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Using four large existing databases on student

performance in the elementary grades, this study involves a
task-by-task, year-by-year cross-sectional analysis of six topics in

computation.

Information about what students eventually learn and

when they learn it is provided by the data analysis; information
about when skills are introduced and expanded is determined by
examining school textbooks. This information is seen as being useful
in setting higher standards for elementary schools, which currently
concentrate on teaching skills piecemeal over several grades.
Specifically, topics investigated are addition and subtraction with
regrouping, multiplication and division facts with numbers 5 through
9, and multiplication 2nd division beyond basic number facts. Results
show that the topography of student performance varies across topics
and across grades within topics. Implications of findings are that
efforts focusing on learning opportunities in the middle elementary
grades will be more productive than efforts undertaken at the point
of entry into secondary schooling. In particular, it is concluded
that students learn most when topics are taught as part of regular
instruction, that the margin for school improvement may be more
promising in certain segments of a subject (i.e., subtraction and
division), and that a dramatic loss of performance occurs when the
tirst teaching of a topic occurs late in the school year. (CB)
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AVOIDING PITFALLS IN THE PURSUIT OF HIGHER STANDARDS FOR ELEMENTARY
SCHOOL ING

Aaron D. Buchanan

ABSTRACT

The pursuit of higher standards for elementary schooling needs to
take full account of what schools spend their time on now, what students
in the elementary grades eventually learn and when they learn it. Using
large existing data bases on student performance in the elementary
grades, this research involves a task-by-task, year-by-year cross-
sectional analysis of six topics in computation. Results show that the
topography of student performance varies across topics and across qrades
within topics. The implications are that focus and timing of learning
opportunities for all or nearly all students in the middle elementary
grades wi!l be more productive than efforts focusing on the point of

entry into secondary schooling.



AVOIDING PITFALLS iN THE PURSUIT OF HIGHER STANDARDS FOR ELEMENTARY
SCHOOL ING

Aaron D. Buchanan

Although the pursuit of higher standards is currently concentrating
on secondary schooling, the pursuit will inevitably pick up elementary
schooling before the quest for educational excei}gnce is over. 1If the
same get-tough legislation for secondary schools is extended to
elementary schools, administrators and t-achers will get new marching
orders to do what they have always been trying to do: raise scores on
tests of basic skills, the same unfriendly tests of achievement in math
and reading that have always been a nemesis. This means that, within the
elementary school ranks, teachers and administrators will face the same
uncertainty they had before the nation began it's pursuit of excellence
over what tasks students should be required to demonstrate by the end of
each grade level.

What school officials know, but what legislators, government
officials, and education scholars often lose sight of, is this: setting
standards means one thing in thinking about high school graduates and
whether or not they've had a sufficient number of the right kinds of
courses to enter the university; it means something quite different in
looking at a continuous web of six grade levels in the elementary
school --one that has few natu;al seams for demarcating ''real' standards
at each grade level.

it is possible to set grade-by-grade standards in the elementary

grades, of course, but the results are fairly arbitrary. Since
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instruction on almost any of the basic skills that are taught in
elementary school typically stretches out over two or three grade levels,
few of the tasks that often make up standards for the elementary school
seem }ike important benchmarks in the growth, grade by grade, of what
students are eventually supposed to know and know how to do.

Standard setting is especially difficult i: the elementary grades
because schooling at this level does not deal in tangible units, such as
fixed, year-long courses, that are tied closely to topics that are
covered in classroom instruction. Fixed courses are hard currency in the
secondary school. There, standard setting and standard raising involve a
fairly straightforward process for administrators and teachers of adding
real courses, having definite beginning and ending points, onto existing
graduation requirements. By contrast, elementary school administrators
and teachers must deal with the slipperier proposition of raising their
expectations against units of schooling that tend to float across a long
expanse of time having no sharp demarcations in what is taught from grade
to grade. Here, the goal Is not so much to complete something as it is
to add value to the aggregate performance of an undifferentiated mass of
students entering kindergarten or moving through six succeeding grade
lTevels. ‘

Instead of completing courses, the current elementary school
curriculum is concentrated on the development of skills--expansive and
complicated ones that are taught piecemeal over several grade levels.

Any piece of a developing skill that is taught within any single grade

level seldom has a beginning or ending point that is very striking.



Students who successfully learn what Is taught will have value added to
what they were able to do before, but they won't have reached a point
where they can do much of anything next year except to learn more pieces,
What students have learned by the end of any single grade level may well
e significant in relation to what they knew before, but the niture of
what students have completed Is not very significant.

At any point in time, the substance of what elementary students
should know or know how to do is fragmented. As elementary schooling
currently works, nothing is ever really taught once and for all at any
elementary grade level, much less learned by an entire grade level's
worth of students. Always, there are pieces to be added by éﬁuchers at
another grade level. Since the end points of instruction at any single
' grade level seldom represent the completion of something that, by jtself,
s very useful, most grade-by-grade standards that are estab) ished for
the development of a basic skill in the elementary school are Indef inite.
The development of a skill is never really complete, at least not with
the same degree of finallty that a course I> completed, because there is
always some task, usually a more complicated one, that could be added to
students' repertoires. To meke things even more indefinite, the pieces
of a developing skil) that elementary teachers teach at one grade level
are usually retaught extensively at the next grade level and are of ten
reviewed at still another grade level. This recycling has the effect of
stretching real benchmarks (i.e., things that students need to be able to

do with reliability and confidence) over several grade levels.



The conventions that are often used to set standards are not very
compatible with the conventions of schooling in the elementary grades.
Standard setting tends to concentrate on what individual students need to
" know or know how to do before they move to another level of instruction.
On the other hand, the process of schooling in the elementary grades
depends on timely acquisition of important skills by a generation of
students. Most standard setters have their thinking groundéd in the
performance of academic tasks that %kdlvldual students must demonstrate
before they can enter successfully into secondary coursework. Too often,
they have little understanding of how these performances actually '‘grow'
within a generation of students across the elementary grades. As a
consequence, most standards consist of tasks that individual students
must perform either Jjust before they leave elementary school or very near
the point where these students enter secondary school. (Strange as it
may seem, the standards for leaving elementary school are often somewhat
lower than standards for regular entry Into secondary school.) Higher
standards are established by requiring individual students to perform
more tasks or more complicated tasks near the point of entry into
secondary school. Most often, these standerds can only be met through
massive remediation, also near the point of entry Into secondary school.

When standards are set grade by grade for the elementary school,
they often don't align grade by grade with the bulk of opportunities for
teaching and learning that are provided in school textbooks, When
misalignment occurs, it's usually because standards have been set ton

conservatively. The academic tasks that students must perform to meet



standards at a particular grade level are often stressed one or two grade
levels earlier in textbooks. The misalignment of standards with learning
opportunities is often most serious when standards become '"minimal
competencies” that individual students must demonstrate before they can
be promoted to regulsr, non-remedial instruction at a higher grade level.
There is nothing unique sbout the academic tasks that constitute minimal
competencies, but there Is usually something wrong with the pcints in
students' grade-by-grade progress where they are required. Because the
academic tasks involved in minimal competencies often act as gates to
instruction at a higher grade level, the inability of students to perform
them successfully carries the stigma of failure, not only for individual
students, but, to some extent, for teachers. Students are often required
to perform the academic tasks involved in minimal competencies well past
the grade level where most learning opportunities might be expected to
occur. As a consequence, minimal competencies have come to represent a
"1ast" chance for individual students to perform routine academic tasks

rather than a "best' chance to learn them.
CHARTING GROWTH IN THE PERFORMANCE OF SCHOOL iNG

What is missing In the current call for higher standards is a sound
awareness of students' cumulative accomplishments on academic tasks as
they move through the 2lementary grades. Without a clear picture of what
effects the schooling process is producing now, it is difficult to know
where the margins for improving this process are located. Many standards

are set well past the point where 'working harder' on the tasks would be
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most beneficial. Other standards are set In place at one grade level
even though many prerequisites for these tasks are not now being learned
by many students. Without tgese prerequisites in place at earllier grade
levels, the progression of schooling cannot work as intended.

The intelligent pursuit of excellence should mean more for the
elementary school than establishing standards that amount to little more
than elaborate but regressive mechanisms for triggering remediation.

What this pursuit should lead to Iis adjustments made early enough in the
schooling sequence so that risks to the regular progress of a generation
of students on routine academic tasks can be reduced. Often, these
adjustments begin with ful) exploitation of opportunities that exist in
that part of school instruction that is, in practice, sustained by school
textbooks. Full exploitation does not imply that individual teachers
must attend slavishly to a sequence of textbook pages. What it means Is
that administrators and teachers should take full advantage of what they
can know about critical points in the mainstream of grade-by-grade
instruction for a generation of students where major opportunities for
teaching and learning are most |likely to occur.

Full exploitation of learning opportunities means knowing as much as
possible about the gaps that exist in the grade-by-grade sequence where
regular learning opportunities are scheduled to occur in school textbooks
and the points where a critical mass of students, say 752 <o 85%, are
able to demonstrate the accomp!ishments that these learning opportunities
are designed to produce. Sometimes, nothing needs to be deusted because

the gap between opportunity and accomplishment has littie Iimpact on other
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things that students must learn how to do for the process of schooling to
move along smoothly through several grade levels. At other times, thesc
gaps are important, becsuse new learning opportunities assume that
certain routine tasks are already In place. These gaps trigger formal
remediation, which moves large numbers of students onto separate tracks
where catching up becomes unlikely.

Making adjustments in the growth performance on routine academic
tasks requires an understanding about two things:

(1) How an academic skill is Instructed task by task and grade by
grade--when the most rudimentary tasks are introduced; when the
range of simpler tasks Is expanded to include more compl icated
ones; when the capability to do certain routine tasks becomes a
"tsken-for-granted' part of work on some other task.

(2) what a large cross section of students knows how to do
grade-by-grade; what proportion of the aggregate of all students
at particular grade levels can perform a specific academic task;
how this performance changes as the momentum of teaching moves
from a less inclusive task to a more inclusive and more
compl icated one.

Looking at the detalls of task-by-task performance by large groups
of students is not something the education community has done very much,
especially from a clear perspective of when these tasks ordinarily
receive concentrated Instruction in regular elementary school programs.
When it comes to higher standards, the concern has focused on ''new'
ideas, techniques, and materials to remedy deficiencies in student
performance at the point where these deficiencies become obvious and
troublesome.

Part of the trouble has been a lack of interest by most researchers

in the anatomy of school textbooks, the primary condult for most learning

opportunities that focus on routine academic tasks. Another thing that
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has hampered taSk-by-task analysis of student performance has been
overreliance by researchers on conventional standardized achievement
tests as thelr data source. Unfortunately, the information that Is most
accessible from these tests comes In the form of percentiles and
grade-equivalent scores which are mainly intended to show how the
performance of Individual students compare with the average performance
of all students natlionwide who are at the same grade level. Percentiles
and grade equivalent scores reveal nothing about the aggregate
performance of a generation of students on particular academic tasks.

For example, it is possible for individua) students (or a)) students in &
classroom, or all students at one grade level) to have high grade-
equivalent scores on a range of tasks when measured against the
population of all students Iin the nation at that grade level.' At vhe
same time, the proportion of this population of students that can perform
each of the separate academic tasks may be quite low. In dealing with
percentiles or grade-equivalent scores, the meanings of phrases such as
"pursuit of excellence' and "ralsing standards' get lost in a shifting
frame of reference--what Is good or not good is relative to how well
everybody else performs.

Fortunately, it is possible to get a better understanding of student
performance on routine academic tasks using other kinds of information
from conventional, standardized achievement tests and from other data
sources that are currently available. With ‘this information, we can do a
reasonably good job of generating some task-by-task profiles of

performance by an aggregate of students at different elementary grade
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levels. In general, the cumulative instructional accomplishments of
schooling can be sketched out by looking first at the proportion of
students, all at the same grade level, who can perform some routine
academic task. Second, we can see how this performance changes as the
emphasis in instruction moves, grade by grade, to include the task's more
complicated "relatives." In a very practical sense, this kind of
analysis glv;s us some feeling for how well a generation of students
tends to keep up with Instruction--not, as with norm-referenced
information from conventional achievement tests, how well Individual
students keep up with everybody else.

The growth of student performance on a single task might be expected

to look like the simple learning curve shown below. There is a huge

PERFORMANCE

TIME

®
increase in the proportion of students who can do & particular task early

in instruction. But as Instruction continues, the increases in the

proportion of students who can perform the task become smaller and

smaller.
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In practice, the topography of the performance of a generation of
students isn't this clean, especially when teaching Is stretched out over
several related tasks at different grade levels. A lot depends on the
point In time when one looks at performance of a cross section of
students during the school year. For example, we should expect some
decrease over the summer in the proportion of students who can do a
particular task. For almost all students there is & gap of two or three
months between the end of one grade level, when a task is introduced, and
the beginning of the following grade level, before it is reviewed.
Second, we would also expect some dips in performance as instruction
shifts from simpler tasks to more Inclusive ones. It's also possible we
might see some eventual decline In performance because of forgetting, but
it's unlikely because routine academic tasks are ones that get a Jot of
use in the learning of other things.

To the extent that elementary schooling Is successful, we would
expect to see the curve on a series of closely related tasks to
eventually level off at a point where more than B0% or even 90% of all
students at a grade level are successful. On other series of tasks,
where schooling is less successful, we would expect to see the
performance curves flatten out at a much lower level.

Are there practical limits to how well a generation of students can
perform routine academic tasks? The obvious answer Is yes. If one looks
at performance of a group of students on some routine academic task, no
more than 100% of the students can come up with the right answer. But

seeing 1008 who can do anything is rare, especlally for a large group of
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students. Performence levels in the range of 90-95% are likely to be
about as good as schooling ever gets.

More !mpoftant than the ultimate limits of the performanca curves
are the methods at our disposal to see how these curves actually behave
now. For example, researchers now have more than ten years worth of data
accumulated from the National Assessment of Educational Progress (NAEP)
showing, in great detail, what students at ages 9, 13, and 17 in a
national sample are able to do. We can also determine, with reasonable
accuracy, the approximate time when different school topics are 1ikely to
be taught, just by looking at when these toplics are covered in most
schoo! textbooks.

To find out more about what students know and when they know it, we
took a careful look at changes over time in the level of student
performance on several routine tasks that are part of six very
fundamental topics In elementary school mathematics. These topics
include:

Addition with regrouping (carrying)

Subtraction with regrouping (borrowing)
YHard' multiplication facts

"Hard" division facts

Multiplication beyond basic facts
Division beyond basic facts

The intent was to find points In time where the basic curve showing
the level of student performance begins to flatten out after a
substantjal amount of formal instruction has taken place. We also wanted
to see what performance curves look like for two series of tasks that are
part of two different but related topics in mathematics, and we wanted to
find out how soon after the end of formal instruction that increases in

levels of performance begin to flatten out.
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Four existing data bases were used to examine student performance on
the six computation topics. Two are large SWRL data bases that contain
information on elementary students at each of grades 1-6. A third is the
entire set of results for students at ages 9 and 13 who were part of the
second mathematlcs assessment of the National Assessment of Educational
Progress (NAEP). The fourth data base consists of statistics on
individual 1tems used In establishing norms for students at different

grade levels on Form U of the Comprehensive Tests of Basic Skills (CTBS).

Use of all four data bases allowed us to look at the growth of student
performance on routine computation tasks that are basically taught, but
not necessarily learned, by the end of grade & and continue to show
improvement at later grade levels. Altogether, the four data bases
included information tl.at was generated during a period from 1978 through
1982,

Most of the growth in student performance was determined by looking
at performances on the same or similar items given to students at
different grade levels in school. The population represented Sy each
data base was a little different, so the information from each data base
was kept separate in the analysis to minimize the likellhood of
concealing differences between apples and oranges.

The basic procedure was to retrieve selected items from different
data bases for the same grade level and from different grade levels
within the same data base. The objective was to follow aﬁross several
grade levels the growth of student performance on routine tasks that are
part of the six topics on computation with whole numbers. It was
impossible to follow only a single task, such as 2-digit addition, over

several grade levels, because our data didn't include addition with only
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2-digit numbers past about grade 3. It was possible to pick items that
represented gradual Increases in the range of tasks that students were
asked to do. For exampie, we could shift our attention from 2-digit
addition to 3~digit addition, as the analysis moved from grade 3 to grade
b within our date bases.

Results of the analysis across the six computation toplcs are
reported in three sections: Addition and Subtraction; ‘''Hard"
Multiplication and Division Facts; and Multiplication and Division
Algorithms. Discussion on the first topic, addition and subtraction
(with carrying and borrowing), is fairly extensive. The purpose is to
demonstrate the analytic procedure for finding places Iin the

) grade-by-grade sequence of instruction where the performance curves
flatten out. Results that deal with the remaining topics are then

summarized with briefer discussions.

Addition and Subtraction (with Carrying and Borrowing)

Using the PVS, Essential Skills, and NAEP dats bases, we were able
to construct a profile of growth on routine tasks involved in addition
and subtraction with carrying or borrowing. We begin with 2-digit
numbers, about the middle of grade 2, and end with &- or 5-digit numbers
in grades 5 and 6 (see Figure 1.1). From the PVS data base, we picked up
performances on addition and subtraction at mid-year in grade 2, which is
about the earliest point that textbooks begin to provide instruction. By
the middle of grade 2, a little less than half of the students In the PVS
data base could do a routine task Iinvolved in addition with carrying:

29
+16
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Looking at the top curve In Figure 1.1, it Is clear that by the end of
grade 2, almost 702 of the students could now do a similar task involved
in addition with carrying:
37
ﬁ
At the beginning of grade 3, student performance drops back to about
the point where it had been at the middle of grade 2. By the end of
grade 3, however, the performence level on a more complicated task
involving addition of 3-digit numbers with two carries, climbed to almost
90%.
239
+392
Our analysis shifted from 2-digit to 3-digit numbers between the
beginning and end of grade 3, because there were no suitable tasks
involving addition of 2-digit numbers in the PVS data base at the end of
grade 3. However, the shift from two-digit to 3-digit numbers is
consistent with the shift that textbooks make when they stress addition
with 3-digit numbers in grade 3. Addition with 2-digit numbers Is
covered in textbooks for grade 3, but it is only an introduction to more
complicated forms of addition involving numbers with three, and somet i mes
four, digits. There is some drop in performance on addition with 3-digit
numbers during the summer between grades 3 and &, but not nearly as much

as there was with 2-digit numbers between grades 2 and 3.
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Beyond the ehd of grade 3, our analysis doesn't show any other
dramatic Increases in the level of student performance as addition with
carrying shifts to larger numbers. Items In the PVS data base shift to
h-digit numbers at the end of gradé 4, consistent with a shift In what is
stressed in textbooks. !n the PVS data base, the level of student
performance on 4-digit numbers hovers near thg]BOS level through the
middle and the end of grade 4 and then climbs to almost 90% by the middle
of grade 5. It's fairly safe to assume that, If we could continue to
look at addition tasks Involving only 2-digit and 3-digit numbers through
grades 4 and 5, student performance might Inch upward beyond the 90%
Tevel we saw with 3-digit addition at the end of grade 3, but Iit's
unlikely that they would move very far. Grade 3 Is the last time that
students get much intensive Instruction on addition with carrying. By
grade 4, textbooks shift their emphasis In computation to multiplication
and division, so they may have only two or three lessons that deal
directly with addition, and these usually cover subtraction at the same
time.

To extend our analysis of additio; skills beyond grade 5, we looked
at performances on comparable addition tasks in the Essential Skills data
base. We do not show the actual items in Figure 1.1, but we do show
levels of student performance, using hollow triangles, on 4-digit
addition at the end of grade 5 and on 5-digit addition at the end of
grade 6. These performence levels appear to be about the same at the end
of grades 5 and 6 as levels in the PVS data base at the middle of

grade 5.
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Student performance levels in the NAEP data base are generally lower
than those Iin our other data bases, especially at grade 4. NMNAEP's second
assessment of 9-year-olds doesn't Include meny items on addition with
carrying, and none of the ones th-t are In the data base Involve addition
of two 4-digit numbers, the kind of routine task we are looking at in the
PVS data base at grade 4. One NAEP item does Involve addition of three
h-digit numbers. On this task, the performance level for 9-year-old
fourth graders Is about 55%, which Is almost 25 percentage points lower
than performance levels in the PVS data base on addition with two (rather
than three) h-digit numbers. The NAEP data base does have an item
involving 2-digit addition with carrying. A little more than 803 of the
9-year-olds at grade & answered it correctly. This MAEP level of
performance on 2-digit addition at grade & Iis a 1ittle lower than the
levels in PVS for 3~digit addition at the end of grade 3.

Why are performance levels in NAEP generally lower than performance
levels In PVS and Essential Skil's data bases? It's hard to say. A
partial answer may reside in the way students are required to do tasks In
NAEP assessments. NAEP uses free-response items, for which students
write rather than select the correct answer, for all of its tasks
involving basic computation with whole numbers. The other two data bases
involve multiple-choice items. It is possible that selecting & response
on a multiple~choice item is easier for the kinds of routine computation
tasks we are observing. On the other hand, the wrong answers in a
multiple-choice item may actually increase the likelihood of common

errors in computation. The wrong answers in multiple-choice items often
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represent a very obvious and easy-but-wrong wey to "attack'' the [ roblem.
When students consider the wrong-answer cholces, it's very likely that
many of them see a quick fix for getting through with a computation task,
even though their answer is wrong. Wrong answer choices for computation
tasks usually involve simple intermediate steps that are not appropriate,
but they are easy for students to recognize. Because students can easily
see how a wrong answer choice could be derived from numbers that are
given, the answer becomes plausible.

There is another reason that NAEP performance levels may tend to be
lower than performance levels In the PVS and Essential Skills data bases.
NAEP items are administered under conditions that are very carefully
controlled to such an extent that testing sessions may, in fact, be rigid
and uncomfortable for many students. All NAEP jtems are administered by
specially-trained personrel, not by a student's regular classroom
teacher. Some directions are read aloud by the person administering the
assessmen:; others involve special, tape-recorded directions. For some
tasks students are shown the directinons; for others they aren't,
individual students respond to a8 wide variety of item types, many
involving tasks that are much more difficult than ones the students are
regulariy asked to do. This combination of unfemiliar tasks and testing
enviromment inherently introduce more complications than students
ordinarily encounter in testing that is done In the classroom.

CTBS performance leveis on addition tasks are comparable to results
in the PVS and Essential Skills data bases. Figure 1.2 shows performance

levels on five addition tasks that cover several different grade levels.
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The CTBS-derived performance level on 3-digit addition with carrying
begins at 78% at the end of grade 3. This result is a littie lower than
the 853 level observed in PVS, but it moves on to almost 90% by the end
of grade 4. The CTBS performance level on addition of three numbers
having up to four digits begins at about 72% at the end of grade 4. This
is considerably higher than the 60% level observed in NAEP (see Figure
1.1) on a comparsble task at the middie of grade 4, and the performance
level on this task continues to move upward, reaching about 80% by the
end of grade 6. CTBS includes tasks that involve addition of three
numbers having up to six digits in its test for students who are at the
end of grade 6§, 7, or 8. The level of performance on this task begins at
almost 80% at the end of grade 6, and moves up to 83% at the end of grade
8. The 83% level Is sbout the same as what we see in the NAEP data base
(see Figure 1.1) on addition of three numbers at the middie of grade 8.
Thus, It seems that schooling can produce levels of performance on
addition of whole numbers that eventually reach 80-90% for a population
of students.

The growth of student performance in subtraction runs almost
paralle! to performance on addition tasks, but at a somewhat lower level.
The data in Figure 1.1 shows that, for numbers of about the same size,
subtraction with borrowing runs anywhere from 10 to 30 percentage points
lower than addition with carrying. The biggest difference occurs at the
end of grade 3, where about 85% of the students in the PVS data base
could do a task involving 3-digit addition that required two 'carrying"
steps, but only 558 could do @ comparable task involving 3-digit

subtraction that required only one "borrowing' step. In part, the
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difference in difficulty has to do with the fact that subtraction with
borrowing involves a sequence of steps that Is different from addition
with carrying. In many ways, the subtraction task may be more
complicated, even though it requires only one borrowing step. For one
thing, the student must decide whether or not borrowing Is necessary
before beginning to subtract one digit from another. Within the addition
task, the carrying step is tsken care of after the Inltial addition of
digits has already begun. But there is another factor that |s
undoubtédly involved., Teachers at grade three will provide instruction
on addition of 3-digit numbers with carrying to almost all students by
the end of grade 3, but many will not get to subtraction with borrowing,
especially with students who typically require a lot of time and
patience, before they learn new things. Work on subtraction of 3-digit
and h-digit numbers comes later In grade three textbooks than work on
comparable forms of addition, and many teachers don't get to it.

From grade 4 to grade 6, the level of performance on subtraction
shows about the same rate of Increase as performance on addition,
although there is still a difference of about ten percentage points
between levels of performance on addition and subtraction.

By the middle of grade 8, NAEP data show performances on addition
and subtraction of 2-digit numbers that have come quite close together;
both of them reach a level where about 90% of the grade 8 students are

successful.
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Performance levels derived from CTBS are considerably lower for
subtraction with borrowing than they are for addition with carrying
through all of the elementary grades. However, the two come very close
to each other by the end of grade 8. As shown in Figure 1.3, a little
more than 503 of the students at the end of grade 3 can solve a 2~digit
subtraction problem that involves borrowing. By the end of grade &, 703
can solve a 3-digit subtraction problem that has one borrowing step,
while 558 to 65% could solve 4-digit subtraction problems that have one
or more borrowing steps. The subtraction task showing the lowest level
of student performance at grade 4 requires three "borrowing' steps. It
is especially tricky, because many students will subtract 8 from 8,
instead of 17, in the tens column. By the end of grade 5, the level of
student performance on this problem moves from 543 to 67%, and It moves
on up to 743 by the end of grade 6.

Overall, our data on addition and subtraction show the following

patterns:

1. The growth of student performance on both addition and

subtract fon takes on about the same zlg-zag profile, especially
across grades 2, 3, and & where the bulk of regular instruction
appears In schoo! textbooks.

2. A lot of what students learn in grade 2 is forgotten by the
beginning of grade 3, but is quickly relearned and extended.

3. Most of the "improvement'' in addition and subtraction occurs in
grade 3.

L, The level of performance on addition with carrying flattens out
in grade 3, although the range of performance at the 80-90%
level Is extended in subsequent grades to include addition with
larger numbers.

5. The level of performance on subtraction does not begin to
flatten out unti} near the end of grade 4.

2/
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""Hard' Multiplication and Division Facts

Using the PVS data base, we were able to track the growth of
performance on ha;d multiplication and division facts from grade 3
through grade 6. No single multiplication or division fact is included
in every PVS instrument. But we were able to follow several closely-
related tasks through the beginning of grade 6 that require recall of
multiplication and division facts. Textbook lessons on hard
multiplication and division facts don't begin unti) grade 3, and the bulk
of instruction is completed by the middle of grade 4. However,
multiplication and division facts get a lot of Iindirect practice when
students learn and practice algorithms for multiplying and dividing
larger numbers and also when they are learning how to generate equivalent
forms for common fractions and mixed numbers.

The results in Figure 2 show that the level of performance on 'hard"
multiplication facts moves from a low at mid-year of grade 3, where a
little more than 50% of the students in the PVS sample could find the

answer to 6 multiplied by 9, to a high of better than 903 on about the

same kind of multiplication problem in grade 5. The very high level of

performance on 9 multiplied by 5 at mid-year of grade 5 may have

something to do with the fact that multiplication involving "fives' has
more regularity than multiplication involving ''sixes," ''sevens,”
"eights,” or ''nines' and may therefore be easier for students to
remember.

On facts that involve about the same numbers, student performance on
division starts out at about the same level as performance on
multiplication. But, after the middle of grade 3, performance on
division tralls performance on multiplication by flve to ten percentage

points all the way through the beginning of grade 5.
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At grade 3, performance on division in the Essentlal Skills data
base is very Jow. Two 'hard' division facts have performance levels
around 553 and the third, which involves division by 5, Is at 70%, about
the same as the ''nines' division fact from the PVS data base. The low
level of performance on hard division facts in the Essential Skills data
base undoubtedly has something to do with the recommended schedule for
teaching multiplication and division in the school district where these
data were obtained. The district's program calls for multiplication and
division facts to be taught in grade 3 and agalin In grade 4. The
textbook serlies which this district has adopted for regular instruction
includes hard division facts at grade 3, but, like most other textbook
series, the lessons come very late in the grade 3 textbook. It is quite
likely that a large number of teachers don't get tu hard division facts
before the end of grade 3, leaving this instruction for next year's
teachers to pick up In grade &.

Coverage of "hard" multiplication and division facts in the NAEP and
CTBS data bases is spotty. CTBS Form U has no hard multiplication or
division facts in any of its tests. NAEP covers hard multiplication
facts in its assessment of 9-year-olds, but it doesn't cover division
facts until the assessment of 13-year-olds.

Within the NAEP data base, the results on two hard multiplication
facts at grade 4 are about 30 percentage points lower than results on
similar facts from the PVS data base at about the same point in the
school year. Part of this difference may be due to the fact that PVS

tasks require students to select the best response from among four

31
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alternatives, while NAEP tasks require students to write their response
in a space that's provided. Moreover, multiplication and division facts
are presented in PVS in much the same way that students would encounter
them in a textbook. Students tsking MAEP assessments see no written
problem. Rather, they respond to a phrase such as "five times nine,"
which |s spoken by the NAEP proctor. This situation is quite un) ike
regular multiple~choice assessment items, which students see a lot. It's
quite Vikely that the unusual conditions for testing associated with NAEP
often lower student performance, especially at grades 3 and 4 when
students are first learning how to multiply and divide. By the middie of
grade 5, performance levels on multiplication and division facts are both
at about 903 and they continue at about the same level into grade 6.
Results from the NAEP data base show that the performance level on
multiplication facts reaches about 903 at the middle of grade 8.
Performance levels on hard division facts overlap with multiplication a
little bit, but are slightly lower.

Overall, the results from the PVS, Essential Skills, and NAEP data
bases show that the main growth in student performance levels on hard
multiplication and division facts, about 40 percentage points, occurs
between the middle of grade 3 and the end of grade 4. This is a time
span when school textbooks provide most of their Jessons that deal with
hard multiplication and division facts. At the end of grade 3,
performance levels in these three data bases vary widely, and they
continue to do so through the middle of grade 4. During this period, it

would be easy to make unreliable assumptions about what students can do.
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Differences in problem format or in the kind of response that's required
make a big difference In what Individual students are able to
demonstrate, There is a fair-sized drop in performance levels that takes
place over the summer between grades & and 5, but, by the middle of grade
5, after multiplication and division facts are quite likely to be given a
review by classroom teachers, performance levels flatten out at a place
where 85-90% of the ;tudents are able to consistently recall

multiplication and division facts.

Multiplication and Division Algorithms

Our analysis of algorithms for multlpl!cation and division of larger
numbers shows the same upward zig-zag pattern in performance that we saw
with "hard" multiplication and division facts. Beginning midway through
grade 3, PVS data in Figure 3.1 show that about 308 of the students can
multiply a 2-digit number by a 1-digit number, and that a little less
than 303 can do a comparable form of division. By the end of grade 3,
almost 70% of the students can now do basic multiplication-with-carrying
and more than 508 of them can do the same basic kind of division.

The second half of grade 3 is when many students get their first
instruction on multiplication and division of 2-digit and 3-digit numbers
by a 1-digit number, although some teachers may leave this introductory
work to be done in grade k. Often teachers choose instead to provide
more practice on multiplication and division facts. A}l textbooks
provide several lessons on multiplication of 2-digit and 3-digit numbers
by a 1-digit number before the end of grade 3, and most of them also

introduce a comparable kind of division involving 1-digit divisors. All .
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of this work is repeated In grade 4, but at a much earlier point in grade
4 textbooks. Often work in the first half of grade &4 Is extended to
multiplication and division by tens (e.g., 36 x 20). Before the end of
grade 4, mos: textbooks move to a more general (and more complicated)
algorithm that involves multiplication and division by any 2-digit
number.

Classroom review of the basic multiplication and division algorithms
continues all the way through grade 6, partly because these algorithms
are complicated and take a long time to learn. Another reason Is that
basic algorithms for multiplying and dividing whole numbers are also used
in miltiplication and division with decimals, which fextbocks Introduce
in grade 5 and 6. Therefore, it is very useful to review multiplication
and division with whole numbers just before new work Involving
multipllcat!on and dlvlslon_wlth decimals |s begun.

We followed the growth of multiplication and division algorithms by
loocking at performance levels to see how they were increasing in relation
to a broadened range of performance that included more complicated
multiplication and division tasks. It was impossible to follow student
performance on the simple forms of multiplication or division by &
1-digit number al) the way through to the end of grade 6. By the middle
of grade 5, most textbooks have moved on to 2-digit multipliers and
divisors. So have almost all of the items in the PVS data base. In
order to have enough data points to show the 'forn' of increasing levels
of student performance all the way through the end of grade 6, we shifted

our analysis from 1-digit to 2-digit multipliers and divisors at the end

of grade 5.

35



31

By the middle of grade 5, there is an increase of about 50 points in
the percentage of students who can do problems in multiplication and
division Beyond basic computation facts. There is a slight, but
expected, drop Iin level of student performance on multiplication tasks
between the middle and the end of grade 5 as our items shift from 1-digit
to 2-digit multipliers. By the end of grade 6, however, the performance
level on 2-digit multipliers recovers to about the same level as
performance with 1-digit multipliers one grade level earlier. Overall,
the level of student performance on division trails performance on
multiplication by anywhere from five to 40 percentage points. A huge
difference occurs at mid-year In grade 4. Here, more than 703 of the
students can multiply a 2-digit number by a 1-digit number, but less than
403 can do a similar problem where they have to divide a 3-digit number
by a 1-digit number (and obtain a 2-digit quotient). 1In part this
difference may have something to do with the tasks, themselves; dividing
352 by 6 (see Figure 3.1) may not be as comparable to multiplying 38 by 7
as, say, dividing 84 by 6. However, a large part of the difference In
difficulty between comparably complicated forms of mulitiplication and
division at this point of Instruction must have a lot to do with the fact
that textbook lessons on the division always come at a later point than
lessons on multiplication. As a consequence, many teachers may be
deferring instruction on division for many students unti] the next grade
level. Many teachers feel that students who typically learn mathematics
at a slower pace are not ''ready' to do serious work on anything as

complicated as long division at the end of grade 3. Some are even
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r?luctant to ask students to do much with division at grade &, It is
almost certalin that the difference we see in student performance levels
at the end of grade 5 between multiplication and division by 2-digit
numbers is largely a result of the difference in emphasis that teachers
tend to give these two topics; multiplication by 2-digit numbers almost
always gets covered by the end of grade 5, but the same kind of division
often gets postponed until grade 6.

The flattening out in performance on muitiplication that shows up in
the PVS data base around grade 5 is verified by information on comparable
items from the Essential Skills data base. At the cnd of grade &, two
problems in the Essential Skills dats base that involve multiplication by
a 1-digit number have higher performance levels than a similar task, 627
x 8, In the PVS data base, while three problems of the same type have
slightly lower performance levels. At the end of grade 5, the
performance levels on multiplication by 2-digit numbers in the Essential
Skills data base are 8ll slightly lower than performance levels on a
similar PVS task, #73 x 58. By the end of grade 6, the two data bases
agree almost completely.

The levels of performance on items In the NAEP data base are a lot
lower in grade 4 than performsnces on comparable items In PVS or the
Essential Skills data bases, By the middle of grade 8, multiplication
and division by 1-digit numbers in the NAEP data base has moved up to
about the same performance level we saw in the PVS and Essential Skills
data bases at the middle of grade 5, although the division task derived

from NAEP, 608 divided by 6, is much less complicated than the comparable

PVS task, 497 divided by 8.

37



. ' 33

NAEP tasks that involve multiplication and division by 2-digit
numbers are much less complicated than any comparasble tasks in the PVS
data base. One NAEP task, 323 x 13, requires no carrying steps in
finding the partial products, while another task, 468 divided by 36,

obviously has s '1" as the first digit In the divisor. A task derived
from NAEP, 3052 divided by 28, is more complicated than any of the PVS
tasks shown in Figure 3.1, because it has a ''0" as the second digit in a
3-digit quotient. This task has an NAEP performance level of sbout 50%

in contrast to the performance level on a PVS task, 3789 divided by 46,

which is more than 753 at the end of grade 6,

CTBS-derived levels of student performance on multiplication (see
- Figure 3.2) show a steady growth on tasks Iinvolving multiplication by
1-digit numbers. This growth begins in CTBS at about 70% at the end of
grade 4 and moves to almost 902 at the end of grade 7. (There are no
items involving multiplication by 1-digit numbers in the CTBS tests in
Form U that are intended for students at grade 3.) The level of
performance on problems involving multiplication by 2-digit numbers takes
a dramatic jump of more than 30 percentage points between the end of
grade 5 and the end of grade 6, and it continues upward to about 85% at
the end of grade 8. Performance levels in the middle grades are somewhat
lower in the CTBS dats base than either the PVS or Essential Skills dats
bases, but they eventually flatten out in the Interval of about 80% to
90% in grades 7 and 8, much like performance levels in the other two data

bases.
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CTBS performance levels for division show some special challenges to
schooling in the elementary grades. As Figure 3.3 shows, schoo)
instruction through grade 8 is only moderately effective for anything but
the most straightforward division tasks. None of the division tasks that
we were able to track move above the level of 702 to 80%. Performance
levels on some special division tasks, having one or two zeros in the

quotient {42084 divided by 21 and 6651 divided by 5), show almost no

growth past grade 6.

INPLICATIONS FOR HIGHER STANDARDS

The results of this analysis are important to the consideration of
higher standards for elementary schooling. They are laportani to
teachers, principals, subject matter specialists, and superintendents and
their assistants who have the broad responsibilities to bring large
groups of students along In the pursuit of excellence. Outside the
‘domain of elementary school ing, these results are important for standard
setters In government, colleges and universities, and even in secondary
schools, who are inclined to support directives to '"bring up test
scores," often without benefit of knowing much sbout the detalls of what
is generally being accomplished now in the elementary grades.

People who set higher standards for elementary schools cannot assume
that, because students often perform higher on some routine tasks than
they do on other areas of the curriculum, the teaching and learning of
routine academic tasks is not a problem. The assumption Is false. As

these results demonstrate, many routine computation tasks come on line
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for all or nearly all students well past the point in schooling where the
core of instruction Is provided, and well past the time when these tasks
have become a prerequisite to student participation in other, often
non-routine, areas of a subject matter.

As far as details are concerned, higher standards for the elementary
grades should be concerned with several characteristics in the growth of
student performance as a result of elementary schooling.

First, the growth in performance that occurs whenever topics are
part of regular instruction for all or nearly all students is much more
dramatic than any growth that Is likely to occur later, because of
intensive efforts to fine tune various aspects of ongoing instruction.
Mastery learning and pass/fail programs implemented one or two grade
levels after an academic task has been covered In regular textbook
lessons may be important for some individual students or even some
classrooms that include homogeneous groups of students who are mostly not
doing very well in school. However, these programs will not do much to
improve the performance of elementary school ing for either the present or
future generation of students.

Second, the margins for school improvement are more promising in
some segments of the topography of an academic sub ject than others. Our
analysis shows that the margins in elementary schoo! mathematics are most
favorable around instruction on the subtraction and division algorithms,
The levels of student performance on both algorithms trail their
counterparts in addition and multiplication all the way through the

development years of basic arithmetic with whole numbers. It would be
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easy to disregard the difference between subtraction and addition and
between division and multiplication, attending only to the obvious fact
that subtraction and division are more complicated processes than their
computational siblings. Some of the discrepancy that we see between
student performance on division and multiplication or subtraction and
addition obviously do have roots in intrinsic differences in complexity
in these basic arithmetic skills, but not all. We know that subtraction
and, especially, division come very late in textbooks the first time that
these topics are either introduced or significantly extended to larger
numbers. We also know that teachers often tend to skip chapters near the
end of their textbooks.

With subtraction and division, there are good-sized margins for
school improvement especially if teachers are encouraged to complete all
of the instruction on subtraction and division topics at each grade level
where these topics occur--no matter how late the instruction comes In
textbooks. Often, teachers don't go on to subtraction or division
because they had quite a bit of trouble teaching addition or
multiplication. Some students are stilli a little shaky. While
sensitivity to the Immaturity and anxiety of individual students is a
characteristic of good teaching, the compiete avoidance of difficult
topics because all or nearly all students are not entirely ready
represents questionable pedagogy. As long as teachers are careful,
students can do significant and productive work on complicated topics
even though they may not be able to do well on a complete range of tasks

that these topics entail. For students who are likely to experience a
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lot of anxiety with complicated processes, there are ways, short of
waiting until next year, to carefully control the difficulty of the tasks
they are asked to attempt.

Third, a dramatic "loss of performance'’ occurs when the first
teaching on a topic occurs late in the school year, and this loss may
provide a fairly wide ngfgin for school improvement for entire schools or
districts. For each‘of the topics In this analysis, the instructional
treatment on particular tasks comes very late in the textbook and, as we
noted earlier may be skipped by many teachers. Even when instruction is
provided, the amount of practice that students get on a particular task
is often quite skimpy! and may come so late in the year that there is not
enough time for periodic strengthening, spaced over several weeks, before
the year is out.

These implications are not complicated and neither is the action to
implement higher standards for schooling. From one perspective, it is
fairly clear that more than 90% of elementary school students learn basic
muliiplicatton and division facts by the end of grade 5 and that upwards
of 80% of them eventually learn how to do routine tasks involved in
addition and multiplication and probably subtraction. These are
important accomp!ishments, but they're qualified. The phrase n,o.

eventually learn how to do routine tasks . . .'" is a big qualifier that

often upsets well-intended efforts to set higher standards and, more
important, to realize them. From another perspective, schooling lonks a

little different. By the end of grade 6, almost 20% of all elementary

Tror information regarding issues involving concentration of
practice on pivotal mathematics skills at different grade levels, see
Perkins {1983) and Buchanan, Schutz, and Milazzo (1983).
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students are unable to demonstrate the most straightforward tasks in
addition and multiplication that involve carrying. More than 20% of them
can't do basic subtraction. Moreover, fairly high levels of performance
at grades & and 5 in the PVS and Essential Skills data bases (where
problems are not designed to be especially tricky and students have
plenty of time) deteriorate badly when the conditions of performance are
unusual, as they are with NAEP assessments, or when speediness becomes a
factor, as it does with CTBS. When performance' moves away from basic
forms of computation and into tasks that hayf special complications, such
as "zeros in the minuend' in subtraction or ''zeros in the quotient” in
division, things get worse yet.

Overall, the results show that, through grade 6, students can do a
lot of different routine tasks involved In computation, but the
reliability of their performance is fragile. A pedagogical sledgehammer,
even though wielded under the banner of ''excellence,” is not the right
tool for improving the performance. Bringing all or nearly all students
to a status where computation algorithms are completely reliable--subject
only to careless or random error--has been a historic struggle for
schools. In the long range, it should at least be considered that some
other approach now might make better use of the limited amount of time
that's available for teachers to teach and students to learn. In the
past, there was no reasonable alternative to learning complete, full-
blown algorithms for computation; now, with calculators and

microcomputers, there is.
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For now, however, human memory-driven computation is the dominating
factor in mathematics instruction for the elementary grades. The
question Is how much to expect. Even if schools can push performance
levels on computation problems to 85-90%, there is still a question of
timing. It Is not enough that students ''eventually learn" how to
compute. Many learning opportunities that elementary schools provide at
one grade have strong |inkages to skills that will come at the next
grade. Little that is of any consequence is learned in isolation. As it
is now, opportunities missed are 1ikely to be opportunities lost for a
sizable proportion of learners. Timing Is critical.

From any perspective, the process of elementary schooling is
complicated. Pursued intelligently, the successful achievement of
educational excellence in any school subject requires more than the
efforts of individual teachers teaching smell groups of.children. A
simplistic view of what teachers and principals need to do to promote
excellence i1] serves all parties-~-students, teachers, administrators,
and the public. Pushing teachers to try harder is not enough. All in
all, better articulation of learning opportunities across grade levels
has a lot to do with raising standards and promoting excellence in the
elementary grades. Intensity Is a critical part of any worthwhile

effort-~-but so Is focus and timing.
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APPENDIX A
DESCRIPTION OF TOPICS INCLUDED IN THE ANALYSIS

All six topics in the analysis involve computation with whole
numbers. Esch of the topics receives a substantial number of textbook
lessons, compared to other topics that are taught at about the same grade

levels, and esch one becomes embedded in instruction on some other toplc

a grade level or so later.

Topic 13 Addition of 2-, 3-, and h-diqit Numbers (with carrying)
Addition of 2-digit numbers is Introduced in some textbooks by the
end of grade 1, but it doesn’t require any regrouping of place
values (carrying). Addition with carrying begins in the last half
of grade 2 and is expanded in grade 3 to include 3-digit and often
4-digit numbers. This topic Is reviewed in grade & and is usually
extended to addition of numbers having more than four digits, but
instruction usually amounts to no more than two or three lessons.
Textbooks for grades 5 and 6 also include s small amount of review
in most textbook series.

Topic 2: Subtraction of 2-, snd 3-digit Numbers (with borrowing)
Subtraction of 2-digit numbers with borrowing begins at the end of
grade 2. It |s extended at grade 3 to include 3-digit numbers, but
somet imes the subtraction does not involve much work with minuends
that have zeros (302 - 215) unti) grade 4. Nevertheless, the
instruction on subtraction with zeros and subtraction with 4-digit
numbers is completed by the end of grade & and is reviewed briefly,
along with addition, In grades 5 and 6.

Topic 3: '"Hard'' Multiplication Facts This topic includes
multiplication of the numbers 6, 7, 8, and 9 by the numbers 5, 6, 7,
8, and 9. Instruction on multiplication facts begins in most
textbooks at grade 2 with easy facts such as 3 x 2 and 3 x &.
Instruction on hard facts begins in grade 3, usually in the second
half of the textbook, and is repeated in grade 4. Often, there is a
small amount of review provided near the beginning of grades 5 and
6, but the bulk of formal instruction is completed in grade 4.

Topic 4: 'Hard" Division Facts These facts parallel the
multiplication facts identified above {e.g. 54 : 6 and 42 : 7).
Instruction on hard division facts begins late in grade 3, usually
after all of the work on hard multiplication facts is finished.
instruction Is redone in grade 4, ususlly in the first quarter. of

. the textbook. A small amount of review and practice is proylded
early in grades 5 and 6 together with practice on multiplication
facts. '
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Topic 5: Multiplication by 1-digit and 2-digit Numbers Instruction
on multiplication by 1-digit numbers often begins late in grade 3
and extends wel) Into grade 4. Multiplication by 2-digit numbers
usually begins late in grade & and extends into grade 5. Although
multiplication by 1-digit and 2-digit whole numbers is reviewed
early in grade 6, there are other grade 6 topics, such as
multip)ication by decimals and multiplication by 3-digit numbers,
that build directly upon them.

Topic 63 Division by 1-digit and 2-digit Numbers Instruction on
division by T=digit numbers also begins nesr the end of grade 3 in
many textbooks and Is covered thoroughly by all elementary school
textbooks In grade 4. Division by 2-digit numbers is introduced
near the end of grade 4, although many teachers defer instruction
until the topic Is reintroduced in grade 5.
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APPENDIX B
DESCRIPTION OF DATA BASES EMPLOYED IN THE ANALYSIS

The major data base used for grades 1-6 Includes information from
SWRL's Proficiency Verification System (PVS) collected at the
beginning, middle, and end of the 1978-79 school year. PVS
inventories involve over 200 assessment items at each of grades 1-6.
Development of the Items was based on a careful analysis of how topics
are introduced grade-by-grade In msthemstics textbooks that schools
use most. One festure of PVS Inventories Is especially useful for

analyzing students' performances on similar assessments across two or
three aggacent grade levels. Many mathematics problems that are the

same, or very nearly so, appear in PVS inventories for contiguous time
periods. Just as there Is overlap In Instruction on the same topic
across two or more grade levels, there is some overlap In items across
levels of PVS inventories. For example, multiplication and division
facts are part of PVS Inventories used at the middle of the school
year in grades 3, 4, and 5; they are Included Iin inventories for the
beginning of the school year at grades 4, 5, and 65 and they are part
of the end-of-year Inventorles for grades 3 and 4. During the 1978-79
school year, over 1,000 students at esch grade level took each of the
three PVS Inventories as part of their school's regular testing
program. Almost all of the students were located in three large
school districts whose school populations Iincluded a wide range of
student capabilities. All of the students in each of these districts
were Involved In the PVS program. Using the PVS data base we could
look at student performances on similar items within esch topic
beginning at mid-year in elther grade two or grade three and,
depending on the topic, continuing on through the beginning, middle,
and end of grade 5 or grade 6.

Our alternate data base includes the results from three assessments of
essential skilis given In the spring of 1979, 1980, and 1982. The
assessments were specially written to fit the objectives of a large
urban school district's instructional progrem. Each assessment
consists of approximetely 50 mathematics items at each of grades 1
through 6. More than 25,000 students at esch grade level are
adninistered these assessments at the end of the school year. In most
instances, the six topics we wanted to follow are assessed about one
grade level later In the Essential Skills data base than they are in
PVS. This happens because of the logic that underlies the assessment.
The intention of the school district is to give as much opportunity as
possible for instruction on each objective to take place before
students are assessed. As a result, most of the skills are assessed
one to two grade levels behind where they are introduced and developed
in most textbooks.
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® The NAEP data base comes from the second nationwide mathematics
assessment, which was conducted in 1978. it represents a large sample
of students at ages 9, 13, and 17 from across the nation. The NAEP
data base has a unique structure that enhances the utility of the data
for some kinds of analysis, buf\dinlts it for others. One feature
that enhances an analysis of student growth on routine academic tasks
is the huge varlety of tasks that ‘students are asked to do In each
NAEP assessment. Some tasks are very difficult for students at a
particular age level, while others are very easy. The nice thing
about this feature is that one can alhpst always find an item in the
NAEP data base to represent some toplc\that Is the focus of some
research on student performance. \

A major limitation of the NAEP data base for 1978 is that all
assessments were administered to students who were all of the same age
but not at the ssme grade level in school. Therefore, data on
9-year~old students mostly includes fourth graders, but it also
includes a falrly large number of third graders who were 9 years old
in January and February of 1978. In addition, the NAEP data base for
9 year olds includes a small number of students who were in grades 2,
5, and 6 at the time of the assessment. NAEP, in its published
reports, has mainly provided results for each of its three age groups;
very little Information has been published about resuits for different '
grade levels within these age groups. Fortunately, the data tapes
which NAEP has made svailabie to researchers have codes that ldentify
the grade level of students taking the assessment. Therefore, it is .
possible to look at student performaence for different grade levels as
well as different chronological ages. One does have to exercise some
caution, however. Performance levels of 9-year-old fourth graders do
include most of the students who are sugposed to be Iin fourth grade,
but they would not jnclude very bright 8-year-olds, who might be in
the fourth grade. Even more likely, NAEP results for 9-year-olds
won't include any 10-year-old students who are still in fourth grade
because they are serlously behind.

In our analyslis, we looked mainly at data for fourth graders, who made
up about two-thirds of the NAEP sample of 9-year-olds, and eighth
graders, who made up about two-thirds of the NAEP sample of
13-year-olds. We did not look at dats for the NAEP sample of
17-year-oids, because these students have been out of elementary
school too long for NAEP results to tell us much asbout effects of
schooling in the elementary grades.

® The CTBS-derived data base includes p values, the proportion of
students answering a test question correctly, obtained from a national
sample of school students by CTB/McGraw-Hill when various levels of
Form U of this test were normed in the spring of 1980. The p values
used in our analysis actually represented the "proportion of students
answering correctly who attempted to answer a particular item." This
kind of p value excludes students who did not try to answer the .
particular item. We used the "attempted" p value, because the CTBS
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tests are carefully timed. Some slow-working students who might have
answered correctly on Items that occurred near the end of the test
never got to them., Obviously, they didn't answer these items
correctly, but we don’t know that all slow working students would have
answered them incorrectly, either. About the best we can do Is to
assume that the "attempted' p values for items near the end of the
test may be a 1ittle high as indicators of the proportion of all
students who would have answered correctly if the test had not been
timed.

Altogether, our CTBS-derived dats base included Iinformation from
approximately 80 to 90 items on Levels D through F of Form U. At each
level, the Items were from two subtests: Mathematics Computation and

Mathematics Concepts and Applications.
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APPENDIX C
DESCRIPTION OF ANALYTICAL PROCEDURES

Using the PVS data base we moved assessment by assessment from the
beginning, to the middle, to the end of the school year, and we repeated
this process across several contiguous grade levels to see how the level
and the range of student performance Incressed together. Along the way,
we supplemented various PVS-derived data points with student performance
levels on similar items from our Essentjal Skills data base. Going
further, we included data points for coordinating items on NAEP results
for 9-year-old fourth graders. In some cases, the Items we show for NAEP
were items actually used in the assessment; in others, the i*~m we show
only illustrates an NAEP item type because the real NAEP item is still
restricted and cannot be published. Beyond grade 6, we used Items from
NAEP data for 13-year-olds in grade 8 to observe levels of performance
and, to some extent, ranges of performance several grade levels after
regular instruction would have {or should have) been completed.

We used results on CTBS items to provide some additionsl Information
on performance levels of students In grades 3 and &4 and to fill In some
gaps In grades 6 and 7. Not a lot of items In CTBS are useful for this
purpose, because some topics, such as hard multiplication and division
facts, simply aren't represented very extensively in any of the tests in
CTBS Form U. In addition, many Items that are included in the compu-~
tation portions of CTBS represent extremes in item difficulty. For
example, division of a 3-digit number by a 1-digit number, one of the
early stages In learning about division beyond the basic facts, is
represented In CTBS by two kinds of division tasks. One, for example
3)636, is extremely simple because it involves only the use of basic
facts and requires no subtraction., The other, for example 3)311, is very
tricky becsuse It starts out with a deceptively simple use of basic facts
but requires students to work with a zero In the quotient. This kind of
task represents one of the most complicated forms of division by a
1-digit number. For the CTBS analysis, the items we show are coordinate
items that have numbers of about the same size and involve computations
that require about the same number of steps to do.
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