
Psychology

Sociology

French
Spanish
Sociology
Music

Mathematics

Applied Mathematics
Statistics

1

62

Communications and Humanities

Linguistics
Other Foreign Languages
Russian
Fine Arts
Communications
Archeology
Classical Languages
Religion
Far Eastern Languages
Library Science
Journalism
Italian
Dramatic Arts
Other Humanities
Art History
American Studies
German
Comparative Literature
Philosophy
English

Chemistry

Chemistry

Biological Sciences

Genetics
Microbiology
Biology
Anatomy
Optometry
Bacteriology
Entomology
Veterinary Medicine
Botany
Zoology
Other Biological Sciences
Physiology
Dentistry
Pathology
Forestry
Parasitology
Physical Therapy
Public Health
Agriculture
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TABLE 5 (contd.)

Mathematics (contd.)

Mathematics
computer Science

Engineering

Aeronautical Engineering
Metallurgical Engineering
Ele:trical Engineering
Civil Engineering
Mechanical Engineering
Chemical Engineering
Industrial Engineering
other Engineering

Mf.dical Sciences

Pharmacology
Medicine
Nutrition
Biochemistry
Biophysics
!liarmacy

t.kant,graphy

'her Physical Sciences

Physics

Astronomy
Physics

Geology

Geology

Political Science

Slavic Studies
International Relations
Public Administration
Political Sciellce
Near Eastern Languages
History

Economics

Economics
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will provide useful information on the flow of students into graduate

school. Presumably, one would also have to study the structure of the

common applicant pools.

5.3 Applications to Validity

The original purpose of this portion of the analysis was to pro-

duce new clusters to which we could apply models of the form EBCf.

Therefore, we employed the final five clusters yielded by the algorithm

and indicated on Figure 7. However, fitting EBCf to these five clusters

did not produce departmental regression planes with characteristics

superior to those of EBFf. We did not attempt to fit the model to the

full 14 cluster partition displayed in Figure 7.

Our second approach to the problem was to construe. a matrix of

distances between disciplines based on the homogeneity of the distribu-

tions of counts in the Subject Test-taken/Test-score matrix associated

with each discipline. The multidimensional scaling program, NDSCAL

(Kruskal 6 Wish, 1978), was then applied to the distance matrix.

Three-, four- and five-dimensional scalings were produced, but only

the five-dimensional representation was judged minimally acceptable

in capturing the salient features of the data.

The corresponding five coordinates for each discipline were

then added to the departmental Level covariates for all departments

in the discipline. Thus, in the empirical Bayes framework we have

associated with each department a number of department-specific

covariates based on average test scores of the students and a number

of discipline-specific covariates based on national applicant char-

acteristics. An empirical Bayes model was then fitted to the data,
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using no cluster information. Once again, the prediction planes

generated for each department proved no better than those derived

from EBFf, which employs no discipline-linked covariates. Thus, our

Conclusion is that while the applicant data and clustering methods

we have considered may promise intriguing possibilities, more work

is required before these possibilities are realized.
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b. Conclusions

The statistical analyses we have carried out indicate that the

values of the coefficients of a prediction equation for a department

are strongly related to the typical test scores earned by students in

that department. Moreover, this relationship appears to be a linear

one and does not depend on the type of department. Empirical bayes

methods make use of this structure to obtain estimates of the

coefficients that improve significantly upon those derived by least

squares using individual department data.

That different departments with similar students (in terms of

predictor scores) have similar prediction equations is not a little

surprising, given the variety of departments involved. What is more

surprising, better departments appear generally to have stronger

levels of association between criterion and predictors. Although we

have' pretty much ruled out differential restriction of range as a

confounding factor, there are a number of plausible explanations.

For example, grading standards may be more carefully observed, or

academic ability mare important for success, in departments with the

more able students. It is an intriguing puzzle that demands the

attention of specialists in higher education. While we cannot shed

much light on this issue, we can make some comparisons between the

results of the least squares and empirical Bayes methods.

Of necessity, the dispersion of the empirical Bayes coefficients

across departments is much less than that for the least squares coeffi-

cients. The cross-validation analyses showed that the empirical Bayes
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models produce better predictions for replicate data. Equally impor-

tant, the empirical Bayes coefficients in the multiple regressions are

essentially always positive and more stable across replicate data sets.

To demonstrate the comparative stability of coefficients derived through

empirical Bayes, Figure 8 was constructed. One department was selected

at random from each of four major groups of disciplines: humanities,

biological sciences, social sciences, and physical sciences. The

empirical Bayes and least squares estimates based on the half-samples

for each department were obtained, and the absolute value of the dif-

ferences for each coefficient was computed. Thus, if the coefficients

for one half-sample of a particular department were (b , b. b2, b3)
o 1, 2' 3

and for the other half-sample (bo', blI, b21, b31), then the quantity

computed was the vector ( bo bo' , bi - bl' , b2 b2' , b3 b3' ).

This vector can be represented graphically in a number of ways.

One such way is by means of an icon. Figure 8 illustrates the use of

an asymmetric diamond icon. Essentially, each of the components is

plotted as a vector starting at the origin and extending outward in one

of the compass directions. The ends of these four vectors are con-

nected to form a quadrilateral. The size and shape of the quadrilateral

indicate both the absolute and relative size of the componentwise

differences. As Figure 8 convincingly demonstrates, differences

between the empirical Bayes estimates from one half-sample to another

are much smaller than those for the least squares estimates: In each

case, the empirical Bayes quadrilateral is entirely contained within

the least squares quadrilateral.
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Figure 8

Figures 8a, b, c, and d:
(see following 2 pages)

Differences across half-
samples in the estimates of
the four regression coefficients
in a pcvdiction esuation by two
methods: Empirical Rayes and
tA.ust Squares.

Note different scales on
abscissa and ordinate axes
and across all four sample
departments.
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These properties are very important in the context of the admis-

sion process. First, admission committees are rightly disturbed by

large year-to-year fluctuations in the prediction equations. Stability

in the prediction equations is not only plausible but also iacili-

tates the development of a consistent set of admission criteria.

Second, the prediction equations are fitted to data derived from the

nest recent cohort to complete the first year of studies but are

applied to prospective candidates. The predicted FYAs for these

candidates may play a role in the admission decisions, and the

extent of that role will depend on how confident the committee is

that the predicted and actual FYAs will tend to be similar. One

measure' of the similarity is the R
2
coefticient, which, in this

case, would be the proportion of variation in actual FYA explained

by the FYAs generated by the fitted model.

The simplest approach is to take the R
2
of the least squares

tit to the past cohort as an estimate of the R
2

that will be
__-

realized when the predictions generated by that same fit are compared

to the' actual FYAs of the new cohort. The cross-validations showed

that such estimates tend to be biased and considerably overstate the

R
2

. On the other hand, the so-called predicted R
2

defined in Section 3,

when applied to empirical hayes estimates, provided reasonable and

approximately unbiased estimates of the it
2
to be realized on new

data with predictions generated from a regression derived from other

data. Inasmuch as the predicted R
2
based on half-samples proved

so useful, we have adapted it to the full samples.
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Figure 9 compares the distribution of predicted R
2

for E1Ff

with the distribution of R
2
of the least squares fit for depart-

Jints in the five clusters. Note that the R
2
distributions for

empirical Hayes display considerably less dispersion. AsOur analysis

tronglv suggests that these R
2
values are more reliable in a

prediction context than those of least squares. The differences by

luster in the distributions deserve further study. It should be

,.11phasized that the cross-validation R
2
we discuss here is some-

whit ditferent in nature from the R
2

typically produced in

'Aliditv studies. The latter is based on regressions fitted to the

! ot the current year, while the former employs regression

tt.A t the previous year's data.

himorc familiar terms, our results indicate that a typical

1-0,,Itment emploving,a prediction equation estimated by the methods

A! -A here "fili.uild realize validities between 0.3 and 0.5 in

1 tirw, the grades of those candidates for admission who will

Attend and persist. Because restriction of range correc-

: !my. not been implemented, the validities are rather lower than

w,A1A be in unselected samples. Recent work on the validity of

LSAF (Braun & Szatrowsk i, 1982) has demonstrated that prediction

,-,timated through empirical haves, combined with test score

t,,rmation on applicants, can provide estimates of validity corrected

-;c1,,cti.,n. Those procedures are perfectly practicable in the

,ntxt of the GRF Validity Study Service data, but have not been

irried ),It hero. The inclusion of scores on the Subject Tests
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Figure 9: R
2

for Least Squares and
EBFf Based on Full Samples
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among the predictors would also enhance the validity of the prediction

equation.

The employment of empirical Bayes methods also has facilitated

study of the question of whether constructing separate prediction

planes for particular groups of students leads to better predictions.

We investigated two different ways of classifying students: One by

age and sex and the other by race alone. In both cases, a single

prediction plane for all students performed essentially as well as

the set of separate prediction planes. Thus, within the constraints

set by the quantity and quality of the data, there is no evidence.of

ditterential predictive validity for the common predictors of graduate

school performance.

Finally, a methodological foray into cluster analysis has led to

A geW approach to the clustering of academic disciplines. Various

attempts to capitalize on these clusters, in conjunction with empirical

Mayes, to produce improved prediction schemes were unsuccessful. None-

rfwles;, we believe the methods we have developed should prove useful.

In particular, these new clusters of disciplines may lead to some

insight into shifts in the flow of students into various areas of

graduate study.

What then are the implications of our wr,rk for the GRE Validity

Study Service, and what directions should future research pursue?

First, we believe that our finding of an apparently universal

structure underlying the prediction planes for graduate departments

is far-reaching. Not only is it an interesting result in a purely

theoretical sense, demanding some explanation, but also it holds the
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nromise of providing the Validity Study Service with an easily

implementable prediction system that can significantly widen the

applicability and reliability of the annual validity studies.

Almost all graduate departments can be provided with useful and

replicable results concerning the roles that various predictors,

singly or jointly, can play in the prediction of the future perfor-

mance of prospective students.

In this report, we have stressed methodological considerations

and general conclusions over results for specific departments. This

tollows from the'fact that we have only begun to explore the rich

tamily of models within the empirical Mayes framework. Further work

will undoubtedly uncover other models that share the conceptual basis

of those we have described Mere, but lead to different sets of depart-

mental coefficients that perform better in practice. The work we

have carried out can lead directly to a significant increase in the

number of departments participating in the Validity Study Service

as well as enhance the quality and breadth of information the validity

reports can provide the individual department.

A first priority of future research should be to continue the

development of practical empirical &ayes models and to test them in

the crucible of cross-validation against more classic systems involving

various levels of data pooling. Once an acceptable system has been

developed, a comprehensive examination of the resulting prediction

equations should he undertaken. This should include a study of the

incremental contributions to validity of each predictor, once the

other predictors are accounted for. At that point, a qualitative
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z_nalysis of the contributions of the various predictors by discipline

should be carried out so that departments that do not employ formal

prediction systems could still benefit from the results.

In addition, two other problems must be addressed. One concerns

the use of unique predictors by individual departments. The empirical

Bayes framework must be suitably expanded to include such predictors,

while maintaining the desired stability in the final prediction equa-

,--

[ions. Second, the question of differential validity for various

subgroups of candidates must be ,l-tacked in a somewhat different

fashion. It is possible that a hybrid of various models can be

formulated to overcome the paucity of data on minorities.

The empirical Bayes framework is undoubtedly rich enough to

accommodate even this difficulty. Our work suggests that the GRE

Validity Study Service will benefit from incorporating empirical

Hayes ideas. Although the models we have experimented with have

quite reasonable properties, we are convinced that further research

will uncover still more powerful ways of looking at validity data.
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Technical Appendix

The estimation problem following from the empirical Bayes model

may be described as follows. Suppose there are m depaltments with ni

students in department i. We assume that a linear model of the fol

lowing form holds:

(1) Y.
L
= X1B.

1
+ e.

1
(i = 1, 2, ..., m)

where

Y.1 isann.1 x 1 vector of firstyear averages,

X.
1

is an n.
1
x P design matrix containing information on

P test scores of the students,

B. is a P x 1 vector of regression coefficients, and

e. is an n. x 1 vector of random errors.
1 1

Y.1 andX.1 areobserved,whileL1 ancle.1 are not. Interest centers

on obtaining estimates of fBi} . Ordinarily, one assumes that the

components of e
i

are a random sample from a normal distribution, N(U, a.2).

The key assumption in our formulation of an emprirical Bayes model

is that

(2) B=ZG+ D

where B is an m x P matrix of regression coefficients where the ith row
of B is denoted B'.,

Z is an m x k matrix of departmental covariates where the ith row
of Z is denoted ;V.

1
and contains information on k variates,

G is akxPmatrix of regression coefficients,

D is an m x P matrix of random errors where the ith row of D
is denoted D'..

It is assumed that the D'. values are distributed according to a

multivariate normal distribution, N(0,);*).
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Under the models (1) and (2), together with the accompanying

normality assumptions, the (Bi) estimates have a joint multivariate

normal distribution given the observed data and the parameters G and r*.

The empirical Bayes estimate of the (Bi) is the vector of means of

this posterior distribution with G and E* replaced by their maximum

likelihood estimates. These estimates are obtained through application

of the EM algorithm (Dempster, Laird, b Rubin, 1977). The algorithm

consists of a succession of two-step cycles: an E-step and an

M-step.

Beginning with initial estimates of a2., G 0
and E*, we obtain

foe the. E-step:

and

ri
2

E*)

A A

= (17* + P.)
-1 p*G' Z. + P.B.

1 1 1

S = E(B B.'1Y X 1 2 G 74)
i i "i

= r.r.' + (p* + P.)
1 1 1

where (7-40-1 P. = a.
-2

X.
,

X., and B.
1

is the least squares

estimate ,nf B., based on data from department i only. Thus, the

c'irrent estimate of the posterior mean of B. is a precision-weighted

combination of the least squares ,?stimate and the appropriate point

on the surface defined by equation (2). The quantity Si is required

for the M-step.

IntheM-step,weobtainupdatedestimatesof(52.,G, and Z* based

on r. and :S.;. In effect, we regress the r. (in place of the
1



unobservable 13.) on Z.. Thus

G (Z1Z)
-1

Z'R
A A

E m VI) - Gs(Z'Z)G

and

-P3-

-1 E (i)
V.. n. Y.1Y. - 2r..X.'Y. + s. ,111 L L j,k jk jk

where S = (s
jk '

) X.'X. =
jk '

) and R is a matrix whose ith
t

row is r
i

Thu E-step is then reentered with the updated estimates, and new

conditiok.al expectations are calculated. The process is continued

r 2,
until the estimates of G, E*, and VI ! converge to the maximum

likelihood estimates. The corresponding fri) values are the desired

empirical Bayes estimates of (Bil.

It should be noted that we do not attempt to obtain simultaneously

empirical Bayes estimates of 1B. and is 2) . This more complicated

problem cannot be solved directly, and extensive numerical calculations

are required to obtain even posterior modes as estimates of the

parameters. The quality of such estimates is not clear. We prefer,

therefore, to uncouple the estimation problems for the residual

variances and the regression coefficients.


